
EFFICIENT SEQUENTIAL AND TEMPORAL
PATTERN MINING

Natalia Mordvanyuk

Per citar o enllaçar aquest document:
Para citar o enlazar este documento:
Use this url to cite or link to this publication:
http://hdl.handle.net/10803/672924

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets
de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials
d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual
(RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En
qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la
persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació
efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc
s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant als continguts de la tesi com als seus resums i índexs.

ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los
derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en
actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto
Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización
previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá
indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se
autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación
pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una
ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como
a sus resúmenes e índices.

WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It
can be used for reference or private study, as well as research and learning activities or materials in the
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and
previous authorization of the author is required for any other uses. In any case, when using its content, full
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit
use or public communication from outside TDX service is not allowed. Presentation of its content in a window
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis
and its abstracts and indexes.

http://hdl.handle.net/10803/672924

 Efficient sequential and
 temporal pattern mining

Natalia Mordvanyuk

PhD Thesis

2021

 Efficient sequential and
 temporal pattern mining

Natalia Mordvanyuk

PhD Thesis

2021

DOCTORAL THESIS

Efficient sequential and temporal pattern mining

Natalia Mordvanyuk

2021

DOCTORAL PROGRAM in TECHNOLOGY

Supervised by:
Dra. Beatriz López
Dr. Albert Bifet

Work submitted to the University of Girona in partial fulfilment of the
requirements for the degree of Doctor of Philosophy.

Agräiments

Aquesta tesi s’ha dut a terme gràcies a la paciència i els bons consells dels meus dos
directors de tesis la Dra. Beatriz López i el Dr. Albert Bifet, als quals agraeixo de tot
cor tota la dedicació i paciència que van tenir amb mi. Bea, tinc la sensació d’haver
treballat i après moltissim al teu costat, i d’haver gaudit fent-ho. Un agräıment
semblant podria fer al meu codirector, Albert Bifet, disposat a escoltar sempre
qualsevol proposta, a resoldre qualsevol dubte, i a plantejar noves idees.

M’agradaria donar les gràcies a tots els membres i ex-membres del grup eXiT
pel seu suport i bons moments durant l’estada en aquest grup. De fet, els debats
sobre els diferents algoritmes entre l’Albert Plà i en Pablo Gay van ser els que em
van inspirar a fer aquest doctorat, i que per tant sou els qui heu fet possible que
hagi arribat fins on soc ara. A més a més, no se que faria sense les bromes i els
consells gastronòmics d’en Quim Massana, els videos per concentrar-se i les plantes
de’n Robert Rusek, i els moments d’esmorzar compartits amb tots vosaltres: Sara,
Jaume, Alihuen i Òscar.

Voldŕıa també donar-li les gràcies a tota la meva famı́lia per tot el seu suport.
Especialment m’agradaria agräırli al meu marit, Llorenç Burgas per tot el que ha
fet i fa per mi. A la meva filla, Júlia Burgas per alegrar-me els dies. A la la Glòria
Nadal i al Joan Burgas per encoratjar-me i fer costat. I, per descomptat, a la meva
mare, Nina Maltseva. Мама! Спасибо тебе огромное за то, что дала жизнь,
научила всему, всегда заботишься и поддерживаешь меня. Спасибо за всё. Я
люблю тебя.

Finally, I would like to especially thank Albert Bifet and all the DIG (Data,
Intelligence and Graphs) research group from the Télécom Paris Tech University for
helping me during my time in France.

Acknowledgments

This work was developed with the support of the research group eXiT (Control En-
gineering and Intelligent Systems) of the IIiA (Institute of Informatics and Appli-
cations) of the Department of Electrical and Electronic Engineering and Automation
of the University of Girona. This thesis has been funded through the competitive
grant for doctoral education IFUdG2017 and a mobility grant MOB2019 (additional
support for the mobility of UdG researchers) from the University of Girona granted
to Natalia Mordvanyuk. Economic support was also received in the initial years
from the PEPPER (Patient Empowerment through Predictive PERsonalised deci-
sion support) project, funded by the European Commission, and from the Generali-
tat de Catalunya 2017 SGR 1551. This thesis received joint funding from ERDF, the
Spanish Ministry of the Economy, Industry and Competitiveness (MINECO) and
the National Agency for Research, under grant no. RTC 2017-6071-1 (SERAS). This
thesis received joint funding from the MoSHCA project, funded by the Ministerio
de Economı́a y Competitividad of the Spanish Government (Ref. EUREKA ITEA 2
no. 11027 - IPT-2012-0943-300000), and has received support of the research group
SITES (Generalitat de Catalunya SGR 2014–2016) and of the Universitat de Girona
under grant MPCUdG2016. Also, the NVIDIA Corporation donated the Titan XP
used in this research.

Publications

The scientific contributions derived from this thesis are listed below.

Journals

• Mordvanyuk, N., López, B. & Bifet, A. (2021). VEPRECO: Vertical databases
with pre-pruning strategies and common candidate selection policies to fasten
sequential pattern mining. Submitted to: Expert Systems with Applications.
Quality index: [JCR IF (2019): 5.452, Q1]

• Mordvanyuk, N., López, B. & Bifet, A. (2021). TA4L: Efficient Temporal
Abstraction of Multivariate Time Series. Submitted to: Knowledge-Based
Systems.
Quality index: [JCR IF (2019): 5.921, Q1]

• Mordvanyuk, N., López, B. & Bifet, A. (2021). vertTIRP: Robust and efficient
vertical frequent time interval-related pattern mining. Expert Systems with
Applications, 168, 114276.
Quality index: [JCR IF (2019): 5.452, Q1]

Side publications developed during the PhD period which are not directly linked
to the thesis:

Journals

• Pla, A., Mordvanyuk, N., López, B., Raaben, M., Blokhuis Taco, J. & Holstlag
Herman, R. (2017). Bag-of-steps: Predicting lower-limb fracture rehabilitation
length by weight loading analysis. Neurocomputing, 268, 109-115.
Quality index: [JCR IF (2017): 3.241, Q1]

vi

Conferences

• Mordvanyuk, N., Gauchola, J., & López, B. (2021, June). Understanding
affective behaviour from physiological signals: Feature learning versus pat-
tern mining. 34th IEEE CBMS International Symposium on Computer-Based
Medical Systems, Online Event.

• Mordvanyuk, N., López, B., Reixach, M., Fabrellas, M., Planella, M., Cor-
don C., Simon, N., Duran, A., Perapoch, J., Bassols, J. & López-Bermejo,
A. (2019, April). NOAH: Supporting Premature Babies Care With Mobile
Phones. [Poster session]. MSF (Médecins Sans Frontières) Paediatric Days
2019, Stockholm, Sweden. https://doi.org/10.13140/RG.2.2.30306.99529

• Torrent-Fontbona, F., Mordvanyuk, N., & López, B. (2018, February). Pre-
diction of hyperglycaemia and hypoglycaemia events using longitudinal data.
[Poster session]. International Conference on Advanced Technologies & Treat-
ments for Diabetes (ATTD), Vienna, Austria. Published in Diabetes Technol-
ogy & Therapeutics, Vol 20, Issue S1, pp. A-80-A-81

• López, B., Mordvanyuk, N., Gay, P., Pla, A. (2018, October) Knowledge rep-
resentation and machine learning on wearable sensor data: a study on gait
monitoring. International Conference on Data Science, E-learning and Infor-
mation Systems 2018 (Data’18), Madrid, Spain.

• Mordvanyuk, N., Torrent-Fontbona, F., & López, B. (2017, October). Pre-
diction of hyperglycaemia and hypoglycaemia events using longitudinal data.
Volume 300: Recent Advances in Artificial Intelligence Research and Develop-
ment: Frontiers in Artificial Intelligence and Applications, 227–232. https://
doi.org/10.3233/978-1-61499-806-8-227

• Dubosson, F., Mordvanyuk, N., López, B., & Schumacher, M. (2017). Neg-
ative results for the prediction of postprandial hypoglycemias from insulin
intakes and carbohydrates: analysis and comparison with simulated data. In
© Herrero, P., López, B., Martin, C.(eds).(2017). AID 2017: Proceedings of
the 2nd International Workshop on Artificial Intelligence for Diabetes held in
conjunction with the 16th Conference on Artificial Intelligence in Medicine
(AIME): Vienna, Austria: 24th June 2017, p. 25-29. Artificial Intelligence for
Diabetes (AID), Artificial Intelligence in Medicine (AIME).

• López, B., Soung, S., Mordvanyuk, N., Pla, A., Gay, P., & López-Bermejo,
A. (2017). MATCHuP: An mHealth Tool for Children and Young People
Health Promotion. Proceedings of the 10th International Joint Conference on

vii

Biomedical Engineering Systems and Technologies, Porto, Portugal. https://
doi.org/10.5220/0006143303130318

Side workshops developed during the PhD period include:

• López, B., Mordvanyuk, N., Massana, J., Torrent-Fontbona, F., Caceres, G.,
Pous, C. (2018, October) eXiT Research Group at the University of Girona:
Artificial Intelligence and Machine Learning Applied to Medicine and Health-
care. I CAEPIA Workshop de Grupos de Investigación Españoles de IA en
Biomedicina (IABiomed), Granada, Spain.

Acronyms

ARMADA an algorithm for discovering richer relative temporal association rules
from interval-based Data . 6

ASL American Sign Language Lexicon Video dataset 68

BFS Breadth-First Search strategy . 13

BIBLE a conversion of the Bible into a sequence database dataset 37

bitSPADE A Lattice-based Sequential Pattern Mining Algorithm Using Bitmap
Representation . 14

CI Chronic illness dataset . 71

CM-SPADE Co-occurrence MAP in Sequential PAttern Discovery using Equiva-
lence classes . 14

CM-SPAM Co-occurrence MAP in Sequential PAttern Mining 3

CUDA Compute Unified Device Architecture (Nvidia) 117

DEAP A Dataset for Emotion Analysis using EEG, Physiological and Video Sig-
nals . 116

x

DFS Depth-First Search strategy . 14

EWD Equal Width Discretization . 20

FIFA a Clickstream data from the website of FIFA World Cup 98 37

FreeSpan Frequent pattern-projected sequential pattern mining 3

GPU a graphics processing unit . 117

GSP Generalized Sequential Pattern . 3

HAR Human Activity Recognition dataset dataset 61

KBTA Knowledge-Based Temporal Abstraction 20

LSTISs Lexicographical Symbolic Time Interval Sequences 2

MAV Mavlab dataset . 73

MEMISP a MEMory Indexing approach for fast Sequential Pattern mining . 17

PrefixSpan Prefix-projected Sequential PAtterN mining 14

SAX Symbolic Aggregate approXimation . 21

SDB Sequential DataBase . 14

SPADE Sequential PAttern Discovery using Equivalence classes 3

SPAM Sequential PAttern Mining . 3

xi

SPM Sequential pattern mining . 1

TA Temporal Abstraction . 7

TA4L Temporal Abstraction for lexicographical symbolic time interval sequences 7

TD4C Temporal Discretization for Classification 20

TIRP Time interval-related pattern . 1

VEPRECO VErtical databases with PRE-pruning strategies and COmmon candi-
date selection policies to fasten sequential pattern mining 4

vertTIRP Vertical Frequent Time Interval-Related Pattern Mining 9

Contents

List of figures xix

List of tables xxi

Abstract xxiii

Resum xxv

Resumen xxvii

1 Introduction 1

1.1 Motivation . 2

1.2 Sequential pattern mining . 3

1.3 TIRP mining . 4

1.4 Pre-processing for TIRP mining . 7

1.5 Objectives . 8

1.6 Contributions of this thesis . 8

1.7 Thesis outline . 10

2 State of the art 13

2.1 Sequential Pattern Mining . 13

2.1.1 Pruning in sequential pattern mining 15

2.1.2 How the contributions of this thesis fit within the context of
the existing SPM literature? 15

2.2 TIRP Mining . 17

xiv Contents

2.2.1 How the contributions of this thesis fit within the context of
the existing TIRP mining literature? 18

2.3 Pre-processing . 18

2.3.1 Temporal abstraction in the TIRPs mining field 20

2.3.2 How the contributions of this thesis fit within the context of
the existing TA for TIRPs mining literature? 21

3 An improved sequential pattern mining: VEPRECO 23

3.1 Problem statement . 23

3.2 The VEPRECO algorithm . 24

3.2.1 DictMap . 27

3.2.2 Pre-pruning strategies . 29

3.2.3 A novel operation: c-extend 33

3.3 Experimental Evaluation methodology 35

3.3.1 Experimental platform for VEPRECO 35

3.3.2 Datasets . 35

3.3.3 Experimental setup . 36

3.4 Results . 37

3.5 Discussion . 42

3.6 Summary . 45

4 Managing temporal information in sequential patterns: vertTIRP 47

4.1 Problem statement . 47

4.1.1 Time interval sequence . 47

4.1.2 Robust temporal relations . 48

4.1.3 TIRP . 53

4.2 The vertTIRP algorithm . 55

4.2.1 Tabular LSTIS . 56

4.2.2 Constraints on user control patterns 56

4.2.3 Pairing strategy . 59

4.2.4 Vertical representation of TIRPs 61

4.2.5 Candidate generation . 62

Contents xv

4.2.6 Transitivity for efficiency . 64

4.3 Experimental Evaluation methodology 67

4.3.1 Experimental platform for vertTIRP 67

4.3.2 Datasets . 67

4.3.3 Experimental setup . 69

4.4 Results . 71

4.5 Discussion . 79

4.6 Summary . 80

5 Data preparation as an external component of learning algorithms: TA4L 83

5.1 Problem statement . 83

5.1.1 Input parameters . 83

5.1.2 Output: LSTISs . 84

5.2 The TA4L algorithm . 86

5.2.1 Normalization . 87

5.2.2 Framing . 88

5.2.3 Discretization . 88

5.2.4 Segmentation . 90

5.2.5 Sequence generation . 90

5.2.6 Data structures and parallel strategies 92

5.3 Experimental Evaluation methodology 94

5.3.1 Experimental platform for TA4L 95

5.3.2 Datasets . 95

5.3.3 Experimental setup . 97

5.4 Results . 99

5.5 Discussion . 112

5.6 Summary . 113

6 Conclusions 115

6.1 Conclusions and summary of results 115

6.2 Future work . 116

xvi Contents

Bibliography 118

A Implementation of VEPRECO 129

B vertTIRP’s appendix 131
B.1 Implementation of vertTIRP . 131
B.2 Table of pairing strategies for epsilon=0 131
B.3 Intersection of temporal relations . 132
B.4 Allen’s transitivity table . 132
B.5 Complete mining example . 132

C TA4L’s appendix 137
C.1 Implementation of TA4L . 137
C.2 Auxiliar functions of TA4L . 137

List of Figures

1.1 Temporal relations and their abbreviations (in green). 5

1.2 Example of new ambiguities arising from the use of an epsilon margin. 6

1.3 Example of the transitivity property between temporal events with
and without the use of an epsilon margin. 6

2.1 Pre-processing step in the literature. 19

3.1 A sequence tree constructed from a sequential database. 26

3.2 DictMap . 28

3.3 Tree’s nodes of VEPRECO . 31

3.4 SDB 1 . 31

3.5 SDB 2 . 31

3.6 SDB 3 . 31

3.7 SDB 4 . 31

3.8 c-extend function . 33

3.9 c-extension . 34

3.10 VEPRECO’s and CM-SPAM’s results for synthetic datasets. 38

3.11 VEPRECO’s and CM-SPAM’s results for real-world datasets. 39

3.12 Synthetic datasets: How tree traversing and pruning strategies affect
the time and memory of the algorithm. 40

3.13 Real-world datasets: How tree traversing and pruning strategies affect
time and memory of the algorithm 41

3.14 Synthetic datasets: How the c extension affect time and memory,
where Mem. is memory usage, and Pat. is the number of patterns . . 43

3.15 Real-world datasets: How the c extension affect time and memory . . 44

xviii List of Figures

4.1 Graphical representation of an example 49

4.2 Examples of a lack of robustness when epsilon margins are introduced. 50

4.3 Illustration of the need for the left contain relation 51

4.4 Illustration of how the problem of the lack of robustness is solved for
overlaps, is finished by, meets, starts, equals, overlaps and contains . 52

4.5 The resulting TIRP tree. 58

4.6 Analysis of Allen’s transitivity relation for ‘ = 0 minutes, r1(A, B) =
o and r2(B, C) = f . 65

4.7 Analysis of Allen’s transitivity relation for ‘ = 5 minutes, r1(A, B) =
o and r2(B, C) = f . 65

4.8 Comparison with the state of the art methods for the MAV and ASL
datasets . 72

4.9 Efficiency by transitivity properties: transitivity vs. no transitivity
(time in seconds; the scale of the y-axis is not uniform) 73

4.10 Efficiency with application of the min duration constraint. 74

4.11 Efficiency with application of the min gap constraint. 75

4.12 Efficiency with pairing of events: dummy approach vs. vertTIRP
(time in seconds) . 76

4.13 Epsilon sensitivity. 77

4.14 Complexity analysis of the vertTIRP algorithm in terms of time,
memory and vocabulary size . 78

5.1 Graphical representation of LSTISs 85

5.2 TA4L over multivariate time series of two variables. 87

5.3 SAX and TA4L over a signal. 89

5.4 The difference between the original binary insert and an adapted
binary insert that remembers the last inserted position applied to
LSTISs. 91

5.5 Concatenation example over a signal. 93

5.6 Parallelism strategies of TA4L . 94

5.7 Synthetic datasets. How varying input parameters ” and |�| affects
the performance of the algorithms . 101

5.8 Real datasets. How varying the ” affects the performance of the
algorithms . 102

List of Figures xix

5.9 Real datasets. How varying the |�| affects the performance of the
algorithms. 103

5.10 Synthetic datasets. How varying the PM and max_gap parameters
affects the performance of the algorithms. 104

5.11 Synthetic datasets. Sensitivity to discretization methods while vary-
ing n. 105

5.12 Synthetic datasets. Sensitivity to discretization methods while vary-
ing q . 105

5.13 Synthetic datasets. Sensitivity to discretization methods while vary-
ing nsid . 105

5.14 Real datasets. Sensitivity to discretization methods in terms of mem-
ory while varying q . 106

5.15 Real datasets. Sensitivity to discretization methods in terms of mem-
ory while varying n . 107

5.16 Real datasets. Sensitivity to discretization methods in terms of mem-
ory while varying nsid . 107

5.17 Real datasets. Sensitivity to discretization methods in terms of time
while varying q . 108

5.18 Real datasets. Sensitivity to discretization methods in terms of time
while varying n . 109

5.19 Real datasets. Sensitivity to discretization methods in terms of time
while varying nsid . 110

5.20 How varying n and q affects the performance of the algorithms. . . . 111
5.21 How varying nsid affects the performance of the algorithms. 111
5.22 How varying PM affects the performance of the algorithms, where |I|

is the total number of time intervals. 112

B.1 Length-one S-TIRPs for the example in Table 4.1 134
B.2 Illustration of the extension A ≠ B. 135
B.3 Illustration of the extension AB ≠ C. 136

List of Tables

3.1 Synthetic datasets. 36
3.2 Public dataset . 36

4.1 LSTIS for the example in Figure 4.1 57
4.2 Results of pairing strategies for each dataset, for epsilon>0 60
4.3 Common conditions among the temporal relations. 61
4.4 Horizontal database. 62
4.5 Vertical database. 62
4.6 Example of the vertical representation of patterns in verTIRP 63
4.7 Transitivity table for eps>0 . 66
4.8 Dataset description . 70

5.1 Parallelism strategies of TA4L and corresponding data structures. . . 95
5.2 Dataset description. 97

B.1 Results of pairing strategies for each dataset for epsilon=0. 131
B.2 Intersections between temporal relations 132
B.3 Temporal relations from Allen’s transitivity property 133

Abstract

The contributions of the present thesis are in the domain of Pattern Mining and
Knowledge Discovery, being of particular relevance for the sequential pattern mining
and time-interval related pattern mining fields.

Sequential pattern mining discovers, from event transactions recorded along time,
patterns of events fulfilling a sequential order. This problem is an essential theme
in data mining research and has broad applications in many different areas of be-
havioural analysis and prediction. However, it is a challenging problem for se-
quential pattern mining, as it involves examining a large number of intermediate
subsequences, requiring significant memory and processing time. In this thesis, a
new efficient sequential pattern mining algorithm called VEPRECO is introduced.
VEPRECO has three main contributions that fasten the mining process: (i) a ver-
tical representation of patterns; (ii) a pre-pruning strategies to avoid checking in-
frequent patterns; and (iii) a common candidate selection policies that reduce the
number of iterations performed by the algorithm. An experimental evaluation has
been carried out with synthetic and real data sets, and the results obtained have
been better compared to the CM-SPAM algorithm, which has been taken as a state-
of-the-art reference.

The inclusion of temporal relationships between the events ("A starts B", "A
overlaps B") makes mining patterns even more expensive than mining sequential pat-
terns. The inclusion of temporal relations in pattern mining is known as time-interval
related pattern mining, that despite its high computationally cost, has gained much
popularity in this last decade. The advantage of time-interval-related patterns is
that they are more informative patterns than sequential ones that not only enrich
the data analysis, but also give good results in behavior prediction problems. In
this thesis, a new efficient algorithm for mining time-interval-related patterns is in-
troduced, called vertTIRP. vertTIRP combines an efficient representation of these
patterns, using their temporal transitivity properties to manage them, with a pair-
ing strategy that sorts the temporal relations to be tested in order to speed up the
mining process.

Moreover, this thesis presents a robust definition of the temporal relations that

xxiv Abstract

eliminate the ambiguities with other relations when considering the uncertainty
in the start and end time of the events (epsilon-based approach). vertTIRP also
includes a pair of constraints that allow the user to define better the time-interval-
related patterns to be mined. An experimental evaluation of the method has been
carried out with synthetic and real data sets, and the results show that vertTIRP
requires significantly less computation time than other state-of-the-art algorithms
and is an effective approach.

Finally, in this thesis, to open the door of time-interval-related pattern min-
ing to multivariate time series (or time series), the TA4L algorithm is introduced.
TA4L is an efficient algorithm to transform multivariate time series (or time series)
into Lexicographically ordered Symbolic Time Interval Sequences, that is, sequences
ready to feed time-interval-related pattern mining algorithms. The ultimate goal is
to make the built-in ad-hoc preprocesses related to time-interval-related pattern
mining algorithms explicit and at the same time offer an efficient solution for data
preprocessing. TA4L divides the signals into segments based on time duration (in-
stead of dividing them according to the number of samples, a method often used
in the literature), allowing the construction of consistent time intervals. Concate-
nation of intervals is controlled by a maximum time gap constraint that reinforces
the generated time intervals’ consistency. Moreover, different ways to parallelise the
algorithm are explored. TA4L has been experimentally evaluated with synthetic and
real-world datasets, and the results show that TA4L requires significantly less com-
putation time than other state-of-the-art approaches, revealing that it is an effective
algorithm.

Resum

Les contribucions d’aquesta tesi estan en el domini de la mineria de patrons i el
descobriment del coneixement, sent de particular rellevància pels camps de mineria
de patrons seqüencials i els patrons d’intervals temporals.

La mineria de patrons seqüencials descobreix, a partir de transaccions d’esdeveniments
registrades al llarg de el temps, patrons d’esdeveniments que compleixen un ordre
seqüencial. Aquest problema és un tema essencial en la investigació de mineria de
dades i té àmplies aplicacions en moltes àrees diferents d’anàlisi i predicció del com-
portament. No obstant això, és un problema que presenta reptes importats per a
la mineria de patrons seqüencials, ja que implica examinar un gran nombre de sub-
seqüències intermèdies, el que requereix una memòria i un temps de processament
significatius. En aquesta tesi, s’ha presentat un nou algoritme eficient de mineria de
patrons seqüencials anomenat VEPRECO. VEPRECO té tres contribucions princi-
pals que acceleren el procés de mineria: (i) una representació vertical dels patrons,
(ii) unes estratègies de prepoda per evitar verificar patrons poc freqüents i (iii) unes
poĺıtiques de selecció de candidats comuns que redueixen el nombre d’iteracions re-
alitzades per l’algoritme. S’ha realitzat una avaluació experimental amb conjunts
de dades sintètiques i reals, i els resultats obtinguts han estat millors en comparació
amb l’algorisme CM-SPAM, que s’ha pres com a referència de l’estat de l’art.

La inclusió de relacions temporals entre els esdeveniments ("A comença B" o "A
es superposa a B") fan que la mineria de patrons sigui encara més costosa que la
de patrons seqüencials. La inclusió de relacions temporals en la mineria de patrons
es coneix com a mineria de patrons d’intervals temporals, que malgrat el seu ele-
vat cost computacional, ha guanyat molta popularitat en aquesta última dècada.
L’avantatge dels patrons d’intervals temporals és que són patrons més informatius
que els seqüencials que no només enriqueixen l’anàlisi de dades, sinó que també
donen bons resultats en els problemes de predicció del comportament. En aquesta
tesi, s’ha presentat un nou algoritme eficient per minar patrons d’intervals tempo-
rals, denominat vertTIRP. vertTIRP combina una representació eficient d’aquests
patrons, utilitzant les seves propietats de transitivitat temporal per gestionar-los,
amb una estratègia d’aparellament que ordena les relacions temporals a provar per
tal d’accelerar el procés de la mineria.

xxvi Resum

A més a més, aquesta tesi presenta una definició robusta de les relacions tem-
porals que elimina les ambigüitats amb altres relacions al considerar la incertesa
en els temps d’inici i final dels esdeveniments (enfocament basat en èpsilon). vert-
TIRP també inclou un parell de restriccions temporals que permeten a l’usuari
definir millor els patrons d’intervals temporals a minar. S’ha realitzat una avaluació
experimental del mètode amb conjunts de dades sintètiques i reals, i els resultats
mostren que vertTIRP requereix un temps de càlcul significativament menor que
altres algoritmes de literatura i que és un enfocament eficaç.

Finalment, en aquesta tesi, per obrir la porta de la mineria de patrons d’intervals
temporals a sèries temporals multivariades (o sèries temporals), s’ha presentat l’algoritme
TA4L. TA4L és un algoritme eficient per transformar sèries temporals multivari-
ades (o sèries temporals) en seqüències d’intervals de temps simbòlics ordenats lex-
icogràficament, és a dir, seqüències aptes per alimentar algoritmes de mineria de
patrons d’intervals temporals. L’objectiu final és fer expĺıcits els preprocesos ad-hoc
integrats relacionats amb els algoritmes de mineria de patrons d’intervals tempo-
rals, i al mateix temps oferir una solució eficient per al preprocessament de dades.
TA4L divideix les senyals en segments segons la durada (en lloc de dividir-les segons
el nombre de mostres, mètode que sovint s’utilitza en la literatura), el que per-
met la construcció d’intervals de temps consistents. La concatenació d’intervals
es controla mitjançant una restricció d’interval de temps màxim que reforça la co-
herència dels intervals de temps generats. A més a més, s’exploren diferents formes
de paral·lelitzar l’algoritme. TA4L s’ha avaluat experimentalment amb conjunts
de dades sintètiques i reals, i els resultats mostren que és un algoritme eficaç.

Resumen

Las contribuciones de la presente tesis están en el dominio de la mineŕıa de patrones y
el descubrimiento del conocimiento, siendo de particular relevancia para los campos
de mineŕıa de patrones secuenciales y los patrones de intervalos temporales.

La mineŕıa de patrones secuenciales descubre, a partir de transacciones de eventos
registradas a lo largo del tiempo, patrones de eventos que cumplen un orden secuen-
cial. Este problema es un tema esencial en la investigación de mineŕıa de datos
y tiene amplias aplicaciones en muchas áreas diferentes de análisis y predicción del
comportamiento. Sin embargo, es un problema que presenta retos para la mineŕıa de
patrones secuenciales, ya que implica examinar un gran número de subsecuencias in-
termedias, lo que requiere una memoria y un tiempo de procesamiento significativos.
En esta tesis, se ha presentado un nuevo algoritmo eficiente de mineŕıa de patrones
secuenciales llamado VEPRECO. VEPRECO tiene tres contribuciones principales
que aceleran el proceso de mineŕıa: (i) una representación vertical de los patrones,
(ii) unas estrategias de prepoda para evitar verificar patrones poco frecuentes y (iii)
unas poĺıticas de selección de candidatos comunes que reducen el número de itera-
ciones realizadas por el algoritmo. Se ha realizado una evaluación experimental con
conjuntos de datos sintéticos y reales, y los resultados obtenidos han sido mejores
en comparación con el algoritmo CM-SPAM, que se ha tomado como referencia del
estado de arte.

La inclusión de las relaciones temporales entre los eventos ("A comienza B",
"A se superpone a B") hacen que la mineŕıa de patrones sea aún más costosa que
la de patrones secuenciales. La inclusión de relaciones temporales en la mineŕıa
de patrones se conoce como mineŕıa de patrones de intervalos temporales, que a
pesar de su elevado coste computacional, ha ganado mucha popularidad en esta
última década. La ventaja de los patrones de intervalos temporales es que son
patrones más informativos que los secuenciales que no solo enriquecen el análisis
de datos, sinó que también dan buenos resultados en los problemas de predicción
del comportamiento. En esta tesis, se ha presentado un nuevo algoritmo eficiente
para minar los patrones de intervalos temporales, denominado vertTIRP. vertTIRP
combina una representación eficiente de estos patrones, utilizando sus propiedades
de transitividad temporal para gestionarlos, con una estrategia de emparejamiento

xxviii Resumen

que ordena las relaciones temporales a probar con el fin de acelerar el proceso de
mineŕıa.

Además, esta tesis presenta una definición robusta de las relaciones temporales
que elimina las ambigüedades con otras relaciones al considerar la incertidumbre
en el tiempo de inicio y fin de los eventos (enfoque basado en épsilon). vertTIRP
también incluye un par de restricciones temporales que permiten al usuario definir
mejor los patrones de intervalos temporales a minar. Se ha realizado una evaluación
experimental del método con conjuntos de datos sintéticos y reales, y los resultados
muestran que vertTIRP requiere un tiempo de cálculo significativamente menor que
otros algoritmos de literatura y es un enfoque eficaz.

Finalmente, en esta tesis, para abrir la puerta de la mineŕıa de patrones de in-
tervalos temporales a series temporales multivariadas (o series temporales), se ha
presentado el algoritmo TA4L. TA4L es un algoritmo eficiente para transformar se-
ries temporales multivariadas (o series temporales) en secuencias de intervalos de
tiempo simbólicos ordenados lexicográficamente, es decir, secuencias listas para ali-
mentar algoritmos de mineŕıa de patrones de intervalos temporales. El objetivo final
es hacer expĺıcitos los preprocesos ad-hoc integrados relacionados con los algoritmos
de mineŕıa de patrones de intervalos temporales, y al mismo tiempo ofrecer una
solución eficiente para el preprocesamiento de datos. TA4L divide las señales en
segmentos según la duración (en lugar de dividirlas según el número de muestras,
método que a menudo se utiliza en la literatura), lo que permite la construcción
de intervalos de tiempo consistentes. La concatenación de intervalos se controla
mediante una restricción de intervalo de tiempo máximo que refuerza la coherencia
de los intervalos de tiempo generados. Además, se exploran diferentes formas de
paralelizar el algoritmo. TA4L se ha evaluado experimentalmente con conjuntos de
datos sintéticos y reales, y los resultados muestran que TA4L requiere un tiempo de
cálculo significativamente menor que otros enfoques de la literatura, lo que revela
que es un algoritmo eficaz.

Chapter 1

Introduction

This thesis focus on the efficiency of the algorithms of the two most important
branches of pattern mining: (i) on the most popular and traditional branch, which
is Sequential pattern mining (Sequential pattern mining (SPM)), and on the more
recent and richer in knowledge branch, which is time-interval related pattern (Time
interval-related pattern (TIRP)s) mining.

SPM deals with the problem of finding the most relevant frequent subsequences
(or patterns) from collections of structured data that are represented in a sequential
manner, with a frequency no less than a user-specified threshold [1]. This problem
has been a focused theme in data mining research for over two decades and has
broad applications in many different areas of behavioural analysis and prediction.
However, it is also a challenging problem since the mining may have to generate or
examine a combinatorially explosive number of intermediate subsequences, requiring
significant memory and processing time.

The inclusion of the start and the end times as characteristics of the events in
the sequences improves the data representation and enables finding richer patterns
known as TIRP. A TIRP is a structured set of data representing the events, the
order in which they occur, and the temporal relations between every two pair of
events (i.e. event A happens before event B, event A meets event B, A overlaps B,
and so on). The data mining field that deals with finding the most relevant TIRPs
from collections of time interval events is called Time-interval-related pattern mining
(or TIRPs mining). If the SPM problem was already computationally expensive,
the relations between events make TIRPs mining even more costly than SPM. The
advantage of TIRPs is that they are more informative patterns than sequential
ones that enrich the data analysis and give good results in behavioural prediction
problems [2, 3, 4].

Therefore, despite its high computationally cost, reasoning, analysing and mining

2 Chapter 1. Introduction

interval-based events begins to have a lot of popularity in this last decade. Apart
from its high cost, TIRPs mining has another big gap related to its information
looseness derived from its ambiguous relation’s definition. For example, with the
state-of-the-art methods, Nausea ending with a Headache can be confused with a
Headache that appears right after Nausea. For a doctor, Nausea ending with a
Headache should not be the same as the Headache that occurs right after Nausea.
The first case, for example, is two common symptoms of migraine, and in the second
case, the two symptoms could be related to different health conditions.

Another disadvantage of the TIRPs mining algorithms is that they can not pro-
cess multivariate time series (neither time series) directly. They usually require a
pre-processing phase to obtain sorted sequences of time-interval data, called Lexico-
graphical Symbolic Time Interval Sequences (Lexicographical Symbolic Time Inter-
val Sequences (LSTISs)). The pre-processing stage consists of several steps and is
complex. This pre-processing is usually overlooked in the TIRPs mining literature,
which focuses on providing details about the pattern-finding algorithms. Besides, in
TIRPs mining, as in SPM, the algorithms consider the user’s restrictions (or con-
straints), such as the maximum gap (the time allowed between the two consecutive
events) or the duration of the patterns. These restrictions should be considered
from the early pre-processing stage and not just in the mining stage. Furthermore,
in literature, there is no explicit unsupervised pre-processing method that trans-
forms multivariate time series into LSTISs, which is both efficient and considers the
temporal restrictions of the user.

1.1 Motivation

Given that current Pattern Mining algorithms are computationally expensive and
that we live in a big data world, it is crucial to make advances towards improving
their efficiency. Otherwise, it would soon become obsolete. In particular, this thesis
has been carried out in the Medicine and Healthcare branch of the "eXiT" research
group at the University of Girona, where several big data problems in these fields are
subject of study and motivate the research. In that regard, most of the examples
provided in this works are inspired by the medical field. Also, SPM and TIRPs
mining are among the most important areas of knowledge discovery, and besides,
they are multidisciplinary. Therefore improving the efficiency of these algorithms is
crucial to make the most of their potential. Since TIRPs mining is a sibling field
of SPM, the initial idea of this thesis was to develop an efficient SPM algorithm
and then adapt it to mine TIRPs. Therefore, first, an efficient SPM algorithm was
developed. However, while adjusting the SPM algorithm to mine TIRPs, it was
observed that the difference between the two algorithms was still huge. For this
reason, to make an efficient TIRPs mining algorithm, this thesis resorted to the

1.2. Sequential pattern mining 3

best methods of TIRPs mining literature.
Furthermore, it would be interesting to open the door of TIRPs mining to other

non-interval data types to make the most of its potential. For example, to develop a
TIRPs mining’s pre-processing algorithm for the most common data type in the lit-
erature, the multivariate time series or time-series data. And regarding the temporal
constraints established by the user, it is crucial to consider the temporal constraints
from the early pre-processing phase and not just from the mining phase to obtain
correct TIRPs.

1.2 Sequential pattern mining

Sequence pattern mining (SPM) discovers frequent subsequences (or patterns) in
a sequence database (i.e. collections of data represented sequentially) that allow
finding associations between the different events for purposes such as data analysis,
classification, prediction or planning. This field of research has emerged in the 1990s
with the pioneering paper of Agrawal and Srikant [5], and which since that moment
became a fundamental data mining field with broad applications, such as market
basket analysis, text analysis, energy reduction in smart-homes, web-page click-
stream analysis, e-learning, sentiment analysis, programmer’s code recommendation
and bioinformatics.

Discovering sequential patterns is a hard problem. A sequence containing q items
in a sequence database can have up to 2q ≠ 1 distinct subsequences. Thus, during
the last three decades, there was much research aimed to reduce the runtime and
memory usage of the sequential pattern mining process. Some works minimise the
number of candidate sequences generated [6, 7, 8]; others pay attention to how
sequences are generated and stored [9, 10]; others explore the way in which support
is counted and how candidate sequences are tested for frequency [11, 12], and others
improve the data structure used to store frequent sequences to save memory [13, 14].

The present thesis aims to go further on algorithm efficiency, taking as base-
line the best sequential pattern mining algorithms for the moment, Co-occurrence
MAP in Sequential PAttern Mining (CM-SPAM) [15]. CM-SPAM complements its
predecessor Sequential PAttern Mining (SPAM) [16], with a table that helps to gen-
erate only useful candidate patterns, allowing to reduce an enormous amount of
useless candidate checks. SPAM itself is a powerful approach that integrates the
ideas of Generalized Sequential Pattern (GSP) [17], Sequential PAttern Discovery
using Equivalence classes (SPADE) [18], and Frequent pattern-projected sequential
pattern mining (FreeSpan) [19], and according to a recent survey about sequen-
tial pattern mining [20], CM-SPAM is one of the best sequential pattern mining
algorithms. Because CM-SPAM is based on SPAM, there is at minimum one is-

4 Chapter 1. Introduction

sue that remains to solve. SPAM is not a space-efficient algorithm. In view of
this, the VErtical databases with PRE-pruning strategies and COmmon candidate
selection policies to fasten sequential pattern mining (VEPRECO) algorithm is pre-
sented, which aims to manage memory in a more efficient approach. Moreover, other
improvements are proposed regarding the procedure candidates are generated and
tested.

1.3 TIRP mining

Time-interval-related pattern (TIRP) mining deals with the problem of finding the
most relevant patterns from collections of sequences of time interval events. A TIRP
is a structured set of data that represents the events, the order in which they occur,
and the temporal relations between two pair of events (i.e. event A is before event
B, event A meets event B, A overlaps B, and so on).

TIRPs mining applications include finding patterns in stock prices ("stock B
rose during the rising duration of stock A" [21]), skating data ("gluteus is very high
when leg is gliding" [22]), classification in the health field ("patients that have the flu
starts with fever before cough", [4, 2]), analysis of medical treatments with Electronic
Medical Record data ("patients that start treatment A and finish by treatment B
survive"[23]), library lending [24], and analysis of the readings of sensors installed
in a computerised apartment ("gas switch on during fridge door opening", [25]).

In the last two decades, several works have been dedicated to mining TIRPs.
Kam el al. [26] put forward one of the first of these methods, which used Allen’s
temporal relationships [27], i.e. the before, after, during, contains, meets, is met by,
overlaps, is overlapped by, starts, is started by, finishes, is finished by, and equal
relations. The temporal relations, although equal, are dual (before/after, meets/is
met-by, overlaps/is overlapped-by, during/contains, finishes/is finished-by, starts/is
started-by; see Figure 1.1), and this fact allows these methods to be defined by a
reduced set of temporal relations, assuming a complementary process for the dual
ones.

Wu and Chen [21] found a looseness in temporal pattern expressions when more
than two temporal intervals are considered. For example, in the pattern "(A overlaps
C) overlaps B", the relation between A and B is not precisely known (A may overlap
B, or A may happen before B). Hence, Wu and Chen proposed a new representa-
tion for temporal pattern expressions which unambiguously describes the temporal
relationships between each pair of events.

Noise data can also be a source of ambiguity. For example, two events starting
at 8:00 and 8:02 could be considered the same, due to issues of noise (clock synchro-

1.3. TIRP mining 5

Figure 1.1: Temporal relations and their abbreviations (in green).

nisation). To deal with situations such as these, Papapetrou et al. [28] redefined
the Allen relations with an epsilon value, to allow for a certain variability in the
temporary boundaries of events caused by noisy data. However, the use of epsilon
margins introduces ambiguities in temporal relations. For example, consider A and
B in Figure 1.2. With no margin, A overlaps B; however, if an epsilon value of 10
minutes is considered, A may either meet B or be finished by B: If the epsilon is
applied to the end time of A with the start time of B - the relation is meets, but if
it is applied to the end time of A with the end time of B - the relation is finished
by. Without a robust definition of the relations, the event in Figure 1.2 would be
labelled with both relations, meets and finished by, that could not only create con-
fusion, but would also slow down the mining process. To solve this problem, in this
thesis, relationships have been defined in such a way that each pair of events can
only be labelled with a single relation.

The epsilon margin was used in KarmaLego [4] when the transitivity property
of Allen’s temporal relationships (i.e. "A before B" and "B before C" implies "A
before C") was exploited to speed up the mining process. However, the introduction

6 Chapter 1. Introduction

Figure 1.2: Example of new ambigui-
ties arising from the use of an epsilon
margin.

Figure 1.3: Example of the transitiv-
ity property between temporal events
with and without the use of an epsilon
margin.

of the epsilon margin raises several issues regarding the transitivity property of
temporal reasoning. For example, consider the three events in Figure 1.3. With no
margin, there are "A is finished by B", "B is before C", and from transitivity, "A
occurs before C". However, if an epsilon margin is included, a new relation between
A and C may hold (i.e. "A meets C"). The epsilon concept allows to move the
events in the timeline, generating different relations that were not considered in the
Allen’s transitivity property. For example, consider C is Diarrhoea, in addition to
A that is Nausea and B that is Headache. Nausea that ends with a Headache and
after a while Diarrhoea arrives, could mark the separation between the symptoms of
two different diseases, while Nausea that comes followed by Diarrhoea which ends
with a Headache could be symptoms of the same disease. Both situations should be
explored as possible patterns. For this reason, in the present thesis a new transitivity
property adapted to the epsilon-based definitions was elaborated.

On the other hand, to improve the efficiency of the TIRP mining, Winarko and
Roddick [29] proposed an algorithm for discovering richer relative temporal associ-
ation rules from interval-based Data (ARMADA) to prune the search space based
on the maximum gap constraint, which controls the separation between two events
that may form a pattern. While this approach opens the way for the introduction
of constraints to the TIRPs mining process, there is also much more scope for in-
cluding additional constraints to enable the user to express the kind of patterns to
be learnt. For example, in a clinical setting, low-level glucose events can only be

1.4. Pre-processing for TIRP mining 7

considered hyperglycaemia if their duration is longer than a certain minimum time,
and the user may therefore need to express a minimum time between events.

The way in which data are represented also plays a key role in the efficiency of
a mining algorithm. The majority of TIRP methods apply a horizontal approach
that focuses on accessing the source data (i.e. the sequence of time interval events),
while vertical approaches, which have been successful in similar machine learning
areas such as sequence learning, are seldom used in TIRPs mining (see [28] for a
tentative approach).

The present thesis is concerned with solving the ambiguities arising from the
use of the epsilon margin while taking advantage of and combining previous works
regarding efficiency.

1.4 Pre-processing for TIRP mining

One of the major drawbacks of the TIRPs mining algorithms is that they can
not process multivariate time series (neither time series) directly. They require
a pre-processing phase to obtain sorted sequences of time-interval data. The pre-
processing phase consists of several steps, usually carried out sequentially: 1-time se-
ries segmentation into intervals according to a given size, 2-discretization of numeric
values, 3-sequence construction and 4-sequence sorting. The first two steps com-
prise the Temporal Abstraction (Temporal Abstraction (TA)) task, which involves
the transformation of series of values indexed by time (i.e. È0.5, 8 : 00Í, È0.7, 10 :
00Í, È0.8, 12 : 00Í, into time-intervals and the corresponding symbols that abstract
the variable values along them (i.e. ÈA, [8 : 00, 12 : 00]Í). On the other hand,
the third step concerns the concatenation of intervals with the same symbol (i.e.
ÈA, [8 : 00, 18 : 00]Í when ÈA, [13 : 00, 18 : 00]Í follows ÈA, [8 : 00, 12 : 00]Í). Regard-
ing the sequence sorting step, the sorting criteria from [4] proved to be necessary to
achieve a robust and simple representation of TIRPs. That means that sequences are
sorted according to the starting time of intervals, ending time, and the discretized
values called Lexicographical Symbolic Time Interval Sequences (LSTISs). Never-
theless, this pre-processing is usually overlooked in the literature, which focuses on
providing details about the pattern-finding algorithms.

Considering the computational complexity involved in the whole pre-processing
step of the TIRPs mining algorithms, we believe that the present thesis sheds light
on the most critical performance bottleneck. The Temporal Abstraction for lexi-
cographical symbolic time interval sequences (TA4L) algorithm introduced in the
present thesis aims to accelerate the pre-processing time, merging all these tasks
to be executed together in a single, special purpose algorithm. As the algorithm
presented in this thesis performs a temporal abstraction, and it returns LSTISs, it

8 Chapter 1. Introduction

is decided to call it the name resulting from the union of the initials of the two
concepts "TA4L".

In TA4L, intervals are constructed based on a certain duration. This fact plays
an important role when the dataset has missing values and could eventually lead to
losing some TIRPs. Conversely, TA4L split input data into segments of equal time
duration that later are concatenated. Such pre-processing achieves a more reliable
time representation of the variables inside intervals and provides a solid basis for
forthcoming TIRPs mining.

1.5 Objectives

Based on the proposed motivations and the research’s challenges, three main objec-
tives for this thesis has been established.

1. The first objective focuses on developing a new efficient sequential pattern
mining algorithm with several new techniques that fasten the mining process.

2. The second objective focuses on developing a new efficient TIRPs mining al-
gorithm that uses an unambiguous and robust definition of temporal relations.

3. And the third objective focuses on opening the door of TIRPs mining algo-
rithms to multivariate time series or time-series data. To that end, it is needed
to make explicit the embedded, ad-hoc pre-processes related to TIRPs mining
algorithms while offering an efficient solution for the required pre-processing.
Furthermore, this pre-processing should consider temporal restrictions estab-
lished by the user.

1.6 Contributions of this thesis

The contributions of the present thesis are in the domain of Pattern Mining and
Knowledge Discovery, being of particular relevance for the SPM and TIRPs min-
ing fields. Each of the contributions satisfies the objective corresponding to the
numbering. This thesis introduces:

1. A new efficient sequential pattern mining algorithm, called VEPRECO. VEPRECO
has three main contributions that fasten the mining process: a vertical rep-
resentation of patterns, pre-pruning strategies to avoid checking candidate
patterns with no possibility of support, and common candidate selection poli-
cies that reduce the number of iterations performed by the algorithm. The
contributions of the VEPRECO are:

1.6. Contributions of this thesis 9

• Memory efficient approach. To store space, in this thesis, a novel data
structure has been proposed, based on an abstract data type composed of
a collection of (key, value) pairs, instead of memory-consuming bitmaps
proposed in CM-SPAM.

• A novel procedure to generate pattern candidates, which combines in a
single step previous approaches. All sequential pattern mining algorithms
explore the search space of sequential patterns by performing two basic
operations called s-extensions and i-extensions. In the present thesis,
these two operations were simplified and carried out in a single method,
called c-extension, when it concerns the common candidates in the two
extensions.

• Two different pre-pruning strategies for pruning the search space of pat-
terns. Both take advantage of the sequence tree that stores the frequent
children and extensions, which are necessary to generate the frequent
candidates. One of them prunes the candidates based on the last item
of the pattern, and the other prunes the candidates based on the last
two items. VEPRECO uses the combination of the two pruning methods
depending on the tree level.

The implementation of VEPRECO is available from the Bitbucket repository
(see A).

2. A new efficient algorithm for mining TIRPs, called Vertical Frequent Time
Interval-Related Pattern Mining (vertTIRP). vertTIRP combines an effi-
cient representation of time-interval-related patterns, the temporal transitivity
properties and a pairing strategy to speed up the mining process. This algo-
rithm utilises a robust definition of the temporal relations and includes two
constraints that enable the user to better express the types of TIRPs to be
learnt. The vertTIRP algorithm has the following new features:

• A robust revision of the temporal relations in order to manage noise with
epsilon margins;

• A revision of the transitivity property of the Allen’s temporal relations
when epsilon margins are used;

• Two new constraints that enable the user to express the kinds of patterns
to be learnt (user-controlled patterns), namely min-duration and min-
gap;

• A combination of a vertical representation of patterns and the transitive
properties of the temporal relationships, which reduces the response time
of TIRPs mining;

10 Chapter 1. Introduction

• Pairing strategies that are specifically used to improve the efficiency when
mining temporal relations.

The implementation of vertTIRP is available from the Bitbucket repository
(see B.1).

3. A new efficient algorithm, called TA4L, to transform multivariate time series
into Lexicographical Symbolic Time Interval Sequences (LSTISs), that is, se-
quences ready to feed time-interval related pattern (TIRP) mining algorithms.
The ultimate goal is to make explicit the embedded, ad-hoc pre-processes re-
lated to TIRPs mining algorithms while offering an efficient solution for the
required pre-processing. On the one hand, TA4L divides the signals into seg-
ments based on time duration (instead of the often-used practice based on the
number of samples), which allows the construction of consistent time intervals.
Concatenation of intervals is controlled by a maximum time gap constraint
that reinforces the generated time intervals’ consistency. Moreover, different
ways to parallelize the algorithm are explored and accompanied by efficient
data structures to speed up the pre-processing cost. The contributions of the
TA4L are:

• The pre-processing phase for TIRPs mining is explicitly described and
formulated.

• The TA4L algorithm construct intervals based on the time duration (in-
stead of a fixed number of samples). In so doing, the limits of the time-
intervals are defined over the real values in the interval (not over the
missing values resulting from the fixed-length).

• A maximum gap constraint is used to decide whether two consecutive
points could be considered to be part of the same event (i.e. belonging
to the same time-interval) or do not.

• Use of special data structure that allows performing intervals insertions
into LSTISs efficiently.

• Different approaches to apply parallelism to the process.

The code of the TA4L algorithm will be publicly available from the Bitbucket
repository (see C.1).

1.7 Thesis outline

This document has been structured into seven chapters.

1.7. Thesis outline 11

• Chapter 1: Introduction. This chapter offers an overview of this thesis, its
motivations, a specific introduction to each field (SPM, TIRPs mining and
pre-processing), its objectives, contributions, and the outline of the individual
chapters.

• Chapter 2: State of the art. This chapter presents a literature review on SPM,
TIRPs mining and on the pre-processing of the TIRPs mining fields needed
to understand this thesis.

• Chapter 3: An improved sequential pattern mining: VEPRECO. This chapter
presents the sequential pattern mining problem formulation, the novel VEPRECO
algorithm, the setup used in our experiments with its corresponding hypothesis
formulation, the results, the discussion and the conclusions of this chapter.

• Chapter 4: Managing temporal relations in sequential patterns: vertTIRP. This
chapter presents the TIRP problem formulation, the novel vertTIRP algo-
rithm, and the setup used in our experiments with its corresponding hypothesis
formulation, the results, the discussion and the conclusions of this chapter.

• Chapter 5: Data preparation as an external component of learning algorithms:
TA4L. This chapter presents the pre-processing problem formulation, the novel
TA4L algorithm, and the setup used in our experiments with its corresponding
hypothesis formulation, the results, the discussion and the conclusions of this
chapter.

• Chapter 6: Conclusions. This chapter draws some conclusions from this thesis
and future work.

Chapter 2

State of the art

In this chapter, firstly, a literature review on the SPM field is presented; secondly,
the TIRPs mining state of the art is reviewed; and finally, related work on the
pre-processing of the TIRPs mining field is provided.

2.1 Sequential Pattern Mining

The algorithms of SPM can be divided into three main categories according to the
taxonomy analysis provided in [30]: (i) the Apriori-based, (ii) pattern-growth, and
(iii) early-pruning algorithms, or depending on the database model employed during
the mining process [20]: (i) horizontal, (ii) vertical, or (iii) projected. There exist
also algorithms that combine several of these techniques.

Apriori-Based algorithms are categorised by breadth-first search (Breadth-First
Search strategy (BFS), level-wise), generate-and-test of candidates, and multiple
scans of the database. Examples of such algorithms include Apriori [31], AprioriAll
[32], GSP [17], and Eclat [33] algorithms. All of them use a horizontal database
approach; that is, databases are structured around sequences. Apriori-Based al-
gorithms use the candidate generation-and-test paradigm introduced in [5], which
entails generating (k+1)-candidates from frequent k-patterns using joins and then
test if they are frequent against the transaction database. Although the Apriori-
Based algorithms are of the 90s, it seems that they are coming back into fashion
these last years due to their facility to became parallelized [34].

Pattern-growth algorithms are categorised by using a compressed representa-
tion of data to save memory (but usually in dispense of time) [35, 36, 37], can-
didate pruning [38, 39, 11, 15], search space partitioning [38, 18, 40], tree pro-
jection [35, 38, 36, 41, 42], depth-first search traversal [16, 18, 40], suffix growth

14 Chapter 2. State of the art

[35, 43] and prefix growth [38, 16, 41]. The Prefix-projected Sequential PAtterN
mining (PrefixSpan) [38] is a representative algorithm for this category. In that
case, the database is a projected model, meaning that the database is divided into
smaller databases (projections) based on the prefixes. The prefix is then grown for
each database partition, and the process is repeated recursively, following a depth-
first search (Depth-First Search strategy (DFS)) strategy. The major advantage of
pattern growth’s methods is that it does not generate and test any candidate se-
quences that do not exist in a projected database; instead, they focus the search
on a restricted portion (projection) of the initial database. The disadvantage is the
cost of constructing projected databases, where suffixes are largely repeated.

Early-Pruning algorithms count the support without scanning the Sequential
DataBase (SDB) iteratively, which is usually possible with vertical database repre-
sentation, such as in the case of SPAM [16], SPADE[38], A Lattice-based Sequential
Pattern Mining Algorithm Using Bitmap Representation (bitSPADE) [44] and their
last improvements CM-SPAM and Co-occurrence MAP in Sequential PAttern Dis-
covery using Equivalence classes (CM-SPADE) [15]. Vertical databases structure
the data required for the data mining process around patterns. Early-Pruning algo-
rithms alleviate the problem of the generate-and-test technique by utilising a sort
of position induction to prune candidate sequences very early in the mining process
to avoid support counting as much as possible.

Currently, many new pattern mining subfields are increasingly created. Recent
interesting works include [45], [46]. In [45], Dong et al. present the Topk-NSP+
algorithm, which mines the top-k useful Negative Sequential Patterns (i.e. missing
a medical treatment), and in [47], an algorithm is put forward to mine non-occurring
repetition behaviours. Negative sequential patterns contain both occurring and non-
occurring items, such as AB¬C. Song et al. in [48] address the problem of mining
high utility itemsets in multi-relational databases and propose two algorithms for
star schema-based data warehouses. Min et al. [46] propose an algorithm for a new
type of pattern that divides the alphabet into strong, medium, and weak parts, with
the aid of wildcard gaps (i.e. "don’t care" characters).

In recent years, research on SPM is also aimed to make an incremental and/or
parallel version [49, 41, 50, 51]. For example, Haoxing Wen et al. recently [52]
proposed an incremental parallel Apriori-based algorithm, Shadi AlZu’bi et al. [53]
proposed an Apriori-based recommender system for user requirements, and Sudhakar
Singh et al. [54] propose several MapReduce based Apriori algorithms. To know
more about the current status of parallel SPM, the reader should have a look at
[34], a recent survey of Parallel Sequential Pattern Mining.

2.1. Sequential Pattern Mining 15

2.1.1 Pruning in sequential pattern mining

The basic mechanism for pruning the search space is based on the Apriori prop-
erty [5, 31], also known as a downward-closure or anti-monotonicity property. This
property states that "All nonempty subsets of a frequent itemset must also be fre-
quent", which means that if a sequence can not pass the minimum support test,
all of its super sequences will also fail the test. For example, in SPAM [16], the
downward-closure property is part of the algorithm, which discards the candidates
that resulted infrequent in the siblings and children nodes of the tree, and extends
only frequent patterns.

In SPADE [18] pruning, it is not so feasible as in SPAM because it implies testing
whether all the sub-sequences of a frequent sequence are frequent, which imposes
significant memory and time overheads. However, when an adaption of pruning of
SPADE was applied to the SPAM algorithm [55], it resulted useful in terms of time
but with a little more memory overhead.

To reduce the number of join operations, the CM-SPAM, CM-SPADE, and
the CM-SPADE based improvements [15, 40, 56] utilise a structure called the Co-
occurrence Map (CMAP) structure that stores all frequent 2-sequences. If the two
last items of a grown pattern do not appear in a CMAP structure, the pattern is
discarded without performing the ’join’ operation.

Constraint-based pruning lets users specify regular expressions on patterns to be
found by converting constraints to an automaton for pruning patterns. Constraints
can be applied on the pattern (e.g. size constraints or regular expression constraints
[57, 58]), on the cover set (e.g. minimum andor maximum frequency or entropy
[59, 60]) or over the inclusion relation (e.g. minimum andor maximum gap [61, 62]).
Some studies focus on the generality of the constraint-based framework supporting
various constraints, such as [63] and [10] studies. Despite their excellent declarative
aspects, most of these algorithms have scaling problems due to the huge size of their
constraint networks, which relies on reified constraints and additional variables.

Another way to reduce the search space while mining sequential patterns is with
the use of maximality pruning. However, these methods often do not exhaustively
return the full set of frequent patterns, but condensed representations such as max-
imal [64, 65] or closed [66, 67] patterns.

2.1.2 How the contributions of this thesis fit within the context of the
existing SPM literature?

The starting point of this thesis is the CM-SPAM algorithm, as being one of the best
SPM algorithms nowadays. CM-SPAM (based on SPAM) uses a vertical database,

16 Chapter 2. State of the art

in which patterns are modelled with bitmaps representing the locations of different
items in the sequences. A bitmap of item I is an array of zeros and ones, where ones
indicate the presence of item I and zeros indicate its absence. For large sequences
with many items, this array will have a significant number of zeros (sparse arrays),
and it will waste much space. In addition, sparse arrays also affect the mining time
since many unnecessary positions will have to be traversed. For this reason, a new,
more compressed data structure called DictMap is proposed. Dictmap is based on a
dictionary of all the items in the sequences and a map to localize them composed by
(key, value) pairs. The key represents the sequence where the item appears, while
the value represents the item’s location in the sequence. For example, a-1:10,25,4:10
means that item "a" is in sequence 1 and 4. And particularly in positions 10 and
25 of sequence one and in position 10 of sequence 4. This data structure is similar
to the ’idLists’ of SPADE, which store a list of input-sequence and event identifier
pairs for each event (i.e. a-(1,10),(1,25),(4,10)), but it does it more compactly.
The proposed DictMap data structure also store the support count and the pattern
length information to avoid recounting them in every iteration.

The DictMap data structure enables a new candidate generation approach called
c-extension (common extension), in which pattern candidates can be extended with a
new item simultaneously in two ways: at the end of the sequence (sequence extension
o s-extension, e.g. ab is extended to abb), or as part of the last component of the
sequence (itemset extension or i-extension, e.g. ab is extended to a(bb)). This c-
extension is designed with the aim of run-time reduction.

Regarding the pruning heuristics, it must be said that this work relies on the idea
of CM-SPAM’s pruning, which consists of building for each pattern of length one a
list of patterns (or candidates) of length 1 succeeding this pattern. Therefore, each
1-length pattern must have a list of candidates for making sequence extensions and
another list for making itemset extensions. The first difference between CM-SPAM
and the pruning proposed in this thesis is that CM-SPAM uses two tables, one for
each type of extension (to save the lists of frequent candidates for each pattern),
while this work takes advantage of the sequence tree itself to save the candidates.

The second difference between CM-SPAM and the pruning technique presented
in this thesis is that CM-SPAM’s pruning is based on the last item of the pattern
to prune candidates, while the present work takes into account both the last item
in the pattern and the last two items in the pattern to decide which candidates will
not result in frequent extensions and should therefore be ruled out. For example, if
the abc pattern is extended with d, the CM-SPAM will look if d exists among the
list of frequent s-candidates of c, while this work will also look if d exists among the
s-candidates of b, which will allow us to rule out more candidates.

2.2. TIRP Mining 17

2.2 TIRP Mining

The first TIRPs mining algorithms were introduced in [26], [21]. In Kam’s [26], TIRP
"(A overlaps C) overlaps B", the temporal relation between A and B is unknown. In
addition, the same TIRP can be written in different ways (for example, "A overlaps
(C during B)"), which reduces the pattern count. To overcome these problems, Wu
and Chen [21] proposed a new canonical representation of TIRPs which describes
the temporal relationships between each pair of events that can be written in a
single way. The term ’canonical’ means that the events are sorted in some way (i.e.
based on the start and end times). Wu and Chen also proposed the TPrefixSpan
algorithm (based on PrefixSpan [38]) for discovering TIRPs.

IEMiner [2] extended Kam’s representation of a vector of temporal relation counts
and also adopted a canonical representation. However, the ambiguity of temporal
relations remained when the size of the TIRP was greater than three. To manage
these ambiguities, R. Moskovitch and Y. Shahar [68] represented TIRPs using a
matrix (as in the present work) that stored temporal relations between each pair
of events, and these were then sorted based on their starting and end times. The
algorithm presented in [68] was called KarmaLego. In one of the later works [69], to
accelerate the TIRPs mining process, the authors used a hash-table to store all the
instances of the 2-sized TIRPs in the DharmaIndex. This variation of KarmaLego
algorithm that uses a DharmaIndex is labelled as DharmaLego in the experiments
of this work.

In order to deal with ambiguities arising from noisy data, Papapetrou et al. [28]
extended Allen’s temporal relations with an epsilon margin (as in the present work),
to mine patterns and rules (unlike in the present work), following the approach used
by the PrefixSpan mechanism with a hybrid of BFS and DFS strategies, called H-
DFS. They also used a vertical representation approach to speed up TIRPs mining,
as in the present work.

To increase the performance of the algorithm, Winarko and Roddick [29] in-
troduced ARMADA (based on a MEMory Indexing approach for fast Sequential
Pattern mining (MEMISP) [70]) to mine association rules with time interval data
that grow patterns by adding suffixes (as in the present work). They used a max-
imum gap constraint (i.e. a maximum time between two events below which they
are considered as belonging to the same pattern).

All of the algorithms that have been developed recently take into account the
duration of the events, as in the present work. Recently, Harel O. D. and Moskovitch
R. [71] have introduced the TIRPClo algorithm for mining frequent closed TIRPs,
which allows discarding non-closed frequent TIRPs, and potentially meaningless
frequent TIRPs, which have very large time durations between their time intervals,

18 Chapter 2. State of the art

with a maximal gap time constraint. For example, in [72] Chen and al. proposed
the addition of an end-point and end-time in the TIRP representation, which allow
three new types of TIRPs to be mined: temporal patterns, occurrence-probabilistic
temporal patterns, and duration-probabilistic temporal patterns. Chen et al. pro-
posed the TPMiner and P-TPMiner algorithms (inspired by PrefixSpan) to mine
these patterns, and presented an incremental version of TPMiner in [24].

2.2.1 How the contributions of this thesis fit within the context of the
existing TIRP mining literature?

The algorithm presented in this thesis combines the different improvements of the
previous works. For example, the generation of candidates of this algorithm is based
on the vertical approach of SPAM.

The TIRPs definitions, the transitivity properties and the definitions of temporal
relations initially were based on the Papapetrou et al. [28] and the R. Moskovitch
and Y. Shahar’s approaches[68, 4].

On the one hand, the work presented in this thesis is concerned with solving the
ambiguities arising from the use of the epsilon’s margins by presenting a robust revi-
sion of the temporal relations. This work also introduces a new table of transitivity
for temporal relationships using epsilon and presents the pairing strategies between
relationships for the first time.

Finally, regarding the time constraints in the TIRPs mining field, Moskovitch
[68, 25, 4], Patel [2], and Papapetrou [28] used only two of them: the maximum
gap Cmax_gap, which determines the maximum distance between two events in a
TIRP, and the maximum duration constraint Cmax_duration, which determines the
maximum duration of each event interval. In the work presented in this thesis, two
additional constraints for the TIRPs mining field are introduced, Cmin_duration and
Cmin_gap.

2.3 Pre-processing

The literature on TIRPs mining points out that pre-processing is tightly related
to the kind of data used to test the algorithms. When using synthetic datasets
(as in [26, 29, 24]), data are usually generated with a synthetic data generator like
[32], which have been modified to generate sorted symbolic time-intervals, and the
pre-processing, in this case, is nonexistent.

On the other hand, when using real datasets as in [68, 25, 4, 73], or on both
synthetic and real datasets (as in the present work) [21, 2, 72], different approaches

2.3. Pre-processing 19

to pre-processing to convert multivariate time series into LSTISs can be found:
internal [74, 22, 28] or external [21, 2, 72] to the TIRPs mining algorithm. In
general, the different steps followed in the literature are summarized in Figure 2.1.

Figure 2.1: Pre-processing step in the literature.

First, for each variable, a temporal abstraction is applied. Temporal abstraction
is a conversion of a signal (e.g. blood pressure values) to an abstracted comprehen-
sive to a human representation (e.g. "2 hours of high blood pressure") [75]. When
the variable is numeric, temporal abstraction involves both interval construction
and discretization steps. When the variable is already discrete, time-intervals are
constructed.

Regarding the interval construction step, data is segmented into time intervals,
where each interval should include its corresponding start and end times. Inter-
vals are constructed usually performing bottom-up, top-down or sliding-window
approaches [76]. In the sliding-window approach [77], a segment is grown until
a specified error threshold is reached, where in each window, a linear approximation
is performed. In the top-down approach, time series are repeatedly split according
to the best splitting point from all considered points until the desired number of

20 Chapter 2. State of the art

intervals is obtained [78]. The bottom-up approach [25] starts by segmenting series
with small segments and then iteratively concatenating adjacent segments. In the
present work, a bottom-up approach is used.

During the discretization step, first, the variable values are normalized. After-
wards, numeric values or the first derivative of values [79, 73] are converted into a
discrete representation.

TA steps (interval construction and discretization) can be executed sequentially
or at the same time with a mapping function [2, 21]. The output of the TA task
is a set of symbolic time-intervals. Next, during the sequence construction step,
all records belonging to the same sequence are grouped together. And, finally,
during the sequence sorting step, sequences are ordered according to the TIRP’s
mining algorithm criteria: some TIRPs mining algorithms require time-intervals to
be sorted by their end time [29]. Others, by their start and end times [2]. Others
sort them by start and end times and lexicographically [68] (as done in the present
work).

This is the process that, in general, is followed in the literature. But not always
the starting point of the algorithm is the same. Examples of the full process, from
multivariate time series to LSTISs, are [2, 21, 68, 25, 22]. Sometimes the starting
point is an interval-based data [72], and in other cases, the starting point is already
ordered sequences of time-intervals [26, 29].

2.3.1 Temporal abstraction in the TIRPs mining field

Knowledge-Based Temporal Abstraction (Knowledge-Based Temporal Abstraction
(KBTA)) [75] method is the most widely used discretization method in the literature
[2, 68, 25, 72]. BFS belongs to the group of supervised discretization methods, where
data is discretized following the knowledge of an expert in the corresponding field.
This fact makes the output of these methods significant that lead to the successful
data interpretation (e.g. [21, 4, 73]). The problem is when the expert knowledge
is lacking, or when the discretization is performed not for the interpretation of the
time series, but rather for the performance of other tasks, possibly less intuitive
for human experts, such as classification, clustering, and prediction. For example,
these two works [4, 73] are focused on this problem. Temporal Discretization for
Classification (Temporal Discretization for Classification (TD4C)) [73] is another
supervised discretization method geared towards the enhancement of classification
accuracy, which determines the cutoffs that will best discriminate among classes
through the distribution of their states.

Alternative, non supervised methods could be used, such as Equal Width Dis-
cretization (Equal Width Discretization (EWD)) [80] or Symbolic Aggregate Ap-

2.3. Pre-processing 21

proXimation (Symbolic Aggregate approXimation (SAX))[70]. EWD involves sort-
ing the observed values of a continuous feature and dividing the range of observed
values for the variable into k equally sized bins, where k is a parameter supplied by
the user. SAX divides the original time-series into equally sized frames, computes
the mean for each frame, and assigns a symbol to each calculated mean, based on
the statistical table (of a normal continuous random variable) and on the size of the
vocabulary. The size of the vocabulary and the number of frames are the parameters
supplied by the user.

In [4] the KBTA, Equal Width Discretization (EWD), and Symbolic Aggregate
ApproXimation (SAX) methods have been compared, and it was found that dis-
cretization using SAX led to better accuracy on classification than using the EWD.
While KBTA cut-off definitions, when available, were superior to both in terms of
accuracy. TD4C was also compared to the EWD, KBTA, and SAX methods in [73].
In general, some configuration of the TD4C discretization method and the KBTA
method outperformed the other methods, but SAX was always very close to the
TD4C methods and sometimes even outperforms some configurations of the TD4C.

2.3.2 How the contributions of this thesis fit within the context of the
existing TA for TIRPs mining literature?

Except for TD4C [73], in the literature on TIRPs mining, the pre-processing from
multivariate time series to LSTISs is usually mentioned in a brief paragraph of the
experimental setup or algorithm section of the article. Unlike TD4C, the algorithm
proposed in this thesis is an unsupervised abstraction method that is transparent
to discretization, which means that the function to convert a numeric value to a
discrete one is a parameter of the algorithm.

The algorithm presented in this work is provided with a duration constraint,
designed to do not miss any TIRP without neglecting efficiency while using the
maximum gap constraint to decide whether two consecutive points or intervals be-
long to the same interval or not. The maximum gap constraint is not a novelty.
It has been widely used in sequential pattern mining [81, 82] and also in TIRPs
mining approaches [29, 83]. However, this is the first time it has been adapted in
an algorithm to create LSTISs.

Chapter 3

An improved sequential pattern mining:

VEPRECO

This chapter presents the work related to the fulfilment of the first objective of this
thesis: a new algorithm for improving sequential pattern mining called VEPRECO.

3.1 Problem statement

Given a set of sequential records (called sequences) representing a sequential database
(SDB) of events (or items) and a minimum support threshold min_sup, the problem
of sequential pattern mining is to discover the set of all frequent sequences S in the
given sequence database SDB at the given min_sup.

To formally state the problem and the algorithms that follow, some notation is
introduced.

Definition 3.1.1. The set of n unique items or events is I = {i1, i2, ..., in}.

Definition 3.1.2. An itemset is a nonempty, unordered collection of items which are
accessed at the same time, IS = (i1i2...im) (e.g., (bc)), where ij is an item or event
in I.

Definition 3.1.3. A sequence is an ordered list of itemsets, denoted as S = ÈIS1IS2...ISkÍ.
A sequence with k items is called a k-sequence.

For example, the sequence S = È(bc)(de)Í is a 2-sequence composed of two item-
sets, (bc) and (de). When the set has only one element, the parentheses are not
necessary. Thus, the sequence S = Èa(bc)e(de)Í is a 4-sequence, in which the first
and third elements are itemsets with a single item, a and e correspondingly.

24 Chapter 3. An improved sequential pattern mining: VEPRECO

Regarding the order, if an itemset ISi occurs before an itemset ISj, it is denoted
as ISi Æ ISj. Analogously for items, ii Æ ij. In the case of items that occur at the
same time (i.e. itemset), the lexicographical annotation is used (e.g. (abc)).

Definition 3.1.4. A sequence Sa = ÈIS
a
1 IS

a
2 ...IS

a
ka

Í is said to be contained in another
sequence Sb = ÈIS

b
1IS

b
2...IS

b
kb

Í (denoted as Sa @ Sb) if and only if there exist integers
1 Æ i1 < i2 < ... < ikj Æ kb such that IS

a
1 ™ IS

b
i1 , IS

a
2 ™ IS

b
i2 , ..., IS

a
n ™ IS

b
ikj

.

For example, the sequence Èa(bc)Í is contained in sequence Èa(bc)e(de)Í, while
the sequence ÈabcÍ it is not. If a sequence Sa is contained in a sequence Sb, Sa is
said to be a subsequence of Sb.

Definition 3.1.5. A sequence Sa = ÈIS
a
1 IS

a
2 ...IS

a
ka

Í is a prefix of a sequence Sb =
ÈIS

b
1IS

b
2...IS

b
kb

Í , ’ka < kb, iff IS
a
1 = IS

b
1, IS

a
2 = IS

b
2, ...IS

a
ka

= Bka .

The frequency or support of a frequent sequence S (or pattern P) can be relative
or absolute.

Definition 3.1.6. Relative support of S (denoted as ‡(S)) is the total number of
sequences of which S is a subsequence in the given database SDB divided by the
total number of sequences in SDB.

Definition 3.1.7. Absolute support of S (denoted as support(S)) is the total number
of sequences in SDB of which S is a subsequence.

3.2 The VEPRECO algorithm

The new VEPRECO algorithm is provided in Algorithm 1. The algorithm’s inputs
include the sequential database and the min_support value that determines which
patterns considered frequent.

The first step of the algorithm consists of building a vertical representation (using
DictMaps) of frequent patterns with length one (line 1). Then, the algorithm dis-
covers all the frequent patterns of length two (lines 3-14). Therefore the algorithm
performs a BFS (level headed) up to the third level of the tree where all frequent
2-length patterns are discovered. From the third level up to the rest of the levels,
DFS (branch headed) have been applied (lines 15-17).

An example of the sequence tree T generated is provided in Figure 3.1. The
root of the tree is labelled with "{}". The level of a node is defined by one + the
number of connections between the node and the root. The root level is 1. The
level is shown in Gray in Figure 3.1. Each sequence in T can be considered either a
sequence-extended sequence or an itemset-extended sequence. A sequence-extended

3.2. The VEPRECO algorithm 25

Algorithm 1: VEPRECO
input : SDB: sequential database

min_sup: required for the discovered patterns
output:

1 T2 = vertical-lenght1(SDB)
2 T3 = {}
3 for each j_node œ T2 do
4 for each k_node œ T2 do
5 j_dictmap = getDictmap(j_node)
6 k_dictmap = getDictmap(k_node)
7 if k > j then
8 new_s, new_i = c-extend(j_dictmap, k_dictmap)
9 else

10 new_s = s-extend(j_dictmap, k_dictmap)
11 if new_s.support > min_sup then
12 add_child(j_node, Node(new_s), T3)
13 if new_i.support > min_sup then
14 add_child(j_node, Node(new_i), T3)

15 for each N œ T3 do
16 s_candidates, i_candidates = getCandidates(T2)
17 searchPatterns(N , s_candidates, i_candidates, min_sup)

sequence is a sequence generated by adding a single item to the end of its parent’s
sequence in T. This operation is called s-extension; the item to be added to the
end is named s-candidate, and the new pattern s-extended pattern. An itemset-
extended sequence is a sequence generated by adding an item to the last itemset in
the parent’s sequence, such that the item is greater than any item in that last itemset.
This candidate generation operation is called i-extension, the item i-candidate, and
the resulting pattern i-extended pattern.

Algorithm 1 tests all combinations of length 1 and 2 patterns if they are frequent.
The extensions are done in order: aa, ab, (ab), ac, (ac), ba, bb, bc, (bc). Note that
the nonsense extensions such as (aa), which is to check if a happens to itself at
the same time, are not checked. Neither the algorithm checks the extension (ba),
having checked the extension (ab). To avoid these cases, it is a question of looking
at whether the symbol with which the algorithm extends is larger than the previous
one or not. If it is larger, it is called the c-extend (line 8) with which it gets both
the s-extension (e.g. ab) and the i-extension (e.g. (ab)), otherwise it only performs

26 Chapter 3. An improved sequential pattern mining: VEPRECO

Figure 3.1: A sequence tree constructed from a sequential database using minimum
relative support of 0.6. An item to be added to the end of the sequence is underlined.
Itemset extensions are marked in turquoise, while sequencing extensions in violet
and frequent patterns in black.

the s-extension (e.g. ba, line 10).
The recursive function searchPatterns (lines 14 and 17 of the Algorithm 1),

which builds the tree from the third level down is explained in the Algorithm 2.
The algorithm extends the DictMap P of the node N with the candidates (S and
I), and saves the frequent candidates in Snew and Inew, and it’s respective DictMaps
in Spats and Ipats (line 11). Patterns are extended with one function or another (c-
extend, s-extend, i-extend) depending on the type of extension (c, s, or i). Finally,
the algorithm prunes infrequent candidates of the Spats and Ipats (lines 13 and 16),
and recursively extends the new frequent extensions (lines 13 and 16).

3.2. The VEPRECO algorithm 27

Algorithm 2: searchPatterns
input: N: a tree node with a bitmap to be extended

S: a list of s-candidates
I: a list of i-candidates
min_sup: required for the discovered patterns

1 Snew = []; Inew = []; Spats = []; Ipats = []
2 P = getDictmap(N)
3 Group S and I candidates by type of extension
4 for each C, extension œ candidates do
5 if extension=="c" then
6 Ps, Pi = c-extend(P, c)
7 else if extension=="s" then
8 Ps, Pi = s-extend(P, c)
9 else

10 Ps, Pi = i-extend(P, c)
11 If Ps’s (or Pi’s) support >= min_sup, append it to Spats (or Ipats) and

to the N ’s childs. And append a candidate C to Snew (or to Inew).
12 for each Pnew œ Spats do
13 s, i = getCandidates(Snew, Snew>Pnew)
14 searchPatterns(Node(Pnew), s, i, min_support)
15 for each Pnew œ Ipats do
16 s, i = getCandidates(Snew, Inew>Pnew)
17 searchPatterns(Node(Pnew), s, i, min_support)

3.2.1 DictMap

In Figure 3.2, a DictMap example is provided. It stores each sequence id as a key
entry, and the value is a sorted set of all transaction ids where the item appears. For
best efficiency, the list of transactions should have quick access to the first and last
transactions. It also stores information regarding the support of the item and the
sequence length, saving it from traversing the dictionary to do the support count
and the sequence to discover the sequence length.

The DictMap model allow to redefine the s-extension and i-extension opera-
tions in a more efficient way that precedent SPM approaches. In the next subsec-
tions DictMap.pattern, DictMap.locations, DictMap.length and DictMap.support,
are used when the pattern, locations, length and support of a DictMap are referred
to. For clarity, the sequence is used to identify the DictMap. For example a.locations

is used to refer to the locations of the a ≠ DictMap.

28 Chapter 3. An improved sequential pattern mining: VEPRECO

Figure 3.2: DictMap

3.2.1.1 s-extension

The s-extensions are performed according to the Algorithm 3. The algorithm searches
transactions in F that are equal to or greater than the first transaction in P of the
corresponding sequence sid. Therefore the minimum transaction min_tid to search
in F is established, that is, the first transaction in P plus one (See line 4). The
DictMap model allows reducing the iterations by comparing the first occurrence of
the pattern to be extended with the last occurrence of the pattern’s extension. For
example, to extend a Dictmap A with a Dictmap B, A has to happen before B. If
A’s first occurrence is in transaction 10, and the last occurrence of B is before or in
transaction 10, for sure that there will be no pattern of AB, and the algorithm will
not iterate through the transactions of this sequence. Line 9 of Algorithm 3 filter
such cases. Another direct case is if the last occurrence of B is at transaction 11,
where it is possible to deduce that there is only one matching of AB, reflected on
lines 5-7 of Algorithm 3. The iterative case (lines 8-14) is when the last transaction
in F is equal to or greater than min_tid, in which case the algorithm traverses the
F .locations to find all transactions that are equal to or greater than min_tid.

3.2.1.2 i-extension

Algorithm 4 details how i-extensions are generated. For each sequence sid in the
pattern P , the corresponding sid is searched in F.locations. If it does not exists,
the algorithm does not search anything in this sequence (line 3). Otherwise, it
performs an intersection of transactions to find patterns that happen in the same
transaction. The fact that this intersection is tackled as an intersection of sorted
arrays problem and that the DictMap model allows storing only the transactions

3.2. The VEPRECO algorithm 29

Algorithm 3: s-extend
input : P : DictMap of length k

F : DictMap of length one
output: new_P : a sequence extension of P with F

1 create a new DictMap, new_P of length (k+1), which sequence is a
sequence extension of P with F (e.g. ab)

2 for all key-value pairs (sid, tidsp) œ P.locations do
3 if sid œ F.locations then
4 Let min_tid be the first transaction of tidsp plus 1
5 if last transaction of F.locations == min_tid then
6 new_P.support = new_P.support + 1
7 Add (sid, min_tid) pair to new_P.locations

8 else
9 if last transaction of F.locations > min_tid then

10 for tids œ F.locations of sequence sid do
11 if tids >= min_tid then
12 if not sid œ new_P.locations then
13 new_P.support = new_P.support + 1
14 Add (sid, tids) to new_P.locations

15 return new_P

that contain a pattern, this version of the i-extend performs fewer iterations than
intersecting arrays storing all the transactions like in the case of Bitmaps. A Bitmap
store zero if the pattern does not appear in the transaction and one otherwise. An
intersection of transactions allows finding patterns that happen together because
they will have the same transaction.

3.2.2 Pre-pruning strategies

VEPRECO has two strategies to carry out the pre-pruning: one of them is related
to consider only the last item of the k-length pattern to be extended to select the
frequent extensions (e.g. if the pattern is ab, only b is considered), and the other one
is particular to selecting the frequent extensions based on the last two items (e.g. if
the pattern is ab, a and b are considered).

VEPRECO applies pruning in two places, in line 16 of the VEPRECO algorithm
(see Algorithm 1) to prune candidates of length 2, and in lines 13 and 16 of the

30 Chapter 3. An improved sequential pattern mining: VEPRECO

Algorithm 4: i-extend
input : P : DictMap of length k

F : DictMap of length one
output: new_P : an itemset extension of P with F

1 create a new DictMap, new_P of length (k+1), which sequence is an
itemset extension of P with F (e.g. (ab))

2 for all key-value pairs (sid, tidsp) œ P.locations do
3 if sid œ F.locations then
4 Let tidsi be transactions of sid in F.locations

5 ip = 0 ; // index to traverse tidsp

6 ii = 0 ; // index to traverse tidsi

7 while ip < len(tidsp) and ii < len(tidsi) do
8 if tidsp[ip] == tidsi[ii] then
9 if not sid œ new_P.locations then

10 new_P.support = new_P.support + 1
11 Add (sid, tidsi[ii]) to new_P.locations

12 ip = ip + 1 ii = ii + 1
13 else if tidsp[ip] < tidsi[ii] then
14 ip = ip + 1
15 else
16 ii = ii + 1

17 return new_P

searchPatterns algorithm (see Algorithm 2) to prune candidates of length greater
than 2. Any pruning strategy can be applied in both places. To prune candidates of
length 2, VEPRECO applies pruning based on the last two items (section 3.2.2.2),
while to prune candidates of length greater than 2, VEPRECO applies pruning
based on the last item (section 3.2.2.2).

3.2.2.1 Pruning based on the last item

The pruning strategy is based on the s ≠ extensions and i ≠ extensions. In the
case of s-extending (the same for i-extending), a sequential pattern P of length k

with a frequent pattern F of length 1, if the last item l in P does not have F in
s-candidates (the same for i-candidates), that is, l does not have F as children in
the search tree1, then the pattern resulting from the extension of P with F will be

1
Remember that one length patterns are generated at the beginning of Algorithm 1 (BFS

strategy until level two)

3.2. The VEPRECO algorithm 31

infrequent, and an extension P with F is avoided. Instead of having a co-occurrence
table for s≠extensions and i≠extensions (like in CM-SPAM) to prune candidates,
nodes of the VEPRECO’s tree store s and i candidates (see Figure 3.3).

Figure 3.3: Tree’s nodes of VEPRECO

3.2.2.2 Pruning based on the last two items.

Figure 3.4: SDB 1 Figure 3.5: SDB 2 Figure 3.6: SDB 3 Figure 3.7: SDB 4

This pruning strategy aims to select s-extension and i-extension candidates based
on the frequent extensions of the last two items that form the pattern. In so doing,
there are different combinations, depending on the kind of extension to be performed
and the kind of extension performed previously to the pattern.

Selection of i-extension candidates for an s-extended pattern. Given an s-extended
pattern Ps = ÈabÍ, a set of i-candidates for ÈabÍ is the intersection of s-candidates
of a with the i-candidates of b.

For example, consider a sequential database from Figure 3.4 and a min_support

= 0.6. A set of s-candidates for an item a are items {a,b,d}, and a set of i-candidates
of b are items {c,d,e}, an intersection of which is d. Therefore the i-extension of ÈabÍ
with d results in the frequent extension Èa(bd)Í. Note that in the case of CM-SPAM,

32 Chapter 3. An improved sequential pattern mining: VEPRECO

a set of i-candidates for ÈabÍ are all the i-candidates of item b={c,e,d}. Therefore
CM-SPAM would perform two extra extensions (Èa(bc)Í and Èa(be)Í), which would
result to be infrequent. As it is possible to observe, with this improvement, all the
i-extensions of b that happened before a but not after b are eliminated.

Selection of i-candidats for an i-extended pattern. Given an i-extended pattern
Pi = È(ab)Í, a set of i-candidates for È(ab)Í is the intersection of i-candidates of a

with the i-candidates of b.
For example, consider a sequential database from Figure 3.5 and a min_support

= 0.6. A set of i-candidates for an item a are items {b,e,f}, and a set of i-candidates
of b are items {c,d,e,f}, an intersection of which is e,f. Therefore the i-extension of
È(ab)Í with e (equivalently with f) results in the frequent extension È(abe)Í (equiva-
lently È(abf)Í). Note that in the case of CM-SPAM, a set of i-candidates for È(ab)Í,
are all the i-candidates of item b={c,d,e,f}. Therefore CM-SPAM would perform two
extra extensions (È(abc)Í and È(abd)Í), that would result to be infrequent. Therefore,
VEPRECO eliminates all the i-extensions of b, which happened without a in the
timeline with this improvement.

Selection of s-candidates. A set of s-candidates for the any-extended pattern (i.e.
ab or (ab)) is the intersection of s-candidates of a with the s-candidates of b.

For example consider a sequential database from Figure 3.6, a min_support

= 0.6 and an extension Ps = ÈabÍ. A set of s-candidates for an item a are items
{b,c}, and a set of s-candidates of b are items {a,b,c,e,g}, an intersection of which
is b,c. In this case, the s-extension of ÈabÍ with b results in a not frequent extension,
but the s-extension of ÈabÍ with c is a frequent extension ÈabcÍ. Note that in the
case of CM-SPAM, a set of s-candidates for ÈabÍ are all the s-candidates of item
b={a,b,c,e,g}. Therefore CM-SPAM would performed four extra extensions (ÈabaÍ,
ÈabbÍ, ÈabgÍ and ÈabeÍ extensions), that would result to be infrequent.

And finally consider a sequential database from Figure 3.7, a min_support =
0.6 and an extension Pi = È(ab)Í. A set of s-candidates for an item a are items {c},
and a set of s-candidates of b are items {a,b,c,e,g}, an intersection of which is c. In
this case, the s-extension of È(ab)Í with c is a frequent extension È(ab)cÍ. Note that
in the case of CM-SPAM, a set of s-candidates for È(ab)Í are all the s-candidates
of item b={a,b,c,e,g}. Therefore CM-SPAM would performed four extra extensions
(È(ab)aÍ, È(ab)bÍ, È(ab)eÍ and È(ab)gÍ extensions), that would result to be infrequent.

As it can be observed, with this improvement, all the s-extensions that happened
before a in the timeline are eliminated.

3.2. The VEPRECO algorithm 33

Figure 3.8: c-extend function

3.2.3 A novel operation: c-extend

The main idea of common extension or c-extension is to take advantage of the loop
for traversing the pattern’s locations, constructing the s-extension and i-extension
at the same time. Given a frequent pattern P of length k and a frequent pattern F

of length 1, where F œ i ≠ candidatesP and F œ s ≠ candidatesP , a c-extension of
P with F is a pair of (P s-extended with F of length (k+1), P i-extended with F

of length (k+1)). Therefore the c-extend is applied to the common candidates (the
a, b, c candidates represented in blue in the Figure 3.8).

Figure 3.9 shows the result of applying c-extend to a and b
2. In this figure, it

is worthy to observe how the locations of the Dictmaps evolve. The change from
the previous iteration has been highlighted in bold. Imagine a pointer traversing
the locations of the a-DictMap and another one traversing the locations of the
b-DictMap. The starting point is sequence 1. The two pointers point to the first
position. Since 2 (first item in a-DictMap) is greater than 1 (first item in b-DictMap),
the pointer of b is advanced. Now it points to 2. Since 2 is common in a-DictMap
and b-DictMap, 2 is added to the (ab)-DictMap and the pointers of a and b are
advanced. Since 3 is common in a-DictMap and b-DictMap, 3 is added to the
(ab)-DictMap. Moreover, since 3 is greater than the first value in a-DictMap (2),
the algorithm finishes constructing the ab-DictMap for sequence 1, copying all the
values from the b-DictMap after 3. Then it advances the pointers of a and b and
add 4 to the (ab)-DictMap because it is common. Next, the algorithm continues

2
Note that the sequential database is distinct from the previous examples

34 Chapter 3. An improved sequential pattern mining: VEPRECO

Figure 3.9: c-extension

with sequence 2. The two pointers point to the first position. Since the first item
in a-DictMap (1) is smaller than the first item in b-DictMap (2), it advances the
pointer of a. Since 2 is common in a-DictMap and b-DictMap, 2 is added to the
(ab)-DictMap. Finally, since 2 is greater than the first item in a-DictMap, which is
1, the algorithm also adds 2 to the ab-DictMap.

Without using the c-extend function, the algorithm would have to perform six
iterations to obtain the ab-DictMap using the s-extend function, and then six more
iterations to obtain the (ab)-DictMap using the i-extend function. In total, it would
have done 12 iterations instead of 6 it does with the c-extend function.

3.3. Experimental Evaluation methodology 35

3.3 Experimental Evaluation methodology

In this section, we test VEPRECO with the aim to answer the following research
question: How can we improve the efficiency in terms of time and memory of a
sequential pattern mining algorithm with vertical pattern representation such as
CM-SPAM?

Secondary research questions:
- What is the impact on time and memory if we perform the s-extensions and

i-extensions in a single function?
- What impact does it have on time and memory if we use a dictionary-based

structure to represent the data?
- What is the impact on time and memory if instead of looking at the last element

of the pattern, we look at the last two elements of the pattern when pruning?

3.3.1 Experimental platform for VEPRECO

The VEPRECO algorithm presented in this thesis were implemented in Python
3.7.6. The experiments were carried out on a machine with Intel(R) Core(TM) i7-
4790 CPU 3.6 GHz 1 physical processor, four cores, eight threads, 16GB of RAM
and Titan Xp graphics card from Nvidia.

3.3.2 Datasets

The experiments were conducted with synthetic and real datasets.

3.3.2.1 Synthetic datasets for VEPRECO

To better explore the efficiency of the sequential pattern mining algorithm presented
in this thesis, numerous synthetic datasets are generated (using an IBMGenerator
[84]) in which the following factors were considered: (i) Number of sequences (NS);
(ii) Sequences length (SL); (iii) Transaction length (TL); (iv) Number of items or
vocabulary size (NI). Six synthetic datasets have been generated, the characteristics
of which are summarized in Table 3.1.

3.3.2.2 Real datasets for VEPRECO

Five public datasets from the SPMF library [85] were used to test the Sequential
Pattern Mining algorithms presented in this dissertation:

36 Chapter 3. An improved sequential pattern mining: VEPRECO

SDB name NS SL TL NI
data.NS_1000.SL_5.TL_5.NI_100 1000 5 5 100
data.NS_10000.SL_5.TL_5.NI_100 10000 5 5 100
data.NS_20000.SL_5.TL_5.NI_100 20000 5 5 100
data.NS_10000.SL_2.TL_2.NI_1000 10000 2 2 1000
data.NS_10000.SL_4.TL_4.NI_1000 10000 4 4 1000
data.NS_10000.SL_8.TL_8.NI_1000 10000 8 8 1000

Table 3.1: Synthetic datasets.

dataset NS SL TL NI
MSNBC 31790 3.82 2.48 17
BIBLE 36369 4.41 4.47 13905
FIFA 20450 5.70 5.71 2990

LEVIATHAN 5834 5.43 5.53 9025
SIGN 730 7.09 7.28 267

Table 3.2: Public dataset

• BIBLE This dataset is a conversion of the Bible into a sequence database (each
word is an item).

• MSNBC a dataset of click-stream data from the MSNBC website, converted
from original data from the UCI repository. The shortest sequences have been
removed to keep only 31,790 sequences.

• FIFA Clickstream data from the website of FIFA World Cup 98.

• LEVIATHAN This dataset is a conversion of the novel Leviathan by Thomas
Hobbes (1651) as a sequence database (each word is an item).

• SIGN a dataset of sign language utterance containing approximately 800 se-
quences.

In order to validate the correct operation of pruning strategies and the c-extend
function, these datasets have been modified to have more than one item per trans-
action. These datasets are characterised in Table 3.2 with the same factors that the
synthetic datasets.

3.3.3 Experimental setup

Several experimental scenarios were defined to test the memory and time improve-
ments achieved by the VEPRECO algorithm:

3.4. Results 37

• Comparison with the state of the art algorithm CM-SPAM. In this experiment,
the state of the art approach, CM-SPAM, have been compared to VEPRECO.
The hypothesis is: The runtime and memory usage of VEPRECO is lower
than for CM-SPAM. This experiment has been conducted with the first 10000
sequences of the a Clickstream data from the website of FIFA World Cup 98
(FIFA) and a conversion of the Bible into a sequence database dataset (BIBLE)
datasets in order to reduce the execution time and memory consumption of
CM-SPAM. 3

• Analysis of the tree traversing and pruning strategies In this experiment, VEP-
RECO, with the full set of pruning strategies, is compared with VEPRECO_NO
_P, that is, VEP-RECO without pruning strategies, and with ablations of
VEPRECO in which only a single pruning strategy is considered: configuration
VEPRECO _P1, for the pruning based on the last item, and VEPRECO_P2
for the pruning based on the last two items. In addition, it has been tried to
prune based on the last item in the second level of the tree, and to prune based
on the last two items in the rest of the levels labelled as VEPRECO_P1_P2.
The hypothesis is: The runtime and memory usage of VEPRECO_NO_P
is greater than for VEPRECO, or any other pruning variety of VEPRECO,
especially in the case of datasets with large NS and similar SL and TL, since
in this way, the intersections between the candidates carry more weight.

• Analysis of the c extension. In this experiment, VEPRECO is compared with
an ablation of VEPRECO in which the c-extension has been removed and
replaced by a sequential application of s-extension and i-extension configura-
tions which have been labelled as VEPRECO_NO_C. The hypothesis is: The
runtime of VEPRECO is lower than for VEPRECO_NO_C, in datasets with
a large number of common candidates. This fact may occur in the case of
datasets with large NS, large NI, and similar and large SL and TL.

3.4 Results

Regarding the comparison with the state-of-the-art algorithm, results are shown in
Figure 3.10 and Figure 3.11 for the synthetic and real-world datasets correspond-
ingly.

The results demonstrate that VEPRECO consumes less time and memory than
CM-SPAM in all the configurations. In the case of memory usage, the difference be-
tween the two algorithms is more noticeable for large NS.For example, in synthetic

3
When the experiment was run with all FIFA and BIBLE dataset’s sequences, CM-SPAM did

not finish or pop up for memory.

38 Chapter 3. An improved sequential pattern mining: VEPRECO

Figure 3.10: VEPRECO’s and CM-SPAM’s results for synthetic datasets.

datasets, for NS 20000, CM-SPAM consumes 732.8819 MiB, while VEPRECO con-
sumes 326.528 MiB, representing 56 per cent less than the baseline version. In real-
world datasets happen the same; for instance, for the BIBLE dataset, CM-SPAM
consumes around 1918.077 MiB, while VEPRECO consumes around 88.88 MiB.

In the case of runtime, the difference between the two algorithms is significant
for all NS values. For example, in synthetic datasets, for NS 1000, the runtime
of the CM-SPAM algorithm is 6.998 seconds, while the runtime of the VEPRECO
algorithm is 0.78694 seconds. For the BIBLE dataset, the runtime of CM-SPAM is
7.5436 seconds, while VEPRECO is 1.227 seconds.

In the case of the discovered patterns, as expected, the results match, which
means that VEPRECO and all its ablations work properly.

Regarding tree traversing and pruning strategies, results are shown in Figure
3.12 and Figure 3.13 for the synthetic and real-world datasets correspondingly.

In the case of both synthetic and real-world datasets, not using any pruning
strategy involves more time and memory consumption. The difference between the
two versions is more relevant for large NS, SL and TL, especially in the time. For

3.4. Results 39

(a) Time vs NS

(b) Memory vs NS

(c) Number of patterns vs NS

Figure 3.11: VEPRECO’s and CM-SPAM’s results for real-world datasets.

example, in synthetic datasets, for NS 20000, the runtime of the VEPRECO_NO_P
is 52.883 seconds, and memory usage is 358.003 MiB, while VEPRECO’s runtime is

40 Chapter 3. An improved sequential pattern mining: VEPRECO

Figure 3.12: Synthetic datasets: How tree traversing and pruning strategies affect
the time and memory of the algorithm.

22.1389 seconds, and it consumes 326.528 MiB. In real-world datasets happen the
same. For example, for the FIFA dataset, VEPRECO_NO_P’s runtime is 131.870
seconds and memory usage around 814 MiB, while VEPRECO’s runtime is 59.312
seconds, which consumes around 746 MiB.

We can also observe that VEPRECO_P2 consumes less time and memory than
VEPRECO_P1 and than VEPRECO_P1_P2. For example, in the case of syn-
thetic datasets, for NS 20000, VEPRECO_P2’s runtime is 25.332 seconds, and the
memory usage is 329.961 MiB. VEPRECO_P1’s runtime is 30.301 seconds, and
memory usage is 339.109 MiB. And VEPRECO_P1_P2’s runtime is 30.891 sec-
onds, and memory usage is 338.0567 MiB. This slight difference between the two
strategies also can be observed in the case of real datasets. For the FIFA dataset,
the runtime of VEPRECO_P2 is 61.464 seconds, and memory usage is 748.193
MiB. The runtime of VEPRECO_P1 is 63.0247 seconds, and the memory usage is
750.0299 MiB. And the runtime of VEPRECO_P1_P2 is 62.869 seconds, and the
memory usage is 755.282 MiB. Although VEPRECO and VEPRECO_P2 have very

3.4. Results 41

(a) Time vs NS

(b) Memory vs NS

(c) Number of patterns vs NS

Figure 3.13: Real-world datasets: How tree traversing and pruning strategies affect
time and memory of the algorithm

similar times and memories, VEPRECO is faster than VEPRECO_P2 for large NS,

42 Chapter 3. An improved sequential pattern mining: VEPRECO

SL or TL. For example, in synthetic datasets, for NS 20000, VEPRECO_P2’s run-
time is 25.332 seconds, and the memory usage is 329.961 MiB, while VEPRECO’s
runtime is 22.1389 seconds and the memory usage is 326.5288 MiB. For the FIFA
dataset, the runtime of VEPRECO_P2 is 61.464 seconds, and memory usage is
748.193 MiB, while the runtime of VEPRECO is 59.312 seconds and memory usage
is 746.680 MiB.

Finally, regarding the discovered patterns, as expected, the results match for all
versions. Therefore, it was possible to verify that all the pruning strategies prune
the candidates properly. It does not discard frequent candidates; otherwise, the
number of discovered patterns of that strategy would be smaller.

Regarding the analysis of the c extension, results are shown in Figure 3.14 and
Figure 3.15 for the synthetic and real-world datasets correspondingly.

In synthetic and real-world datasets, the VEPRECO_NO_C version is slower
than the VEPRECO version and consumes slightly more memory, especially for
large SL and TL.

For example, in synthetic datasets, for SL and TL 8, VEPRECO_NO_C’s run-
time is 38.632 seconds, and the memory usage is 145.667 MiB, while VEPRECO’s
runtime is 30.907 seconds and the memory usage is 145.128 MiB.

For the FIFA dataset, the runtime of VEPRECO_NO_C is 63.668 seconds, and
memory usage is 749.581 MiB, while the runtime of VEPRECO is 59.312 seconds
and memory usage is 746.680 MiB.

Finally, as expected, the results match for both versions regarding the discovered
patterns, which confirms that the VEPRECO works properly.

3.5 Discussion

VEPRECO consumes less time and memory than the CM-SPAM algorithm in all
the configurations, and the difference is noticeable for both time and memory con-
sumption. Therefore, the DictMap structure and the corresponding changes in the
extensions have significantly reduced both runtime and memory usage.

Regarding the pruning strategies, they provide savings in both time and mem-
ory. Pruning based on the last two items is more efficient than pruning based on
the last item because the intersections discard more candidates than without them.
Although combining the two pruning methods resulted in the best option, the type
of pruning applied on the third tree’s level (2-length patterns) also affects the algo-
rithm’s efficiency. If pruning based on the last item is applied to prune candidates of
length 2, and pruning based on the last two items to prune the rest of the candidates

3.5. Discussion 43

(a) Time vs SL=2 (b) Time vs SL=4 (c) Time vs SL=8

(d) Mem. vs SL=2 (e) Mem. vs SL=4 (f) Mem. vs SL=8

(g) Pat. vs SL=2 (h) Pat. vs SL=4 (i) Pat. vs SL=8

Figure 3.14: Synthetic datasets: How the c extension affect time and memory, where
Mem. is memory usage, and Pat. is the number of patterns

(i.e. VEPRECO_P1_P2’s pruning strategy) is less efficient than doing it the other
way around. That is, pruning based on the last two items to prune candidates of
length 2, and pruning based on the last item to prune the rest of the candidates
(i.e. VEPRECO’s pruning strategy). VEPRECO’s pruning strategy is more effec-
tive for large NS and NI, with similar SL and TL. The c extension is handy when
the dataset has many common candidates (i.e. the same candidate exists in s and
i-extension). This is more likely to happen when SL and TL have similar values. In

44 Chapter 3. An improved sequential pattern mining: VEPRECO

(a) Time vs SL

(b) Memory vs SL

(c) Number of patterns vs SL

Figure 3.15: Real-world datasets: How the c extension affect time and memory

these cases, VEPRECO is significantly faster than ablation of VEPRECO, labelled
as VEPRECO_NO_C, in which the c-extension has been removed and replaced by

3.6. Summary 45

a sequential application of s-extension and i-extension.
Regarding the discovered patterns, the results match in all versions, which means

that all the VEPRECO’s versions work correctly.

3.6 Summary

Regarding a new efficient SPM algorithm, in this thesis, a new VEPRECO algorithm
is presented, which is based on the CM-SPAM. The algorithm has three main
contributions. The first is related to how patterns are represented in the database,
based on (key, value) pairs with fast access to the first and last values for localising
items in sequences instead of sparse bitmaps of items. The second contribution is
related to pruning strategies when generating candidates in the search tree. Two
strategies are provided: One of them prunes the candidates based on the last item
of the pattern, and the other prunes the candidates based on the last two items.
VEPRECO uses the combination of the two pruning methods depending on the
tree level. Both strategies take advantage of the sequence tree to store the frequent
children and extensions, which are necessary to generate the frequent candidates.
The third contribution is related to the novel c-extension, which considers sequential
and itemset extensions at once. VEPRECO has been evaluated using both synthetic
and real-world datasets in terms of runtime and memory usage. Experiments carried
out demonstrated VEPRECO be more effective than the state of the art algorithm
CM-SPAM in terms of time and memory, and than all the ablations of VEPRECO,
in all the configurations. Pruning enhancements help save time on large datasets
with the similar transaction and sequence lengths. The c-extension improvement
is helpful when there are many common candidates, which usually happens when
the length of sequences and the length of transactions is similar, and the number of
different itemsets is low.

Chapter 4

Managing temporal information in

sequential patterns: vertTIRP

This chapter addresses the second objective of this thesis, which entails the inclusion
of starting and ending times as characteristics of events in sequences that enable
finding new patterns that deal with temporal relations with a new algorithm called
vertTIRP.

4.1 Problem statement

Given a dataset of sequences of time interval events, each annotated with a symbol
value A,B,C,D..., start and end time points, and a set of user constraints C, the
problem consists of discovering frequent TIRPs, i.e. TIRPs with a frequency equal
to or higher than a given threshold min_support, which fulfil the constraints C. To
formalise this problem, several forms of notation are introduced in the following.

4.1.1 Time interval sequence

Definition 4.1.1. A symbolic time interval sequence, IS = ÈI1
, I

2
, ..., I

nÍ represents
a sequence of symbolic time intervals I

i.

Definition 4.1.2. Symbolic time interval. A symbolic time interval I is a triple I =<

s, e, sym >, composed of a start time (s), an end time (e), and a symbol (sym).

Time scales for the start and end times are application-dependent. The symbol is
assumed to belong to a given alphabet �, which is also application-dependent.

48 Chapter 4. Managing temporal information in sequential patterns: vertTIRP

In the definitions below, I.s, I.e, and I.sym are used when the start time, end time
and symbol of an interval are referred to. For clarity, the symbol is used to identify
the symbolic time interval. For example, a symbolic time interval A is represented
as <_,_,A>.

The vertTIRP algorithm requires some kind of sorting for time intervals, based
on relational operators. Rather than comparing two time intervals with an exact
operator, this thesis looks for an approximate (epsilon) approach (following [4]). To
achieve this, some additional definitions are required.

Definition 4.1.3. Quasi-equal "=‘". Two time-points t
i and t

j are quasi-equal, t
i =‘

t
j, if |ti ≠ t

j| Æ ‘.

Definition 4.1.4. Precedes "<
‘". Time-point t

i precedes time-point t
j , t

i
<

‘
t
j, if

t
j ≠ t

i
> ‘.

The symbols =‘ and <
‘ refer to imprecision derived from noise data and enable

sorting time interval events into a sequence.

Definition 4.1.5. A lexicographical symbolic time interval sequence LSTIS is a sym-
bolic time interval sequence, IS=ÈI1

, I
2
, ..., I

nÍ, which is sorted in order of the start
and end times using the relations <

‘, =‘ and the symbols with a lexicographical
order, that is: ’I

i
, I

j œ IS(i < j): ((I i
.s <

‘
I

j
.s) ‚ (I i

.s =‘
I

j
.s · I

i
.e <

‘
I

j
.e) ‚ (I i

.s =‘
I

j
.s

· I
i
.e =‘

I
j
.e · I

i
.sym < I

j
.sym)).

For example, ÈÈ< 8 : 00, 10 : 00, A >, < 8 : 00, 12 : 00, B >, < 11 : 00, 13 :
00, C >Í, È< 14 : 00, 17 : 00, C >, < 16 : 00, 17 : 00, A >, < 16 : 00.18 : 00, B >

Í, È< 10 : 00, 13 : 00, C >, < 11 : 00, 14 : 00, B >, < 12 : 00, 13 : 00, A >, <

14; 00, 15 : 00, C >ÍÍ is a LSTISs that contains three sequences, the first of which
È< 8 : 00, 10 : 00, A >, < 8 : 00, 12 : 00, B >, < 11 : 00, 13 : 00, C >Í is composed
of three symbolic time intervals. Figure 4.1 shows a graphical representation of this
example. Note that Figure 4.1 is a database representation and it is an input of the
TIRPs mining algorithms. When vertTIRP algorithm is applied to this database,
the output of the algorithm is a set of patterns that fulfils the user constraints.

4.1.2 Robust temporal relations

The temporal relations used in vertTIRP overcome the limitations of previous works
in terms of the ambiguities arising from the use of the epsilon approach. They can
also be customised according to user constraints.

The temporal relations considered in this work are the 13 temporal relations
introduced by Allen [27] and revised by KarmaLego [4] based on the =‘ and <

‘

4.1. Problem statement 49

Figure 4.1: Graphical representation of an example

relations and given an epsilon value. However, in this approach, two ambiguities
remain: overlaps is confused with finished by (i.e. when the end time of A is very
similar to the end time of B), and contains (i.e. when the end time of A is greater
than the end time of B), while meets is confused with starts, finished by and equals
in case where the duration of A and B events is greater than ‘ and there exists an
overlapping area that corresponds to the ‘ value. (see Figure 4.2). For example, in
the Figure 4.2 if A is "a sore throat" and B is a "Fever" event, for a doctor it should
not be the same that the fever begins after the sore throat has passed, that the
fever ends with the sore throat. Perhaps in the first case the fever is the indicator
of a symptom of a new disease, while in the second case, it could be considered that
the fever is related to the sore throat. It is important to have robust definitions of
relations to avoid confusions.

In [68, 25, 4], when ‘ > 0, the left contains relation also becomes necessary, since
some temporal relations cannot be identified otherwise (see the example in Figure
4.3).

50 Chapter 4. Managing temporal information in sequential patterns: vertTIRP

Figure 4.2: Examples of a lack of robustness when epsilon margins are introduced.

Therefore, in this thesis robust temporal relations are defined based on the epsilon
approach to solve ambiguities and lack of temporal identification issues, that are as
follows.

Definition 4.1.6. Temporal relations. Given two symbolic time intervals, I
A and I

B

r(IA,IB)=b: A is before B if:
(B.s ≠ A.e) > ‘ and
(B.s ≠ A.e) < Cmax_gap and (B.s ≠ A.e) > Cmin_gap

r(IA,IB)=m: A meets B if:
|B.s ≠ A.e| Æ ‘ and
(B.s ≠ A.s) > ‘ and (B.e ≠ A.e) > ‘

r(IA,IB)=o: A overlaps B if:
(B.s ≠ A.s) > ‘ and (A.e ≠ B.s) > ‘ and
(B.e ≠ A.e) > ‘

r(IA,IB)=l: A left contains B if:
‘ > 0 and |B.s ≠ A.s| Æ ‘ and (A.e ≠ B.e) > ‘

r(IA,IB)=c: A contains B if:

4.1. Problem statement 51

Figure 4.3: Illustration of the need for the left contain relation

(B.s ≠ A.s) > ‘ and (A.e ≠ B.e) > ‘

r(IA,IB)=f: A is finished by B if:
(B.s ≠ A.s) > ‘ and |B.e ≠ A.e| Æ ‘

r(IA,IB)=e. A and B are equal if:
|B.s ≠ A.s| Æ ‘ and |B.e ≠ A.e| Æ ‘

r(IA,IB)=s: A starts B if:
|B.s ≠ A.s| Æ ‘ and (B.e ≠ A.e) > ‘

In the definitions, conditions in boldface have been modified in this work. Firstly,
the before temporal relation is modified to include the Cmin_gap constraint. Although
this constraint is used in SPM, previous work on TIRPs mining ignored it. Secondly,
to avoid the ambiguity between the meets and starts, meets and finished by, and
meets and equal relations, two new conditions are included in the definition of meets,
(B.s ≠ A.s) > ‘ and (B.e ≠ A.e) > ‘. These conditions restrict the start time of B
to be a minimum of ‘ times greater than the start time of A, and the end time of
B to be a minimum of ‘ times greater than the end time of A. Thirdly, overlaps is
modified in order to disambiguate contains and finished by, by adding a condition on

52 Chapter 4. Managing temporal information in sequential patterns: vertTIRP

the separation of the end points of the two related event intervals, |B.e ≠ A.e| > ‘.
Finally, with respect to the left contains temporal relation, a condition in which
epsilon must be greater than zero (‘ > 0) is added to avoid ambiguity with the
contains relation that arises when epsilon is zero. It is important in the following to
avoid confusing starts with left contains; the difference between these two temporal
relations is that in the starts relation, B.end is greater than A.end, while in left
contains, B.end is smaller than A.end. Figure 4.4 shows how these ambiguities are
solved with the robust definition given above.

Figure 4.4: Illustration of how the problem of the lack of robustness is solved for
overlaps, is finished by, meets, starts, equals, overlaps and contains

The temporal relations r(IA
, I

B) are denoted as rA,B for simplicity. On the
other hand, �T denotes the set of all possible values of the temporal relations, i.e.
�T = {b, m, o, l, c, f, e, s}.

4.1. Problem statement 53

4.1.3 TIRP

The output of vertTIRP is a set of frequent TIRPs based on the definition given
below.

Definition 4.1.7. Time-Interval-Related Pattern (TIRP). A non-ambiguous TIRP is
defined as the pair ÈSeqSym, –Í, where SeqSym is the string of symbols (SeqSym œ
�ú) and – œ �ú

T is a string that defines all the temporal relations R among each of
the (k2 ≠ k)/2 pairs of symbolic time intervals supporting SeqSym in the database
R = {r(I1

, I
2), ..., r(I1

, I
k), r(I2

, I
3), ..., r(Ik≠1

, I
k)}

Note that a TIRP having a single symbolic time interval can exist as well, in
which case, SeqSym will be of length one and R will be empty. From the example
above, < AB, s > ("A starts B") is a TIRP, supported by < 8 : 00, 10 : 00, A >

, < 8 : 00, 12 : 00, B > of the first sequence, and by < 16 : 00, 17 : 00, A >, < 16 :
00, 18 : 00, B > of the second sequence. Moreover, < ABC, sbo > ("A starts B", "A
before C", and "B overlaps C") is a TIRP supported by < 8 : 00, 10 : 00, A >, < 8 :
00, 12 : 00, B >, < 11; 00, 13 : 00, C >.

It is should be noted that there may be several TIRPs with the same SeqSym

but different temporal relations.

Definition 4.1.8. S-TIRP. A S-TIRP
˙ ˝¸ ˚
SeqSym is the set of all TIRPs with the same

SeqSym.

For example,
˙˝¸˚
BC = {< BC, o >, < BC, m >} is an S-TIRP from the example.

Hence, although an SPM algorithm would find the single pattern "BC", a TIRPs
mining algorithm such as vertTIRP can identify several different patterns according
to their temporal relations.

TIRPs can be characterised by a set of indicators including vertical support,
horizontal support, mean horizontal support, and mean duration. The first two
indicators refer to how patterns match sequences in the source data.

Definition 4.1.9. Pattern matching. A TIRP ÈSeqSym, –Í matches a sequence IS

if it is contained within the sequence, i.e. ’si, sj œ SeqSym, ÷I
‡(i)

, I
‡(j) œ IS such

that I
‡(i)

.sym = si, I
‡(j)

.sym = sj, and r(I‡(i)
, I

‡(j)) = ri,j.

Definition 4.1.10. Vertical support for a TIRP P . vs(P) measures how many se-
quences from the source data match the pattern: vs(P) = |SP |/|S|, where |S| is
the overall number of data sequences and |SP | is the number of data sequences that
match P .

For instance, the pattern <AB,s> in the example of Figure 4.1 has a vertical
support value of 2/3, since there are two sequences in the data source that contains

54 Chapter 4. Managing temporal information in sequential patterns: vertTIRP

it: È< 8 : 00, 10 : 00, A >, < 8 : 00, 12 : 00, B >Í, and È< 16 : 00, 17 : 00, A >, < 16 :
00, 18 : 00, B >Í.
Definition 4.1.11. Horizontal support for a TIRP P . hs(P, IS

i) measures the number
of times the pattern matches the sequence IS

i: hs(P, IS
i) = |EP

ISi
|/|EISi|, where

EISi is the overall number of time interval events in the sequence IS
i, and E

P
ISi

is
the number of time interval events in the sequence IS

i that matches P .

In the example of Figure 4.1, pattern <C,_> in the third sequence has a value
of 2/4 for horizontal support: hs(< C, _ >, È< 10 : 00, 13 : 00, C >, < 11 : 00, 14 :
00, B >, < 12 : 00, 13 : 00, A >, < 14; 00, 15 : 00, C >Í) = 2/4.

Definition 4.1.12. Mean horizontal support (mhs) of a TIRP P . This is the average

of all the horizontal supports of P found in the data set: mhs(P, S
P) =

q|SP |
i=1 hs(P,ISi)

|SP |

In the example of Figure 4.1, <C,_> appears once in the first and second time
interval sequences, and twice in s3; the mean horizontal support of the pattern
<C,_> is therefore mhs(<C,_>)=(1/3+1/3+2/4)/3 =0.38889.

Definition 4.1.13. Mean duration (md) of a TIRP P . This is the average duration
of the time intervals of the n sequences that provide horizontal support to P. The
duration of a TIRP P is calculated based on the earliest and latest end times of the
time intervals from which the TIRP P receives support.

md(P) =
qn

i=1(Maxk
j=1Ii,j

.e ≠Ii,1
.s)

|SP |

where I
i,j is the j-th time interval in the i-th sequence where P matches, and

the Max operator selects the time interval with the latest end time from the k times
P matches sequence i. Note that the earliest time interval in a sequence is always
the first in (I i,1

.s).

In the example of Figure 4.1, TIRP <AC,b> is supported by the first and third
time interval sequences (see Figure 4.1). In the first sequence, <AC,b> is supported
by <8:00, 10:00, A> and <11:00, 13:00, C> with a start time at 08:00 and end time
at 13:00, meaning that the duration of <AC,b> is five hours in the first sequence.
In an analogous way for the third sequence, <AC,b> is supported by <12:00, 13:00,
A> and <14:00, 15:00, C> with a duration of three hours. This means that <AC,b>
has a mean duration of md(< AC, b >) = 4 h ((5h+3h)/2).

Finally, it is important to note that the vertical support is used to retain only
those TIRPs that have a value higher than a given threshold min_support, i.e.
frequent TIRPs. The reason for choosing vertical support to reduce the number
of candidates is because it is the most well-known anti-monotonic constraint [86].
Other measures such as horizontal support or mean duration are used for descriptive
purposes, or to obtain patterns in order to make classifications or predictions.

4.2. The vertTIRP algorithm 55

4.2 The vertTIRP algorithm

To find frequent TIRPs from a dataset of sequences of time interval events, vertTIRP
follows Algorithm 5. The inputs of the algorithm include the dataset or collection
of time interval sequences, a set of constraints C, and the min_support value that
determines which patterns considered frequent. The dataset is expected to fulfil the
definition of an LSTISs (i.e. the sequences are sorted). The first step of the algorithm
consists of customising the temporal relations according to the customer constraints
C={min_gap, max_gap, min_duration, max_duration}. In the second step, all
time interval events in the dataset with a duration shorter than the one set by the
user, (min_duration), are filtered out. Next, a pairing strategy is configured based
on the current dataset, which is essential in speeding up the pattern discovery process
in the following steps. In the fourth step, vertTIRP builds a vertical representation
of frequent TIRPs with length one, and then generates a tree using a DFS strategy
that recursively explores candidates.

As shown in Algorithm 6, candidates are generated by appending length-one
frequent patterns (or length-one suffixes) to the end of the actual length-n frequent
pattern, by means of a join operation (step 6). At each node, the list of candidates
and a list of length-one suffixes are minimised using the Apriori principle, in which
only frequent children are kept. Backtracking is applied when no more candidates
can be generated. In this way, vertTIRP starts to generate a branch of the first
frequent event and all the possible temporal relations, i.e. A. Next, branches AB,
ABC, and AC are generated. Following this, vertTIRP generates the branch of the
next frequent event B, i.e. B, BA, BAC, BC. The algorithm stops when all branches
of frequent events have been generated.

Figure 4.5 shows an example of a search tree generated by vertTIRP. It is a
typical sequence tree (also referred to as a Lexicographical Tree [30]) of a generic
SPM adapted to TIRPs. Each node of the tree represents an S-TIRP, with the cor-
responding frequent TIRPs and their indices (vertical support, horizontal support,
and mean duration). Frequent TIRPs of length one are at the top, while longer ones
are positioned at the leaves. Some of the patterns contain a single temporal relation
(e.g. <BC,o> -B overlaps C- and <BC,m> -B meets C-), while others have more
than one (e.g. <ABC,sbo> has three: A starts B, A before C, B overlaps C). It can
be seen that shorter candidates have higher support than longer ones.

vertTIRP is then based completely on the DFS approach. It uses several ef-
ficiency strategies, including a pairing strategy, the transitivity properties of the
temporal relations, and the vertical data representation of TIRPs. The details are
described in the following subsections, starting with a description of the inputs to
the algorithms (LSTIS and constraints). B.5 provides a complete mining example.

56 Chapter 4. Managing temporal information in sequential patterns: vertTIRP

Algorithm 5: vertTIRP
input : LSTIS: a collection of symbolic time interval sequences sorted by

lexicographical order
C = {min_gap,max_gap,min_duration,max_duration}:

user-controlled constraints
min_support: required for the discovered patterns

output: frequentPatterns
1 setTemporalRelations(min_gap, max_gap)
2 customizedLSTIS = removeI(min_duration)
3 PS = pairingStrategy(customizedLSTIS)
4 F = vertical-lenght1(customizedLSTIS)
5 frequentPatterns = []

6 for each pattern
˙˝¸˚
P œ F do

7 discoveredPatterns = searchPatterns(
˙˝¸˚
P , F, PS, min_support,

max_duration)
8 append(frequentPatterns, discoveredPatterns)
9 return frequentPatterns

4.2.1 Tabular LSTIS

As input, vertTIRP takes an LSTISs containing the source time interval sequences.
To enable efficient data management, these can be stored in a table, as shown in
Table 4.1 for the example in Figure 4.1. Each time interval sequence has a sequence
identifier sid (which is unique to each dataset) and contains one or more time interval
events, which are sorted based on the start time. Each time interval event in a
sequence has an event identifier eid that is unique within the sequence. These
identifiers are used internally by vertTIRP for data management. For example, the
first event of sequence s2, eid = 1, occurs between 14:00 and 17:00, with value C.

4.2.2 Constraints on user control patterns

The second input for vertTIRP is a set of user constraints that allow the user to
express particular requirements for the patterns to be found. For TIRPs, Moskovitch
[68, 25, 4], Patel [2], and Papapetrou [28] used two constraints: the maximum gap
Cmax_gap which determines the maximum distance between two events in a TIRP,
and the maximum duration constraint Cmax_duration, which determines the maximum
duration of each event interval.

vertTIRP introduces two additional constraints, Cmin_duration and Cmin_gap.

4.2. The vertTIRP algorithm 57

Algorithm 6: searchPatterns

input :
˙˝¸˚
P : S-TIRP of length k containing frequent patterns

L: List of length-one S-TIRPs of frequent patterns
PS: pairing strategy
min_support: required for the discovered patterns
max_duration: required for the discovered patterns

output: discoveredPatterns
1 discoveredPatterns = []

2 append(discoveredPatterns,
˙˝¸˚
P)

3 newPats = []
4 newL = []

5 for each S-TIRP
˙˝¸˚
F œ L do

6 newSPattern = join(
˙˝¸˚
P ,

˙˝¸˚
F , PS, max_duration)

7 if support(newSPattern) > min_support then
8 append(newPats,newSPattern)

9 append(newL,
˙˝¸˚
F)

10 for each
˙ ˝¸ ˚
new_p œ newPats do

11 new_discovered_patterns = searchPatterns(
˙ ˝¸ ˚
new_p, newL, PS,

min_support, max_duration)
12 append(discoveredPatterns, new_discovered_patterns)
13 return discoveredPatterns

sid eid start time end time value
s1 1 8:00 10:00 A
s1 2 8:00 12:00 B
s1 3 11:00 13:00 C
s2 1 14:00 17:00 C
s2 2 16:00 17:00 A
s2 3 16:00 18:00 B
s3 1 10:00 13:00 C
s3 2 11:00 14:00 B
s3 3 12:00 13:00 A
s3 4 14:00 15:00 C

Table 4.1: LSTIS for the example in Figure 4.1

58 Chapter 4. Managing temporal information in sequential patterns: vertTIRP

Figure 4.5: The resulting TIRP tree (the abbreviations used are as follows (see
Figure 1.1): s/starts, b/before, o/overlaps, m/meets, c/contains, f/finished by).

Definition 4.2.1. Minimum duration constraint Cmin_duration: Each TIRP should
have a duration of at least Cmin_duration time units; if not, it is discarded.

Definition 4.2.2. Minimum gap constraint Cmin_gap: Two time interval events that
have a before relation should be separated by at least Cmin_gap time units.

For example, in the case of Type 1 diabetes mellitus, if the continuous glucose
monitoring readings are above 180 mg/dl for at least 60 minutes between two and six
hours after bolus administration [87, 88], the event is considered a hyperglycaemic
event; otherwise it is labelled as a non-hyperglycaemic event. In this case, events
with a duration of less than 60 minutes are not relevant(Cmin_duration = 01 : 00).
In terms of the minimum gap, events that occur sooner than two hours after bolus
administration are also irrelevant and can be discarded by setting the minimum gap
to two hours (Cmin_gap = 02 : 00).

In total, four constraints are managed in vertTIRP (C={ Cmin_duration, Cmin_gap,
Cmax_gap, Cmax_duration}), of which two are new and two are adopted from previous

4.2. The vertTIRP algorithm 59

works. Constraints play several different roles in Algorithm 5. First, in step 1 of the
algorithm, Cmin_gap and Cmax_gap are used to customise the temporal relations (see
definition 4.1.6). In step 2, Cmin_duration is used to remove noise from the source
data. Finally, Cmax_duration is used in step 7 for pattern searching.

4.2.3 Pairing strategy

Step 3 of Algorithm 5 involves defining a strategy to test the temporal relationships
between two time interval events. To calculate the temporal relation between two
time intervals, one could use a naive approach by analysing all the relations in no
particular order, and without taking into account their probabilities. vertTIRP
uses a more efficient way to compute these temporal relations by including two
paring strategies: (i) checking the temporal relations in order of frequency (from
more frequent to less frequent), and (ii) grouping the temporal relations by common
conditions to avoid unnecessary checks. Both of these strategies can be combined.

4.2.3.1 Sorting temporal relations by frequency

There are several algorithms from related fields to TIRPs mining, such as in the
frequent itemset mining and the utility mining fields, that sort patterns by their
support [33, 18, 89] or by utility decreasingly [90, 91] to speed up the mining pro-
cess. This idea is transferred to temporal relations, ordering the relations by their
frequency and checking the most frequent relations first.

First, an initial analysis, which involves ordering the relations from more to less
frequent, is carried out. Table 4.2 shows the resulting process for the datasets used
in the experimental section.

4.2.3.2 Grouping the temporal relations by common conditions

Looking at the definitions of the temporal relations (Definition 4.1.6), it is possible
to observe that the c, f, o, m relations have a common condition, (B.s ≠ A.s) > ‘.
The same applies to the s, l and e relations, the common condition of which is
(B.s ≠ A.s) <= ‘. This means that if the common condition is not met, all of the
temporal relations involved in this condition can be ruled out.

In order to allow discarding temporal relations based on these common condi-
tions, an intersection, group and subgroup of relations are defined as follows.

Definition 4.2.3. Intersection of temporal relations. Given two temporal relations
–, — œ �T , and the conditions that define them ⁄(–), ⁄(—), the intersection of –

60 Chapter 4. Managing temporal information in sequential patterns: vertTIRP

dataset epsilon sorted relations common conditions
MAV 10 bfseclmo b fcmo sel
MAV 30 bfsemlco b fmoc sel
MAV 50 bfesmlco b fmoc esl
ASL 10 bemcfosl b esl mocf
ASL 30 bemcfosl b esl mocf
ASL 50 bemcfosl b esl mocf
HAR 10 bmfseclo b mofc sel
HAR 30 bmfselco b mofc sel
HAR 50 bemfslco b esl mofc
CBLS 10 mbefscol mofc b esl
CBLS 30 mebfsclo mofc esl b
CBLS 50 emfsbcol esl mofc b
SI 10 fsbeclmo fcmo sel b
SI 30 fsbeclmo fcmo sel b
SI 50 fsbelmco fmoc sel b
CI 10 ebmcfosl esl b mocf
CI 30 ebmcfosl esl b mocf
CI 50 ebmcfosl esl b mocf

Table 4.2: Results of pairing strategies for each dataset, for epsilon>0

and — , denoted by ⁄(–) fl ⁄(—), is the set containing all logical conditions of ⁄(–)
that also belongs to ⁄(—).

Definition 4.2.4. Group of temporal relations. Two temporal relations – and — are
in the same group if they share a common logical condition.

Definition 4.2.5. Subgroup of temporal relations. Two temporal relations – and —

belongs to the same subgroup if they share at least two common logical conditions
c1 and c2 in their definition, and there exists a third temporal relation ‰ that shares
with – and — either the logical condition c1 or c2.

Following Definition 4.2.3, a table of common conditions (Table 4.3) among the
temporal relations was defined (see B.3 for details on intersection of conditions). In
Table 4.2, the relations that can be ruled out based on the same condition (subgroup
of temporal relations) are underlined.

4.2.3.3 Sequence of strategies

Both of these strategies can be applied in sequence. Once it is known the frequency
of the temporal relations, it is possible to apply the check for a common condition.

4.2. The vertTIRP algorithm 61

condition
relation

b m o l c f e s

B.s ≠ A.s > ‘

B.e ≠ A.e > ‘

A.e ≠ B.e > ‘

|B.s ≠ A.s| Æ ‘

|B.e ≠ A.e| Æ ‘

Table 4.3: Common conditions among the temporal relations (rows show common
conditions, while columns show temporal relations)

Since the first strategy is dataset-dependent, the resulting common conditions are
also dataset-dependent. For example, for the Human Activity Recognition dataset
dataset (HAR) dataset, the temporal relations are checked in the following order:
b, m, o, c, f, s, e. First, the b relation is checked, and if the condition is not met,
then the m,o,c,f common condition is checked. If this is not met, then the common
condition |B.s≠A.s| Æ ‘ for the s,e relations is checked. In the case where the |B.s≠
A.s| Æ ‘ condition is met, the algorithm continues with checking while preserving
the order: first it checks the s relation, and if it is not met, it then checks the e
relation.

4.2.4 Vertical representation of TIRPs

Step 4 of Algorithm 5 deals with the internal representation of patterns. TIRP
algorithms have mainly used two kinds of data structures to represent TIRPs that
support the generation of candidate patterns: horizontal and vertical. In a horizontal
representation, each row contains a sid and the corresponding symbols present in
the sequence, in the same order as in the sequence. For example, Table 4.4 shows
the horizontal data structure for the example used in this paper (Table 4.1). All
of the existing TIRPs mining algorithms in the literature [26, 21, 2, 68, 25, 4, 72,
24, 74, 22, 29] (except for the hybrid DFS approach in [28]), use a horizontal-like
representation.

In contrast, vertTIRP utilises a vertical database representation of patterns, in-
spired by previous works on sequence mining (SPADE[18] and SPAM[16]). Vertical
representations have been proven to be more efficient in the mining process. In a

62 Chapter 4. Managing temporal information in sequential patterns: vertTIRP

sid symbol sequence
1 A,B,C
2 C,A,B
3 C,B,A,C

Table 4.4: Horizontal database.

pattern sid list
A 1,2,3
B 1,2,3
C 1,2,3

Table 4.5: Vertical database.

vertical database representation, each row contains a pattern item and the corre-
spondent sid lists, i.e. a list of sequence ids in which the corresponding pattern
appears. Table 4.5 shows a vertical representation of the example provided in Table
4.1.

vertTIRP adopts and extends the vertical representation, as it allows for the
efficient management of TIRP discovery (as explained in the candidate generation
step in Section 4.2.5). First, patterns are grouped by S-TIRPS to form the first
dimension of the table. For the sake of simplicity, a TIRP within an S-TIRP is
identified by the temporal relation (defined in �T , see Definition 4.1.7). Following
this, the sid list is extended with the following information: the event id (or the
position at which the pattern starts in the sid sequence), the start and end time of
the corresponding pattern (which means choosing the minimum of the start times
and the maximum end time), the source time intervals, and the different pattern
indices vs, mhs, and md. All of these elements are kept sorted, in order to make the
mining process faster. Table 4.6 shows an example of the vertical representation for
the dataset used in this paper (Table 4.1) with three patterns: a length-one pattern,
<A,_>, and two length-two patterns, <AB,o> and <AB,m>, which are grouped
under the S-TIRP

˙˝¸˚
BC.

Although H-DFS [28] uses the vertical representation, it ignores the event id,
using only the sid and the list of intervals. In contrast, the eid is included since
this it is computationally more efficient to compare two integer numbers than two
date-times. Another limitation of the structure of H-DFS (which is discussed in
the paper under future work) is that it assumes that each sequence can support a
pattern at most once (i.e. A in the sequence ABA is counted only once), while the
approach presented in this thesis captures multiple occurrences of each pattern in a
sequence, and uses a special indicator for this (i.e. the horizontal support).

4.2.5 Candidate generation

Step 7 of Algorithm 5 forms the core of the candidate generation process and is
set out in Algorithm 6. The algorithm is based on the extension of each available
S-TIRP with a length-one pattern.

4.2. The vertTIRP algorithm 63

S-TIRP sid list

˙˝¸˚
A

TIRP
(�T)

sid eid starts ends source
intervals

vs mhs md

-
1 1 8:00 10:00 [8:00,10:00]

3 1 1.32 2 16:00 17:00 [16:00,17:00]
3 3 12:00 13:00 [12:00,13:00]

˙˝¸˚
BC

TIRP
(�T)

sid eid starts ends source
intervals

vs mhs md

{o} 1 3 8:00 13:00 [8:00,12:00],
[11:00,13:00]

1 1 5

{m} 3 4 11:00 15:00 [11:00,14:00],
[14:00,15:00]

1 1 4

Table 4.6: Example of the vertical representation of patterns in verTIRP

First, in the joining operation in step 6, the benefits of the vertical representation
of patterns are exploited in order to generate and obtain the support of new candi-
dates, as set out in Algorithm 7. The first step of the joining operation consists of
the creation of a new S-TIRP,

˙ ˝¸ ˚
new_P , by concatenating the symbol of a length-one

pattern F at the end of P (P + F). Next, for each time interval sequence si in
˙˝¸˚
P

that is also in
˙˝¸˚
F (i.e. that gives support to both patterns), and for each event

eidi and eidj for
˙˝¸˚
P and

˙˝¸˚
F , respectively, the algorithm searches for an event id

that is greater than or equal to the event eidi. In the case where the event cor-
responding to

˙˝¸˚
F is greater than eidi (i.e. eidi occurs before eidj), the algorithm

computes the corresponding temporal relation between the events and create the
new TIRP. Additional relations can be generated by using the transitivity property
of the temporal relations. Finally, the corresponding support indices are computed
for the patterns based on the last additions.

Special attention should be paid to the equal relation. Note that A = B is
the same as B = A, so if the algorithm have mined a pattern with an extension
containing the symbol "A", there is no need to mine the extension with the symbol
"B". The condition shown in line 6 filters these situations.

Lines 7 to 9 of Algorithm 6 then aim to minimise the size of candidates using
the Apriori prunning principle [31], which states that if there is a certain sequence
of symbols (ignoring time) that is infrequent, all its supersets will also be infrequent

64 Chapter 4. Managing temporal information in sequential patterns: vertTIRP

Algorithm 7: join

input :
˙˝¸˚
P : S-TIRP of length k containing frequent patterns,

˙˝¸˚
F : S-TIRP of length one containing a frequent pattern,

PS: pairing strategy,
max_duration: requirement for the discovered patterns

output:
˙ ˝¸ ˚
P + F , a new S-TIRP of length (k+1) containing frequent patterns

1 create a new S-TIRP pattern,
˙ ˝¸ ˚
new_P , which is a concatenation of the

symbol F at the end of the string P (P + F)
2 for each eidi, eidj so that sid œ

˙˝¸˚
P fl

˙˝¸˚
F and eidi œ events(

˙˝¸˚
P , sid) and

eidj œ events(
˙˝¸˚
F , sid) do

3 if eidi Æ eidj then
4 Find the temporal relation r between eidi and eidj following PS
5 if duration(r, eidi, eidj) Æ max_duration then
6 if (r = ’e’ and last(P) < F) or (r ”= ’e’) then
7 Create a new TIRP with r and add it to

˙ ˝¸ ˚
new_P

8 Compute the transitivity relations tr derived from r

9 Add tr to
˙ ˝¸ ˚
new_P

10 updateSupport(
˙ ˝¸ ˚
new_P)

11 return new_p

(i.e. if pattern AA is infrequent, then all other extensions such as ABA, ACA, ADA
will be infrequent). This principle is applied to keep frequent patterns of length one
within the neighbourhood search space.

In the second part of Algorithm 6 (lines 10 - 12) a recursive call to the algorithm
is performed.

4.2.6 Transitivity for efficiency

Allen introduces a transitivity table to allow for reasoning about temporal purposes
[27]. For instance, given the knowledge that event A happened before event B, and
B happened before C, then it can be inferred that A happened before C. This is
represented in the transitivity table as T(b,b)=b (see the full table in B.4).

From the relations r1(IA
, I

B) = o (A overlaps B) and r2(IB
, I

C) = f (B is finished
by C), it could be found that the only possibilities for the temporal relation between

4.2. The vertTIRP algorithm 65

A and C are the b,m,o relations (see Figure 4.6). However, when the temporal
relation definitions are based on ‘ > 0, the possibilities for the temporal relation
between A and C became multiple, i.e. the b,m,o and f relations (see Figure 4.7).

Figure 4.6: Analysis of Allen’s transitivity relation for ‘ = 0 minutes, r1(A, B) = o

and r2(B, C) = f

Figure 4.7: Analysis of Allen’s transitivity relation for ‘ = 5 minutes, r1(A, B) = o

and r2(B, C) = f

Allen’s transitivity table is therefore not valid for a value of epsilon greater than
zero. In the present work, following Definition 4.1.6, a new transitivity table for
epsilon greater than zero is defined (see Table 4.7). It should be observed that the
transitivity table reduces the number of possible temporal relations between two

66 Chapter 4. Managing temporal information in sequential patterns: vertTIRP

events to a smaller degree, although the actual relation between two events is a
single temporal relation when applied to a given set of time interval events.

r1(IA
, I

B)
r2(IB

, I
C)

b c o m s f e l

b "before" b b b b b b b b

c "contains" b c f
m o

c c f o c f o c f o c f c f c

o "overlaps" b b c f
m o

b m
o

b m m o b f m
o

m o c f o

m "meets" b b m b m b m b m b m b m b m

s "starts" b b c f
m o

b m
o

b m m s b m
o

e m o
s

c f l
m o

f "finished-
by"

b m c f f m o b m
o

f m o c f m
o

c f l
m o

c f

e "equal" b m c f f m o b e
m o

e o s c f m c e f
o

c f l

l "left
contain"

b c f
m o

c c f o c m o c e l
o

c f c e f l c

Table 4.7: Transitivity table for eps>0

KarmaLego [4] was the first TIRPs mining algorithm to use Allen’s transitiv-
ity table to improve mining efficiency. However, vertTIRP is the first algorithm
that applies the transitivity property to a vertical representation of TIRPs (since
KarmaLego uses a horizontal representation of the data). The difference is that
in the horizontal representation, transitivity is used to generate candidates, while
in the vertical representation, it is used to assign the temporal relation. Using
the vertTIRP representation, it is not possible to generate candidates for temporal
relations in the same way as with symbols (i.e. AB may have several relations).
Hence, the temporal relation is calculated during the joining process (see step 8 of
Algorithm 7), and only the relations given by the transitivity table are checked.

4.3. Experimental Evaluation methodology 67

4.3 Experimental Evaluation methodology

In this section, we test vertTIRP with the aim to answer the following research
question: How can we develop a TIRP mining algorithm that is efficient in terms of
time and memory and which discovers robust TIRPs?

Secondary research questions:
- What impact does it have on time and memory if we use pairing strategies that

are specifically used to improve the efficiency when mining temporal relations.
- What impact does it have on time and memory if we use a combination of

a vertical representation of patterns and the transitive properties of the temporal
relationships?

- What impact does it have on time and memory if we use two new constraints
that enable the user to express the kind of patterns to be learnt (user-controlled
patterns), namely min-duration and min-gap?

- What impact does it have on time and memory if we use two new constraints
that enable the user to express the kind of patterns to be learnt (user-controlled
patterns), namely min-duration and min-gap?

- What robustness problems are there in the temporal relations and in the tran-
sitivity property with epsilon and how could they be solved?

4.3.1 Experimental platform for vertTIRP

The vertTIRP presented in this thesis were implemented in Python 3.5.2. The
experiments were carried out on two virtual machines: (i) Lubuntu18.4, 32bits (one
CPU, one thread, 3 GB of RAM), and (ii) Lubuntu18.4, 64bits (one CPU, one
thread, 12 GB of RAM) created with the intention of exploring larger datasets.

4.3.2 Datasets

The experiments were conducted with synthetic and real datasets.

4.3.2.1 Synthetic datasets for vertTIRP

In order to better investigate the efficiency of the TIRP mining algorithm intro-
duced in this dissertation, numerous synthetic datasets are generated in which, the
following factors were considered: (i) number of time interval sequences(NS); (ii)
sequence average length (SAL); and (iii) vocabulary size (V). With values for NS

68 Chapter 4. Managing temporal information in sequential patterns: vertTIRP

of 3, 1000, 5000, 10000 and 20000; values for SAL of 3, 10, 100, 200 and 300; and
values for V of 3, 10, 100, 1000, 100000 and 1000000 is experimented.

4.3.2.2 Real datasets for vertTIRP

The following public datasets were used for the experiments of TIRP mining algo-
rithms (see Table 4.8):

• Mavlab (MAV) dataset [92], which contains activities related to daily living,
collected using the MavLab testbed during March and April of 2003. This
dataset captured an inhabitant’s interactions with an intelligent home, through
sensors placed in different rooms. This dataset allows us to compare vertTIRP
with a state-of-the art algorithm.

• American Sign Language Lexicon Video Dataset (ASL) [93], which consists
of videos of American Sign Language Lexicon Video dataset (ASL) signs in
citation form, each produced by native ASL signers. Linguistic annotations
include gloss labels, start and end time codes for signs, start and end hand-
shape labels for both hands, and morphological and articulatory classifications
of the type of sign. This dataset allows to compare the work presented in this
thesis with a state-of-the art algorithm.

• Human Activity Recognition (HAR) dataset [94] built from the recordings of
30 subjects performing activities of daily living while carrying a waist-mounted
smartphone with embedded inertial sensors. This dataset can be found in the
UCI Machine Learning Repository [95].

• Suicides in India (SI) [96] dataset, which contains annual suicide records of all
states of India with various parameters from between 2001 and 2012.

• Childhood Blood Lead Surveillance (CBLS) [97] dataset, which contains data
on blood levels of lead in children from between 1995 and 2015, from several
U S states and local health departments.

• Chronic illness: symptoms, treatments and triggers (CI) [98] dataset, which
was collected with a Flaredown app that can help patients with chronic au-
toimmune and invisible illnesses to improve their symptoms by avoiding trig-
gers and evaluating their treatments. Every day, patients tracked the severity
of their symptoms, treatments and doses, and any potential environmental
triggers (foods, stress, allergens, etc) they encountered.

The aforementioned datasets are time series that need to be converted into event
time intervals. They are characterised by timestamps followed by values of different

4.3. Experimental Evaluation methodology 69

attributes, which are pre-processed by converting them into time interval events.
If the attribute had discrete values, the start time of the time interval was set
according to the first time the discrete value appeared, while the end time was set
with the start time of the first sample where the discrete value is different. For
example, in the case of sensor values, for the following sequence of readings: 10:00-
ON, 11:00-ON, 12:00-ON, 13:-OFF, 14:00-ON, 15:00-ON, the time intervals would
be: (ON,10:00,13:00), (OFF,13:00,14:00), (ON,14:00,15:00).

Otherwise, if the attribute had numerical values, the attribute was discretised
with the SAX algorithm [99], with a vocabulary size of three (i.e. |�| = 3).

4.3.3 Experimental setup

Several experimental configurations were defined to test the properties of the vertTIRP
algorithm.

• Vertical representation of TIRPs. The first experiment included a comparison
of the vertTIRP algorithm with the state-of-the-art algorithm KarmaLego
and its efficient extension DharmaLego, [68] that has been found to be faster
than H-DFS [28], ARMADA [29] and iMiner[2] for the MAV_p and ASL_p
datasets.

• Efficiency by transitivity. In this case, verTIRP was analysed including the
transitivity relation. Two configurations of verTIRP were compared, i.e. with
and without the transitivity property. In the latter case, temporal relations
were computed using the pairing strategy presented in this thesis.

• User controlled patterns. While user constraints allow the user to express how
patterns can be found, they affect the number of patterns found and the ex-
pected computation time. Different min_gap and min_duration constraint
values were tested. In particular, since the datasets have different time scales,
min_gap and the min_duration were set at 0%, 1%, 5%, 10%, 30%, 50%,
70%, 90% and 99% with respect to the maximum time interval. This experi-
ment was run with a fixed support of 0.01.

• Pairing strategies. Two configurations were defined: vertTIRP with the pair-
ing strategy and a verTIRP with a dummy strategy (in which conditions were
tested in a random order and without taking into consideration the common
condition). The hypothesis is that if the pairing strategies were included, the
computation time would be shorter than if not using them.

• Scalability. The last experiment included a complexity analysis of the al-
gorithm presented in this thesis in terms of time and memory, which was

70 Chapter 4. Managing temporal information in sequential patterns: vertTIRP

dataset attribute
sequence

(NS)

attributes TI(s) num.
TI

SAL

MAV zone (11) device, value 1
second

1472 133,81

ASL Session,
Scene
(946)

Main_New_Gloss,
D_Start_HS,
D_End_HS,
Passive_Arm

1
second

61370 64,87

MAV_p integer
numbers
(1000)

integer numbers unknown 61127 61,127

ASL_p integer
numbers

(65)

integer numbers unknown 2037 31,338

HAR subject
(30)

BodyAcc,
GravityAcc,
BodyGyro,
Activity

5
minutes

1938 64,60

SI State (38) Age group,
Gender, number of

suicides

5 years 7349 193,39

CBLS State (44) popless72months,
confirmedBLL

5 years 215 4,88

CI user id
(20843)

age, sex, country,
trackable name

1 year 3488553 167,37

Table 4.8: Dataset description: The attribute sequence field is the name of the
attribute used to generate the time interval sequences, where NS is the number of
sequences in the dataset; attributes are the name of the attributes used to construct
the sequences; TI(s) is the minimum time interval duration in seconds; num. TI is
the total number of time intervals in the dataset; and SAL is the sequence average
length. MAV_p and ASL_p are preprocessed MAV and ASL datasets, used in state
of the art works, where the attributes were encoded with integer numbers.

conducted on synthetic datasets.

Cmin_gap and Cmin_duration constraints were set to zero unless otherwise specified.

4.4. Results 71

4.4 Results

The results were evaluated in terms of the computational runtime, the memory
usage, the number of TIRPs discovered and their support.

Concerning the comparison with the state of the art, the Figure 4.8 shows the
results from the vertTIRP, KarmaLego [68] and DharmaLego [69] algorithms for
the ASL_p and MAV_p datasets. In each plot, the x-axis represents the different
values of min_support required for a pattern to be frequent, while the y-axis shows
the runtime in seconds. As expected, the execution time for the MAV_b dataset
has been longer than for the ASL_p dataset, since the number of intervals in the
MAV_b dataset is 61127, while that of ASL_p dataset is 2037.

In the case of the ASL_p dataset for support 5, the execution time of KarmaLego
is 2,45 s, of DharmaLego is 1,80 s, while that for vertTIRP is 1,38 s. Moreover, for
the supports between 10 and 50, the execution time of DharmaLego was slightly less
than that of vertTIRP. In that regard, it should be noted that the programming
languages were Python for vertTIRP and C˘ for KarmaLego and DharmaLego. In
[100] Python has been found up to 25 times slower than C˘. However, in the present
work, the results are analysed as if all the algorithms are executed with the same
language.

In the case of the MAV_b dataset for support 10, the execution time for Dhar-
maLego was more than 187 s, while for vertTIRP it was only 8,39 s. KarmaLego
could not be run with the MAV_b dataset, as it gave a memory error. This repre-
sents a huge reduction in computation time.

Concerning the transitivity properties in vertical representations, the hypothesis
was that the transitivity property would improve the computation time for the
vertical representation. Figure 4.9 shows the results obtained in terms of time for
each dataset in both scenarios; i.e. vertTIRP with and without the transitivity
property. As it could be seen from Figure 4.9, the improvement in the calculation
time with transitivity is noticeable for the HAR dataset, while for the remainder
of the datasets, the improvement is small to be considered significant. There are
two possible reasons for these results: firstly, the dataset may be too small for the
difference to be noticeable, and secondly, the more frequent temporal relations of
these datasets return many possibilities from the transitivity table (i.e. datasets in
which the contain or overlap relations predominate). In the HAR dataset, the most
frequent temporal relations are the before and meet relations, while for the Chronic
illness dataset (CI) dataset, the two most frequent relations are the contain and
start relations (see Table 4.2). From the transitivity table (Table 4.7), it can be
observed that the equal, before, and meet relations almost always return only one
possible temporal relation. This fact can reduce the number of checks and hence

72 Chapter 4. Managing temporal information in sequential patterns: vertTIRP

Figure 4.8: Comparison with the state of the art methods for the MAV and ASL
datasets

the computation time.
Regarding applying the minimum gap and the minimum duration, the multiple

y-axes of Figures 4.10 and 4.11 show the computation time, the memory usage and
the number of patterns found, based on the inclusion of the user constraints. As
expected for the two constraints, the computation time is greatly reduced. The
reduction in computation time is directly related to the decrease in the number of
TIRPs mined and the memory consumed. However, the number of TIRPs discovered
in the HAR dataset was greater than for the CI dataset, while the computation
time was lower for the HAR dataset. This is because the number of time interval
sequences, the average number of time interval events per sequence, and the number
of time intervals in the HAR dataset were lower than in the CI dataset.

Regarding the efficiency due to pairing of events, as it can be observed from Fig-
ure 4.12, the computation time required to find the temporal relations with pairing
strategies is lower than when not these are not used (i.e. the dummy approach).
Note that the y-axes of the graphs use different time scales in order to highlight the
difference between the two algorithms. In general, the pairing strategy reduced the
computation time by about 10%.

Regarding the epsilon sensitivity, the percentage uncertainty in the start and
end times of the intervals (epsilon value) affects the number of the TIRPs that
are discovered, the computation time and the memory usage. Figure 4.13 shows
the results of these measures for each of the datasets for varying values of epsilon

4.4. Results 73

Figure 4.9: Efficiency by transitivity properties: transitivity vs. no transitivity
(time in seconds; the scale of the y-axis is not uniform)

(shown on the x-axis).
As it can be observed, epsilon sensitivity depends on the dataset. For datasets

where, the information was collected via sensors (i.e. the Mavlab dataset (MAV)
and HAR datasets), the epsilon curve was smoother than for datasets where the
information was collected in other ways. ASL and CI show significant increases
in time, numbers of patterns found and memory usage. This is not only because
these are the datasets with the highest number of time interval sequences (61370
and 3488553, respectively, see Table 5.2), but also because of the characteristics
of the data. In the case of the ASL dataset, the data have no missing values,
and there is also a marked temporal separation between samples. This means that
for epsilon values smaller than the temporal separation between the samples, only
the before and equal relations are found. If epsilon is increased, the algorithm finds
more relations, and therefore more TIRPs, and this requires more time and memory.
In contrast, for the CI dataset, varying the epsilon does not affect the number of
patterns found, and in fact, the number of patterns fluctuates between 28 and 39.
This is because many time interval events have a short duration, and increasing the
epsilon affects little as much to the number of new TIRPs that it finds, as to the
time, or to the memory.

There also exists a value of epsilon that maximises or minimises the number of

74 Chapter 4. Managing temporal information in sequential patterns: vertTIRP

(a) MAV (b) ASL

(c) HAR (d) CI

(e) SI (f) CBLS

Figure 4.10: Efficiency with application of the min duration constraint. Note that
multiple y-axes have been used to represent time, memory and the number of fre-
quent TIRPs in the same graph. The x-axis represents the different values of the
minimum duration as a percentage (0%,1%,5%,10%,30%, 50%,70% , 90% and 99%)
of the maximum time interval in the dataset

4.4. Results 75

(a) MAV (b) ASL

(c) HAR (d) CI

(e) SI (f) CBLS

Figure 4.11: Efficiency with application of the min gap constraint. Note that mul-
tiple y-axes have been used to represent time, memory and the number of frequent
TIRPs in the same graph. The x-axis represents the different minimum gap values
as a percentage (0%,1%,5%,10%,30%, 50%,70% , 90% and 99%) of the maximum
time interval in the dataset

76 Chapter 4. Managing temporal information in sequential patterns: vertTIRP

Figure 4.12: Efficiency with pairing of events: dummy approach vs. vertTIRP (time
in seconds)

TIRPs discovered for each dataset. In four of the six datasets, the epsilon value
that maximises the number of discovered TIRPs is around 10. Finally, it can be
observed that the number of TIRPs and the time and memory required are linked,
as expected.

Finally, regarding the complexity analysis, since the exact cost of the vertTIRP
algorithm is complex to calculate (as for any TIRPs mining algorithm), its cost is
estimated both analytically and experimentally in this section.

The complexity of the algorithm depends on the following factors: (i) the size
of the TIRPs (s); (ii) the vocabulary size (V = �); (iii) the number of sequences
(NS); (iv) the average number of time interval events per sequence (TS); and (v) the
number of infrequent patterns (IP) for a given TIRP size, to quantify the reduction
of candidates.

As the vertTIRP algorithm generates candidates and applies the join operation
to each of them, first the cost of the join operation is calculated, then the cost of
generating the candidates is calculated, and finally, all these costs are summed out
together.

The join algorithm (Algorithm 7) contains a nested loop for time interval events
that is inside the loop of sequences. The cost of the tour around the time interval
events is TS≠1+TS≠2+...+TS≠(TS≠1), which when simplified upwards becomes
(TS ≠ 1) ú TS, and hence O(TS

2). The assignation of the temporal relation and

4.4. Results 77

(a) MAV (b) ASL

(c) HAR (d) CBLS

(e) SI (f) CI

Figure 4.13: Epsilon sensitivity. Note that multiple y-axes have been to repre-
sent time (seconds), memory (MiB) and the number of frequent TIRPs in the
same graph. The x-axis represents the different epsilon values as a percentage
(0%,1%,5%,10%,30%, 50%,70% , 90% and 99%) of the maximum time interval in
the dataset

78 Chapter 4. Managing temporal information in sequential patterns: vertTIRP

the increment in the support operations are O(1). Finally, since the time interval
event loop is executed the same number of times as the number of sequences in the
dataset, the time complexity of the join operation is O(NS ú TS

2).
The time complexity of candidate generation is

qs
i=1 V

i. When vertTIRP reduces
the number of candidates with infrequent patterns IP, it actually reduces V in IP
units, resulting in a cost of

qs
i=1(V ≠ IP)i. This reduction in candidates spreads to

all children in the branch. The time complexity of each loop can be considered as
O(LogLogn) if the loop variables are reduced/increased exponentially by a constant
amount. Hence, the time complexity of candidate generation is O(loglog(V s)).

If combining the two costs, it can be found that the approximate theoretical cost
of the vertTIRP algorithm is O(loglog(V s) ú NS ú TS

2).
The analytical cost of the algorithm is compared with an empirical result by

using synthetic datasets. Figure 4.14 shows how time and memory behave while in-
creasing the number of sequences, the number of time interval events per sequence,
or the vocabulary size. It can be observed that the theoretical calculation is con-
firmed: time grows as a linear function of the number of time interval sequences,
as an exponential function of the number of time interval events per sequence, and
logarithmically depending on the size of the vocabulary. Memory behaves in the
same way as time.

Figure 4.14: Complexity analysis of the vertTIRP algorithm in terms of time, mem-
ory and vocabulary size

4.5. Discussion 79

4.5 Discussion

As far as efficiency is concerned, the use of a vertical representation of TIRPs (giving
a reduction in cost of a factor of up to 20 compared to state-of-the-art alternatives)
with transitivity among temporal relations and pairing strategies (reating a time re-
duction of up to 10%) gives a reduction in the computational cost that opens the way
for addressing big data problems. Although the transitivity property contributes to
this time reduction, the difference is less significant than that due to the incorpora-
tion of pairing strategies, which reduce the computation time by about 10%. The
transitivity is particularly useful when the more frequent temporal relations in the
dataset are those that return fewer possible relations from the transitivity table, i.e.
e,b, and m. As more temporal relations offers a cell of the transitivity table, more
time is required to check them, although this result can be modified by sorting the
temporal relations based on their frequency and which depend of the dataset. In
this regard, more noticeable was the improvement in time by transitivity with the
sensor-based datasets, due to the presence of frequent b,m relations. The pairing
strategy, which was simple, easy to implement, and tailored to the datasets, seemed
to provide a powerful mechanism for reducing the search space.

The minimum gap and the minimum duration user constraints are useful when
there is an interest in discarding events that last less than X time units or looking
for patterns with a minimum interval of Y time units. For instance, in the example
involving diabetes, there is an interest in looking for events that lasted less than one
hour and where there was a minimum interval of two hours from the administration
of the bolus. These also contribute to increasing the performance of the algorithm,
but the number of patterns may be affected.

The value of epsilon allows for variability between events. While the user con-
straints limit the search space, the value of epsilon is responsible for two events
being paired via one temporal relation or another. Based on the results, it can be
observed that for each dataset there is a value of epsilon that maximises or min-
imises the number of the TIRPs discovered and hence the computation time and
memory usage. The value of epsilon depends on the impression or the time delay of
the sensor reading. In practice, most of the time this value is unknown. In this case,
it could be found empirically. For example, suppose the final objective of TIRPs
mining was for classification purposes. In that case, it should be kept the value of
the epsilon that gives greater precision or ROC_AUC value in classification. On
the other hand, if the final objective is the analysis of the found TIRPs, perhaps
some utility measures should be implemented to know the usefulness of the found
patterns, and keep the epsilon value that generates the greatest number of useful
patterns.

Regarding the patterns discovered, on the one hand, it could be verified that

80 Chapter 4. Managing temporal information in sequential patterns: vertTIRP

the left contain relation is a discriminant relationship between the "SITTING" ac-
tivity and all the other activities in the HAR dataset. For example, the pattern
<"BodyAcc_b" "GravityAcc_a", l> with vertical support 20 only appears in the
"SITTING" activity, where "BodyAcc_b" represents the acceleration of the per-
son’s moderate movement and "GravityAcc_a" represents the force of gravity mild.
And on the other hand, it is worthy of commenting on some of the patterns ex-
tracted from the Chronic Illness dataset that were found to be quite logical and
interesting. For example, an overlap of stressed and walking events <"stressed"
"walked", o > may mean that walking is conducive to de-stressing. Or a pattern
such as < "Fibromyalgia" "Joint_pain" "Naproxen", eoo >, which means that the
person was registering joint pain and fibromyalgia for several days, which overlapped
with the event of taking the Naproxen. In this case, it would be logical to think that
Naproxen helped eliminate joint pain and fibromyalgia. The pattern < "Joint_pain"
"Migraine" "tired", eff >, which suggests that joint pain in conjunction with mi-
graine makes you feel tired. Or the pattern < "precip_intensity" "good sleep", c >
might mean that heavy rainfall makes us sleep well.

4.6 Summary

Regarding a new efficient TIRPs mining algorithm, two important aspects have
been under investigation over the last two decades in TIRPs mining: the first is
efficiency, and the second is ambiguity in the discovered patterns. The present thesis
is concerned with both of these issues. A proposal for a robust definition of temporal
relations for TIRPs without ambiguities together with a vertical representation of
TIRPs that exploits the transitivity property between temporal relations, pairing
strategies and user-controlled constraints to increase the efficiency. Regarding the
robustness of the discovered patterns, the meet, finished by, starts, equals, contains
and overlap relations are disambiguated by redefining the meet and overlap relations.
These definitions are based on the use of an epsilon value that also enables the
management of noisy data. In addition, the left contains relation from [28] was
adapted, which proved to be necessary when ‘ > 0. A revised transitivity table
for temporal relations was proved to be valid when using epsilon approaches in
the definition of temporal relations; however, the epsilon value impacts the number
of patterns found and memory usage. Given this, the epsilon approach should be
regarded as a hyperparameter that can be adjusted for each application field, with
certain consequences in memory usage and the number of patterns found.

Concerning efficiency, vertTIRP outperforms other state-of-the-art algorithms
in terms of time. It scales well for small supports and large datasets. A vertical
representation of patterns in conjunction with the transitivity property and a pairing
strategy provided a significant reduction in time and improved the efficiency of

4.6. Summary 81

TIRPs mining. Pairing strategies reduced the computation time by about 10%.

Chapter 5

Data preparation as an external

component of learning algorithms: TA4L

This chapter presents the algorithm TA4L, which copes with the third objective of
this thesis, related to raising awareness of pre-processing tasks required for TIRP
mining.

5.1 Problem statement

Given multivariate time series with missing values, where samples gather information
about n variables in q situations or sequences, a minimum duration of an interval ”

(e.g. in seconds), an alphabet �, and a maximum gap constraint max_gap, the aim
is to provide LSTISs, one per sequence LSTIS1, . . ., LSTISq, where variable values
have been abstracted to symbols in the alphabet, annotated with time intervals
bounded in [s, e] (with ” Æ e≠s Æ max_gap), and sorted according to time-interval
boundaries and alphabet symbols.

5.1.1 Input parameters

Each sequence sid œ [1, q] of the multivariate time series, has a total of nsid sam-
ples. Each sample Y (sid, tid) comprises the values of the n variables for a given
sequence sid and time tid, that is, Y (sid, tid) = Èy1(sid, tid), . . . , yn(sid, tid)Í, where
yi(sid, tid) is the value of the i variable of the sample. Moreover, for the purposes
of this work, yv(sid) denotes all of the values corresponding to variable v in a given
sequence sid (i.e. signal).

The minimum duration of an interval can be expressed in any time scale (e.g.

84
Chapter 5. Data preparation as an external component of learning algorithms:

TA4L

seconds, hours, days). The max_gap constraint should be consistent with the
max_gap scale.

The alphabet � by default is defined in [A, Z], but any other alternative or
vocabulary is also possible. An important issue regarding the complexity of the
problem to be tackled is its size |�|.

5.1.2 Output: LSTISs

Several notations related to LSTISs should be considered first.

Definition 5.1.1. Symbolic time-interval. A symbolic time-interval I is a triple I =<

s, e, v.sym >, composed of a start time (s), an end time (e), and a symbol v.sym
where v is a variable name and sym œ �.

Time scales for the start and end times are application-dependent, as stated above.
The same alphabet is used for all of the variables. Therefore the prefix v (v.symj)
is used with different symbols corresponding to the different variables. Eventually,
different alphabets �v could also be used, and thus � = t

v �v).
In the definitions below, I.s, I.e, and I.sym are used when the start time, end

time and symbol of an interval are referred to.

Definition 5.1.2. A symbolic time-interval sequence, IS = ÈI1
, I

2
, ..., I

kÍ represents
a sequence of symbolic time-intervals I

i.

Given that there are n variables and nsid samples per variable, a multivariate
time series can be represented by a IS of length k = (n ú nsid).

To sort time intervals, usually, relational operators are used. In the present work,
rather than comparing two time-intervals with an exact operator, this thesis looks
for an approximate (epsilon) approach (following [4]). The epsilon approach allows
for a certain variability in the temporary boundaries of events caused by noisy data
[28]. The epsilon approach is implemented by means of the =‘ and <

‘ operators.

Definition 5.1.3. Quasi-equal "=‘". Two time-points t
i and t

j are quasi-equal, t
i =‘

t
j, if |ti ≠ t

j| Æ ‘.

Definition 5.1.4. Precedes "<
‘". Time-point t

i precedes time-point t
j , t

i
<

‘
t
j, if

t
j ≠ t

i
> ‘.

Definition 5.1.5. Follows "<
‘". Time-point t

i follows time-point t
j, t

i
>

‘
t
j, if t

i ≠
t
j

> ‘.

The relational operators =‘ and <
‘ are used to sort time-interval events into a

sequence.

5.1. Problem statement 85

Definition 5.1.6. A lexicographical symbolic time-interval sequence LSTIS is a sym-
bolic time-interval sequence, IS=ÈI1

, I
2
, ..., I

(núnsid)Í, in which the elements are sorted
in order of the start and end times using the relations <

‘, =‘ and the symbols with
a lexicographical order, that is: ’I

i
, I

j œ IS(i < j):
((I i

.s <
‘

I
j
.s) ‚

(I i
.s =‘

I
j
.s · I

i
.e <

‘
I

j
.e) ‚

(I i
.s =‘

I
j
.s · I

i
.e =‘

I
j
.e · I

i
.sym < I

j
.sym) ‚

(I i
.s =‘

I
j
.s · I

i
.e =‘

I
j
.e · I

i
.sym = I

j
.sym · |I i

.e ≠ I
i
.s| = max_gap).

Figure 5.1: Graphical representation of LSTISs

For example, ÈÈ <8:00, 10:00, var1.A>, <8:00, 12:00, var1.B>, <11:00, 13:00,
C>Í, È <14:00, 17:00, var1.C>, <16:00, 17:00, var1.A>, <16:00. 18:00, var1.B>Í, È
<10:00, 13:00, var1.C>, <11:00, 14:00, var1.B>, <12:00, 13:00, var1.A>, <14;00,
15:00, var1.C>ÍÍ is a LSTISs that contains three sequences, all of them from the
same variable var1. The first sequence is composed of three symbolic time-intervals,
È <8:00, 10:00, var1.A>, <8:00, 12:00, var1.B>, <11:00, 13:00, var1.C>Í. Figure
5.1 shows a graphical representation of this example.

86
Chapter 5. Data preparation as an external component of learning algorithms:

TA4L

5.2 The TA4L algorithm

The inputs of the TA4L algorithm include multivariate time series MTS, the max-
imum gap max_gap allowed between two consecutive time intervals, and the mini-
mum duration of time intervals dur. The algorithm returns a list of LSTISs, where
each position will be an LSTIS corresponding to a certain sequence.

The first step of the algorithm is to initialize the list of LSTISs. Then for each
sequence, the algorithm constructs an LSTISseq and adds it to LSTISs. If the
variable is numeric first, a Z-normalization of this variable is performed. Then each
frame is discretized and concatenated with the next frame, based on the maximum
gap and the symbol. If the variable is discrete, segmentation and concatenation
are performed, also depending on the maximum gap and the symbol. And finally,
in the case we decide not to use a sorted insertion to LSTISseq, the LSTISseq

must be sorted. The FDCS and SCS functions are detailed in Appendix C.2. The
fundamentals of the proposal are technically in-deep introduced in the remaining of
this section.

Algorithm 8: TA4L
input: MTS: multivariate time series

max_gap: the maximum gap constraint
dur: duration of the interval

1 output: LSTISs: a list of LSTISs for each sequence
2 LSTISs = {}
3 for each MTSseq œ MTS do
4 LSTISseq = {}
5 for each var œ MTSseq do

/* Temporal abstraction */
6 if MTSseq(var) is numeric then
7 Zseq(var) = Z-norm(MTSseq(var))

/* Framing, Discretization, Concatenation, and Sequence
Generation (FDCS) */

8 LSTISseq = FDCS(Zseq(var),max_gap,dur,LSTISseq)
9 else

/* Segmentation, Concatenation and Sequence Generation (SCS)
*/

10 LSTISseq = SCS(MTSseq(var),max_gap,LSTISseq)
11 LSTISseq = sort(LSTISseq) ; // if not using a sorted insertion
12 LSTISs = append(LSTISseq,LSTISs)

5.2. The TA4L algorithm 87

(a) Z-normalized signal (b) Temporal abstraction

(c) The resulting LSTISs

Figure 5.2: TA4L over multivariate time series of two variables. The algorithm
parameters used in this example have been: �=3, ”=24h, and discretization=SAX.

An example of TA4L is summarised on the Figure 5.2 for two variables, var1
and var2. This example is used along the section to illustrate the details of the
algorithm.

5.2.1 Normalization

Given a sequence sid and the values of a variable v, yv(sid) = Èyv(sid, 1), . . . ,

yv(sid, nsid)Í, the normalization steps applies the normalization method using the

88
Chapter 5. Data preparation as an external component of learning algorithms:

TA4L

Z-method, obtaining y
Z
v (sid) = ÈyZ

v (sid, 1), . . . , y
Z
v (sid, nsid)Í. Figure 5.2a shows

the normalisation of the variable var1. In the figure, it is possible to observe that
there is several missing information for the variable.

5.2.2 Framing

Instead of reducing the dimensionality of the input data based on the number of
samples w as is done in SAX, TA4L reduces it based on a duration ”, with time
interval boundaries defined in known data (i.e. avoiding defining the boundaries in
time points corresponding to missing data).

Given a normalized variable v in the scope of a sequence sid, y
Z
v (sid) = ÈyZ

v (sid, 1),
. . . , y

Z
v (sid, nsid)Í, data is divided into time intervals of duration ” in the framing

step, where the start time I.s and end time I.e is marked by the first and last point
known inside the ” frame.

For example, in Figure 5.2b, the start time of the real first time-interval is 2016-
10-04 07:59:42, and the real end time is 2016-10-04 19:00:22 (not the 2016-10-05
07:59:42 marked by ”). Values from 2016-10-04 19:00:22 to 2016-10-05 07:59:41 are
missing. There is no symbol assigned to the time interval at this stage but the mean
values along with ”. Therefore, the output of the fragmentation stage is y

f
v (sid) =

Èyf
v (sid, 1), . . . , y

f
v (sid, msid)Í, where y

f
v (sid, j) = Èsj, ej, meanjÍ, |sj ≠ ej| Æ ”, and

sj < sj+1’j. Observe that nsid ≠ msid is the data reduction achieved in this stage.
The fact that TA4L defines the time interval boundaries with known values

greatly impacts discovering TIRP patterns in the future and presents some advan-
tages from previous approaches as SAX[70]. For example, Figure 5.3 illustrates the
difference between applying SAX and TA4L to a signal. SAX splits the original
signal into five segments with the same amount of samples; its fourth segment con-
tains unknown values, representing a 45’ time interval. In contrast to SAX, TA4L
will characterize the fourth time interval with a 5’ duration. Consequently, a TIRPs
mining algorithm could eventually find the pattern "A before B before C" thanks
to TA4L, but that will not be the case when using SAX.

5.2.3 Discretization

Discretization is the process of replacing the meanj value of the time intervals with
symj œ �. To that end, TA4L uses by default the SAX approach [70], but other
methods are also available, such as EWD [80] and KBTA [75]. Therefore, the out-
put of the fragmentation stage is y

d
v(sid) = Èyd

v(sid, 1), . . . , y
d
v(sid, msid)Í, where

y
d
v(sid, j) = Èsj, ej, v.symjÍ, |sj ≠ ej| Æ ”, sj < sj+1’j, and symj œ �.

If discretization is performed following the SAX approach, it must first determine

5.2. The TA4L algorithm 89

(a) SAX

(b) TA4L

Figure 5.3: SAX and TA4L over a signal. The algorithm parameters used in this
example have been: �=3, ”=15 minutes.

90
Chapter 5. Data preparation as an external component of learning algorithms:

TA4L

the breakpoints. Breakpoints are a sorted list of numbers B = —1, ..—�≠1 such that
the area under a N(0,1) Gaussian curve from —i to —i+1 = 1

|�| (—0 and —� are defined
as ≠Œ and +Œ, respectively). These breakpoints are determined by looking them
up in a statistical table computed from the data. The statistical table is used here
to produce symbols with equiprobability. Secondly, the mapping from meani to –j,
the jth element of the alphabet (i.e., –1 = A and –2 = B), is obtained as follows:
symi = –j, iff —j≠1 Æ meani < —j. That means that all means that are below the
smallest breakpoint are mapped to the symbol "A", all means greater than or equal
to the smallest breakpoint and less than the second smallest breakpoint are mapped
to the symbol "B" and so on.

If the EWD discretization approach is used, the range of variables is divided
into � breakpoints of equal size. Finally, when the KBTA approach is used, the
breakpoints are acquired from a domain expert.

5.2.4 Segmentation

If the type of a v variable is discrete, temporal abstraction consists of a segmentation
process: symbolic time intervals are generated with the start time of the interval
corresponding to the time a discrete value (symbol) appears, and the end time when
there is a symbol change, or when there is a maximum distance with the start time
of ” unit times. The output of the segmentation stage is equivalent to the discretiza-
tion step of the numerical variables, y

d
v(sid) = Èyd

v(sid, 1), . . . , y
d
v(sid, msid)Í, where

y
d
v(sid, j) = Èsj, ej, v.symjÍ, |sj ≠ ej| Æ ”, sj < sj+1’j, and symj œ �. Although, in

this case, the alphabet � is induced from the data, the � notation for the sake of
simplicity is kept.

5.2.5 Sequence generation

Sequence generation is based on a data structure, named sorted list, with two main
components: an LSTISs and the pointer to the last inserted element into the list.
The pointer is initialised to 1 when the first interval of each variable is inserted. The
remainder intervals are inserted following the binary search method [101] adapted
for LSTISs. Moreover, at the moment of the time-interval insertion into the LSTISs
a concatenation process is applied.

5.2.5.1 Binary search for LSTISs

Binary search [101] works on sorted arrays, and it is theoretically the optimal and
the fastest in practice search algorithm, which order is O(log2N). The algorithm

5.2. The TA4L algorithm 91

compares an element in the middle of the array with the value to be inserted. If the
value to be inserted matches the element, its position in the array is returned; if it
is less than the element, the search continues in the lower half of the array; if it is
greater than the element, the search continues in the upper half of the array. By
doing this, each iteration of the binary search narrows the search interval by half of
the search interval of its previous iteration.

In the present work, an adapted version of the binary search was employed to
search the position into LSTISs to perform the insertion of time intervals. The
difference is that (i) it is applied to an LSTISs; and (ii) it takes advantage of the
fact that data arrive in sorted order by time, and (iii) it uses the =‘ and <

‘ relational
operators.

First, a binary search is applied to each LSTISs instead of to an array of integers.
Secondly, each variable time-interval is processed according to time. Therefore, the
insertion takes advantage of that to start the search from the last inserted position
as shown in the Figure 5.4b, instead since the position 0 as shown in Figure 5.4a.
Finally, time intervals are compared with >

‘ and <
‘ epsilon-relational operators

instead of > and < relational operators.

(a) Insert with an original binary search adapted to LSTISs

(b) Insert with an improved binary search adapted to LSTISs

Figure 5.4: The difference between the original binary insert and an adapted binary
insert that remembers the last inserted position applied to LSTISs.

92
Chapter 5. Data preparation as an external component of learning algorithms:

TA4L

5.2.5.2 Concatenation: Intervals of maximum duration

If there are two or more consecutive intervals with the same symbol, these intervals
are concatenated into a single interval, where the start time is the time corresponding
to the start time of the first interval and the end time is the time corresponding
to the end time of the last interval. The advantage of that is not only storing the
memory but also providing a short, reliable and meaningful summary of information
to the final user. For example, in the var1 of Figure 5.2b, the first four intervals
correspond to symbol B. Therefore, all of them are combined in a new time-interval
where the start time is the start time of the first time-interval (2016-10-04 07:59:42),
and the end time is the end time of the last time-interval (2016-10-07 16:30:29).

On the other hand, concatenation is controlled by the parameter max_duration,
which aims to deal with particular situations of application domains. For example,
for the following up of a person who suffers diabetes, data analysed to evaluate her
state should be within one day (max_gap = 24h).

Therefore, two consecutive time-intervals of the same sequence and symbol sorted
by start time Ii(sid) =< si, ei, v.sym > and Ij(sid) =< sj, ej, v.sym >, are trans-
formed into a single interval Ik(sid) =< si, max(ei, ej), sym >, iff (Ij.e ≠ Ii.s) <
max_gap and si <= sj.

This has some advantages when discovering TIRPs. For example, in Figure 5.5b,
it can be observed that from 8.50 to 9:20, there is no data. If max_gap = 30Õ, both
would not be concatenated into a single interval, and as a consequence, a TIRPs
mining algorithm could eventually find the pattern "a before b before c" thanks to
the maximum gap constraint in the TA4L (see Figure 5.5b), but that will not be
the case when using SAX (see Figure 5.5a).

5.2.6 Data structures and parallel strategies

The basic procedure of TA4L presented in Figure 5.2 considers the sorted list data
structure where time intervals are inserted in a sorted manner with an adapted
version of binary search as soon as they are obtained. With this data structure,
parallelism can be applied to sequences, i.e. the procedure of transforming time series
to LSTISs is executed as an independent asynchronous thread for each sequence of
the TA4L algorithm, as shown in the first image of Figure 5.6.

On the other hand, an alternative simple list data structure could be considered,
and applying a sorting procedure in the end, opening the opportunity to other
parallel strategies: parallelism can be applied apart from sequences (see the second
image of the Figure 5.6) to the variables (see the third image of the Figure 5.6), i.e.
the procedure of transforming a signal into LSTISs is executed as an independent

5.2. The TA4L algorithm 93

(a) SAX

(b) TA4L

Figure 5.5: Concatenation example over a signal. The algorithm parameters used
in this example have been: �=3, ”=15 minutes, and max_gap = 30Õ.

94
Chapter 5. Data preparation as an external component of learning algorithms:

TA4L

Figure 5.6: Parallelism strategies of TA4L

asynchronous thread for each variable in a sequence. Table 5.1 summarises all the
parallelism strategies.

5.3 Experimental Evaluation methodology

In this section, we test TA4L with the aim to answer the following research question:
How can we make explicit the embedded, ad-hoc pre-processes related to TIRPs
mining algorithms when the input is multivariate time series (or time series) while
offering an efficient solution for the required pre-processing and considering temporal
restrictions established by the user?

Secondary research questions:
-How can we decide whether two consecutive points could be considered to be

part of the same event (i.e. belonging to the same time-interval) or do not?
-What will be the difference between constructing time intervals based on the

5.3. Experimental Evaluation methodology 95

Name Data structure Parallelism strategy
TA4L_sl sorted list binary insert that remem-

bers the last inserted ele-
ment (no parallelism)

TA4L_sl_paral_seq sorted list parallelism applied to se-
quences (first image of the
Figure 5.6)

TA4L_se simple list sorts at the end (no paralel-
lism).

TA4L_se_paral_seq simple list sorts at the end and paral-
lelism applied to sequences
(second image of the Figure
5.6)

TA4L_se_paral_var simple list sorts at the end and par-
allelism applied to variables
(third image of the Figure
5.6)

Table 5.1: Parallelism strategies of TA4L and corresponding data structures.

time duration constraint instead of using a fixed number of samples from the dataset.
- Can an adapted version of binary search be useful when performing ordered

insertions of TI according to the criteria of the LSTISs?
- How could a multivariate time series pre-processing algorithm be more effi-

ciently parallelised to LSTISs?

5.3.1 Experimental platform for TA4L

The TA4L algorithm presented in this thesis were implemented in Python 3.7.6. The
experiments were carried out on a virtual machine, Lubuntu 19.10, 64 bits, eight
CPUs, and 12 GB of RAM.

5.3.2 Datasets

The experiments were conducted with synthetic and real datasets.

96
Chapter 5. Data preparation as an external component of learning algorithms:

TA4L

5.3.2.1 Synthetic datasets for the TA4L

To better explore the efficiency of the pre-processing algorithm presented in this
thesis, numerous synthetic datasets are generated in which the following factors
were considered: (i) Percentage of missing values (PM); (ii) Vocabulary size (|�|);
(iii) Interval size (”); (iv) Number of variables (n); (v) Number of sequences (q); (vi)
Number of samples per sequence (nsid). With values for PM of 1%, 25%, 50%, 75%
and 99%; values for |�| of 3, 10 and 20 (i.e. � œ [A, C]; � œ [A, J]; and� œ [A, T]);
values for ” of 1%, 25% and 50% (this percentage is in respect to the total time);
values for n of 3, 167, 334 and 501; values for q of 3, 167, 334 and 501; and values
for nsid of 3, 167, 334 and 501 is experimented.

To analyse the complexity of the worst case, datasets with numeric variables are
generated.

5.3.2.2 Real datasets for the TA4L

The following public datasets were used to test the pre-processing algorithms for
TIRP mining presented in this dissertation:

• Childhood Blood Lead Surveillance (CBLS) [97] dataset, which contains data
on blood levels of lead in children from between 1995 and 2015, from several
U.S. states and local health departments.

• COVID-19 in Spain (COV IDesp) [102] dataset, which contains data on daily
increments split by age and gender of the COVID-19 pandemic in Spain.

• Suicides in India (SI) [96] dataset, which contains annual suicide records of all
states of India with various parameters from between 2001 and 2012.

• Mavlab (MAV) dataset [92], which contains activities related to daily living,
collected using the MavLab testbed during March and April of 2003. This
dataset captured an inhabitant’s interactions with an intelligent home through
sensors placed in different rooms.

• COVID-19 by country - Daily update (COV IDall) [103] dataset, which con-
tains data on daily increments of the COVID-19 pandemy at the country level.

• Human Activity Recognition (HAR) dataset [94] built from the recordings of
30 subjects performing activities of daily living while carrying a waist-mounted
smartphone with embedded inertial sensors. This dataset can be found in the
UCI Machine Learning Repository [95].

5.3. Experimental Evaluation methodology 97

dataset q n nsid |�| PM MTPS (s)
CBLS 44 2 18.136 - 2.82 540742254.545

COV IDesp 11 8 51.727 - 0.0 4697018.182
SI 38 3 134.526 4.0 0.0 347068800.0

MAV 11 2 116.818 30.5 0.0 4444193.636
COV IDall 188 14 332.761 188.0 0.918 25056000.0

HAR 30 562 343.3 6.0 0.0 876.288

Table 5.2: Dataset description. If a dataset does not have discrete variables, |�| is
marked with "-"; otherwise, |�| is the mean vocabulary size of the discrete variables.

The datasets mentioned above are characterised on Table 5.2 in terms of the
factors considered for the synthetic datasets, plus the mean total time per sequence
(MTPS, in seconds).

5.3.3 Experimental setup

Different implementations of the TA4L have been implemented to test the differ-
ent methods proposed in this thesis, as shown in Table 5.1. Moreover, the state-
of-the-art approach (Figure 2.1) has been implemented according to the following
configuration:

• Z-normalization

• Framing using a given amount of samples w

• Discretization using the SAX approach

• Sequence generation with concatenation, without any gap constraint (i.e. max

_gap = Œ)

The state of the art approach is labelled as the Baseline in the experiments.
Is it possible to observe that these configurations are close to the SAX approach;
however, in a sensitivity analysis, the discretization approaches of EWD and KBTA
are also tested, therefore covering a broad representation of the currently available
best approaches.

Three type of experimental configurations were defined:

1. Performance in the function of the algorithm parameters. This experimental
configuration is directed to test the performance of the algorithm based on its
parameters, such as |�|, ” and max_gap, and compare the results with the

98
Chapter 5. Data preparation as an external component of learning algorithms:

TA4L

state of the art approaches (i.e. Baseline). In so doing, the efficiency of the data
structures proposed in TA4L is tested under the different parallelism strategies.
This experiment has been applied to both synthetic and real datasets.

• To analyze the sensitivity to the size of ”, |�| was set to the maximum
value 20, and PM was set to 1. The hypothesis is: as the smaller is the
”, the larger the time and memory consumption.

• To analyse the sensitivity to the size of |�|, PM and ” was set to 1. The
hypothesis is: as larger is |�|, more time and memory consumption will
be required.

• To analyse the sensitivity to the length of max_gap, |�| was set to 3.
Since the effect of the max_gap depends on the number of nulls in the
database, PM has been tested with 1%, 25%, 50%, 75% and 99%. The
hypothesis is: as smaller is the max_gap, the larger the number of time
intervals found, and consequently larger the memory and time consump-
tion.

2. Performance-based on the discretization method. The symbol assignation from
SAX, EWD and KBTA methods was compared in the Baseline and in the
TA4L (TA4L_sl strategy) algorithms in the function of q, nsid and = |�|
parameters to analyze the sensitivity of the discretization method. Note that
when this thesis refers to applying SAX to TA4L, it refers only to the task of
assigning the symbol (as explained in Section 5.2.3). The hypothesis is: there
should not be a significant difference between the runtimes of the discretization
methods (since all methods assign the symbol based on the range where the
value falls), but regarding the memory consumption, SAX will be the method
that consumes more memory, due to the storage of statistical tables, and the
breakpoints determination.

3. Performance in the function of the dataset characteristics. This other config-
uration aims to test the algorithm’s performance based on the dataset char-
acteristics, such as PM, q, n and nsid. This experiment has been applied to
synthetic datasets. In particular, the PM analysis aims to validate the ap-
proach followed in TA4L in which time-intervals are fragmented according to
known data.

• To analyze the PM sensitivity, the nsid and n was set to 501; |�| to 20; q

to 10; and ” to 1. The discretization method was SAX. The hypothesis is:
since the algorithm constructs intervals of equal time size, while tackles
not missing values inside them, as smaller is the PM values, more time
and memory will need the algorithm because there will be more values

5.4. Results 99

to tackle inside each frame, showing an improvement over the Baseline,
state-of-the-art, configuration.

• To analyze the n sensitivity, |�| was set to 20; q, PM and ” to 1. The
discretization method was SAX. The hypothesis is that: as more n, more
time and memory will need the algorithm.

• To analyze the nsid sensitivity, |�| to 20; q, PM and ” to 1. The dis-
cretization method was SAX. The hypothesis is: as more nsid, more time
and memory will need the algorithm.

• To analyze the q sensitivity, |�| was set to 20, ” and PM to 1. The
discretization method was SAX. The hypothesis is: as larger is the q,
more time and memory will need the algorithm.

In order to be compared to the baseline approach, the epsilon parameter was set
to 0.

5.4 Results

In this section, the cost of the TA4L algorithm is estimated, both analytically and
experimentally.

The complexity of analysis has been carried out according to the different com-
ponent of the algorithm. Fist, Z normalization cost for one variable of a sequence is
nsid ≠ nsid ú PM , which when simplified upwards (when PM = 0) becomes O(nsid).

The cost of fragmentation and symbol assignation (which is only applicable to
numeric variables) is complex. Here although the algorithm loops through the values
only once O(nsid), every 100/” times it averages the accumulated values and assigns
the symbol value, where ” is represented as the percentage of time concerning 100
per cent of the total time. The symbol assignation cost is O(|�|). Therefore the cost
of fragmentation and symbol assignation is O(nsid + (100/”) ú |�|). If the symbol of
the previous I is the same as the symbol of the actual I, the end of the previous I

will be updated with the actual end. This assignation has constant time complexity
O(1).

Z normalization O(nsid), fragmentation with symbol assignation O(nsid+(100/”)ú
|�|), and symbol insertion into the LSTISs with its’ corresponding start and end
times are repeated for every variable n and sequence q. Therefore, the cost of the
algorithm for numeric variables is q ú (n ú (nsid + (100/”) ú |�| + insertionCost) +
sortingCostIfAny), and for discrete variables is qú(nú(insertionCost)+sortingCost

IfAny).
The final cost depends on the symbol insertion and sorting methods:

100
Chapter 5. Data preparation as an external component of learning algorithms:

TA4L

• Sorted insert. It was opted for an adapted version of binary search, that instead
of searching from the beginning, searches from the last inserted position to find
the position to insert the I. It is not a big complexity reduction since only
the value of n ú nsid is reduced, which is the total number of elements into a
sequence of the LSTISs to explore. Therefore let us consider the cost of an
adapted version of binary search to be O(log(n ú nsid)), such as in a typical
binary search. Here and throughout, log(n ú nsid) = log2(n ú nsid) denotes the
binary logarithm of (n ú nsid). Then, every time the algorithm inserts a value
into position x, all the r remaining elements from the position x to the end of
the list have to be moved 1 position. Therefore the cost of the sorted insert of
one element is O(r ú log(n ú nsid)). In the worst case, there will be (n ú nsid)
insertions (i.e. O((n ú nsid) ú (rlog(n ú nsid)))), and r will be (n ú nsid) (i.e.
O((n ú nsid) ú (n ú nsid)log(n ú nsid)) or simplified O((n ú nsid)2

log(n ú nsid))).
So the cost of the algorithm in the case where all the variables are discrete is
O(q únú ((núnsid)2 ú log(núnsid))). And the cost of the algorithm in the worst
case, when all the variables are numeric (which corresponds to the final cost
of the algorithm) is O(q ú (nú (nsid +(100/”)ú |�|+(núnsid)2 ú log(núnsid)))).

• Append elements normally and sort the list at the end. Append element at the
end of the list, has constant time complexity i.e., O(1). Since this operation
will be executed nsid times for each sequence and variable, the insertionCost

in this case is O(nsid). The complexity of sorting the list with mergesort at the
end is O((núnsid)log(núnsid)), where (núnsid) is the total number of elements
into a sequence of the LSTISs. So the cost of the algorithm in the case all the
variables are discrete is O(q ú ((n ú nsid) + (n ú nsid) ú log(n ú nsid))). And the
cost of the algorithm in the worst case, when all the variables are numeric is
O(q ú (n ú (nsid + (100/”) ú |�|) + ((n ú nsid)log(n ú nsid)))).

Regarding the algorithm behaviour, this thesis analysed experimentally the be-
haviour of algorithms based on input parameters, such as �, ” and max_gap.Figure
5.7 shows the results obtained with the synthetic datasets, and Figures 5.8 and 5.9
for the real ones.

It can be observed that in the case of both synthetic and real datasets, time
and memory increase with increasing vocabulary size and with decreasing interval
size. In real datasets (Figures 5.8 and 5.9) the increase in time and memory is most
noticeable with large datasets, such as HAR and COV ID_all datasets.

Multithread version by sequence (TA4L_sl_paral_seq and TA4L_se_paral_seq)
consumes less time for both parameters (” and |�|). For example in the case of syn-
thetic datasets for interval size 1 (Figure 5.7a) the runtime is around 1.56 seconds,
while for the rest of versions is from 12.74 up to 281.24 seconds. For |�| 20 (Figure
5.7c) the runtime is around 0.14 seconds, while for the rest of versions is from 0.66

5.4. Results 101

(a) Time vs ” (b) Memory vs ”

(c) Time vs |�| (d) Memory vs |�|

Figure 5.7: Synthetic datasets. How varying input parameters ” and |�| affects the
performance of the algorithms

up to 26.42 seconds. In the case of real datasets, it is worthy of analysing the largest
dataset, which is the HAR dataset. In the case of HAR dataset with interval size
one (Figure 5.8a) and for |�| 20 (Figure 5.9a) the runtime is around 5.54 seconds,
while for the rest of versions is from 38.69 up to 1175.67 seconds. For a single thread
version and ” one and |�| 20, the data structure that sorts at the end is slightly
faster rather than a sorted list version, which runtime is 1.22 vs 1.51 seconds in the
case of |�|, and 12.75 vs 15.37 seconds in the case of ” for synthetic datasets, and
38.69 vs 43.74 seconds for the HAR dataset.

The parallel version by variables is the structure that consumes slightly more
memory than the rest of the TA4L versions. For example, for |�| 20, in synthetic
datasets, the memory usage of TA4L_se_paral_var version is 181.14 MiB, while the
rest of the TA4L versions consumes from 162.076 to 170.23 MiB. In the HAR dataset
for ” one and |�| 20, TA4L_se_paral_var consumes more memory (550 MiB) than
the rest of the TA4L versions (that consume from 460MiB up to 527MiB). However,

102
Chapter 5. Data preparation as an external component of learning algorithms:

TA4L

(a) Time vs ”

(b) Memory vs ”

Figure 5.8: Real datasets. How varying the ” affects the performance of the algo-
rithms

the memory consumption of the Baseline algorithm shoots up to 2532MiB.
In general, in all real datasets, TA4L is significantly faster than Baseline for all

configurations, and in terms of memory consumption, TA4L is more efficient than

5.4. Results 103

(a) Time vs |�|

(b) Memory vs |�|

Figure 5.9: Real datasets. How varying the |�| affects the performance of the
algorithms.

Baseline for relatively large datasets, such as HAR, COV ID_all and IS datasets.
Regarding the max_gap constraint (see Figure 5.10), on the one hand, it can

be appreciated that time, and memory consumption is directly proportional to the

104
Chapter 5. Data preparation as an external component of learning algorithms:

TA4L

(a) Time vs max_gap (b) Memory vs max_gap (c) |I| vs max_gap

Figure 5.10: Synthetic datasets. How varying the PM and max_gap parameters
affects the performance of the algorithms, where |I| is the total number of time
intervals.

number of the constructed time intervals (|I|). The more |I|, the greater time and
memory consumption. For small values of max_gap, there are more |I| (1624261 |I|
for max_gap 1 and missing 25%), and for big values of max_gap there are less |I|
(1341094 |I| for max_gap 10 and missing 25%). For example, in the case of 25%
of missing values, for max_gap=1% the |I| is 1624261, the runtime is 61.7 seconds,
and the memory usage is 552.7 MiB, while from the max_gap=10% on the |I| is
1341094, the runtime is 58.5 seconds, and the memory usage is 510.3 MiB. On the
other hand, this effect is less pronounced in cases of extreme missing values, that is,
if the percentage of missing data is too small (1 %) or too large (99 %). For example,
in the case of 1% of missing values, for max_gap=1% the |I| is 1546397, the runtime
is 62.5 seconds, and the memory usage is 543.5 MiB, while for the max_gap=10%
the |I| is 1531279, the runtime is 62.2 seconds, and the memory usage is 541.42 MiB.

Regarding the performance according to the discretization method, this thesis
presents the results of applying EWD, KBTA and SAX discretization methods to
the TA4L and Baseline approaches, based on the dataset characteristics such as n,
q and nsid.

In the case of synthetic datasets, in general for small values of q, n, and nsid SAX
and KBTA consumes significantly less time and memory than the EWD approach,
while for large values of q, n, and nsid EWD consumes less memory and runtime
than SAX (see Figures 5.11, 5.12 and 5.13). The baseline is significantly slower than
TA4L (observe that time scales of plots in the figures are different in TA4L from
Baseline, due to the big difference in the results achieved), and it also consumes
more memory than the TA4L approach.

In the case of real datasets, TA4L generally consumes less time and memory
than Baseline (observe the differences on the time scales of plots in the figures as
happened with the synthetic datasets). Nevertheless, in TA4L implementations, the

5.4. Results 105

Figure 5.11: Synthetic datasets. Sensitivity to discretization methods while varying
n.

Figure 5.12: Synthetic datasets. Sensitivity to discretization methods while varying
q

Figure 5.13: Synthetic datasets. Sensitivity to discretization methods while varying
nsid

behaviour of the discretization approach requires a deepening analysis.
For example, with respect to memory consumption, in the case of the HAR

dataset, for large q, n, and nsid values (Figures 5.14, 5.15 and 5.16), Baseline_KBTA
is the one that consumes significantly more memory than Baseline_EWD. Whereas
in the case of the COVID_all dataset, for large values of q, n and nsid, Base-

106
Chapter 5. Data preparation as an external component of learning algorithms:

TA4L

line_SAX consumes significantly more memory than Baseline_EWD. In the case
of large datasets (such as HAR and COVID_all datasets), for small values of q,
n and nsid, TA4L_SAX is the least memory consuming than TA4L_EWD and
TA4L_KBTA methods.

Figure 5.14: Real datasets. Sensitivity to discretization methods in terms of memory
while varying q

Regarding the time consumption (Figures 5.17, 5.18 and 5.19), in the case of the
COVID_all dataset, Baseline_EWD is significantly slower than Baseline_KBTA
especially for nsid experiments. Regarding the sensitivity to discretization in TA4L,
in the case of the HAR dataset, in both n and nsid experiments, SAX is significantly
slower than the EWD and KBTA methods.

Finally, concerning the performance according to the dataset characteristics, this
thesis analysed experimentally the cost of algorithms based on dataset characteris-
tics, such as q, n, nsid and PM .

In the case of q (Figures 5.20d and 5.20c), multithread version by sequence
consumes less time for both data structures, which is around 3.8 seconds for q 501
(worst case). The state of the art approach is that consumes more time (732.19
seconds for q 501). However, the multithread version of TA4L by variables also
presents a great runtime concerning other versions of TA4L, which is 35.22 seconds
for q 500. Therefore, if there are many sequences and few variables, it is not useful
to parallelize by variables. In the case of n (Figures 5.20b and 5.20a), nsid (Figures
5.21b and 5.21a), and PM (Figure 5.22), the two multithread versions by sequence
also present the shortest runtime (0.134 seconds for n 501 and 1.39 seconds for PM

5.4. Results 107

Figure 5.15: Real datasets. Sensitivity to discretization methods in terms of memory
while varying n

Figure 5.16: Real datasets. Sensitivity to discretization methods in terms of memory
while varying nsid

1), while the state of the art is the longest one (23.75 seconds for n 501 and 321.33
for PM 1). In the case of PM values, on the one hand, it can be appreciated that

108
Chapter 5. Data preparation as an external component of learning algorithms:

TA4L

(a) Baseline: Time vs q

(b) TA4L: Time vs q

Figure 5.17: Real datasets. Sensitivity to discretization methods in terms of time
while varying q

Baseline discovers fewer time intervals than the TA4L approach (see Figure 5.22),
due to the effect of missing values. And on the other hand, there is a decrease in time,

5.4. Results 109

(a) Baseline: Time vs n

(b) TA4L: Time vs n

Figure 5.18: Real datasets. Sensitivity to discretization methods in terms of time
while varying n

memory and number of time intervals with an increase of PM values, confirming the
hypothesis. And as for the number of Time intervals, we can check that when there

110
Chapter 5. Data preparation as an external component of learning algorithms:

TA4L

(a) Baseline: Time vs nsid

(b) TA4L: Time vs nsid

Figure 5.19: Real datasets. Sensitivity to discretization methods in terms of time
while varying nsid

are no missing values, the number of time intervals is the same for all versions,
which indicates that the segmentation is done correctly. And regarding memory

5.4. Results 111

(a) Memory vs n (b) Time vs n

(c) Memory vs q (d) Time vs q

Figure 5.20: How varying n and q affects the performance of the algorithms.

(a) Memory vs nsid (b) Time vs nsid

Figure 5.21: How varying nsid affects the performance of the algorithms.

consumption, the state of the art approach is that consumes more memory. In
the TA4L versions, all algorithms consume approximately the same memory, except
the parallel versions that consume more, especially the parallel version of TA4L by
variables.

112
Chapter 5. Data preparation as an external component of learning algorithms:

TA4L

Figure 5.22: How varying PM affects the performance of the algorithms, where |I|
is the total number of time intervals.

5.5 Discussion

One of the first insights from the experimental analysis regarding the dataset char-
acteristics is that it is observed that there is a decrease in time, memory and number
of time intervals constructed with an increase in PM values, since as larger is PM
values, fewer data per interval, and therefore, fewer time intervals constructed, mem-
ory usage and runtime. This also applies to the state-of-the-art algorithm, in which,
first, each value is discretized and then concatenated. In addition, due to the fact
that the TA4L algorithm constructs intervals based on the frame duration (instead
of a fixed number of samples), the number of time intervals provided by the TA4L
versions is greater than the proposed by the state of the art approach.

Regarding the algorithm parameters, as smaller is the ”, more intervals are gener-
ated, and therefore the algorithm performs more mean computations, symbol assig-
nations and insertions, and therefore more time and memory consumption. And as
larger is the |�|, more iterations performs the algorithm in the symbol assignation
stage, and therefore more time and memory consumption. This behaviour is re-
flected in all versions of datasets and algorithms. Concerning max_gap, as smaller
is the max_gap parameter, the algorithm performs fewer concatenations between
the adjacent intervals, and therefore more intervals are generated, and consequently,
more time and memory consumption is required. As expected, this effect is less no-
ticeable if the dataset has a very small percentage of missing values (there are no
gaps) or a very large number of missing values (low number of time intervals).

In terms of discretization, in the case of synthetic datasets, for large q, n, and
nsid values EWD is the more memory efficient method, while for small values of q, n

and nsid, SAX is that consumes less time nor memory. In the case of real datasets,
it is possible to verify that, in general, there is no significant difference between the
methods in terms of time and memory consumption. However, concerning memory
consumption, in the case of large datasets (such as HAR or COVID_all datasets),
for large q, n, and nsid values, EWD is the more memory efficient method, while for
small values of q, n and nsid, SAX is the least memory consuming method.

5.6. Summary 113

The cost is greater for numeric variables and a sorted-list like structure. Sorting
all at once has a lot more design freedom than maintaining the ordering incremen-
tally since an incremental update has to maintain a complete order at all times,
which represents more time and memory consumption. And regarding the multi-
threading, if there are a sudden processor and RAM, the best option is to parallelize
the TA4L algorithm per sequence instead of per variables.

5.6 Summary

Finally, regarding the pre-processing for TIRPs mining algorithms, this thesis pre-
sented the TA4L algorithm that converts multivariate time series into sequences
known as LSTISs (symbolic time-intervals sorted by time and symbols). In the
literature, it is not easy to find a specific pre-processing algorithm. Usually, pre-
processing is explained in a subsection of a TIRPs mining algorithm description. On
the one hand, the TA4L algorithm aims to make the process explicitly and provide
a solution based on a temporal abstraction and a sequence generation method to ac-
celerate the pre-processing time, merging all the pre-processing tasks to be executed
together in a single algorithm. On the other hand, in TA4L, instead of reducing the
dimensionality (from time points to time-intervals) based on the number of samples
(as is done in the state-of-the-art algorithms), it is reduced based on the time dura-
tion adjusted to the real known values. This guarantees a reliable posterior TIRPs
mining application with the obtained LSTISs.

Moreover, the size of the time intervals is managed by a given max_gap con-
straint that enables controlling the maximum separation of two points to be con-
sidered part of the same event (i.e. symbol), a property of particular interest in
different application domains. Finally, TA4L considers a sorting list data structure
and several parallelism strategies (per variable and sequence multi-threads) that
make the whole pre-processing efficient. The experimentation carried out in dif-
ferent synthetic and real datasets show that the TA4L cost varies in function of
the data structure used and the type of the variables in the dataset (numeric or
discrete). In general, TA4L provides a noticeable reduction in time and memory
than the state of the art algorithm. Multithread version by variables is useless in
the case the dataset has few variables and many sequences. On the contrary, the
multi-thread version by sequence consumes less time for all the experiments.

Chapter 6

Conclusions

This final chapter draws some conclusions and provides possible future research di-
rections derived from this thesis. This thesis aimed to provide new efficient SPM and
TIRPs mining algorithms and an efficient pre-processing algorithm that transforms
multivariate time series (or time series) into sequences ready to feed TIRPs mining
algorithms.

6.1 Conclusions and summary of results

The methods presented in this thesis have been evaluated according to the method-
ology proposed in the "Experimental evaluation methodology" section of chapters
3, 4 and 5. With each proposed algorithm, different experiments have been carried
out. The first experiment was to compare the new algorithm with the best state-of-
the-art algorithm. All the algorithms developed in this thesis have passed the test,
proving to be better than the baseline approach.

This thesis focused the rest of the experiments on testing the efficiency of specific
parts of the algorithm or analysing the algorithm’s behaviour based on its param-
eters. These experiments allowed the study and understanding of the algorithms’
behaviour in various situations and also to know its strengths and weaknesses, which
are necessary when selecting an algorithm to solve some problem.

In the case of VEPRECO, the new vertical representation of patterns structure
and the corresponding changes in the extensions have significantly reduced both run-
time and memory usage in respect to the state-of-the-art approach (CM-SPAM).
VEPRECO’s pruning strategy and the common candidate selection policies are
handy for large NS and NI, with similar SL and TL.

In the case of vertTIRP, the use of a vertical representation of TIRPs with

116 Chapter 6. Conclusions

transitivity among temporal relations and pairing strategies played an important
role in improving the algorithm’s efficiency. The minimum gap and the minimum
duration user constraints are helpful when there is an interest in discarding events
that last less than X time units or in looking for patterns with a minimum interval
of Y time units. While the user constraints limit the search space, the epsilon value
is responsible for two events being paired via one temporal relation or another. The
value of epsilon allows for variability between events. Based on the results, it is
possible to observe that there is a value of epsilon that maximises or minimises the
number of the TIRPs discovered and hence the computation time and memory usage
for each dataset.

Finally, in the case of TA4L, there is a decrease in time, memory, and time
intervals constructed with an increase in the percentage of missing values. As more
minor is the interval’s size or as smaller is the maximum gap allowed between two
consecutive intervals, the algorithm generates more intervals and consumes more
time and memory. The more significant the vocabulary size, the more time and
memory consumption will be required. In terms of discretisation, for large datasets,
EWD is the more memory efficient method, while for small o medium datasets, SAX
consumes less time and memory. The cost is more significant for datasets with many
numeric variables and a sorted-list-like structure than the sort-in-the-end approach.
Finally, the best option is to parallelise the TA4L algorithm per sequence instead of
per variables.

6.2 Future work

An efficient algorithm is a good starting point regardless of the direction of future
work. The most direct way of future work of this thesis is in the field of application,
i.e. to test the algorithms developed in this thesis with data with which it had not yet
been tested before. For example, the vertTIRP algorithm has been already applied
to the A Dataset for Emotion Analysis using EEG, Physiological and Video Signals
(DEAP) dataset in [104], where a comparative analysis was performed regarding
the use of unsupervised techniques for mining patterns from physiological signals
against deep learning approaches for feature learning.

In the case of VEPRECO, there are a couple of clear options for future work. One
option would be to continue the line of efficiency research of the discovered patterns,
either by creating a version of VEPRECO that uses parallelism or by creating an
incremental version of VEPRECO that will process the patterns through windows,
opening the doors to big data analysis. The other option would be to create new SPM
subfields to improve the quality of the discovered patterns, either by researching
different new metrics to filter out redundant patterns or by defining a new type of

6.2. Future work 117

pattern to look for that might be useful.
In the case of TIRPs mining, being a more recent field, the ideas of future work

for TIRPs mining have more degree of freedom, as most can be taken directly from
the SPM field. For instance, to adapt vertTIRP to mine the Top-K high-utility,
closed or negative sequential patterns. Another inspiring idea, this time regarding
the application of the vertTIRP, would be to use it to predict the side effects of the
COVID-19 vaccines in a given patient. Concerning the efficiency of the algorithm,
there are a couple of exciting ideas for future work. One of them is to parallelize
or create an incremental version of the vertTIRP in a graphics processing unit
(GPU) by using the Nvidia Compute Unified Device Architecture (Nvidia) (CUDA)
platform. The other one is related to investigating ways to generate candidates with
machine learning models.

Finally, in the TA4L algorithm, an imminent future work would be to adapt
it to the data, which by the same variable and the same timestamp record many
different states. In addition, another imminent future work includes classifying the
TIRPs discovered from the intervals obtained with TA4L and those obtained from
the Baseline and comparing the results. This experiment would allow us to power the
results regarding the reliability of the intervals obtained from TA4L. Other future
work options for TA4L are in the direction of making an incremental version to be
able to process big data or improve the efficiency of concatenation and the quality
of adjacent intervals using clustering methods.

Bibliography

[1] Wei Shen, Jianyong Wang, and Jiawei Han. Sequential Pattern Mining, pages
261–282. Springer International Publishing, Cham, 2014.

[2] Dhaval Patel, Wynne Hsu, and Mong Li Lee. Mining Relationships among
Interval-Based Events for Classification. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data, SIGMOD 08,
pages 393–404, New York, NY, USA, 2008. Association for Computing Ma-
chinery.

[3] Iyad Batal, Hamed Valizadegan, Gregory F. Cooper, and Milos Hauskrecht. A
temporal pattern mining approach for classifying electronic health record data.
ACM Transactions on Intelligent Systems and Technology (TIST), 4(4):1–22,
2013.

[4] Robert Moskovitch and Yuval Shahar. Classification of multivariate time
series via temporal abstraction and time intervals mining. Knowledge and
Information Systems, 45(1):35–74, 2015.

[5] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining Association
Rules between Sets of Items in Large Databases. In Proceedings of the 1993
ACM SIGMOD International Conference on Management of Data, SIGMOD
’93, pages 207–216, New York, NY, USA, 1993. Association for Computing
Machinery.

[6] Unil Yun, Heungmo Ryang, and Keun Ho Ryu. High utility itemset mining
with techniques for reducing overestimated utilities and pruning candidates.
Expert Systems with Applications, 41(8):3861–3878, 2014.

[7] Bac Le, Ut Huynh, and Duy-Tai Dinh. A pure array structure and paral-
lel strategy for high-utility sequential pattern mining. Expert Systems with
Applications, 104:107–120, 2018.

[8] Yoonji Baek, Unil Yun, Heonho Kim, Hyoju Nam, Gangin Lee, Eunchul Yoon,
Bay Vo, and Jerry Chun-Wei Lin. Erasable pattern mining based on tree

120 Bibliography

structures with damped window over data streams. Engineering Applications
of Artificial Intelligence, 94:103735, 2020.

[9] Jian Pei, Jiawei Han, B. Mortazavi-Asl, Jianyong Wang, H. Pinto, Qiming
Chen, U. Dayal, and Mei-Chun Hsu. Mining sequential patterns by pattern-
growth: the PrefixSpan approach. IEEE Transactions on Knowledge and Data
Engineering, 16(11):1424–1440, 2004.

[10] Amina Kemmar, Yahia Lebbah, Samir Loudni, Patrice Boizumault, and
Thierry Charnois. Prefix-projection global constraint and top-k approach for
sequential pattern mining. Constraints, 22(2):265–306, 2017.

[11] Zhenglu Yang and Masaru Kitsuregawa. LAPIN-SPAM: An Improved Algo-
rithm for Mining Sequential Pattern. In Proceedings of the 21st International
Conference on Data Engineering Workshops, ICDEW ’05, page 1222, USA,
2005. IEEE Computer Society.

[12] M. K. Sohrabi and V. Ghods. CUSE: A novel cube-based approach for sequen-
tial pattern mining. In 2016 4th International Symposium on Computational
and Business Intelligence (ISCBI), pages 186–190, 2016.

[13] Morteza Zihayat, Yan Chen, and Aijun An. Memory-adaptive high utility
sequential pattern mining over data streams. Machine Learning, 106(6):799–
836, 2017.

[14] W. Gan, J. C. Lin, J. Zhang, H. Chao, H. Fujita, and P. S. Yu. ProUM: High
Utility Sequential Pattern Mining. In 2019 IEEE International Conference on
Systems, Man and Cybernetics (SMC), pages 767–773, 2019.

[15] Philippe Fournier Viger, Antonio Gomariz, Manuel Cam-
pos, and Rincy Thomas. Fast Vertical Mining of Se-
quential Patterns Using Co-occurrence Information. In
Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages
40–52, May 2014.

[16] Jay Ayres, Jason Flannick, Johannes Gehrke, and Tomi Yiu. Sequential pat-
tern mining using A bitmap representation. In Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 429–435, 2002.

[17] Ramakrishnan Srikant and Rakesh Agrawal. Mining sequential patterns: Gen-
eralizations and performance improvements. In International conference on
extending database technology, pages 1–17. Springer, 1996.

Bibliography 121

[18] Mohammed J. Zaki. SPADE: An Efficient Algorithm for Mining Frequent
Sequences. Machine Learning, 42:31–60, 2001.

[19] Jiawei Han, Jian Pei, Behzad Mortazavi-Asl, Qiming Chen, Umeshwar Dayal,
and Mei-Chun Hsu. FreeSpan: Frequent Pattern-Projected Sequential Pattern
Mining. In Proceedings of the Sixth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’00, pages 355–359, New
York, NY, USA, 2000. Association for Computing Machinery.

[20] Philippe Fournier-Viger, Jerry Chun-Wei Lin School, Rage Uday Kiran Uni-
versity, Yun Sing Koh, and Rincy Thomas. A Survey of Sequential Pattern
Mining. In Data Science and Pattern Recognition, volume 1, pages 54–77,
2017.

[21] Shin Yi Wu and Yen Liang Chen. Mining nonambiguous temporal pat-
terns for interval-based events. IEEE Transactions on Knowledge and Data
Engineering, 19(6):742–758, 2007.

[22] Jen-Wei Huang, Bijay Prasad Jaysawal, Kuan-Ying Chen, and Yong-Bin Wu.
Mining frequent and top-k high utility time interval-based events with duration
patterns. Knowledge and Information Systems, 61(3):1331–1359, 2019.

[23] Hieu Hanh Le, Muneo Kushima, Kenji Araki, and Haruo Yokota. Differen-
tially private sequential pattern mining considering time interval for electronic
medical record systems. In Proceedings of the 23rd International Database
Applications & Engineering Symposium, pages 1–9, 2019.

[24] Lin Hui, Yi Cheng Chen, Julia Tzu Ya Weng, and Suh Yin Lee. Incremen-
tal mining of temporal patterns in interval-based database. Knowl Inf Syst,
46(2):423–448, 2016.

[25] Robert Moskovitch and Yuval Shahar. Fast time intervals mining using
the transitivity of temporal relations. Knowledge and Information Systems,
42(1):21–48, 2013.

[26] Po-shan Kam and Ada Wai-chee Fu. Discovering Temporal Patterns for
Interval-based Events. In Yahiko Kambayashi, Mukesh Mohania, and A. Min
Tjoa, editors, Data Warehousing and Knowledge Discovery, pages 317–326,
Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

[27] James F. Allen. Maintaining Knowledge about Temporal Intervals. Artificial
Intelligence and Language Processing, 26(11):832–843, 1983.

[28] Panagiotis Papapetrou, George Kollios, Stan Sclaroff, and Dimitrios Gunop-
ulos. Mining frequent arrangements of temporal intervals. Knowledge and
Information Systems, 21(2):133–171, 2009.

122 Bibliography

[29] Edi Winarko and John F. Roddick. ARMADA - An algorithm for discovering
richer relative temporal association rules from interval-based data. Data and
Knowledge Engineering, 63(1):76–90, 2007.

[30] Nizar R. Mabroukeh and C. I. Ezeife. A taxonomy of sequential pattern mining
algorithms. ACM Computing Surveys, 43(1), 2010.

[31] Rakesh Agrawal, Ramakrishnan Srikant, and Others. Fast algorithms for min-
ing association rules. In Proc. 20th int. conf. very large data bases, VLDB,
volume 1215, pages 487–499, 1994.

[32] R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedings of the
Eleventh International Conference on Data Engineering, pages 3–14, 1995.

[33] Mohammed J. Zaki. Scalable algorithms for association mining. Knowledge
and Data Engineering, IEEE Transactions on, 12:372–390, 2000.

[34] Wensheng Gan, Jerry Chun-Wei Lin, Philippe Fournier-Viger, Han-Chieh
Chao, and Philip S. Yu. A Survey of Parallel Sequential Pattern Mining.
ACM Trans. Knowl. Discov. Data, 13(3), 2019.

[35] Jian Pei, Jiawei Han, Behzad Mortazavi-asl, and Hua Zhu. Mining Access
Patterns Efficiently from Web Logs. In Takao Terano, Huan Liu, and Arbee
L. P. Chen, editors, Knowledge Discovery and Data Mining. Current Issues and
New Applications, pages 396–407, Berlin, Heidelberg, 2000. Springer Berlin
Heidelberg.

[36] Maged El-Sayed, Carolina Ruiz, and Elke A. Rundensteiner. FS-Miner: Ef-
ficient and incremental mining of frequent sequence patterns in Web logs.
Proceedings of the Interntational Workshop on Web Information and Data
Management, pages 128–135, 2004.

[37] Jen-Wei Huang, Chi-Yao Tseng, Jian-Chih Ou, and Ming-Syan Chen. On
progressive sequential pattern mining. In Proceedings of the 15th ACM
international conference on Information and knowledge management, pages
850–851, 2006.

[38] Jian Pei, Jiawei Han, B. Mortazavi-Asl, H. Pinto, Qiming Chen, U. Dayal, and
Mei-Chun Hsu. PrefixSpan: mining sequential patterns efficiently by prefix-
projected pattern growth. In Proceedings 17th International Conference on
Data Engineering, pages 215–224, 2001.

[39] Christie I. Ezeife and Yi Lu. Mining web log sequential patterns with posi-
tion coded pre-order linked wap-tree. Data Mining and Knowledge Discovery,
10(1):5–38, 2005.

Bibliography 123

[40] Huy M. Huynh, Loan T. Nguyen, Bay Vo, Anh Nguyen, and Vincent S. Tseng.
Efficient methods for mining weighted clickstream patterns. Expert Systems
with Applications, 142:112993, 2020.

[41] Xin Lyu and Hongxu Ma. An Efficient Incremental Mining Algorithm for
Discovering Sequential Pattern in Wireless Sensor Network Environments.
Sensors, 19:29, 2018.

[42] Wensheng Gan, Jerry Chun-wei Lin, Jiexiong Zhang, Han-chieh Chao, Hamido
Fujita, and Philip S. Yu. ProUM : Projection-based utility mining on sequence
data. Information Sciences, 513:222–240, 2020.

[43] Rina Singh, Jeffrey A. Graves, Douglas A. Talbert, and William Eberle. Prefix
and Suffix Sequential Pattern Mining. In Petra Perner, editor, Advances in
Data Mining. Applications and Theoretical Aspects, pages 309–324, Cham,
2018. Springer International Publishing.

[44] Sujeevan Aseervatham, Aomar Osmani, and Emmanuel Viennet. bitSPADE: A
lattice-based sequential pattern mining algorithm using bitmap representation.
In Sixth International Conference on Data Mining (ICDM’06), pages 792–797.
IEEE, 2006.

[45] Xiangjun Dong, Ping Qiu, Jinhu Lu, Longbing Cao, and Tiantian Xu. Mining
Top- k Useful Negative Sequential Patterns via Learning. IEEE transactions
on neural networks and learning systems, 30(9):2764–2778, 2019.

[46] Fan Min, Zhi Heng Zhang, Wen Jie Zhai, and Rong Ping Shen. Frequent
pattern discovery with tri-partition alphabets. Information Sciences, 507:715–
732, 2020.

[47] Xiangjun Dong, Yongshun Gong, and Longbing Cao. E-RNSP: An Effi-
cient Method for Mining Repetition Negative Sequential Patterns. IEEE
Transactions on Cybernetics, 50(5):2084–2096, 2020.

[48] Wei Song, Beisi Jiang, and Yangyang Qiao. Mining multi-relational high utility
itemsets from star schemas. Intelligent Data Analysis, 22(1):143–165, 2018.

[49] Omer Adam, Zailani Abdullah, Amir Ngah, Kasypi Mokhtar, Wan Muhamad
Amir Wan Ahmad, Tutut Herawan, Noraziah Ahmad, Mustafa Mat Deris,
Abdul Razak Hamdan, and Jemal H. Abawajy. IncSPADE: An Incremental
Sequential Pattern Mining Algorithm Based on SPADE Property, chapter 8,
pages 81–92. Springer International Publishing, Cham, 2016.

[50] Sumalatha Saleti and R. B. V. Subramanyam. A novel mapreduce algorithm
for distributed mining of sequential patterns using co-occurrence information.
Applied Intelligence, 49(1):150–171, 2019.

124 Bibliography

[51] Saleti Sumalatha and R. B. V. Subramanyam. Distributed mining of high
utility time interval sequential patterns using mapreduce approach. Expert
Systems With Applications, 141:112967, 2020.

[52] Haoxing Wen, Mingdong Kou, Hengyi He, Xiaoguang Li, Huaixiao Tou, and
Yulu Yang. A Spark-Based Incremental Algorithm for Frequent Itemset Min-
ing. In Proceedings of the 2018 2nd International Conference on Big Data and
Internet of Things, BDIOT 2018, pages 53–58, New York, NY, USA, 2018.
Association for Computing Machinery.

[53] S. AlZu’bi, B. Hawashin, M. EIBes, and M. Al-Ayyoub. A Novel Recommender
System Based on Apriori Algorithm for Requirements Engineering. In 2018
Fifth International Conference on Social Networks Analysis, Management and
Security (SNAMS), pages 323–327, 2018.

[54] Sudhakar Singh, Rakhi Garg, and P. K. Mishra. Performance optimization
of MapReduce-based Apriori algorithm on Hadoop cluster. Computers &
Electrical Engineering, 67:348–364, 2018.

[55] Xu Yusheng, Ma Zhixin, Li Lian, and Tharam S. Dillon. Effective pruning
strategies for sequential pattern mining. In First International Workshop on
Knowledge Discovery and Data Mining (WKDD 2008), pages 21–24. IEEE,
2008.

[56] Huy Minh Huynh, Nam Ngoc Pham, Zuzana Komínková Oplatková, Loan
Thi Thuy Nguyen, and Bay Vo. Sequential Pattern Mining Using IDLists. In
Ngoc Thanh Nguyen, Bao Hung Hoang, Cong Phap Huynh, Dosam Hwang,
Bogdan Trawiński, and Gottfried Vossen, editors, Computational Collective
Intelligence, pages 341–353, Cham, 2020. Springer International Publishing.

[57] M. Garofalakis, R. Rastogi, and K. Shim. Mining sequential patterns with
regular expression constraints. IEEE Transactions on Knowledge and Data
Engineering, 14(3):530–552, 2002.

[58] R. Trasarti, F. Bonchi, and B. Goethals. Sequence Mining Automata: A
New Technique for Mining Frequent Sequences under Regular Expressions. In
2008 Eighth IEEE International Conference on Data Mining, pages 1061–1066,
2008.

[59] Siegfried Nijssen, Tias Guns, and Luc De Raedt. Correlated itemset mining in
ROC space: a constraint programming approach. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 647–656, 2009.

Bibliography 125

[60] Q. Wang, V. S. Sheng, and C. Hu. Keyphrase Extraction Using Sequential
Pattern Mining and Entropy. In 2017 IEEE International Conference on Big
Knowledge (ICBK), pages 88–95, 2017.

[61] Mohammed J. Zaki. Sequence mining in categorical domains: incorporat-
ing constraints. In Proceedings of the ninth international conference on
Information and knowledge management, pages 422–429, 2000.

[62] "P. Gay, B. López, and J. Meléndez". Learning Complex Events from Se-
quences with Informed Gaps. In 2015 IEEE 14th International Conference on
Machine Learning and Applications (ICMLA), pages 1089–1094, 2015.

[63] Benjamin Negrevergne and Tias Guns. Constraint-based sequence min-
ing using constraint programming. In International Conference on AI and
OR Techniques in Constriant Programming for Combinatorial Optimization
Problems, pages 288–305. Springer, 2015.

[64] René Arnulfo Garćıa-Hernández, José Francisco Mart́ınez-Trinidad, and
Jesús Ariel Carrasco-Ochoa. A new algorithm for fast discovery of maxi-
mal sequential patterns in a document collection. In International Conference
on Intelligent Text Processing and Computational Linguistics, pages 514–523.
Springer, 2006.

[65] Philippe Fournier-Viger, Cheng-Wei Wu, Antonio Gomariz, and Vincent S.
Tseng. VMSP: Efficient vertical mining of maximal sequential patterns. In
Canadian conference on artificial intelligence, pages 83–94. Springer, 2014.

[66] Fabio Fumarola, Pasqua Fabiana Lanotte, Michelangelo Ceci, and Donato
Malerba. CloFAST: closed sequential pattern mining using sparse and vertical
id-lists. Knowledge and Information Systems, 48(2):429–463, 2016.

[67] Thi-Thiet Pham, Tung Do, Anh Nguyen, Bay Vo, and Tzung-Pei Hong. An
efficient method for mining top-K closed sequential patterns. IEEE Access,
8:118156–118163, 2020.

[68] Robert Moskovitch and Yuval Shahar. Medical temporal-knowledge discovery
via temporal abstraction. In AMIA 2009 Symposium Proceedings, pages 452–
456, 2009.

[69] Robert Moskovitch, Colin Walsh, Fei Wang, George Hripcsak, and Nicholas
Tatonetti. Outcomes Prediction via Time Intervals Related Patterns. In 2015
IEEE International Conference on Data Mining, pages 919–924, November
2015.

126 Bibliography

[70] Ming-Yen Lin and Suh-Yin Lee. Fast Discovery of Sequential Patterns
by Memory Indexing. In Yahiko Kambayashi, Werner Winiwarter, and
Masatoshi Arikawa, editors, International Conference on Data Warehousing
and Knowledge Discovery, pages 150–160, Berlin, Heidelberg, 2002. Springer
Berlin Heidelberg.

[71] Omer David Harel and Robert Moskovitch. Complete closed time intervals-
related patterns mining. Proceedings of the AAAI Conference on Artificial
Intelligence, 35(5):4098–4105, May 2021.

[72] Yi Cheng Chen, Wen Chih Peng, and Suh Yin Lee. Mining temporal patterns
in interval-based data. In 2016 IEEE 32nd International Conference on Data
Engineering, ICDE 2016, volume 27, pages 1506–1507. IEEE, 2016.

[73] Robert Moskovitch and Yuval Shahar. Classification-driven temporal dis-
cretization of multivariate time series. Data Mining and Knowledge Discovery,
29:871–913, 2015.

[74] Cheng Wei Yang, Bijay Prasad Jaysawal, and Jen Wei Huang. Subsequence
search considering duration and relations of events in time interval-based
events sequences. In Proceedings - 2017 International Conference on Data
Science and Advanced Analytics, DSAA 2017, volume 2018-Janua, pages 293–
302, 2018.

[75] Yuval Shahar. A framework for knowledge-based temporal abstraction.
Artificial Intelligence, 90(1):79–133, 1997.

[76] Revital Azulay, Robert Moskovitch, Dima Stopel, Marion Verduijn, Evert
de Jonge, and Yuval Shahar. Temporal discretization of medical time series-a
comparative study. In Proceedings of IDAMAP2007: Intelligent Data Analysis
in Biomedicine and Pharmacology, volume 43, pages 48–58, 2007.

[77] Eamonn Keogh, Selina Chu, David Hart, and Michael Pazzani. Segmenting
time series: A survey and novel approach. In Data mining in time series
databases, pages 1–21. World Scientific, 2004.

[78] Fabian Mörchen and Alfred Ultsch. Optimizing time series discretization
for knowledge discovery. In Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 660–665, 2005.

[79] Sofya S. Titarenko, Valeriy N. Titarenko, Georgios Aivaliotis, and Jan Pal-
czewski. Fast implementation of pattern mining algorithms with timestamp
uncertainties and temporal constraints. Journal of Big Data, 6(1):37, 2019.

Bibliography 127

[80] James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and Unsuper-
vised Discretization of Continuous Features. In Armand Prieditis and Stuart
Russell, editors, Machine Learning Proceedings 1995, pages 194–202. Morgan
Kaufmann, San Francisco (CA), 1995.

[81] Cláudia Antunes and Arlindo L. Oliveira. Generalization of pattern-growth
methods for sequential pattern mining with gap constraints. In International
Workshop on Machine Learning and Data Mining in Pattern Recognition,
pages 239–251. Springer, 2003.

[82] Chun Li and Jianyong Wang. Efficiently mining closed subsequences with gap
constraints. In proceedings of the 2008 SIAM International Conference on
Data Mining, pages 313–322. SIAM, 2008.

[83] Natalia Mordvanyuk, Beatriz López, and Albert Bifet. vertTIRP: Robust and
efficient vertical frequent time interval-related pattern mining. Expert Systems
with Applications, page 114276, 2020.

[84] Mohammed J. Zaki. IBMGenerator. https://github.com/zakimjz/
IBMGenerator, 2016. Accessed: 10-04-2021.

[85] P. Fournier-Viger, C. W. Lin, A. Gomariz, T. Gueniche, A. Soltani, Z. Deng,
and H. T. Lam. The SPMF Open-Source Data Mining Library Version 2. In
Proc. 19th European Conference on Principles of Data Mining and Knowledge
Discovery (PKDD 2016) Part III, pages 36–40. Springer LNCS 9853, 2016.

[86] Siegfried Nijssen and Albrecht Zimmermann. Constraint-based pattern min-
ing. In Frequent pattern mining, pages 147–163. Springer, 2014.

[87] Natalia Mordvanyuk, Ferran Torrent-Fontbona, and Beatriz López. Predic-
tion of Glucose Level Conditions from Sequential Data. In I. O. S. Press,
editor, Volume 300: Recent Advances in Artificial Intelligence Research and
Development, pages 227–232, 2017.

[88] Chiara Zecchin. Online Glucose Prediction in Type 1 Diabetes by Neural
Network Models. PhD dissertation, Università degli Studi di Padova, 2014.

[89] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without can-
didate generation. ACM sigmod record, 29(2):1–12, 2000.

[90] Vincent S. Tseng, Cheng-Wei Wu, Bai-En Shie, and Philip S. Yu. UP-Growth:
An Efficient Algorithm for High Utility Itemset Mining. In Proceedings of the
16th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’10, pages 253–262, New York, NY, USA, 2010. Association
for Computing Machinery.

https://github.com/zakimjz/IBMGenerator
https://github.com/zakimjz/IBMGenerator

128 Bibliography

[91] V. S. Tseng, B. Shie, C. Wu, and P. S. Yu. Efficient Algorithms for Mining
High Utility Itemsets from Transactional Databases. IEEE Transactions on
Knowledge and Data Engineering, 25(8):1772–1786, 2013.

[92] Joseph Bugeja. Smart home datasets and a realtime Internet-connected home,
2019. Accessed: 10-10-2020.

[93] Carol Neidle. American Sign Language Linguistic Research Project, 2017.

[94] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge Luis
Reyes-Ortiz. A public domain dataset for human activity recognition using
smartphones. In Esann, pages 437–442, 2013.

[95] Dheeru Dua and Casey Graff. UCI Machine Learning Repository, 2017. Ac-
cessed: 10-10-2020.

[96] Rajanand Ilangovan. Suicides in India, 2012. Accessed: 10-10-2020.

[97] Centers for Disease Control and Prevention. Childhood Blood Lead Surveil-
lance, 2017. Accessed: 10-10-2020.

[98] Flaredown. Chronic illness: symptoms, treatments and triggers, 2018.

[99] Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu. A symbolic
representation of time series, with implications for streaming algorithms. In
Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery, DMKD ’03, pages 2–11, 2003.

[100] Mathieu Fourment and Michael R. Gillings. A comparison of common pro-
gramming languages used in bioinformatics. BMC Bioinformatics, 9:1–9, 2008.

[101] Paul-Virak Khuong and Pat Morin. Array layouts for comparison-based
searching. Journal of Experimental Algorithmics, 22:1–39, 2017.

[102] Daniel Garćia. Kaggle, 2020. Accessed: 10-10-2020.

[103] Juan Carlos Santiago Culebras. Kaggle, 2020. Accessed: 10-10-2020.

[104] N. Mordvanyuk, J. Gauchola, and B. López. Understanding affective be-
haviour from physiological signals: Feature learning versus pattern mining.
In 34th IEEE CBMS International Symposium on Computer-Based Medical
Systems, pages 438–443, jun 2021.

Appendix A

Implementation of VEPRECO

The implementation of VEPRECO is available from the Bitbucket repository at "git
clone https://InvitedToVEPRECO@bitbucket.org/natalia_mordvanyuk/vepreco.git".

The following username and password can be used to log in:
username: invited3bynatalia
email: invited3bynatalia@gmail.com
password: 2wGW4hxgMVUtGkF..,

Appendix B

vertTIRP’s appendix

B.1 Implementation of vertTIRP

The implementation of vertTIRP is available from the Bitbucket repository at
"https://bitbucket.org/natalia_mordvanyuk/verttirp/src/master/". The following
username and password can be used to log in:

username: invitedbymordvanyuk@gmail.com
password: YgGhjhGllgFFdlkbvFM..,

B.2 Table of pairing strategies for epsilon=0

Table B.1 shows the relations after sorting and grouping based on the pairing strate-
gies proposed in this thesis for epsilon=0.

dataset sorted relations common conditions
MAV bcmsfoe b cmof se
ASL bemcfos b es mocf
HAR bmcfsoe b mocf se
CBLS besfcom b es fcom
SI fsbecmo fcmo se b
CI csfebmo cfmo se b

Table B.1: Results of pairing strategies for each dataset for epsilon=0. Note that
for epsilon=0, the left contain relation l does not exist.

132 Chapter B. vertTIRP’s appendix

B.3 Intersection of temporal relations

See Table B.2 for details on intersections between temporal relations.

R b m o l c f e s

b

m -

o - B.s ≠
A.s > ‘ ·

B.e ≠
A.e > ‘

l - - -

c - B.s ≠
A.s > ‘

B.s ≠
A.s > ‘

A.e ≠
B.e > ‘

f - B.s ≠
A.s > ‘

B.s ≠
A.s > ‘

- B.s ≠
A.s > ‘

e - - - |B.s ≠
A.s| Æ ‘

- |B.e ≠
A.e| Æ ‘

s - B.e ≠
A.e > ‘

B.e ≠
A.e > ‘

|B.s ≠
A.s| Æ ‘

- - |B.s≠
A.s| Æ

‘

Table B.2: Intersections between temporal relations

B.4 Allen’s transitivity table

See Table B.3 for details on temporal relations from Allen’s transitivity property.

B.5 Complete mining example

This section illustrates the operation of vertTIRP using the example given in Table
4.1. First, vertTIRP builds length-one patterns, as shown in Figure B.1.

Then, the first extension to be considered is the A ≠ A extension. The extension
A ≠ A has zero supporting time interval sequences.

B.5. Complete mining example 133

r1(IA
, I

B)
r2(IB

, I
C)

b c o m s f e

b "before" b b b b b b b

c "contains" b c f
m o

c c f o c f o c f o c c

o "overlaps" b b c f
m o

b m
o

b o b m
o

o

m "meets" b b b b m b m

s "starts" b b c f
m o

b m
o

b s b m
o

s

f "finished-
by"

b c o m o f f

e "equal" b c o m s f e

Table B.3: Temporal relations from Allen’s transitivity property

The next extension to be considered is A≠B (see Figure B.2). In this case, there
are several time interval sequences supporting it. The algorithm’s starting point is
the eid 1 of sequence 1 of A, and it extends it with eid 2 of sequence 1 of B. To find
the temporal relation between A and B, several relations can be tested using pairing
strategies (in this example, b ofmc se). The current data match the definition of
starts, where (B.s ≠ A.s) Ø ‘ and (B.e ≠ A.e) > ‘: (8 - 8) >= 0 and (12 - 10) > 0.
Hence, the pattern < AB, s > is created: the start time of the pattern is the start
time of A (shown in red in Figure B.2), since this is the first time interval, while the
end time of < AB, s > is the end time of B (shown in black), since this is the latest
time of all the time intervals. The eid of the new TIRP < AB, s > is the eid that
appears in B (shown in purple), since the algorithm copies the eid of the pattern
that is used to extend the sequence (i.e. the last event that happens), and in this
case, it extends A with B. Finally, the vertical and the horizontal supports are set
to 0.33 (1/3) and the mean duration to four. Since the support is greater than or
equal to the minimum support (min_sup = 0.33), <AB, s> is frequent.

As there are no more eids in time interval sequence 1 of B, it continues with the

134 Chapter B. vertTIRP’s appendix

Figure B.1: Length-one S-TIRPs for the example in Table 4.1

first eid of the next sequence of A, with id 2. The first eid in sequence 2 of B has a
value of three, i.e. greater than two. Moreover, the start relation is met between eid
2 and eid 3. Since <AB,s> already exists, it updates the information related to the
pattern by increasing the vertical support to 0.66 (2/3=0.66), the mean horizontal
to 0.33 ((1/3+1/3)/2=0.33) and the duration to 3 ((4+2)/2=3).

It continues with the next sequence, i.e. sequence 3 of A. The first eid is eid 3,
so it searchs in B’s eids for an id value greater than or equal to 3; however, such an
eid does not exist, so it breaks and continues with the next sequence. As there are
no more sequences, the process stops.

Let us now consider the extension AB ≠ C (represented in Figure B.3). The
algorithm starts with eid 2 of sequence 1 of AB, and finds eid 3 of sequence 1 of C

as a possible candidate. The algorithm now has to find the temporal relations for
BC and AC. First, between B and C, the pairing strategy gives the overlaps relation.
Then, the relation between A and C is computed by means of the transitivity table
(see Table 4.7). From the relations r1(A,B)=s and r2(B,C)=o, it finds that the

B.5. Complete mining example 135

Figure B.2: Illustration of the extension A ≠ B.

possibilities for the relation r3(A,C) are the b,o,m relations. First, it tests the most
frequent temporal relation according to the pairing strategy, i.e. the before relation
b, which turns out to be the correct one. Thus it creates the pattern <ABC, sbo>,
and sets the vertical and the horizontal supports to 0.33 and the mean duration to
five. Since the support is greater than the minimum support (0.33), ABC is found
to be frequent.

As there are no more eids in sequence 1 in C, and there are no more eids in
sequence 1 in AB, it continues with the first eid 3 of AB of the next sequence,
i.e. sequence 2. As there are no eids in sequence 2 in C greater than 3, and since
sequence 2 is the last sequence in AB, no more support is found for ABC.

All of the patterns found by vertTIRP for the simple example given above are
shown in Figure 4.5.

136 Chapter B. vertTIRP’s appendix

Figure B.3: Illustration of the extension AB ≠ C.

Appendix C

TA4L’s appendix

C.1 Implementation of TA4L

The implementation of TA4L is available from the Bitbucket repository at "git
clone https://invited2bynatalia@bitbucket.org/natalia_mordvanyuk/td4l.git". The
following username and password can be used to log in:

username: invited2bynatalia
email: invited2bynatalia@gmail.com
password: 2wGW4hxgMVUtGkF..,

C.2 Auxiliar functions of TA4L

This section provides auxiliary functions used in the main TA4L algorithm. The
first one is the FDC function.

The inputs of the FDC algorithm include time-series TS, the maximum gap
max_gap allowed between two consecutive time intervals, the minimum duration
of time intervals duration, and LSTISseq, that is the LSTIS for the sequence seq.
The algorithm returns LSTISseq updated with all new time intervals.

The first step of the algorithm consists of obtaining the first two TIs (the previous
TI and the actual TI). If the previous and the actual TI have the same symbol, the
end of the previous TI will be updated with the end of the actual TI unless the gap
between them is greater than max_gap. The algorithm introduces the previous TI
to the LSTIS in each iteration. The current TI is inserted when there are no more
elements in the series.

138 Chapter C. TA4L’s appendix

Algorithm 9: FDC
input: TS: multivariate time series

max_gap: the maximum gap constraint
duration: duration of the interval
LSTISseq: list of LSTIs

1 output: LSTISseq: list of LSTIs for sequence ’seq’
2 i = 1
3 <TIprev, i> = updateTI(TS, i, duration, NULL, max_gap)
4 <TIcurr, i> = updateTI(TS, i, duration, TIprev,max_gap)
5 while i < len(TS) do
6 while (TIcurr != NULL) and (TIprev.sym == TIcurr.sym) do
7 <TIcurr, i> = updateTI(TS, i, duration, TIprev,max_gap)
8 LSTISseq = insert(TIprev, LSTISseq)
9 if (i >= len(TS)) and TIcurr != NULL then

/* last element */
10 if (TIprev != TIcurr) then
11 LSTISseq = insert(TIcurr,LSTISseq)

12 TIprev = TIcurr

13 return LSTISseq

The inputs of the SCS algorithm include time-series TS, the maximum gap
max_gap allowed between two consecutive time intervals and the LSTISseq, that
is the LSTIS for the sequence seq. The algorithm returns LSTISseq updated with
all new time intervals.

We can see that in the loop, in each iteration, a new TI is being added within
LSTISs. To create the TI, you need the symbol, the start time, and the end time
of the TI. The symbol and the initial time are set at the beginning of the loop. If
the current symbol is equal to the previous symbol and the maximum gap is not
exceeded, the counter is incremented to determine the final time. If any of these
conditions are not met, the final time is set.

When we reach the end of the time series, it must be decided whether to change
the final time of the last TI or whether to create a new TI and insert it into LSTISs.
This decision is made in the lines 17 - 23.

C.2. Auxiliar functions of TA4L 139

Algorithm 10: SCS
input: TS: multivariate time series

max_gap: the maximum gap constraint
LSTISseq: list of LSTIs

1 output: LSTISseq : list of LSTIs for sequence ’seq’
2 i = 1
3 while i < (len(TS)-1) do
4 symcur = getValue(TS, i)
5 symnext = getValue(TS, i+1)
6 startT I = getTimestamp(TS, i)
7 gap = getTimestamp(TS, i+1) - getTimestamp(TS, i)
8 while (i < (len(TS)-1)) and (symcur == symnext) and gap<max_gap do
9 i = i+1

10 symcur = getValue(TS, i)
11 symnext = getValue(TS, i+1)
12 gap = getTimestamp(TS, i+1) - getTimestamp(TS, i)
13 endT I = getTimestamp(TS, i)
14 TIcurr = TI(symcur, startT I ,endT I)
15 LSTISseq = insert(TIprev,LSTISseq)
16 if i > 1 and i < (len(TS) then
17 last_time = getTimestamp(TS, i)
18 gap = getTimestamp(TS,i)-getTimestamp(TS,i-1)
19 if (getValue(TS,i) == getValue(TS,i-1) and gap <= max_gap then
20 LSTISseq = changeEnd(TIcurr, last_time, LSTISseq)
21 else
22 TIcurr = TI(symcur, last_time, last_time)
23 LSTISseq = insert(TIprev,LSTISseq)

24 return LSTISseq

	List of figures
	List of tables
	Abstract
	Resum
	Resumen
	Introduction
	Motivation
	Sequential pattern mining
	TIRP mining
	Pre-processing for TIRP mining
	Objectives
	Contributions of this thesis
	Thesis outline

	State of the art
	Sequential Pattern Mining
	Pruning in sequential pattern mining
	How the contributions of this thesis fit within the context of the existing SPM literature?

	TIRP Mining
	How the contributions of this thesis fit within the context of the existing TIRP mining literature?

	Pre-processing
	Temporal abstraction in the TIRPs mining field
	How the contributions of this thesis fit within the context of the existing TA for TIRPs mining literature?

	An improved sequential pattern mining: VEPRECO
	Problem statement
	The VEPRECO algorithm
	DictMap
	Pre-pruning strategies
	A novel operation: c-extend

	Experimental Evaluation methodology
	Experimental platform for VEPRECO
	Datasets
	Experimental setup

	Results
	Discussion
	Summary

	Managing temporal information in sequential patterns: vertTIRP
	Problem statement
	Time interval sequence
	Robust temporal relations
	TIRP

	The vertTIRP algorithm
	Tabular LSTIS
	Constraints on user control patterns
	Pairing strategy
	Vertical representation of TIRPs
	Candidate generation
	Transitivity for efficiency

	Experimental Evaluation methodology
	Experimental platform for vertTIRP
	Datasets
	Experimental setup

	Results
	Discussion
	Summary

	Data preparation as an external component of learning algorithms: TA4L
	Problem statement
	Input parameters
	Output: LSTISs

	The TA4L algorithm
	Normalization
	Framing
	Discretization
	Segmentation
	Sequence generation
	Data structures and parallel strategies

	Experimental Evaluation methodology
	Experimental platform for TA4L
	Datasets
	Experimental setup

	Results
	Discussion
	Summary

	Conclusions
	Conclusions and summary of results
	Future work

	Bibliography
	Appendix A. Implementation of VEPRECO
	Appendix B. vertTIRP's appendix
	Implementation of vertTIRP
	Table of pairing strategies for epsilon=0
	Intersection of temporal relations
	Allen's transitivity table
	Complete mining example

	Appendix C. TA4L's appendix
	Implementation of TA4L
	Auxiliar functions of TA4L

