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ABSTRACT

Measurements in sequencing studies are mostly
based on counts. There is a lack of theoretical devel-
opments for the analysis and modelling of this type of
data. Some thoughts in this direction are presented,
which might serve as a seed. The main issues ad-
dressed are the compositional character of multino-
mial probabilities and the corresponding representa-
tion in orthogonal (isometric) coordinates, and mod-
elling distributions for sequencing data taking into
account possible effects of amplification techniques.

INTRODUCTION

Experimental measurements in omics sciences are fre-
quently counts of events, sequences or taxa, here generically
called features. These counts are usually spread out over
a large number of features, which can range from tens to
thousands. Although the number of counts from one sam-
ple is commonly large, say some thousands, the number of
features not observed is large as well, producing many zero
counts. These zero counts can be >50% or even 80%, as oc-
curs systematically in microbiome studies (1). Moreover, the
total number of counts in an individual sample is normally
irrelevant (2,3). The crucial problem is that the probabili-
ties of one count of a feature poorly describe the possible
interrelationships between them; that is, the abundances of
features are not enough for a suitable description of the be-
haviour of the whole community, which in turn is the main
goal in most omics studies.

Generally, observations are modelled as random events,
and their joint distribution is the main tool for the interpre-
tation of experimental facts. For instance, if some observed
counts are assumed to be multinomial, the goal of the anal-
ysis is to estimate the multinomial probabilities, which are
the parameters of the distribution. Unfortunately, the co-
variance structure of the multinomial distribution is deter-
mined by the multinomial probabilities, thus producing a
very rigid model (4). In order to solve this problem, several
generalizations have been proposed. The most immediate is
to assume that the parameters of the multinomial distribu-

tion are random as well. This option matches very well the
Bayesian approaches, in which the joint distribution (pos-
terior distribution) of the multinomial probabilities is the
target of the estimation (5).

In this context, assuming that the joint distribu-
tion of the multinomial probabilities (parameters) is a
Dirichlet distribution––the Bayesian conjugate of the
multinomial––is a commonplace. The resulting distribu-
tion is called multinomial–Dirichlet distribution (6). Disap-
pointingly, this posterior distribution––or the correspond-
ing predictive distribution for observations––is not able to
fully describe overdispersion in counts, as is frequently ob-
served in omics sciences (7).

There are alternatives based on univariate count distri-
butions (geometric, negative binomial, Poisson). In these
cases, the need of modelling joint distributions drives
us to assume that the univariate parameters are random
(Bayesian approach) and have a joint distribution. Alterna-
tively, the univariate parameters can be linked in a model
with new parameters. One of the first approaches was the
Poisson-lognormal distribution (8). The review by Inouye
et al. (9) is an excellent reference for the multivariate gen-
eralizations of the Poisson distribution. The negative bino-
mial distribution is used extensively in ecology and micro-
biology (10–12). Recently, some attention has been paid to
the multinomial-logistic normal distribution (13,14), which
is a reference distribution in this contribution.

Mentioned approaches, based on mixtures of multino-
mials, have been successful in modelling the inflated pres-
ence of zeros, even better than zero-inflated distributions.
However, their weakness is that they can be considered as
being overparametrized in high or even moderate dimen-
sional cases, as the size of the involved covariance matrix (or
other dependence parameters) to be estimated grows with
the square of the number of features involved. This is espe-
cially problematic if the number of features in the dataset
exceeds the sample size.

The goal of this contribution is 2-fold. The first goal is
to discuss the compositional character of count data and of
the parameters describing distributions of abundances and
how they can be represented in orthogonal (isometric) co-
ordinates; additionally, a simplification of the multinomial-
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logistic normal distribution is presented. It is based on the
asymptotic distribution of the multinomial parameters. The
second goal is modelling distributions for sequencing data
taking into account possible effects of amplification tech-
niques.

The next section is a discussion on the compositional
characteristics of count data. The third section addresses
standard modelling of counts with the multinomial distri-
bution. The fourth section deals with the distribution of
log-ratio coordinates obtained from multinomial counts or,
more specifically, with the asymptotic distribution of multi-
nomial counts. The fifth section studies the asymptotic dis-
tribution of multinomial parameters and the consequences
of the amplification of sequencing data. Some final conclu-
sions are also provided.

ARE COUNTS COMPOSITIONAL?

Sequencing data, despite being obtained from counts, are
frequently described by relative abundances and, then, the
latter are considered compositional data (2,3,13,15). All
these references, among others, intuitively explain the com-
positional character of count data in the context of omics
sciences. However, these explanations do not focus on the
sample space approach for compositional data (16,17),
which provide further insight into the nature of the prob-
lem we are referring to.

Any experiment provides output observations, com-
monly called data. The first step in modelling data is to de-
termine to which set the possible outputs belong. This set is
called sample space. However, data analysis frequently re-
quires further structure like the scale, addition and/or dis-
tance between observations. In many situations, this impor-
tant step of modelling is skipped since, implicitly, quantita-
tive observations are assumed embedded in the real space
(positive and negative values, absolute scale, addition is the
ordinary sum, distance is the ordinary Euclidean distance).
However, there are many instances in which these assump-
tions can be considered inadequate. This is the case of com-
positional data. The need of a formal definition of a sample
space is especially important if observations are assumed to
be random, since assumptions on the sample space affect
very elementary statistical descriptors like the mean and the
variance (18).

In general, count observations are assumed random, and
their sample space can be the non-negative integer num-
bers Z+, including the zero. If several features, say D, are
counted simultaneously, the resulting array of counts is an
element of the set ZD

+ , the set of vectors of D non-negative
integers. Further structure can be introduced in this set in
different ways in order to support the operations required
to analyse these count data. For instance, one can assume
that the scale of the counts on the ith feature is absolute;
that is, the increment from ni to ni + 1 is always the same in-
dependently of the value of ni. Using this absolute scale, the
differences between 0 and 1, 4 and 5, and 1000 and 1001 are
the same. This scale may be inappropriate in many instances
where counts of the order of thousands and zero, one or
small counts appear in the same sample. In this case, a rela-
tive scale (also known as ratio scale or multiplicative scale)
may be more adequate. For instance, from 4 to 5 the incre-

ment can be described as 25% (multiplicative) increment,
whereas the (multiplicative) increment from 1000 to 1001 is
0.1%. Commonly, relative scales are transformed into abso-
lute scales by taking logarithms. However, the presence of
zeros precludes this simple technique, since the log trans-
formation places the log(0) at −∞. In fact, a zero count is
not relative to anything. Moreover, additive group opera-
tions (addition) are generally required, for instance, to com-
pute an average of vectors of counts. The standard addition
has some shortcomings; for instance, the opposite operation
(subtraction) is not closed in Z+ since the result can be neg-
ative, which is outside Z+. In some cases, the problem with
the zeros can be circumvented by assuming that counts can
be fractions, and zero may be viewed as a small fraction or
pseudo-count (19).

The conclusion is that the analysis of sample counts is not
the main goal for several reasons. Two reasons for this de-
serve to be mentioned: (i) the amount of counts strongly de-
pends on the experimental conditions (2) and (ii) at present,
we do not know how to model the sample space for random
counts in order to reasonably answer current research ques-
tions, the interdependence of different features and their re-
lationship with other variables external to count observa-
tions.

As mentioned in the first section, most of the time, in-
terest is centred on theoretical relative frequencies, that is,
on probabilities of one count for a given feature. If there
are D features, let p = (p1, p2, . . . , pD) denote the proba-
bilities of occurrence of each feature. The interpretation of
these probabilities depends on the probability distribution
of the observed counts. In a multinomial sampling, p is read-
ily identified with the parameters of the multinomial distri-
bution and, consequently, as unknown but fixed values. In
a Bayesian context, the probabilities p are considered ran-
dom and their interpretation depends on their posterior dis-
tribution (20,21). In mixture models, like the multinomial-
logistic normal, p is not a parameter of the distribution of
observed counts, as it is considered a dummy parameter
and is consequently marginalized. However, many research
questions are referred to p, whether representing fixed or
random parameters. In this situation, it is necessary to de-
termine an adequate sample space for p when it is consid-
ered random or fixed.

In many instances, a set of probabilities like p can be
considered a composition obeying the Aitchison geometry
of the simplex (18,22,23), which is a particular Euclidean
type of geometry. In fact, probabilities are scale invariant:
they can be expressed as proportions as well as percentages
without loss of information. As a consequence, informa-
tion is in the ratios between probabilities (17). The addi-
tion in the Aitchison geometry is called perturbation (4).
It consists of a component-wise multiplication of the com-
position by positive coefficients. This change is a shift of
the composition, sometimes interpreted as biasing (24). If
p, q = (q1, q2, . . . , qD) are compositions, then the perturba-
tion of p by q is

p ⊕ q = C(p1q1, p2q2, . . . , pDqD),

where C is an optional normalization of the result to add to
1 and q may or may not be normalized to unit sum. Also,
compositional perturbation is readily interpreted as the ap-
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plication of the discrete Bayes formula (4,17), and taking
subcompositions is a conditional probability. Therefore, p
can be considered as compositional.

Considering p as compositional has an important con-
sequence: it can be advantageously represented using or-
thogonal (Cartesian) coordinates, as corresponds to a Eu-
clidean geometry (18,25). These coordinates are obtained
using an isometric log-ratio transformation (ilr) also known
as the orthogonal log-ratio transformation. Examples of
the use of ilr in microbiome analysis can be found in
(13,26). Note that orthogonal coordinates refer to coordi-
nates defined with respect to an orthonormal basis of the
simplex.

Summarizing, count data contain compositional infor-
mation, but the extraction requires a modelling step: assum-
ing a distribution in which the probabilities p are parame-
ters that can be estimated from the count data. These prob-
abilities can conveniently be considered compositional. In
practice, in the absence of zero counts, the estimation of pi
is commonly the relative frequency ni/N of the ith feature.
This obvious estimation may be misleading in the presence
of zero or small counts, since most research questions are
on p and not on their estimators, the relative frequencies.

FIRST STEPS IN MODELLING COUNT DATA

The dominant practice in metagenomics and particularly
in microbiome analysis is directed to three kinds of sim-
ple statistical analysis: explorations of relative frequencies
and their representation and display, differential expres-
sion of genes in different populations and discrimination
of such populations. For the three mentioned goals, prob-
abilistic and statistical modelling can be reduced to a min-
imum. Exploratory analysis requires the rudiments of the
sample space; differential expression is commonly afforded
using univariate statistics over the relative abundances of
features (or some normalization of them) and then com-
bined using multiple testing techniques. Discrimination be-
tween populations is more demanding theoretically speak-
ing, but simplified models allow obtaining some results. The
consequence of this situation is that only a little effort has
been made to study the adequate probabilistic and statisti-
cal models for sequencing count data.

In the decade 2010–2019, the compositional character
of most omics data has become clear. Slowly but increas-
ingly, the log-ratio approach for analysing omics data has
turned into an important tool in the field. This approach,
based on log-transformed relative frequencies, is confronted
with the omnipresence of zeros in almost all datasets. This
fact requires further modelling of the sample space for pro-
portions, abundances and frequencies, and also establish-
ing adequate probability distributions of the observed rel-
ative frequencies, which are needed for dealing with the
zeros.

One of the first broadly used elementary models for count
data is the multinomial distribution. Denote the counts for
D features by n = (n1, n2, . . . , nD) and assume they are ran-
dom. The sum of these counts is the number of trials N.
Denoting p = (p1, p2, . . . , pD),

∑
ipi = 1, the probabilities

of one read for the corresponding features, the probability
distribution (pd, for short) of the multinomial distribution

is

P[n|p, N] = N!∏N
i=1 ni !

N∏
i=1

pni
i , 0 ≤ ni ≤ N,

N∑
i=1

ni = N. (1)

Remarkably, this pd admits zeros in the counts ni in a nat-
ural way.

Immediately, researchers realize that many research ques-
tions ask for the estimation of the probability parameters
in p, which are clearly the theoretical relative abundances of
each feature. As a consequence, the first problem is the es-
timation of p from the observed counts and possibly from
other observed variables. Usually, the first trial is to estimate
pi using the relative abundance ni/N, which is the maximum
likelihood estimator for the parameters of the multinomial
distribution. This estimation works well for moderate to
large abundances but fails dramatically for low counts and,
particularly, for zero counts. Remember that the valuable
properties of maximum likelihood estimators are asymp-
totic; that is, they hold for large samples, thus avoiding zero
or low counts. Therefore, they fail for zero counts. It is a
well-known fact that observing zero times a given feature
does not imply that the feature is not there, especially if
there are more features than cases. With these facts in mind,
Bayesian estimation methods appear as an alternative: the
multinomial parameters p are assumed random and a prior
distribution for them is established; let f (p) be such a prior
distribution. Then, the Bayes theorem provides the poste-
rior distribution of the multinomial parameters

f (p|n, N) = C(n, N) · P[n|p, N] · f (p) , (2)

where n are now the observed counts and C(n, N) is a nor-
malizing constant that depends on the observations. Once
a prior distribution f (p) is selected and after the observa-
tions n have been observed, this distribution of the multi-
nomial probabilities provides central values and variabil-
ity characteristics of p. This model is very popular (20,21),
mainly because the Dirichlet distribution is well known as
the Bayesian conjugate of the multinomial, being enough
for exploratory analysis, treatment of zeros (26,27), and for
differential expression analysis.

Alternatively to the Dirichlet distribution as a prior dis-
tribution, the normal on the simplex (16,18,28), also known
as logistic normal distribution (4,29), could be selected as a
natural and flexible prior.

Although the Bayesian estimation of the multinomial
probabilities has been proven competitive in exploratory
analysis of count data with many zeros, it has some draw-
backs (21). The most important one is that there is no guar-
antee that count data coming from sequencing follow a
multinomial distribution. Furthermore, there are cases in
which counts in a single feature are incompatible with a bi-
nomial counting scheme. They can exhibit zero inflation,
overdispersion and multimodality. Overdispersion can be
approximately modelled using the multinomial with param-
eters p distributed Dirichlet or normal in the simplex al-
though this strategy involves some computational problems
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(30,31), but this is not the case with zero inflation and mul-
timodality.

THE COMPOSITIONAL CHALLENGE

Up to now, the fact that count data contain compositional
information did not appear in the discussion above. The
only reference to this matter was that the vector of multino-
mial probabilities, one of the targets of any analysis, is com-
positional. However, compositional data analysis (CoDA)
offers important tools, both for exploratory analysis of rel-
ative frequencies and for the study of random compositions.
The incorporation of these tools into the omics world and
the analysis of sequencing data are a challenge that the re-
searchers in the field are starting to face.

When starting a statistical analysis of compositional
data, probability distributions are necessary. Before intro-
ducing CoDA, the Dirichlet distribution was almost the
only available one for compositional data, albeit based on
the Euclidean geometry induced in the simplex from real
space, that is, considering the mean and covariance of prob-
abilities as if they were real random quantities. In the 1980s,
Aitchison (4,29) showed the limitations of the Dirichlet dis-
tribution and proposed the logistic normal distribution as a
solid candidate to be the reference in CoDA. The recogni-
tion of the particular algebraic–geometric structure of the
sample space of CoDA, and the reformulation of CoDA in
terms of orthogonal coordinates ilr (18,28,32), provides a
more consistent use and parametrization of the logistic nor-
mal distribution, now called normal on the simplex (18,28).

In the decade 2000–2010, it became clear that rela-
tive abundances from a p-multinomial sampling should
be asymptotically logistic normal, with p being the centre
(compositional mean) of such distribution. This made the
hypothesis of logistic normality a natural one. However,
there was no description of the covariance structure of this
asymptotic distribution.

After CoDaWork 2015 (33), it was shown that the asymp-
totic distribution of p-multinomial observations converges
in law to a normal distribution on the simplex with a partic-
ular covariance matrix when the number of counts is large
enough. For D features and the multinomial distribution
in Equation (1), the random composition z = n/N can be
represented in ilr coordinates using a (D, D − 1)-contrast
matrix V that represents a given orthonormal basis of the
D-part simplex. The contrast matrix satisfies V�V = ID−1

and VV� = ID − (1/D)11�, where Ik denotes the identity
matrix of size k, 1 is a D-vector of ones and (·)� denotes
transposition. The ilr coordinates are x = ilr(z) = V� log(z)
[see details in (18)]. For a large N, the asymptotic distribu-
tion of the ilr(z) converges in law to a multivariate normal
distribution with mean and covariance

μ = ilr(p), � = V�diag[p−1]V .

Asymptotic conditions are attained for a large number of
trials, but this number depends on the p to be estimated.
Appendix C reproduces the derivation of this asymptotic
distribution.

However, this normal on the simplex distribution inherits
the shortcomings of the multinomial distribution, namely

the fact that its covariance structure is completely deter-
mined by the multinomial parameters, thus lacking flexi-
bility. However, at the same time, this is an example of a
normal distribution on the simplex with a reduced number
of parameters.

A STRATEGY FOR MULTIVARIATE MODELLING OF
COUNTS

Many experimental procedures in molecular biology use
polymerase chain reaction (PCR) to replicate DNA seg-
ments (34,35). In each PCR cycle, specific sequences are
ideally duplicated. These procedures of high-throughput
sequencing start collecting sequences. In order to classify
the produced segments and measure their abundance in
a sample, an amplification of the sample is required. Af-
ter a large number of PCR cycles, one can assume that
each sequence, or class of them known as operational tax-
onomic unit (OTU), grows approximately exponentially at
the same rate. In this ideal PCR process, the relative fre-
quencies of OTUs are preserved as long as the replica-
tion rates are approximately equal. In fact, assuming that
the abundances of the OTUs in the initial sampling were
m = (m1, m2, . . . , mD) and that along the PCR amplifica-
tion the abundances evolve exponentially with rates θ =
(θ1, θ2, . . . , θD) in time, the abundance after a time t would
be

m(t) = (m1 · exp(θ1 t), m2 · exp(θ2 t), . . . , mD · exp(θD t)) .

If the initial relative abundance is m/M, M = ∑
imi, the rel-

ative abundance at time t is
m(t)
M(t)

, M(t) =
∑

i

mi · exp(θi t) .

If all θ i are equal, the relative frequencies m(t)/M(t) are con-
stant along the replication process. In case that the θ i values
are not equal, a compositional perturbation of the initial
(unobserved) relative abundances is produced; that is, the
relative frequency is multiplied by the term exp(θ it), thus
modifying the final (observed) frequencies into m(t)/M(t).
Fortunately, compositional perturbation modifies the com-
positional mean with the same perturbation, but the theo-
retical compositional variability remains unaltered. When
the equality of the θ i values can be approximately assumed,
the PCR procedure is acceptable for quantifying relative
abundances in the initial sample. Unfortunately, this is true
for observed abundances, but unobserved OTUs in the first
sampling remain unobserved after PCR. This process re-
sembles the genetic drift or bottleneck, which is able to mod-
ify relative frequencies and completely suppress some alleles
(36).

The multinomial bottleneck

Although simplistic, the distribution of counts correspond-
ing to a multinomial sampling––followed by a homoge-
neous exponential amplification and, finally, by a new
multinomial sampling––is relevant to show that some char-
acteristics of microbial samples of OTUs are reproduced
by the multinomial–multinomial distribution (MMD) of
counts.
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Figure 1. Scheme of MMD double sampling and multinomial bottleneck. From top to bottom: p contains the true relative frequencies in the sample and
is the estimation target. Features are sampled with a multinomial distribution P[m|p, M]. Counts in m are not observed. A replication process is applied,
e.g. PCR, thus producing an exponential growth of features whose mi �= 0. A new multinomial sampling is carried out with probabilities q = m/M, only
if equal rates of replication are assumed. Features that were not previously sampled, mi = 0, are not resampled in this second multinomial sampling. The
counts obtained in this second sampling are observed and constitute the data. The procedure ends estimating p using some estimator p̂.

Consider a multinomial probability density (pd) of
counts in D classes, m = (m1, m2, . . . , mD), with probability
parameters p = (p1, p2, . . . , pD),

∑
ipi = 1, and total num-

ber of counts M = ∑
imi. The multinomial pd is

P[m|p, M] = M!∏D
i=1 mi !

D∏
j=1

pm j

j ,
∑

i

mi = M. (3)

This pd may be identified with the sampling of taxa from a
microbiome population before replication or amplification.
In this sampling, D and M can be similar in order of mag-
nitude. This sampling will likely produce a large number of
zero counts in many features, many of them corresponding
to features with relatively small pi, but also some of the zero
counts can correspond to not so small probabilities.

Assuming homogeneous amplification after replication,
the relative frequencies of the observed features are approxi-
mately maintained. Then, the amplified population is multi-
nomially resampled. Let the probabilities of this resampling
be q = (m1, m2, . . . , mD)/M; then, the pd is

P[n|q = m/M, M, N] = N!∏D
i=1 ni !

D∏
j=1

qn j

j ,
∑

i

ni = N,

(4)

where N is the number of multinomial trials. Note that the
original D features have been reduced due to the fact that
some mi turned out to be zero in the first sampling. The
effective number of factors in the products of Equation (4)

is equal to the number of non-null counts in m that can be
substantially less than D.

As m is not observed, it can be marginalized from the
joint pd of m and n in the standard way, shown in Ap-
pendix B. The value of M is also unobservable and could
also be marginalized following the technique described in
Appendix A. It can also be left as a parameter in the pd of
the observations n. After marginalization of m, the MMD
(pd) of the observations is

P[n|p, M, N] = N!

MN
∏D

i=1 ni !
μ(n)(p) , (5)

where μ(n)(p) are the ordinary moments of a multinomial
with probabilities p. The orders of the moments are in n.
Figure 1 is a scheme of the MMD generation.

The simulation of the MMD in (5) is easily carried out
(see Appendix D). However, this pd is in its present stage not
practical because the computation of the multinomial ordi-
nary moments is very time consuming. This could change if
more efficient algorithms are developed. Additionally, the
pd is based on two strictly multinomial samplings and ho-
mogeneous amplification, which are not credible in experi-
mental conditions of sequencing and PCR.

The microbiome samples, for instance, at the level of
genus, have some relevant characteristics: (i) many features
(genera) are seldom observed across the sample; (ii) a given
feature, in samples with a moderate to large number of tri-
als, may present a large number of zeros and simultane-
ously large counts can appear across samples; and (iii) a
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histogram of counts for a given feature can present several
modes, one at the zero, and others at different numbers of
counts. These characteristics are reproduced in an MMD
simulation, thus suggesting that something similar occurs
in practice. Figure B1 in Appendix B shows some of these
characteristics.

This multinomial bottleneck puts a doubt on the charac-
teristics of the zero counts observed in sequencing data after
a PCR or amplification. The zeros produced in the second
multinomial sampling are likely produced in features whose
multinomial probability is relatively small. However, the
second sampling reproduces the zeros from the first sam-
pling, which can correspond to relatively medium, or even
large, probabilities. The arising question is now whether the
observed zero counts should be considered missing values
better than zero due to small abundances. These consid-
erations suggest that substitution of zero counts could be
severely flawed in the scenario of PCR or amplified counts.
It seems that conceiving the zero problem as an estimation
of the probabilities p better than a mere substitution can be
a suitable strategy. Distributions like MMD (Equation 4)
allows such estimation without any substitution.

As mentioned previously, the MMD (Equation 4) might
not be useful in practice. A way of simplifying MMD is to
assume that the second multinomial sampling after ampli-
fication is carried out in asymptotic conditions. This leads
to substitute the second multinomial distribution by the
asymptotic distribution of the multinomial distribution pre-
sented in the fourth section and Appendix C. This new dis-
tribution is named multinomial–asymptotic normal distri-
bution (MAND). As in the case of MMD, MAND is easily
simulated (see Appendix D). Both distributions reasonably
reproduce the zero pattern in microbiome samples. How-
ever, an efficient procedure of computing the likelihood of
both distributions is still needed, thus avoiding substitution
of zeros and allowing the estimation of parameters by max-
imum likelihood or by Bayesian procedures.

CONCLUSION

There are many open questions and ways to explore in rela-
tion to count data. Only a few thoughts have been presented
here, which are by no means exhaustive of those present in
the literature. However, it seems that there is no complete
and generally accepted theoretical framework available in
which to embed new developments. Particularly interesting
is the conception of amplification techniques (e.g. PCR) as
a double sampling, which may explain the zero patterns fre-
quently observed in sequencing data. The double sampling,
here modelled with the MMD and MAND, may question
the conception of zeros as due to a low frequency of the cor-
responding feature. This is an open field of research that is
calling for new ideas and procedures.
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APPENDIX A: MULTINOMIAL WITH A RANDOM NUM-
BER OF TRIALS

The multinomial distribution depends on the number of
trials considered. Frequently, the number of trials (some-
times called library size, particularly in microbiome analy-
sis) changes from sample to sample. This circumstance has
motivated rarefaction techniques (37,38), which try to ho-
mogenize the number of trials along samples. In order to
avoid this wasting of information in rarefaction, the multi-
nomial distribution seems to be useful when the number of
trials is random, or it is, at least, illustrative. This appendix
presents this family of distributions of counts.
Let x be a random vector of multinomial counts,
given the probabilities of D categories (features) p =

(p1, p2, . . . , pD), with
∑

ipi = 1, and the number of trials
N. The probability function of x is

P[x = n|p, N = n] = n!∏D
i=1 ni !

D∏
i=1

pni
i ,

n∑
i=1

ni = n,

(A1)

where P[x = n|p, N = n] = 0 whenever
∑n

i=1 ni �= n.
Consider the number of trials N is a random variable with
probability function f(n|θ ), n = 0, 1, 2, . . . , or for a subset of
these integers denoted by R; θ denotes one or more param-
eters for the probability function f. Obvious examples for
f are Poisson, negative binomial (including the geometric
distribution) or even a shifted binomial. The goal is to find
P[x = n|p] = 0 without the condition on N. The standard
procedure is first to consider the joint probability function
of x and N, and then to marginalize, i.e. remove N from the
expression. The joint probability is

P[x = n, N = n|p] = P[x = n|p, N = n] · f (N = n|θ ).

(A2)

Marginalization is carried out by summing Equation (A2)
over the support of N. The terms in Equation (A2) are null
except in the case that n = ∑

ixi. Then, the sum is restricted
to the only value such that n = ∑

ini. As a consequence, the
desired probability function is

P[x = n|p] = P

[
x = n

∣∣∣∣∣p, N =
D∑

i=1

ni

]

× f

(
N =

D∑
i=1

ni

∣∣∣∣∣ θ
)

. (A3)

This probability function is easily computable, as the two
factors can be computed from standard numerical func-
tions.
Figure A1 shows the effect of considering the number of tri-
als in a binomial (multinomial of two categories) as random
and Poisson distributed (green crosses) with mean equal to
50. The blue (red) curves correspond to a probability of the
binomial equal to 0.1 (0.4). The circled points are the proba-
bilities when the number of binomial trials is 50 and the plus
sign points are probabilities with the random number of tri-
als. It is clear that the randomized number of trials flattens
the probability functions, i.e. increases variability, but in a
moderate way. The overdispersion observed in sequencing
data cannot be explained with the variability of the number
of trials in the sample.
Note that, in order to obtain the pd in Figure A1, the pd
in Equation (A3) needs to be marginalized again to obtain
the distribution of a single category. This consists of an in-
tegration over a discrete simplex. In the case of a binomial,
it is a sum on the complementary category.

APPENDIX B: A GENERAL MIXTURE OF DISCRETE
PROBABILITY DISTRIBUTIONS OF COUNTS

Consider a probability function (pd) of counts, m =
(m1, m2, . . . , mD), in D classes with probability parame-
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Figure A1. Probability functions. Green (crossed): Poisson probabilities,
mean equal to 50, for the number of binomial trials. Circled: binomial
probabilities with p = 0.1 in blue and with p = 0.4 in red. Plus signs: mix-
ture of binomials with number of trials distributed Poisson, mean equal to
50; binomials with p = 0.1 in blue and with p = 0.4 in red.

ters p = (p1, p2, . . . , pD), and total number of counts M =∑
imi. A multinomial random sampling corresponds to this

type of pd written as P[m|p, M]. If this probability function
is a multinomial, it is

P[m|p, M] = M!∏D
i=1 mi !

D∏
j=1

pm j

j ,
∑

i

mi = M. (B1)

This pd may be identified with the sampling of taxa from
a microbiome population before replication or amplifica-
tion and where D and M are similar in order of magnitude.
After replication, taxa are resampled with probability q =
(m1, m2, . . . , mD)/M following a pd P[n|q = m/M, M, N],
where N is the total number of counts in this second sam-
pling. In the case in which this second sampling is also
multinomial, it is

P[n|q = m/M, M, N] = N!∏D
i=1 ni !

D∏
j=1

qn j

j ,
∑

i

ni = N.

(B2)

As m is not observed, it can be marginalized from the joint
pd of m and n in the standard way:

P[n|p, M, N] =
∑

∑
i mi =M

P[n|q = m/M, M, N] · P[m|p, M],

(B3)

which in the case of a multinomial is

P[n|p, M, N] =
∑

∑
i mi =M

⎛⎝ N!∏D
i=1 ni !

D∏
j=1

(m j

M

)n j

× M!∏D
i=1 mi !

D∏
k=1

pmk
k

)
, (B4)

Figure B1. Histograms of four features simulated from an MMD. Red,
orange, green and blue histograms correspond to true relative frequencies
(probabilities) of 0.0066, 0.0044, 0.0023 and 0.0002, whose expected num-
ber of counts is marked by vertical lines. The width of bins is 1 count.

where
∑

ini = N. The p is the parameter of interest as it
represents the true relative abundances; N is an observed
parameter and M can be taken as another parameter that
indirectly controls the proportion of zeros in the observed
sample. Remarkably, if M is not very large compared to D,
the expected number of zero counts may be large, and the
corresponding taxa can or cannot appear in the second sam-
pling. When the value of M is not of interest, it can also be
marginalized as in Appendix A.
Equation (B4) can be rearranged for a better visualization
as

P[n|p, M, N] = N!

MN
∏D

i=1 ni !

∑
∑

i mi =M

(
M!∏D

i=1 mi !

D∏
k=1

pmk
k

)

×
⎛⎝ D∏

j=1

mn j

j

⎞⎠ .
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The term within the sum is the n-ordinary moment of
a multinomial with parameter p. The moment generating
function of m is

E

[
exp

(
D∑

i=1

ti mi

)]
=

(
D∑

i=1

pi exp(ti )

)M

,

from which the n-ordinary moment can be computed. How-
ever, the easy analytical expression corresponds to the facto-
rial moments, and ordinary moments are complicated com-
binations of those (6,39). The multinomial–multinomial pd
can be written in a compact form denoting the n-ordinary
moments of m as μ(n)(p),

P[n|p, M, N] = N!

MN
∏D

i=1 ni !
μ(n)(p). (B5)

This explicit expression of MMD contrasts other mixtures
of multinomials in which the marginalization requires a te-
dious computing. However, obtaining the values of μ(n)(p)
also involves difficulties.
Difficulties for the formal calculus of MMD are compen-
sated by the easy simulation of samples. An illustration has
been computed for 300 features whose probabilities are a
300-term sequence from 100 to 1 over 300, thus spanning
two orders of magnitude probabilities. In the first multino-
mial sampling, M = 250 trials were drawn so that, at least,
50 features counted mi = 0. Then, the second multinomial
sampling (sample size 50) with probabilities qi = mi/M was
carried out, thus obtaining a zero-inflated and dispersed
sample of counts. Figure B1 shows histograms of the 50
samples for four features whose probabilities were 0.0066
(red), 0.0044 (orange), 0.0023 (green) and 0.0002 (blue), re-
spectively. The first characteristic is that the zero count is
the most frequent count in the four histograms. The sec-
ond feature of the histograms is that they are multimodal
and highly dispersed. This figure shows that MMD is able
to reproduce the features observed in sequencing data after
PCR like overdispersion and zero inflation, but also reveals
multimodality. This should be the case when the replication
process is uniform for all features present in the first sam-
pling.

APPENDIX C: THE ASYMPTOTIC DISTRIBUTION OF
ILR COORDINATES

We briefly rederive an earlier theoretical result concerning
the asymptotic distribution of the ilr coordinates under a
multinomial sampling. This was first obtained for D = 3
(40) and later extended for general D (33). Consider a multi-
nomial sampling scenario in which n multinomial observa-
tions are given, and the observed relative frequencies are in
f. As f is the maximum likelihood estimator of the multino-
mial probabilities p, in asymptotic conditions, the distribu-
tion of f approaches (weak convergence in distribution or
law) the multivariate normal distribution

f
D−→ N (μ f ,� f ), μ f = p, � f = Dp − pp�,

with Dp = diag(p). The present goal is to look for the
asymptotic distribution of the ilr coordinates of f, denoted
by ŷ, associated with a given contrast matrix V. For a regu-

lar transformation of parameters g, according to the multi-
variate delta method (41,42), the asymptotic centred distri-
bution of the maximum likelihood estimator g(f) is

√
n (g(f) − g(p)) ≈ N

(
0,

(
∂g
∂p

)
� f

(
∂g
∂p

)�)
, (C1)

where � f is the covariance matrix of f. When applied to the
maximum likelihood estimator f of the multinomial prob-
abilities p, transformed into y = ilr(p), the transformation
is identified as g(p) = ilr(p). The computation of derivatives
in Equation (C1) can be carried out as

∂ilr(p)
∂p

= ∂V� ln p
∂p

= V�

⎡⎢⎢⎢⎢⎣
1
p1

1
p2

. . .
1

pD

⎤⎥⎥⎥⎥⎦ = V�D−1
p .

The covariance matrix � ŷ becomes

� ŷ = V�D−1
p � f D−1

p V

= V�D−1
p

(
Dp − pp�)

D−1
p V

= V�D−1
p V − V�11�V

= V�D−1
p V,

since V�1 = 0. Note that the covariance matrix V�D−1
p V is,

in general, not diagonal and, therefore, the ilr coordinates
of f will be correlated. These correlations have a structure
that only depends on p and the chosen contrast matrix V.
The matrix V�D−1

p V is diagonal only for equal multinomial
probabilities, which correspond to p equal to the neutral el-
ement of the simplex. Substituting the values of derivatives
and the covariance matrix in Equation (C1), the asymptotic
distribution of ŷ = ilr(f) satisfies

√
n(ŷ − y)

D−→ ND−1(0, V�D−1
p V),

where y = ilr(p); the D over the limit arrow denotes conver-
gence in distribution or in law. This statement can be alter-
natively written as

ŷ
D−→ ND−1

(
y,

1
n

V�D−1
p V

)
. (C2)

In many situations, n = 1, as the likelihood of p, given a
N trial multinomial independent sample of size n, is pro-
portional to the likelihood of p given a single multinomial
observation with nN trials.

APPENDIX D: SIMULATION OF MMD AND MAND
SAMPLES

The MMD is easily simulated once some parameters are
given. These parameters are as follows (notation in ‘The
multinomial bottleneck’ section): D, the number of features
to be considered; M, the number of trials in the first multi-
nomial sampling; p, the true probabilities of counting each
feature in the first sampling; and N, the number of multi-
nomial trials in the second sampling. Similarly, the MAND
can also be simulated.
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An interesting point is how to roughly estimate the men-
tioned parameters to proceed to a simulation of MMD and
MAND mimicking a given sequencing sample.
We selected a sample of oral microbiota (16S rRNA)
classified into 229 bacterial genera from the HMQCP
v35 dataset downloaded on 22 October 2015 from
http://hmpdacc.org/HMQCP/ (43). This dataset was also
used in (26). Only 180 observations on the buccal mucosa
from different human individuals have been used for this
example.
In the reference sample, the number of bacterial genera (fea-
tures) reported is 229, but only 103 contain >4 non-null
counts. The removed genera may be practically nonexistent
or they were not counted in the first multinomial sampling.
Thus, we can reasonably assume that the number of gen-
era that play a role in the first multinomial sampling is D =
103. A bizarre assumption is that the number of multino-
mial trials is the same for each individual or case. Accord-
ing to that, the number of trials in the first sampling is, at
least, the number of genera that were counted once or more
times; this lower bound is 52 in the reference sample. The
maximum number of counted genera across the sample is an
underestimation of M (number of trials in the first multino-
mial sampling). In our case, we take M = 100. If we assume
that the replication rates in the PCR process are equal for all
the genera, then the probabilities p are approximately pro-

portional to the observed counts n in the reference sample.
Finally, the average total number of counts per individual or
case may be an estimation of N. This was N = 5693 and the
corresponding variance exceeded largely the mean (∼14 ×
106), thus making the Poisson approximation of N unreal-
istic. We preferred to assume that N has a triangular distri-
bution whose mode, minimum and maximum are 5500, 800
and 20000, respectively, inspired on the reference oral mi-
crobiome sample whose characteristics were 5693, 748 and
28549 for mean, minimum and maximum, respectively. To
obtain some reasonable values for p, a monotonic sequence
of 103 probability values was taken from 1 to 1000 divided
by their sum.
The following R function rMMD produces a simulation of
sample counts with the corresponding zero pattern. The R
function rMAN allows the simulation of sequencing data
following the distribution MAND. However, this simula-
tion does not give counts but relative frequencies with the
corresponding zero pattern. Except for this difference of
output format, the zero pattern produced by the two func-
tions is very similar for large N in rMMD, like those sug-
gested above. The reader can check these facts using calls to
the functions rMMD and rMAN which can be downloaded
from https://github.com/EgozcueJuanjo/SimulationMMD.
An example of use of the functions and their output are also
downloadable.
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