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Abstract

Background: Metabolomic approaches, which include the study of low molecular weight molecules, are an
emerging -omics technology useful for identification of biomarkers. In this field, nuclear magnetic resonance (NMR)
spectroscopy has already been used to uncover (in) fertility biomarkers in the seminal plasma (SP) of several
mammalian species. However, NMR studies profiling the porcine SP metabolome to uncover in vivo fertility
biomarkers are yet to be carried out. Thus, this study aimed to evaluate the putative relationship between SP-
metabolites and in vivo fertility outcomes. To this end, 24 entire ejaculates (three ejaculates per boar) were
collected from artificial insemination (AI)-boars throughout a year (one ejaculate every 4 months). Immediately after
collection, ejaculates were centrifuged to obtain SP-samples, which were stored for subsequent metabolomic
analysis by NMR spectroscopy. Fertility outcomes from 1525 inseminations were recorded over a year, including
farrowing rate, litter size, stillbirths per litter and the duration of pregnancy.

Results: A total of 24 metabolites were identified and quantified in all SP-samples. Receiver operating characteristic
(ROC) curve analysis showed that lactate levels in SP had discriminative capacity for farrowing rate (area under the
curve [AUC] = 0.764) while carnitine (AUC = 0.847), hypotaurine (AUC = 0.819), sn-glycero-3-phosphocholine (AUC =
0.833), glutamate (AUC = 0.799) and glucose (AUC = 0.750) showed it for litter size. Similarly, citrate (AUC = 0.743),
creatine (AUC = 0.812), phenylalanine (AUC = 0.750), tyrosine (AUC = 0.753) and malonate (AUC = 0.868) levels had
discriminative capacity for stillbirths per litter; and malonate (AUC = 0.767) and fumarate (AUC = 0.868) levels for
gestation length.

Conclusions: The assessment of selected SP-metabolites in ejaculates through NMR spectroscopy could be
considered as a promising non-invasive tool to predict in vivo fertility outcomes in pigs. Moreover, supplementing
AI-doses with specific metabolites should also be envisaged as a way to improve their fertility potential.

Keywords: Artificial insemination, in vivo fertility, Metabolomics, NMR, Pregnancy outcomes, Seminal plasma

Background
Predicting the reproductive potential of sires remains a
pending challenge for the livestock industry. This is of
particular relevance for the swine sector, whose breeding

is mainly based on the use of artificial insemination (AI),
an essential tool applied globally to improve reproduct-
ive efficiency [1]. Over the last few years, the enhance-
ment of AI-procedures in this species has led to (1) a
decrease in the sperm numbers per AI-dose, and (2) a
reduction in the number of AI performed per sow,
without modifying in vivo fertility outcomes [2]. This
situation entails that a higher number of AI-doses are
elaborated from a single AI-boar and a higher number
of sows are inseminated with a single AI-boar, which

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: isabel.barranco@unibo.it; marc.yeste@udg.edu
†Isabel Barranco and Marc Yeste contributed equally to this work.
1Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute
of Food and Agricultural Technology, University of Girona, ES-17003 Girona,
Spain
Full list of author information is available at the end of the article

Mateo-Otero et al. Journal of Animal Science and Biotechnology          (2021) 12:113 
https://doi.org/10.1186/s40104-021-00636-5

http://crossmark.crossref.org/dialog/?doi=10.1186/s40104-021-00636-5&domain=pdf
http://orcid.org/0000-0002-2209-340X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:isabel.barranco@unibo.it
mailto:marc.yeste@udg.edu


leads to an increase in the reproductive and economic
repercussion of AI-boars on swine farms [2]. Although
AI-boars are selected on the basis of their genetic merit
and the results obtained by routine sperm analyses
(which include sperm concentration, morphology and
motility), differences among AI-boars on in vivo fertility
outcomes are still notable [3, 4]. For this reason, many
efforts have been made to uncover biomarkers capable
to predict in vivo fertility outcomes.
During the past few years, special emphasis has been

paid to identify these biomarkers in seminal plasma (SP),
a heterogenous fluid secreted by the epididymis and
accessory sex glands [5]. This fluid has been poised as a
potential source of biomarkers, due to its complex com-
position and its ability to interact with sperm and the fe-
male genital tract, playing a key role in sperm physiology
and maternal environment modulation [6–8]. In this
sense, high-throughput technologies (including genom-
ics, lipidomics, proteomics, metabolomics and tran-
scriptomics) may hold the key for uncovering reliable
fertility biomarkers in SP, since they provide a more in-
depth understanding of reproductive processes [9]. In
the last decade, many studies conducted in mammalian
SP have employed these novel technologies to collect
large amounts of data to discover novel fertility bio-
markers [10–13].
Metabolomics is the last emerging -omics technology

that has become a promising tool to identify biomarkers
of (in) fertility [11, 14]. This high-throughput method al-
lows for the study of cells, tissues and biological fluids
by evaluating metabolic products, which are the finished
outputs of cellular processes [11, 15]. The identification
of (in) fertility biomarkers in SP through metabolomics
approaches has been extensively reported in several
mammalian species, including human [16–19], porcine
[20] and bovine [21, 22]. In pigs, Zhang et al. (2021)
compared the SP metabolome obtained by ultra-high
performance liquid chromatography-quadrupole time-
of-flight mass spectrometry between boars with high and
low conception rates after AI (< 70 sows inseminated
per boar), identifying some SP-metabolites (such as
Pro-Asn, Ile-Tyr, and D-Biotin) as potential fertility
biomarkers [20]. However, neither the concentration
of SP-metabolites, nor the putative relationship between
SP-metabolites and other in vivo fertility outcomes
(e.g. litter size, stillbirths per litter or gestation duration)
was reported by these authors.
The aim of this study was to evaluate the relationship

between the presence/concentration of SP-metabolites
and reproductive performance (including farrowing rate,
litter size, stillbirths per litter and duration of pregnancy)
of liquid-stored pig semen using Nuclear Magnetic Res-
onance (NMR) spectroscopy. To achieve this goal, a total
of eight AI-boars were included in the study and data

from 1,525 inseminations were recorded over a year
(> 100 sows inseminated per boar). Using this approach,
the present study was able to identify several SP-
metabolites able to potentially predict AI outcomes.

Methods
Experimental design
A total of 24 entire ejaculates were collected from eight
AI-boars (three ejaculates per boar) throughout a year
(one ejaculate every 4 months). Immediately after collec-
tion, ejaculates were centrifuged to obtain SP-samples,
which were stored (− 80 °C) for subsequent metabolomic
analysis. Seminal AI-doses (2,400 × 106 spermatozoa in
80mL) were prepared from these AI-boars and used to
inseminate (cervically; two times per estrus) a total of
1,525 weaned multiparous sows (1–7 litters produced)
throughout a year. These sows (Landrace and Large
White) were housed in different farms in Spain with
comparable management conditions. Each boar serviced
more than 100 sows.
Fertility outcomes were recorded from each AI-boar

included in the study during the same year that SP-
samples were collected and AI were performed. Re-
corded fertility variables were: (1) farrowing rate (per-
centage of inseminated sows that farrowed), (2) litter
size (total number of piglets born per litter), (3) number
of stillbirths per litter, and (4) duration of pregnancy
(days). These fertility records were corrected for farm-
related parameters and sows using the multivariate stat-
istical model described by Broekhuijse et al. [23]. This
model allows isolating the direct boar effect on each
in vivo fertility parameter.

Boars and ejaculates
All ejaculates were collected from AI-boars housed in a
Spanish AI-Center (AIM Iberica, Topigs Norsvin Spain
SLU, Calasparra, Murcia, Spain). This center fulfilled the
Spanish (ES300130640127, August 2006) and European
(ES13RS04P, July 2012) rules in matters of animal
health, collection of boar ejaculates and
commercialization of AI-doses. As no animal was ma-
nipulated by the authors but rather the AI-Center pro-
vided AI-doses and fertility data, no permission from an
Ethics Committee was required.
The entire ejaculates used in this study were collected

from healthy, mature (12 to 36months), fertile boars
from different breeds (Landrace and Large White) using
a semi-automatic collection system (Collectis®, IMV
Technologies, L’Aigle, France). These boars were in-
cluded in an AI-program and subjected to regular ejacu-
late collection (twice per week) for producing seminal
AI-doses. The entire ejaculates included in this study
satisfied the semen quality limits required to produce
commercial AI-doses (sperm concentration > 200 × 106
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sperm/mL; sperm motility > 70%; sperm with normal
morphology > 75%).
Boars were housed in individual pens with controlled

temperature (15–25 °C) and light (16 h; natural and arti-
ficial). Animals had free access to water and were fed
with agricultural feedstuff in agreement with the nutri-
tional requirements of AI-boars.

Seminal plasma processing and storage
For SP-harvesting, the entire ejaculates were centrifuged
(1,500 × g for 10 min at room temperature [Rotofix 32A;
Hettich Centrifuge UK, Newport Pagnell, Buckingham-
shire, England, UK]) twice immediately after ejaculate
collection. The resulting second supernatants (SP-sam-
ples) were subsequently analyzed (Eclipse E400; Nikon,
Tokyo, Japan) to warrant the absence of sperm. Finally,
SP-samples were stored in 2-mL cryotubes at − 80 °C
(Ultra Low Freezer; Haier Inc., Qingdao, China) until
metabolomic profiling was carried out.

1H NMR analysis
The SP-samples were thawed on ice and one of the ali-
quots (500 μL) used. Each aliquot was vortexed and cen-
trifuged through 0.5 mL Amicon® Ultra Centrifugal
Filters (14,000 × g at 4 °C for 90 min) for discarding pro-
teins and cell debris. Then, 100 μL of PBS containing
10% D2O with 0.33% of DSS (Merck KgaA, Darmstadt,
Germany; pH 7.4) were added to the eluted fractions and
transferred into a 5-mm Wilmad® NMR tube (Merck
KgaA), where 100 μL of D2O was added. Finally, the 1H
NMR profile was acquired.

1H NMR spectra
A Bruker 600-MHz AVANCE III NMR spectrometer
(Bruker Biospin, Rheinstetten, Germany) operating at a
1H frequency of 600.13MHz and 300 K with a previous
equilibration time (10 min) was used to obtain NMR
spectra. The 1D-1H-nuclear Overhauser effect spectros-
copy (1D-NOESY) pulse sequence from the Bruker li-
brary was used. The parameters applied were: (1) mixing
time: 100 ms (d8); (2) recovery delay: 2 s (d1); (3) 90°
pulse: 10.39 μs (p1); (4) spectral width: 7211.539 Hz; (5)
spectral size: 32 k; (6) number of scans: 128; and (7) ac-
quisition time: 2.27 s.

Data processing and analysis
The Chenomx 8.0 profiler software was used for pro-
cessing and analyzing spectra. This software delivers
tools for automatic phase, baseline correction, reference
calibration and libraries of metabolites for profiling. The
concentration of each metabolite identified in SP was
calculated based on DSS concentration (0.216mmol/L).

Statistical analysis
All analyses were carried out using R software (version
4.0.2; https://www.r-project.org/). For all analysis, the
level of significance was set at P ≤ 0.05. Statistical ana-
lysis of NMR data was performed in two steps: a) nu-
meric (fertility) vs. numeric (SP-metabolite
concentration) variables, and b) categoric (fertility par-
ameter) vs. numeric (SP-metabolite concentration)
variables.
First, numerical analysis, namely Pearson correlations,

were used to preliminary evaluate the potential linear re-
lationship between SP-metabolite concentration and
each fertility parameter.
Onwards, data were split into two different groups for

each reproductive parameter (farrowing rates, litter size,
stillbirths per litter and pregnancy length). Samples with
values lower than the median were classified as negative
farrowing rate, decreased litter size and stillbirths per lit-
ter, and shorter pregnancy duration; samples with values
higher than the median were classified as positive far-
rowing rate, increased litter size and stillbirths per litter,
and longer pregnancy duration. This process was exe-
cuted for each individual fertility parameter, yielding a
specific categorization for each one.
To evaluate potential differences in SP-metabolite con-

centrations between fertility groups, a Wilcoxon rank
sum test (equivalent to Mann-Whitney U test) was per-
formed. As opposed to t-test, Wilcoxon does not assume
normal distribution of samples, which did not occur in
some cases. A multivariate analysis was also carried out
to evaluate putative inter-metabolite relationships and
patterns that could predict fertility outcomes. In this
sense, a Bayesian logistic regression was used, treating
the groups above the median as success (1) and those
below the median as failure (0). An individual model
was run for each of the fertility parameters considering
all the metabolites as potential predictors, using the R
package ‘rstanarm’ (R package version 2.21.1; [24]), with
non-informative prior distributions, high resolution sam-
pling of the posterior distribution (adapt_delta = 0.99)
and 4,000 iterations. The remaining parameters of the
models were left by default. The Bayesian framework
was selected over the classical frequentist one because of
the structure of data. Usually, with a higher number of
features (or predictors) than samples, as in the present
dataset, models tend to get overfitted. While classical re-
gression models rely on confidence intervals to estimate
their reliability, the Bayesian framework estimates the
whole posterior (the approximately ‘real’) distribution
and allows quantifying the uncertainty of coefficients
and predictions accordingly. This methodology is par-
ticularly of interest not only for having a good sense of
how accurate predictions are, but also for improving the
models as more information about data becomes
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available (e.g., knowledge about the mean or the range
of the ‘true’ distribution of the predictors).
As a last step to assess the predictability of the differ-

ent fertility parameters, two additional analyses were
performed. A sparse partial least square discriminant
analysis (sPLS-DA) model was run separately for each of
the parameters, using the ‘mixOmics’ R package [25].
Similar to principal components analysis (PCA), this
method is useful for identifying key features in the data-
set. However, while PCA relies on maximizing the vari-
ance of the features in the principal components, sPLS-
DA maximizes their covariance. Metabolites that were
relevant in the sPLS-DA analysis and/or exhibited differ-
ences between groups were further tested in a Receiver
Operating Characteristic (ROC) curve, using the ‘pROC’
package for R [26]. This method allows for further valid-
ation of the predictive performance of metabolites and
provides a ‘cut-off’ or threshold value to discriminate (or
predict) sample fertility (‘high’ or ‘low’). Results are
expressed as the area under the curve (AUC). The dis-
criminant relevance was measured by the following AUC
ranges: 0.0–0.5 = no discriminant value, 0.5–0.6 fail dis-
criminant value, 0.6–0.7 poor discriminant value, 0.7–
0.8 fair discriminant value, 0.8–0.9 good discriminant
value, and 0.9–1 excellent discriminant value.

Results
Metabolite profile of pig SP
The 1H-NMR profile allowed the identification and
quantification of a total of 24 metabolites in pig SP-
samples (see Supplementary Fig. 1). The identified

metabolites were categorized in: i) amino acids (n = 7;
alanine, glutamate, isoleucine, leucine, phenylalanine,
tyrosine and valine); ii) alcohols (n = 2; ethanol and
methanol); iii) saccharides (n = 1; glucose); iv) salts (n =
7; acetate, benzoate, citrate, formate, fumarate, lactate
and malonate); and v) other organic compounds (n = 5;
carnitine, creatine, creatine-phosphate, hypotaurine,
myo-inositol, sn-glycero-3-phosphocholine and tri-
methylamine N-oxide).

Association between SP-metabolites and AI outcomes
Correlations between the concentration of SP-
metabolites and in vivo fertility parameters were calcu-
lated (Fig. 1). Five SP-metabolites were found to be cor-
related (P < 0.05) with farrowing rate: lactate (R = − 0.62),
leucine (R = 0.55), phenylalanine (R = 0.45), tyrosine (R =
0.49) and valine (R = 0.53). Moreover, two SP-
metabolites were positively correlated (P < 0.05) with lit-
ter size: carnitine (R = 0.42) and hypotaurine (R = 0.51).
Additionally, the number of stillbirths per litter was
negatively correlated (P < 0.05) with nine SP-metabolites:
citrate (R = − 0.42), creatine (R = − 0.51), creatine phosphate
(R = − 0.46), isoleucine (R = − 0.47), leucine (R = − 0.46),
methanol (R = − 0.53), phenylalanine (R = − 0.54), tyro-
sine (R = − 0.52) and valine (R = 0.57). Finally, the
duration of gestation was negatively correlated (P < 0.05)
with four SP-metabolites: citrate (R = − 0.51), creatine
(R = − 0.45), methanol (R = − 0.63) and myo-inositol
(R = − 0.59).
Bayesian multiple logistic regression analyses were car-

ried out with the aim (i) to develop a potential predictive

Fig. 1 Correlations between pig seminal plasma-metabolites and in vivo fertility outcomes (farrowing rates, litter size, stillbirths per litter and
gestion duration). Seminal plasma samples from entire ejaculates (24 ejaculates) of eight artificial insemination-boars (three ejaculates per boar)
were used. Fertility parameters were recorded from 1,525 inseminations. The colour saturation of red to blue represents the correlation
coefficients (R) between metabolites, from 1 to − 1, respectively. Significant correlations (P < 0.05) are marked with *
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model, (ii) to quantify the relative contribution of each
SP-metabolite to each in vivo fertility parameter, and (iii)
to identify specific metabolite patterns that may have an
influence on in vivo fertility parameters. However, no
model showed a clear relationship with any of the repro-
ductive outcomes (Supplementary Fig. 2A-D).

Relationship between SP-metabolites and farrowing rate
Boars were classified into two groups based on their far-
rowing rate deviation from the median: negative farrow-
ing rate deviation (ranging from − 2.80 to − 1.60; n = 4)
and positive farrowing rate deviation (ranging from 2.82
to 7.54; n = 4). Only the concentration of lactate in SP
differed (P < 0.05) between groups, showing higher levels
in SP-samples from boars with negative farrowing rate
deviation (median ± SD; 1.90 mmol/L ± 0.508) compared
to those with positive farrowing rate deviation (median ±
SD; 1.22 mmol/L ± 0.585).
The sPLS-DA analysis was carried out to select the most

predictive or discriminant features in the dataset to clas-
sify samples [27]. The sPLS-DA analysis for farrowing
rates deviation using the first two components explained
49.9% of the total variance of the sample (Fig. 2A). The
resulting plot showed two different groups: SP-samples
from boars exhibiting negative farrowing rate deviation
(blue) were mainly discriminated by the second compo-
nent, whereas SP-samples from boars classified as positive
farrowing rate deviation (red) were separated by the first
component. The loadings plot, which shows the most
relevant variable for a given component, revealed that
whereas lactate and formate were the most important var-
iables for the first component, trimethylamine N-oxide
and alanine were the most relevant for the second one
(Fig. 2B). ROC curve analysis indicated that only lactate
was able to predict farrowing rate deviation (P < 0.05; Fig.
2C). Specifically, lactate showed a fair discriminant value
with an AUC of 0.764.

Relationship between SP-metabolites and litter size
Boars were classified into two groups depending on their
litter size deviation from the median: reduced litter size
(ranging from − 0.40 to 0.02; n = 4) and increased litter
size (ranging from 0.11 to 0.52; n = 4) deviation. Concen-
trations of carnitine, hypotaurine, sn-glycero-3-phospho-
choline and glutamate in SP differed (P < 0.05) between
groups, displaying higher levels in SP-samples from
boars with increased litter size deviation than in SP-
samples from boars with reduced litter size deviation
(median ± SD; for carnitine: 0.82 mmol/L ± 0.223 vs.
0.43 mmol/L ± 0.244; for glutamate: 1.71 mmol/L ± 0.437
vs. 1.33 mmol/L ± 0.607; for hypotaurine: 2.85 mmol/L ±
0.604 vs. 1.77 mmol/L ± 0.813; for sn-glycero-3-phospho-
choline: 6.45 mmol/L ± 1.373 vs. 4.69 mmol/L ± 1.932,
respectively). Concentration of glucose in SP also

differed (P < 0.05) between groups, showing the opposite
pattern to the aforementioned metabolites; indeed, SP-
samples from boars with increased litter size deviation
(median ± SD; 0.24 mmol/L ± 0.273) exhibited lower glu-
cose concentration than those with decreased litter size
deviation (median ± SD; 0.79 mmol/L ± 0.245).
The sPLS-DA analysis (Fig. 3A) showed that the

first two components explained 53.9% of the total
variance of the sample. The plot showed two different
groups; SP-samples from boars classified with in-
creased litter size deviation (red) were mainly influ-
enced by the second component, whereas SP-samples
from boars classified with decreased litter size devi-
ation (blue) were mainly affected by the first compo-
nent. The loadings plot revealed that while carnitine,
hypotaurine, sn-glycero-3-phosphocholine and glucose
strongly influenced the first component, glutamate
and methanol had that effect on the second compo-
nent (Fig. 3B). ROC curve analysis showed that all
SP-metabolites identified as relevant by the loadings
plot had a significant AUC (P < 0.05; Fig. 3C). Specif-
ically, carnitine showed the highest AUC of 0.840,
hypotaurine displayed an AUC of 0.819, sn-glycero-3-
phosphocholine showed an AUC of 0.833, glucose
exhibited an AUC of 0.750, and glutamate had an
AUC of 0.799. Thus, the ROC curve showed that
while carnitine, hypotaurine, sn-glycero-3-phospho-
choline and glutamate exhibited a good discriminant
value for predicting litter size due to their high AUC
(ranging 0.8–0.9), glucose had a fair discriminant
predictive value (ranging 0.6–0.7) for litter size.

Relationship between SP-metabolites and the number of
stillbirths per litter
Boars were categorized into two groups depending on
their stillbirths per litter deviation from the median:
decreased stillbirths per litter deviation (ranging from
− 0.10 to 0.02; n = 4) and increased stillbirths per litter devi-
ation (ranging from 0.05 to 0.14; n = 4). Concentrations of
citrate, creatine, phenylalanine and tyrosine in SP differed
(P < 0.05) between groups: the SP-samples from boars with
decreased stillbirths per litter deviation showing higher con-
centrations than those from boars with increased stillbirths
per litter (median ± SD; for citrate: 7.10mmol/L ± 1.738 vs.
4.95mmol/L ± 2.192; for creatine: 0.54mmol/L ± 0.158 vs.
0.31mmol/L ± 0.156; for phenylalanine: 0.03mmol/L ± 0.011
vs. 0.02mmol/L ± 0.012; for tyrosine: 0.03mmol/L ± 0.017
vs. 0.02 mmol/L ± 0.016, respectively). In an opposite
manner, malonate was found to be higher (P < 0.05)
in SP-samples from boars with increased stillbirths
per litter (median ± SD; 0.16 mmol/L ± 0.064) than in
those from boars with decreased stillbirths per litter
(median ± SD; 0.09 mmol/L ± 0.054).
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Fig. 2 A sPLS-DA analysis for farrowing rates deviation showing sample distribution in component 1 and component 2. Seminal plasma samples
from entire ejaculates (24 ejaculates) of eight artificial insemination-boars (three ejaculates per boar) were used. Fertility parameters were
recorded from 1525 inseminations. The colored areas represent the 95% confidence interval. Boars classified with positive farrowing rate deviation
(ranging from 2.82 to 7.54; n = 4) are represented in red and those with negative farrowing rate deviation (ranging from − 2.80 to − 1.60; n = 4)
are shown in blue. Each dot symbolizes an ejaculate. B Loading plot for components 1 and 2 for the sPLS-DA model. Variables are ranked by the
absolute values of their loadings. C Receiver operating characteristic (ROC) curve analysis for lactate concentration in seminal plasma and
farrowing rate deviation. Seminal plasma samples from entire ejaculates (24 ejaculates) of eight artificial insemination-boars (three ejaculates per
boar) were used. Fertility parameters were recorded from 1,525 inseminations. The plot shows the ability of a given metabolite to discriminate
farrowing rate of semen doses. AUC: area under the curve; CI: confidence interval
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Fig. 3 A sPLS-DA analysis for litter size deviation showing sample distribution in component 1 and component 2. Seminal plasma samples from
entire ejaculates (24 ejaculates) of eight artificial insemination-boars (three ejaculates per boar) were used. Fertility parameters were recorded
from 1525 inseminations. The colored areas represent the 95% confidence interval. Boars with decreased litter size deviation (ranging from − 0.40
to 0.02; n = 4) are represented in blue and those with increased litter size deviation (ranging from 0.11 to 0.52; n = 4) are shown in red. Each dot
symbolizes an ejaculate. B Loading plot for components 1 and 2 for the sPLS-DA model. Variables are ranked by the absolute values of their
loadings. C Receiver operating characteristic (ROC) curve analysis for carnitine, glucose, sn-glycero-3-phosphocholine, glutamate and hypotaurine
concentrations in seminal plasma and litter size deviation. Seminal plasma samples from entire ejaculates (24 ejaculates) of eight artificial
insemination-boars (three ejaculates per boar) were used. Fertility parameters were recorded from 1,525 inseminations. The plot shows the ability
of the metabolites to discriminate litter size of semen doses. AUC: area under the curve; CI: confidence interval
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Regarding the sPLS-DA analysis (Fig. 4A), the first two
components were found to explain 51.8% of the total
variance. Moreover, two different groups were observed:
while SP-samples from boars with decreased deviation in
the number of stillbirths per litter (blue) were mainly in-
fluenced by both components, SP-samples from boars
with increased deviation (red) were influenced by the
second component. The loadings plot revealed that the
first component was mainly influenced by creatine and
malonate, and the second component by malonate,
benzoate and formate (Fig. 4B). ROC curve analysis
showed that the AUC was significant (P < 0.05; Fig. 4C)
for citrate, creatine, malonate, phenylalanine and tyro-
sine. Specifically, citrate exhibited an AUC of 0.743, cre-
atine displayed an AUC of 0.812, malonate showed an
AUC of 0.868, phenylalanine displayed an AUC of 0.750,
and tyrosine showed an AUC of 0.753. Therefore, the
ROC curve revealed that while creatine and malonate
had a good discriminant value for predicting stillbirths
per litter (as their AUC ranged from 0.8 to 0.9), citrate,
creatine and tyrosine displayed a fair discriminant
strength (as their AUC ranged from 0.7 to 0.8).

Relationship between SP-metabolites and duration of
gestation
Boars were classified into two groups depending on the
deviation of gestation duration from the median, i.e.
shorter gestation duration (ranging from − 0.85 to 0.03;
n = 4) and longer gestation duration (ranging from 0.10
to 0.52; n = 4) deviation. Concentration of malonate in
SP differed (P < 0.05) between groups, showing higher
levels in SP-samples from boars with longer gestation
duration deviation (median ± SD; 0.16 mmol/L ± 0.072)
compared to those from boars with shorter gestation
duration deviation (median ± SD; 0.09 mmol/L ± 0.030).
On the contrary, fumarate exhibited higher levels (P <
0.05) in SP-samples from boars with shorter gestation
duration (median ± SD; 0.01 mmol/L ± 0.002) than in
those from boars with longer gestation duration (me-
dian ± SD; 0.004 mmol/L ± 0.002).
sPLS-DA analysis for gestation duration showed that

the first two components explained 33.6% of the total
variance (Fig. 5A). Again, two different groups were
identified: while SP-samples from boars classified with a
shorter deviation in the gestation duration (blue) were
mainly affected by the second component, SP-samples
from boars with longer deviation (red) were equally in-
fluenced by both components. The loadings plot re-
vealed that the first component was strongly influenced
by malonate, and the second component by glutamate,
sn-glycero-3-phosphocholine and carnitine (Fig. 5B). For
these SP-metabolites, both malonate and fumarate
showed a significant ROC curve (P < 0.05; Fig. 5C). Spe-
cifically, malonate exhibited an AUC of 0.868 and

fumarate showed an AUC of 0.767. Considering these
results, the ROC curve revealed that while malonate had
a good discriminant value for predicting gestation dur-
ation, fumarate showed a fair discriminant predictive
value for this parameter.

Discussion
In the last years, metabolite identification and quantifi-
cation for male infertility assessment has become an
emerging area of research [9, 10, 28]. In this field, NMR
spectroscopy is one of the three most common analytical
methods for metabolite profiling [28]. The present re-
port evaluated the potential relationship between SP-
metabolite concentrations and AI outcomes in pigs
using NMR approaches, figuring out which SP-
metabolites could be used as in vivo fertility biomarkers.
Specifically, this study demonstrated that: i) the concen-
tration of SP-lactate was related to farrowing rate; ii)
concentrations of carnitine, hypotaurine, sn-glycero-3-
phosphocholine glutamate and glucose in SP were asso-
ciated with litter size; iii) concentrations of citrate, creat-
ine, malonate, phenylalanine and tyrosine in SP were
related to the number of stillbirths per litter; and iv)
concentrations of malonate and fumarate in SP were as-
sociated to gestation duration.
In accordance with our previous report [29], this study

identified and quantified a total of 24 SP-metabolites. In
addition, the results of the present work showed that
several SP-metabolites were related to specific in vivo
fertility parameters. However, since all the relationships
were found to be moderate (as Pearson correlation coef-
ficients were lower than 0.6) and no SP-metabolite pat-
tern for specific fertility parameters was observed using
Bayesian multiple logistic models, sPLS-DA and ROC
analysis were run. Using these statistic tools, potential
biomarkers for all the assessed reproductive performance
variables were identified.
The results of the present study evidenced that lactate

was the only SP-metabolite related to farrowing rate.
These results differ from those reported by Zhang et al.
who found that several amino acids and D-biotin in SP
were related with conception rates in pigs [20]. Differ-
ences in (1) the analytical method (mass spectrometry
vs. NMR) and in (2) the analysis of fertility records, since
the work of Zhang et al. did not take other parameters
that could influence conception rates (sows, farms …)
into consideration [20], may contribute to explain the di-
vergent results between both studies. In the present
work, the highest lactate concentrations were found in
SP-samples from boars classified with negative farrowing
rate deviation. It is well known that lactate is one of the
main non-monosaccharide substrates for sperm in bulls
[30], stallions [31], men [32] and boars [32, 33]. Non-
oxidative metabolism of pig sperm has been shown to
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Fig. 4 A sPLS-DA analysis for the number stillbirths per litter deviation showing sample distribution in component 1 and component 2. Seminal
plasma samples from entire ejaculates (24 ejaculates) of eight artificial insemination-boars (three ejaculates per boar) were used. Fertility
parameters were recorded from 1,525 inseminations. The colored areas represent the 95% confidence interval. Boars with decreased stillbirths per
litter deviation (ranging from − 0.10 to 0.02; n = 4) are represented in blue and those with increased stillbirths per litter deviation (ranging from
0.05 to 0.14; n = 4) are shown in red. Each dot symbolizes an ejaculate. B Loading plot for components 1 and 2 for the sPLS-DA model. Variables
are ranked by the absolute values of their loadings. C Receiver operating characteristic (ROC) curve analysis for citrate, creatine, phenylalanine,
tyrosine and malonate and stillbirths per litter. They show the ability of metabolites to discriminate the number of stillbirths per litter after
artificial insemination with semen doses. AUC: area under the curve; CI: confidence interval
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consume lactate [34], which is transformed into pyruvate
through lactate dehydrogenase to produce ATP [35].
Considering these findings, one could assume that sperm
from boars classified with positive farrowing rate devi-
ation could better metabolize lactate for energy

production, thereby leading to lower SP-lactate concen-
tration, as confirmed by the present study. However, it is
worth mentioning that these results are not in agree-
ment with previous findings reported in cattle, in which
the highest lactate levels were found in the SP of high

Fig. 5 A sPLS-DA analysis for gestation duration deviation showing sample distribution in component 1 and component 2. Seminal plasma
samples from entire ejaculates (24 ejaculates) of eight artificial insemination-boars (three ejaculates per boar) were used. Fertility parameters were
recorded from 1,525 inseminations. The colored areas represent the 95% confidence interval. Boars with longer gestation duration deviation
(ranging from 0.10 to 0.52; n = 4) are represented in red and those with shorter gestation duration deviation (ranging from − 0.85 to 0.03; n = 4)
are shown in blue. Each dot symbolizes an ejaculate. B Loading plot for components 1 and 2 for the sPLS-DA model. Variables are ranked by the
absolute values of their loadings. C Receiver operating characteristic (ROC) curve analysis for malonate and fumarate and pregnancy duration.
They show the ability of metabolites to discriminate the number of stillbirths per litter after artificial insemination with semen doses. AUC: area
under the curve; CI: confidence interval
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fertility bulls [30], and in men, as infertile patients had
lower SP-lactate levels than fertile controls [16, 18, 36,
37]. These differences could be attributed to: (1) differ-
ent metabolic sperm strategies, as while pig sperm can
use lactate as an energy source, the rate between oxida-
tive phosphorylation and glycolysis is higher in bovine
sperm [38]; and/or (2) differences in SP composition as
a result of differences in mating strategies between
species [39, 40].
Regarding the litter size, the present study showed that

concentrations of glucose, carnitine, hypotaurine, sn-
glycero-3-phosphocholine and glutamate were related
with this fertility parameter. Interestingly, the ROC
curve revealed that these SP-metabolites had a discrim-
inating ability to predict the litter size, so that all the
four could be considered as promising biomarkers for
this AI outcome.
It is well known that glucose is one of the main mono-

saccharides used by mammalian sperm to produce en-
ergy [32, 41]. The present study reported that boars
classified with an increased litter size deviation exhibited
lower glucose concentrations in their SP than those with
a decreased litter size deviation. Similar findings were re-
ported in humans, in which men with idiopathic infertil-
ity had higher glucose levels in their SP compared to
healthy individuals [17]. The most feasible explanation
for such findings would be that sperm from boars with a
decreased litter size would consume less glucose from
SP; thus, glucose would be extracellularly accumulated.
This hypothesis would be in agreement with the existing
literature, as the supplementation of semen extenders
with glucose has been reported to increase sperm motil-
ity and ATP concentration in humans [42]. Taken these
data together, it could be suggested that low levels of
glucose in SP are beneficial for both sperm physiology
and reproductive performance.
Carnitine is an antioxidant that has been widely

demonstrated to be involved in mammalian sperm
motility [43, 44]. Moreover, a protective role of this
antioxidant on DNA and plasma membrane oxidation
damage in humans [44, 45] and pigs [46] has also
been reported. In addition, dietary carnitine supple-
mentation in boars has been proved to improve
sperm quality parameters [47, 48]. In agreement with
these studies, the results reported herein indicate that
boars with an increased litter size deviation exhibit
the highest SP-concentration of this metabolite. These
results are in accordance with the study of Zöpfgen
et al., who found that infertile men had lower SP-
levels of carnitine than their fertile counterparts [49].
Nevertheless, this result, together with the aforemen-
tioned findings, open the possibility of using the
measurement of carnitine in SP as a potential litter
size biomarker.

Hypotaurine is an antioxidant present in human SP
and sperm [50, 51]. The present study found a positive
influence of SP-hypotaurine on litter size. This relation-
ship could be driven by both an effect on sperm and/or
oocyte fertilization. With regard to sperm, the addition
of hypotaurine to cryopreservation media has been re-
ported to exert a positive effect on sperm quality and
functionality parameters in sheep [52] and humans [51,
53]. In addition, sperm from bulls with high fertility
records also have high hypotaurine levels [54]. While,
considering all this evidence, one could surmise that SP-
hypotaurine has a positive impact on pig sperm physi-
ology, further studies are required to confirm this hy-
pothesis. On the other hand, supplementation of in vitro
culture media with hypotaurine increases embryo cleav-
age and, in consequence, embryo development in bovine
[55] and improves the intracellular oxidative status of
pre-implantational porcine embryos [56]. Thus, SP-
hypotaurine could also affect early embryo development
stages, thus increasing litter size.
Glutamate is an amino acid involved in cellular energy

production and in the synthesis of many other amino
acids and nucleotides [18]. Low levels of SP-glutamate
have been related to several forms of infertility in
humans [18, 37]. In agreement with these results, the
present study found that higher levels of SP-glutamate
were related to increased litter size deviation. Based on
these data, the effect of glutamate on AI outcomes could
be driven by its repercussion on sperm, as equine intra-
cellular glutamate has been proposed: i) to contribute to
sperm functionality through its metabolization via non-
canonical pathways; and ii) to be exchanged for extracel-
lular cysteine to produce reduced glutathione [57].
Nonetheless, before could glutamate be used as a litter
size biomarker, the aforementioned hypothesis should
be tested in the pig.
Finally, sn-glycero-3-phosphocholine, which is in-

volved in glycerophospholipid metabolism, has been re-
ported to play a vital role in sperm capacitation and
acrosome reaction in rats [58]. The results of the present
study showed a positive relationship between sn-glycero-
3-phosphocholine concentration in SP and high litter
size. These results seem to agree with previous studies
performed in other species, in which infertile men were
observed to exhibit lower sn-glycero-3-phosphocholine
levels in their SP compared to their fertile counterparts
[59]. In addition, it has been reported that rat sperm
head accumulates lipid metabolites as a result of sn-
glycero-3-phosphocholine metabolism during acrosome
reaction, which could have an involvement in sperm-
oocyte interaction and even in gamete fusion [58]. Con-
sidering all these findings, further research addressing
the specific role played by SP-sn-glycero-3-phosphocho-
line in pig fertility is warranted.
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The present study also evaluated the relationship be-
tween SP-metabolites and stillbirths per litter. Citrate,
creatine, phenylalanine and tyrosine were observed to be
promising biomarkers for stillbirths per litter due to
their ROC curves. In this sense, citrate is involved in the
Krebs cycle, which is the most relevant metabolic path-
way for energy production [60]. The results of the
present study revealed that high SP concentrations of
this metabolite were related to a low number of still-
births per litter. These results came as a surprise consid-
ering that low levels of SP-citrate have been observed in
high-fertility bulls [21] and SP-citrate has been widely
proposed as a biomarker for different human infertility
forms [18, 36, 61]. Considering the opposite trend of the
results presented herein, the exact mechanism through
which SP-citrate could positively influence AI outcomes
needs to be clarified in future studies.
Creatine is involved in the regulation of ATP and both

the supplementation of in vitro fertilization medium
with creatine [62] and the presence of this metabolite in
SP [63] have been reported to influence sperm physi-
ology in terms of motility and viability in humans [62,
63]. Interestingly, the present study found that high SP-
creatine concentration was associated with decreased
stillbirths per litter deviation. This result may be ex-
plained by the fact that creatine has been found to en-
hance fertilization and promote blastocyst and normal
embryo development [62]. Consequently, although this
should be further confirmed, it could be posited that
high SP-creatine has a positive effect on both gametes,
thus improving AI outcomes and decreasing the number
of stillbirths per litter.
Phenylalanine and tyrosine, amino acids involved in

the same metabolic pathway [64], were found to be
higher in SP-samples from boars with decreased still-
births per litter deviation. While, to the best of our
knowledge, no information about the effect of tyrosine
on sperm physiology has been reported, phenylalanine is
known to stimulate the ability of human sperm to cap-
acitate and undergo acrosomal exocytosis [65]. In cattle,
phenylalanine levels in SP are positively related to post-
thaw sperm viability, suggesting that this amino acid
could be involved in oxidoreductase and oxidant reac-
tions [66]. Interestingly, SP-tyrosine has also been found
to contribute to the total antioxidant capacity of SP [67].
If these findings were confirmed in pigs, concentrations
of phenylalanine and tyrosine in SP would also appear as
exerting a beneficial effect upon sperm through regula-
tion of reactive oxygen species (ROS) and could be used
to predict fertility outcomes in porcine.
Finally, the relationship between gestation duration

and concentration of SP-metabolites was also investi-
gated, and whereas malonate showed higher levels in
SP-samples from boars with longer gestation duration,

fumarate exhibited lower levels in that group. However,
further studies for fumarate validation should be con-
ducted, as no information regarding the effect of this
metabolite on sperm physiology or fertilizing ability has
been published. On the other hand, malonate may have
a double predictive value for both stillbirths per litter
size and the estimation of gestation duration. Malonate
is an intermediate metabolite of the Krebs cycle that in-
hibits ROS production via competition for succinate de-
hydrogenase [68, 69]. The present study identified a
positive relationship between SP-malonate levels and
both stillbirths per litter size and gestation duration. A
similar negative influence of SP-malonate has also been
found in humans, as infertile patients exhibited higher
malonate levels than fertile controls [70]. On the other
hand, malonate can act as protein post-translational
modification [71]. Based on these findings, while no
studies have been conducted to evaluate the influence of
malonate on sperm physiology, it could be posited that a
high SP-malonate concentration could: i) modify key
proteins involved in gamete interaction or even embryo
development, or ii) inhibit the Krebs cycle. In any case,
the fact that malonate relates to two distinct in vivo fer-
tility parameters reinforces its potential value as a pre-
dictor of AI outcomes in pig SP.
As aforementioned, the differences found between the

results of the present research and those reported in
other metabolomic studies conducted in pigs or in other
species may be due to several factors: i) differences in
the sensitivity of the metabolomic approaches; ii) varia-
tions in the preparation of samples; iii) the species-
specific role of seminal metabolites in fertility; and iv)
the use of non-comparable fertility parameters. For this
reason, although -omics approaches are powerful tools,
they should be used as a first steppingstone in the re-
search of (in-)fertility biomarkers [10, 29, 72]. In effect,
while the main strength of the present work is that a set
of SP-metabolites has been proposed to predict AI out-
comes, they should all be further validated using a
higher number of individuals and other approaches to
overcome the intrinsic limitations of-omics approaches.
Following this, the measurement of metabolites in SP
could be potentially used as an accurate fertility test to
select boars before they are included in an AI-program.
Moreover, future research needs to be conducted to as-
sess i) the specific role of each SP-metabolite in male
fertility, and ii) whether supplementing AI-extenders
with specific metabolites can improve the fertility poten-
tial of semen doses.

Conclusions
The metabolite profiling of pig SP using NMR spectros-
copy allowed the identification and quantification of 24
metabolites. The results evidenced that 13 of these
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metabolites were related with AI outcomes, pointing out
to putative in vivo fertility biomarkers. Specifically,
lactate could be used as a farrowing rate indicator;
carnitine, hypotaurine, sn-glycero-3-phosphocholine,
glutamate and glucose could predict litter size; citrate,
creatine, phenylalanine, tyrosine and malonate would be
biomarkers for the number of stillbirths per litter; and,
finally, malonate and fumarate would anticipate the
duration of gestation.
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