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Abstract: This paper presents a method to build a semantic map to assist an underwater vehicle-
manipulator system in performing intervention tasks autonomously in a submerged man-made
pipe structure. The method is based on the integration of feature-based simultaneous localization
and mapping (SLAM) and 3D object recognition using a database of a priori known objects. The
robot uses Doppler velocity log (DVL), pressure, and attitude and heading reference system (AHRS)
sensors for navigation and is equipped with a laser scanner providing non-coloured 3D point clouds
of the inspected structure in real time. The object recognition module recognises the pipes and objects
within the scan and passes them to the SLAM, which adds them to the map if not yet observed.
Otherwise, it uses them to correct the map and the robot navigation if they were already mapped. The
SLAM provides a consistent map and a drift-less navigation. Moreover, it provides a global identifier
for every observed object instance and its pipe connectivity. This information is fed back to the
object recognition module, where it is used to estimate the object classes using Bayesian techniques
over the set of those object classes which are compatible in terms of pipe connectivity. This allows
fusing of all the already available object observations to improve recognition. The outcome of the
process is a semantic map made of pipes connected through valves, elbows and tees conforming to
the real structure. Knowing the class and the position of objects will enable high-level manipulation
commands in the near future.

Keywords: 3D object recognition; point clouds; global descriptors; semantic segmentation; semantic
information; Bayesian probabilities; laser scanner; underwater environment; pipeline detection;
inspection, maintenance and repair; AUV

1. Introduction

State-of-the-art autonomous underwater vehicles (AUVs) are commonly used for
seafloor mapping in predominantly flat environments using multiple sensors, including
side-scan sonar (SSS), multibeam echosounder (MBES), forward-looking sonar (FLS) and
cameras, among others. The use of unmanned underwater vehicles (UUVs) for inspection,
maintenance and repair (IMR) applications is nowadays limited to the use of remotely
operated vehicles (ROVs) in inspection and/or intervention tasks. Nevertheless, during
the last decade, the research community has made a significant effort defining a new class
of UUV, the intervention autonomous underwater vehicle (I-AUV). This class of vehicles
is expected to replace intervention ROVs in IMR tasks in the future [1]. Though several
autonomous manipulation tasks have already been demonstrated, often only in water
tank conditions, most are just proof of concept demonstrations oriented to very particular
targets. Tasks such as valve turning [2,3], connector plug/unplug [4] and object search
and recovery [5] are clear examples. Nevertheless, in all these tasks, custom algorithms
have usually been used to detect and track a particular manipulation goal. Often the
targets have been labeled with markers to simplify the problem, or the robot was limited
to performing a particular manipulation action over a particular target object. In contrast,
a truly autonomous I-AUV should be able to obtain and use semantic knowledge of its
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surroundings. As such, the vehicle should be capable of identifying which objects are
around it, which class they belong to, and which tasks can be performed on them. For
instance, if a safety valve has to be manipulated in case of an alarm, the I-AUV needs to
know which valve, where it is and how it can be opened or closed. This leads to the semantic
map concept—a map containing the objects position and their specific class. Semantic
mapping is a key technique to endow the I-AUV with autonomous reasoning capabilities.

1.1. Objectives

This paper tackles the semantic map building problem for an I-AUV equipped with
a real-time high-resolution laser scanner and working on IMR operations. It extends our
prior work [6], where a point feature-based 3D object recognition method was proposed.
The method used Bayesian estimation as a probabilistic framework to integrate multiple
detections into a single, and more robust, object class identification. To do so, it was
necessary to track objects along the sequentially grabbed scans. For this purpose, a
Interdistance Joint Compatibility Branch and Bound (IJCBB) object tracking method was
proposed, which was able to track the objects in the presence of navigation glitches due
to sporadic failures of the Doppler velocity log (DVL) measurements. Moreover, the
method exploited semantic information related to object pipe connectivity (number of
pipes connected to the object) to constrain the potential set of compatible object classes
used during the Bayesian estimation. Nevertheless, the IJCBB must establish at least three
pairings between two scans to be able to register them. Otherwise, the tracking fails and
the object detections in this scan cannot contribute to the Bayesian estimation. On the
other hand, the iterative nature of the tracking algorithm reduces the drift, but is not able
to cancel it. Therefore, the natural next step is to employ simultaneous localization and
mapping (SLAM) techniques using the pipes and objects as features to build a drift-less
consistent map of the structure. Using conventional data association algorithms, between
the objects in a scan and the objects in the SLAM, it is possible to track the objects and
apply the Bayesian estimation. The outcome of the process is a semantic map of pipes and
objects, which provides the I-AUV with an accurate navigation as well as with the semantic
knowledge of the manipulable objects around it.

1.2. Contributions

The main contributions of the present paper are the following:

• A feature-based extended Kalman filter (EKF) SLAM method is proposed which uses
line and point features to represent the pipes and the objects, respectively. The method
solves two problems: (1) it provides a drift-less navigation; and (2) it assigns a globally
consistent identifier to every object in every scan, enabling Bayesian estimation. When
conveniently combined with the object recognition results, it becomes a semantic map
endowing the I-AUV with the semantic knowledge required to perform high-level
commands, such as Open Valve X, for example.

• It provides a method for plane segmentation which partitions the point cloud accord-
ing to the average maximum curvature and classifies the partitions either as planes or
as a curved region. The method allows separation of the flat surfaces corresponding
to the walls of the water tank, where the experiment was performed, from the pipe
structure itself.

• It provides an extension to the semantic object segmentation method already pro-
posed in [6], ensuring the correct segmentation of the valve handle, which proved
problematic in the previous paper.

1.3. Structure of the Paper

The remainder of the paper is organized as follows. Section 2 describes the state of the
art on underwater SLAM, object recognition and semantic mapping. Section 3 describes the
object recognition pipeline from the segmentation of the scans to the Bayesian recognition.
Section 4 describes the feature-based SLAM for object and pipe feature tracking. Section 5
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describes the experimental setup and the results obtained. Sections 6 and 7 provide
conclusions and future work on the results obtained.

2. State of the Art
2.1. Underwater SLAM

Many outdoor field robots rely on absolute measurements to bound the dead reck-
oning (DR) navigation drift, such as the Global Positioning System (GPS). However, in
underwater robotics, those sensors are unavailable due to electromagnetic attenuation;
underwater robots instead have to rely on acoustic localization methods such as long base-
line (LBL) [7], short baseline (SBL) [8], ultra-short baseline (USBL) [9] or GPS intelligent
buoys (GIB) [10]. Those methods require deployment of the beacons and/or a support
vessel to provide the GPS positioning to be composed with the measured acoustic position.
Unfortunately, those methods restrict the vehicle to a predefined zone (LBL) or decrease
their precision with increasing depth of the vehicle (SBL, USBL and GIB).

A solution to overcome these issues and have a completely independent AUV is to
correlate the vehicle sensor measurements with a map of the environment to reliably locate
its position with Terrain-Based Navigation (TBN) techniques [11]. However, precise maps
are not widely available, and so many researchers rely on SLAM methods, where the robot
incrementally builds a model of the environment and simultaneously uses it to estimate its
position within it.

Underwater SLAM can be categorised according to the type of sensors used to perceive
the environment. On the one hand, vision-based sensors perceive the environment at high
rates and high precision, but they are very sensitive to water visibility, which greatly
limits their range. On the other hand, acoustic-based sensors provide low-rate and low-
precision measurements regardless of visibility. Regarding acoustic SLAM, we can further
classify SLAM into feature-based and featureless methods. Feature-based methods are
generally used in man-made environments, where features are easier to extract [12–14],
while featureless methods are primarily used in natural environments [15–21].

In contrast, underwater vision-based SLAM relies heavily on visual features extracted
from the texture of the environment [22–27]. If the environment is texture-less, an alterna-
tive is to use laser-camera systems, where the laser produces the necessary texture to extract
point clouds from the environment. Initial developments of this approach relied on a fixed
laser scanner that, combined with the vehicle motion, produces the point clouds [28,29],
but suffers from navigation drift.

A new laser scanner based on a moving mirror provides scans at a maximum rate
of 6 Hz, fast enough to allow the vehicle drift during a single scan to be neglected [30].
This laser scanner has already been tested on motion planning applications in an unknown
environment [31] and in a pose-based SLAM for mapping [32]. In the present work, we
focus on the application of this laser scanner to semantically extract features that serve as
input for the SLAM algorithm and ease the recognition of the object features on pre-trained
models of the different objects.

2.2. Object Recognition

Object recognition is a domain of 3D scene exploration and understanding associated
with applications such as autonomous driving and housekeeping robots. 3D object recogni-
tion has emerged thanks to pre-existing 2D methods translated into 3D and the advanced
availability of different types of 3D sensors.

In the field of object recognition based on point clouds, several surveys have been
carried out in which methods and ideas based on global and local descriptors have been
presented [33–35]. Global recognition methods interpret the entire object as a unique
vector of values, while local recognition methods focus more on a local region and are
computed from salient points. Recently, deep learning has gained increasing attention. The
following two publications are representative examples. In [36], Guo et al. summarized
deep learning methods applied to 3D point clouds. The authors aimed to select the most
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relevant applications for point cloud understanding, considering 3D shape classification,
3D object detection and tracking, and 3D point cloud segmentation. They evaluated
the quality of the performance of state-of-the-art methods based on deep learning and
compared the methods with different publicly available datasets. In Tian et al. [37], the
authors proposed a dynamic graph convolutional broad network (DGCB-Net) for feature
extraction and object recognition from point clouds, and their method was tested on several
public datasets and one dataset which they collected.

However, fewer papers have focused on underwater application scenarios, with the
exception of the paper by Martin et al. [38], in which a processing pipeline is presented,
based on the use of a deep PointNet neural network. The proposed method was able to
detect pipes and valves from 3D RGB point clouds in underwater environments using a
generated dataset to train and test the network. Recent work by Pereira et al. [39] is also
based on a deep learning approach, where a convolutional neural network was used for
recognizing a docking structure from point clouds. Their methods were evaluated with
simulated and real datasets.

Although deep learning approaches have been reported to have attained accurate
results, such methods are very demanding in terms of the amount of training data to ensure
proper learning generalization. In the case of man-made structures observed by sensors
that provide only colourless point clouds, the collection of the required training data is a
difficult and time-consuming task.

The work described in Martin et al. [38] used a similar man-made structure as the one
in our work, comprising valves interconnected by pipes. Furthermore, the experiments in
both papers were conducted in an underwater environment. Their work is directly related
to the problem we are trying to solve, i.e., the recognition of man-made objects underwater,
because it formed part of the same research project TWINBOT [40] in which both groups
participated. In the following paragraphs, we provide a comparison of the two works,
which highlights the trade-offs between the two approaches.

• In the present work, we have used a feature-based SLAM approach to object recogni-
tion using a 3D point cloud with no RGB information, obtained with a laser scanner.
The process can be summarised as follows:

– The segmentation of the ground was performed using the methods explained
in Section 3.2. The segmentation of pipes was performed separately from the
recognition of the objects;

– Five object classes were defined in the experiments, which were segmented based
on the pipe connections;

– The knowledge database was generated from the object’s CAD model using a
process described in our previous article [33]. The test data was collected in the
test pool of our laboratory, and included 1268 point clouds for individual objects,
extracted from 245 laser scans;

– The main recognition performance results are found in Section 5.4.

• In the work of Martin et al. [38], a deep learning approach was applied for the
detection of pipes and valves. The network used, as input, 3D point clouds with RGB
information obtained from stereo cameras, and the following steps were performed:

– Ground truth data were manually created from the point cloud, and divided into
three classes: pipes, valves and background;

– Two datasets were used. The first dataset was acquired in a test tank and con-
tained 262 point clouds. This dataset was divided into two subsets, the first
containing 236 point clouds which were used to train the network and the re-
mainder used as test samples. The second dataset was collected in the sea and
included 22 point clouds that were used only as a test set;

– 13 experiments were conducted varying the hyper-parameters in the training
phase: batch size, learning rate, block-stride and number of points;
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– To assess the performance of the neural network and estimate how the model is
expected to perform, a 10-fold cross-validation was performed. Overall, 9 subsets
of 213 point clouds were used for training, and 1 subset of 23 point clouds was
used for testing. The final classification result was obtained by averaging the
performance of these ten different results;

– From the results presented, it can be seen that the background class was predom-
inant, followed by the pipe and valve classes in both pool and sea experiments.

2.3. Semantic Mapping

Semantic mapping started indoors with scene recognition [41–44] and then moved
outdoors. It has been applied on various input data, such as cameras [45,46], depth
cameras [47,48] or laser scanners (usually LIDARs) [49–51]. Implementations vary from
surpervised to unsupervised methods, where semantic classes are a priori unknown.

Adding semantic information to underwater maps contributes to a better spatial
awareness of nearby terrains and objects, enabling higher-level tasks to be performed.
This is especially important for IMR tasks where robots have to be aware of the different
components and how to interact with them.

In the underwater environment, it has been mainly used for semantic image segmen-
tation [52,53], which can also be applied to exploration [54]. To the best of the authors’
knowledge, semantic mapping has not yet been applied to point clouds obtained under-
water with a laser scanner for IMR tasks, and thus, this paper goes beyond the state of
the art.

3. Object Recognition Pipeline

As can be seen in Figure 1, the object recognition pipeline is divided into several
modules. First, the floor and lateral walls/slopes of the water tank where the experiment
takes place are segmented and subtracted from the scanned point-cloud. Then, pipes are
detected and the resulting point cloud is used as input for the semantic object segmentation.
Having extracted the planes and the pipes from the scan, objects are segmented.

Figure 1. 3D object recognition pipeline.
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A feature-based SLAM is continuously running, integrating DVL, pressure and
attitude and heading reference system (AHRS) measurements. The input pipes and objects
are used as features of the SLAM, which simultaneously estimates the robot pose, and the
position of the already-observed pipes and objects. Therefore, solving the association of
the objects segmented from the scan with those already mapped, it is possible to associate
a global identifier with them. Finally, the object recognition module uses the point feature
descriptors of the partial views of the segmented objects, matching them against those
stored in the object database, identifying the object class. Since the global identifier of
the observed object instance is known thanks to the SLAM output, it is possible to use
several past object class estimations to compute its global object class, achieving more
robust results. Hereafter, the different modules are described in more detail.

3.1. Object Data Base

A database of point clouds was created (Table 1), containing overlapping partial views
of isolated objects. These views were created from 3D CAD models and captured using a
virtual camera. This database was useful for the design of simulated experiments and for
their statistical analysis, as presented in our previous work [6]. Details on the creation of
the database can be found in the same publication.

Table 1. Polyvinylchloride (PVC) pressure pipe objects used in the experiments (reprinted with permission from ref. [6].
2021 Sensors)

PVC Objects Id Name Size (mm3) PVC Objects Views (12)

1-Ball-Valve 198× 160× 120

2- Elbow 122.5× 122.5× 77

3- R-Tee 122.5× 168× 77

4- R-Socket 88× 75× 75

5- Butterfly-Valve 287.5× 243× 121

6- 3-Way-Ball-Valve 240× 160× 172

3.2. Plane Segmentation

In our previous work [6], planes were detected using random sample consensus
(RANSAC). Unfortunately, in several scans, the principal plane detected did not correspond
to the floor or the walls of the water tank. Sometimes, points belonging to different pipes
and even objects, and others belonging to the slopes, became co-planar, forming the most
significant plane in the scene. However, removing it would wrongly eliminate a significant
number of points in the pipes and objects, making the recognition more challenging.
To avoid this problem, an alternative method is proposed in this paper.

The problem of plane segmentation can be seen as an unsupervised classification prob-
lem, where the goal is to group the points into regions defined according to their curvature,
which is an attribute describing the local geometry around a point. In Point Cloud Library
(PCL), the curvature of a point is computed performing an eigen-decomposition of the
points in the neighbourhood. The eigenvector corresponding to the smallest eigenvalue
provides the direction of the normal, and the other two provide the tangent plane. The
curvature κ is defined as the ratio between the smallest eigenvalue and the addition of the
three eigenvalues:
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κ =
λ0

λ0 + λ1 + λ2
where λ0 < λ1 < λ2. (1)

To remove the planar surfaces, first we segmented the point cloud into several regions
using the region-growing method [55]. The algorithm begins by selecting as a seed point
the one with least curvature. Then, the region is computed by growing the seed to those
adjacent points in the neighbourhood whose angles between normals (the normal of the
seed and the local normal at the point) are within a pre-defined threshold. Next, the points
within the region with a curvature below a threshold are considered as new seeds, and the
algorithm is iterated until no more seeds are available. At this point, the first region has
been segmented and the algorithm is applied again to the rest of the point cloud. The result
is a set of regions having a smooth evolution of the angle among their normals. The regions
are separated either for having a sudden change in their normals (smoothness), or because
they are spatially separated, as shown in Figure 2. The threshold angle between the normal
vectors was set to 30 degrees. If the points are on the same plane, then the normals of the
fitting planes of these two points are approximately parallel.

Second, the resulting regions are classified into two categories based on an empirical
threshold on their mean curvature (Fig. 2). We evaluated the curvature of each region in a
neighbourhood of 50 points and chose an empirical threshold of 0.025 (Fig. 3). Each region
from the growing regions result is classified as: (a) points on flat areas such as the bottom
and the slopes on both sides of the water tank, or (b) points on the rest of the cloud, such
as objects and pipes of the structure.

Subsequently, the flat regions are deleted, and the remainder are merged into a
single region containing the non-flat areas to be further processed. The proposed plane
segmentation method is shown in Algorithm 1.

Algorithm 1: Plane Segmentation

1 function RegionsGrowingSegmentation(in: scan, out: RI):
// Returns the set of region Ri detected in the scan using Growing

Regions Algorithm

2 return {RI}
3 function MergeRegions(in: RI , out: SRI , PRI):
4 if (Rcurvature > τd) then // Non planar?

// Returns a pipes and objects (structure) regions (SRI) result
of merging the input set of non-plane regions

5 else
// Returns a plane regions (PRI) result of merging the input

set of plane regions

6 return {< SRI , PRI >}
7 procedure PlaneSegmentation(in: scan; out: SRI , PRI):
8 RI=RegionsGrowingSegmentation(scan) // Set of regions Ri
9 forall Ri ∈ RI do

10 {< SRI , PRI >}=MergeRegions(Ri)
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(a) (b)
Figure 2. Plane segmentation. (a) Outcome regions of the region-growing method. (b) Segmentation of the point cloud into
two regions with normals in green: I) non-flat areas in blue, and II) flat areas in pink.
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Figure 3. Mean curvature threshold separating the pipes from the flat areas. The horizontal axis
represents, for all the dataset scans, the regions obtained using the region-growing method. The
vertical axis provides, for each region, its mean curvature.

3.3. Pipe Detection

For detecting pipes in the current scan, a method based on the RANSAC implementa-
tion in PCL was used. This method models the pipes as cylinders with seven parameters,
consisting of the 3D position of a point on the axis, axis direction, and cylinder radius. The
scan is divided into two categories, namely the pipe cloud category and non-pipe cloud
category. Since the radius of the pipes is known and objects have a maximum size, only the
segmented cylinders with length more than 0.30 m and maximum radius of 0.064 m are
considered as pipes. To calculate the endpoints of the pipes, the selected set of points is
projected onto the pipe axis, and the points at the extreme ends are considered as the limits
of the pipe.

Scan deformations caused by motion-induced distortions during the acquisition of
the laser scan [32] can occasionally lead to two different detections being generated for the
same pipe. The solution for such cases as well as details on the implementation of the pipe
detection are provided in [6]. An example of pipe detection with their respective endpoints
is given in Figure 4.
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Figure 4. Pipe detection: (left) 3D laser scan point cloud; (right) Pipes in blue with their respective
endpoints in green.

3.4. Semantic Object Segmentation

The proposed semantic 3D object segmentation is inspired and motivated by the fact
that objects are found at the extremities of pipes. Knowledge about these objects includes
detailed information about the connectivity of the objects and structural knowledge, such
as the fact that valves with two parallel connections are characterised by handles, which
is an important feature for objects like butterfly valves to distinguish them from their ho-
mologous valves. In addition, functional knowledge is needed for these features, allowing
the robot to infer whether the valves can be turned on or off based on the position of a
handle. To this end, the semantic segmentation problem can be formulated as follows:
Given an object with one or two parallel connections (Figure 5), it is possible to find a
potential handle, as shown in the right part of the figure, where objects with one or two
parallel connections are segmented using a ’mushroom’ shape (green cube on the top of
the red one). The base is defined for the body of the object and the parallel pipe shape
for the potential handle, while if the object has more connections or two perpendicular
connections, only the base is segmented, as shown with blue cubes.

Figure 5. Semantic object segmentation: (left) 3D laser scan point cloud; (right) Example of segmenta-
tion and how objects with different connectivity are treated differently.
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3.5. 3D Object Recognition Based on Global Descriptors

Object recognition is an essential part of building a semantic map of the environment.
In [33] we studied and compared several descriptors using synthetic and real data. The
best results involving experimental data were achieved using the Clustered Viewpoint
Feature Histogram (CVFH) [56] descriptor, which is therefore used in this paper.

3.6. Bayesian Recognition

A disadvantage of object recognition with a single-view approach is that multiple
objects may have similar views. A study based on the confusion matrices for the vari-
ous objects was carried out in our previous work [33]. Given a set of observations of a
particular object, we can use confusion matrices to determine how many observations
were recognized as object-class-n, where n indicates the class name of the object. Given
this information, we can estimate a probability for each class as well as the confusion
between classes, which is used to implement a Bayesian estimation method to improve
object recognition results.

For this purpose, several observations were combined to calculate the probability that
an object belongs to each object class. The selected object was assigned to the class with
the highest probability. This method required continuous observation of the same objects
across the scans, so a tracking method was required to iteratively compute the Bayesian
probabilities. In our previous work [6], this tracking was performed using a navigation-
less variant of the Joint Compatibility Branch and Bound (JCBB) algorithm, based on
the distances between objects within a scan, and referred to as IJCBB. In the present
work, we use the SLAM solution described in Section 4, which achieves significantly
higher performance.

3.7. Bayesian Estimation

In order to solve the common problem of ambiguous observations caused by having
only partial views of the objects in the scans, a Bayesian estimator is applied. In [33] we
have already computed the object confusion matrix; this matrix is used as an estimate of the
required conditional probabilities. The object class recognised with the global descriptor
is denoted as ZC. X is the actual class of this object, and Ball-Valve, Elbow, R-Tee, R-Socket,
Butterfly-Valve, 3-Way-Valve are potential class candidates, sub-indexed with numbers 1 to
6 respectively. P(ZC|Xi) indicates the probability that the object is recognised as class ZC
when its actual class is Xi. If C = i then it is a true positive (TP), otherwise (C 6= i) it is a
false positive (FP).

3.8. Semantic-Based Recognition

By knowing the number of pipes connected to the object and their geometry, the
recognition rate can be further improved. This method was presented in [6] and is briefly
summarized here for completion.

The information about the number of pipe connections and their geometry is used to
reduce the set of possible classes for a given object by considering only those classes that
are compatible with that configuration. For example, if we know that an object is connected
to 3 pipes, then only 2 candidate classes are possible: the R-Tee and the 3-Way-Valve. Thus,
the Bayesian probabilities are computed only for the compatible candidate classes and
considered zero for the rest.

Four different geometric configurations may arise:

Configuration 1 Three pipes: two collinear and one orthogonal. This group contains the
R-Tee and the 3-Way-Valve;

Configuration 2 Two orthogonal pipes: This group contains the Elbow but also the mem-
bers of the previous group, since it is possible that the third pipe has not yet been
observed;
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Configuration 3 Two collinear pipes: All objects are included in this group, except the
Elbow and the R-Sockets. The remaining objects admit a collinear connection to two
pipes;

Configuration 4 Single or no connection: All objects are considered as potential candidates.

It can be seen from Table 2 that these configurations have a hierarchy in the sense
that the first is the most restrictive, the second is less restrictive and encompasses the
objects of the first group, and so on. One exception is group 3, for 2 collinear pipes where
the Elbow of group 2 is not present. It is worth noting that the laser scanning process
often provides only partial views of the objects due to occlusions and the limited field
of view. As such, a certain object may appear as connected to a single pipe in the first
observation, then connected to three pipes on the second observation and then just to a
single pipe in the third observation. Since objects are mapped in the SLAM, we can use the
knowledge of the previously observed configurations to better compute the probabilities.
As an example, if an object is observed in configuration 1 and then configuration 2, then
the probabilities for the second observation will be computed as for configuration 1 (which
is the most restrictive).

Table 2. Semantic connection of objects. The number of pipes connected to an object is indicated by np (reprinted with
permission from ref. [6]. 2021 Sensors).

Type of Connection Pipe Disposition Potential Object Candidates
np ‖ ⊥

3 2 1

2 0 2

2 2 0

1|0 1|0 1|0

4. Simultaneous Localization and Mapping for Object and Pipe Tracking

Once the pipes and objects are segmented from the scans, they are sent as input to a
SLAM algorithm that integrates AUV navigation with those features in order to improve
navigation and track the features, keeping a single global ID for each of them. The output of
the SLAM to the semantic Bayesian recognition are the global IDs for each object detected
in the scan. This ensures that different observations of the same object are used together to
better estimate the object class.

4.1. Line Feature Representation

The pipes are represented using an ortho-normal line representation [57] consisting
of three angles of rotation (α β γ) and the shortest distance from the frame origin to the
line ρ (2) (Figure 6).

L =
[
α β γ ρ

]
(2)
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Figure 6. Line feature parametrization.

Given the segment endpoints (p and q) provided by the pipe detection algorithm (see
Section 3.3), the ortho-normal representation is computed using Plücker coordinates [58].

n = p× q (3)

v = q− p (4)

nu = n/||n|| (5)

vu = v/||v|| (6)

ru = vu × nu (7)

R =
[
ru vu nu

]
= Rot(γ, z)Rot(β, y)Rot(α, x) (8)

ρ = ||n||/||v|| (9)

where vu represents the line direction and nu is perpendicular to the plane formed by the
two endpoints and the frame origin (Figure 7). The three angles of rotation can be extracted
from the rotation matrix R as:

α = atan2(vuz , nuz) (10)

β = asin(ruz) (11)

γ = atan2(ruy , rux ) (12)

Figure 7. Ortho-normal representation of a pipe segment.

The line is computed from the pipe endpoints which are known in the vehicle sensor
frame {S}, which is the frame of reference of the point cloud. Therefore it is initially
referenced to {S} and has to be transformed to the world frame {W}:
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Wρ ·Wnu = W RS · Sρ · Snu +
WtS ×

(
W RS · Svu

)
(13)

Wvu = W RS · Svu (14)

where W RS and WtS are, respectively, the rotation and the translation that transform from
the sensor frame {S} to the world frame {W}.

Similarly, the opposite transformation is computed as:

Sρ · Snu = W RT
S ·Wρ ·Wnu −W RT

S ·WtS ×Wvu (15)
Svu = W RT

S ·Wvu (16)

From this, we can calculate the frame change Jacobians with respect to the line repre-
sentation in the frame and to the sensor position in the world.

4.2. State Vector

The state is represented with the Gaussian random vector x(k):

x(k) =
[
xv(k) f1(k) f2(k) . . . fn(k)

]T (17)

defined by 2 parameters, the mean:

x̂(k) =
[
x̂v(k) f̂1(k) f̂2(k) . . . f̂n(k)

]T
(18)

and the covariance matrix P(k), which provides the covariance of the vehicle and the
feature lines, as well as their cross-correlations:

P(k) = E
(
[x(k)− x̂(k)][x(k)− x̂(k)]T

)
=


Pv(k) Pv f1(k) . . . Pv fn(k)

Pf1v(k) Pf1(k) . . . Pf1 fn(k)
...

...
. . .

...
Pfnv(k) Pfn f1(k) . . . Pfn(k)

 (19)

The vehicle state xv = [x y z φ θ ψ u v w]T has nine dimensions, including vehicle
position [x y z]T and the vehicle orientation [φ θ ψ], both represented in the world reference
frame {W}. This frame is located at the water surface, being aligned with the north
(i.e., north-east-down (NED) reference frame). The linear velocities [u v w]T , instead, are
referenced to the vehicle’s frame {B}. This is also the minimum dimension of the state
vector at the beginning of the execution. The state vector is initialized with the vehicle at
rest on the surface when the first depth, AHRS and DVL measurements are received.

The line and object features [f1(k) f2(k) . . . fn(k)] are static and defined in the world
reference frame {W}. Line features are represented with ortho-normal coordinates (see
Section 4.1) and objects are represented by their coordinates xyz. The number of line
features in the state vector is represented by nl and the number of object features is
represented by no, with the total number of features being n = nl + no.

4.3. Prediction

A six degrees of freedom (DoF) constant-velocity kinematics model is used to predict
the vehicle state evolution from time k− 1 to time k. The attitude rate of change (Euler angle
derivatives), available from the AHRS, is used as the system input (u(k) =

[
φ̇ θ̇ ψ̇

]T). The
uncertainty is modeled as a white Gaussian noise in linear acceleration (wl) and attitude
velocity (wa). This model can be formulated as:
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xv(k|k− 1) = f (xv(k− 1), u(k), w(k)) (20)

xv(k|k− 1) =



x
y
z

+ Rot(φ, θ, ψ)

u
v
w

∆t + wl
∆t2

2


φ

θ
ψ

+ (u + wa)∆tu
v
w

+ wl∆t


(21)

where ∆t is the time between k− 1 and k, and w = [wl wa] ∼ N (0, Q) is a white Gaussian
noise representing the uncertainty of the linear acceleration wl = [wu̇ wv̇ wẇ] and the
attitude velocity wa =

[
wφ̇ wθ̇ wψ̇

]
. In contrast, the features are static and are kept constant

throughout the prediction. Hence, the whole state can be predicted using:

x(k|k− 1) =
[

f (xv(k− 1), u(k), w(k)) f1(k− 1) f2(k− 1) . . . fn(k− 1)
]T (22)

4.4. Navigation Sensor Updates

The different navigation sensors present on the vehicle (pressure sensor, DVL and
AHRS) provide direct observations of the state vector. Therefore, a linear observation
model can be used. The general model in this case is:

z(k) = H(k) · x(k|k− 1) + m(k) (23)

where z is the measurement vector, and m ≡ N (0, R) is a white Gaussian noise vector with
0 mean and covariance R. The size of the observation matrix H, as well as the size of R,
changes between the different types of observations.

A pressure sensor produces a 1 DoF position measurement which is a direct observa-
tion of the vehicle’s depth (i.e., z position). Therefore, the resulting observation matrix is:

HDEPTH(k) =
[
0 0 1 01×6 01×(4nl+3no)

]
(24)

and RDEPTH is the covariance of the pressure sensor:

RDEPTH = σ2
DEPTH (25)

An AHRS produces 3 DoF angular measurements, which are direct observations of
the vehicle attitude (Euler angles). The resulting observation matrix is:

HAHRS(k) =
[
03×3 I3×3 03×3 03×(4nl+3no)

]
(26)

and the covariance matrix RAHRS is a 3× 3 square matrix with the uncertainties of each
angle observation:

RAHRS(k) =

σ2
φ 0 0

0 σ2
θ 0

0 0 σ2
ψ

 (27)

A DVL produces 3 DoF velocity measurements, which are direct observations of the
vehicle velocity in its own frame:

HDVL(k) =
[
03×3 03×3 I3×3 03×(4nl+3no)

]
(28)
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and the covariance matrix RDVL is a 3× 3 square matrix with the uncertainties of each
velocity estimation.

RDVL(k) =

σ2
u 0 0

0 σ2
v 0

0 0 σ2
w

 (29)

4.5. Line Feature Observation

From the pipe detector (see Section 3.3), line features are received as pairs of endpoints
in the sensor frame {S}. A first merging filter is used to join collinear segments onto bigger
segments. This is done by checking the point-to-line distance of the endpoints against the
line defined by the other segment and vice-versa. If all the distances are below a threshold,
the segments are joined and the longest possible segment from the two pairs of endpoints
is retained (Figure 8).

Figure 8. (left) Original pipes received from the pipe detector. (right) Merged pipes before SLAM up-
date.

As observations of a highly angular structure, the angular threshold between lines
is not very sensitive, and in this case, a maximum value of 0.175 rad is used. However,
the distance threshold is more sensitive due to the existence of parallel lines. A maximum
value around the half distance between the closest lines in the real structure, 0.3 m, is used.

The merged segments are converted to the line feature representation in the sensor
frame using Equations (3)–(12). The first step in the feature update process is feature
association. Already mapped features in the state vector are transformed to the sensor
frame together with their uncertainty. A JCBB algorithm is used to ensure consistency in the
associations, as opposed to standard individual compatibility [59]. Once this association is
solved, we have two kinds of observations: re-observed features that were already in the
state vector, or new features that are candidates to be added to the state vector.

For better representation of the line features when observing the results, the endpoints
provided by the pipe detector are saved and re-projected to their associated line at the end
of every feature observation.
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4.5.1. Line Feature Re-Observation

Given a feature observation z(k), associated with an already mapped feature f j, the
non-linear observation equation is defined as:

z(k) = h fj(x(k), vj(k)) = hj(xv(k), fj(k), vj(k)) (30)

vj(k) ≡ N (0, R fj(k)) (31)

where the hj function uses the the robot pose xv and the feature parameters fj = [Wα W βWγ Wρ]
are represented in the world frame to transform the line parameters to be referenced to the
sensor frame. To do so, first, (3)–(7) are used to compute the vectors Wru, W vu, W nu and Wρ.
Next, Equations (15)–(16) are used to compute their counterparts in the sensor frame and,
finally, (10)–(12) compute the angles of the new line parametrization in the sensor frame.

The linearised observation matrix is given by:

H fj(k) =
∂h fj(x(k), v(k))

∂x(k)

∣∣∣∣∣
x(k)=x̂(k)

(32)

Hfj(k) =
[

J1j(k) 0 · · · 0 J2j(k) 0 · · · 0
]

4×(9+4nl+3no)
(33)

where J1j is a 4× 9 Jacobian matrix that represents the partial derivative of transforming fj
from the world frame {W} to the sensor frame {S} with respect to the vehicle state, and
J2j is a 4× 4 Jacobian matrix that represents the partial derivative of transforming f j from
the world frame {W} to the sensor frame {S} with respect to the features in the world
frame W f j:

J1j(k) =
∂hj(xv(k), f j(k))

∂xv(k)

∣∣∣∣
xv=x̂v(k), fj(k)= f̂j(k)

(34)

J2j(k) =
∂hj(xv(k), fj(k))

∂ fj(k)

∣∣∣∣
xv(k)=x̂v(k), fj(k)= f̂j(k)

. (35)

Next, observation matrices are stacked to form a single observation matrix:

H(k) =


Hf1(k)
Hf2(k)

. . .
Hfs(k)


4s×(9+4nl+3no)

(36)

with s being the number of observed features. Similarly, the covariance matrices Ri are
used to form a block diagonal matrix of uncertainty:

R(k) =


Rf1(k) 04×4 . . . . . .
04×4 Rf2(k) . . . . . .

...
...

. . . 04×4
...

... 04×4 Rfs(k)


4s×4s

. (37)

Then, a standard EKF update is applied using these matrices.

4.5.2. New Line Feature Observation

After updating the filter with all the feature observations which have been associated
to map features, the remaining non-associated features are considered as candidates to
be incorporated to the state vector. Since the structure is known to have only vertical
or horizontal pipes, the candidate features are tested against this condition in order to
discard outliers.
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To add a feature fi observed in the sensor frame {S} to the state vector, it is com-
pounded with the current vehicle position to obtain the feature in the world frame {W}.
We denote this operation with the � operator to distinguish it from the vehicle-point
compounding using the ⊕ operator, traditionally defined in the SLAM literature as:

fj(k) = xv(k)� fi(k) (38)

Let the stochastic map at time step k be defined by the stochastic vector x(k) ∼
N (x̂(k), P(k)). Then, the augmented state vector, including the new feature, is given by:

x+(k) ≡ N (x̂+(k), P+(k)) (39)

where:
x̂+(k) =

[
x̂(k) x̂v(k)� f̂i(k)

]T (40)

and:

P+(k) =

[
P(k) [PT

v (k) PT
f1v(k) . . . PT

fmv(k)]
T J1�(k)T

[Pv(k) Pv f1(k) . . . Pv fm(k)]J1�(k) J1�(k)Pv(k)JT
1�(k) + J2�(k)R fj(k)JT

2�(k)

]
(41)

where J1� is a 4× 9 Jacobian matrix that represents the partial derivative of transforming
fi from the sensor frame {S} to the world frame {W} with respect to the vehicle state, and
J2� is a 4× 4 Jacobian matrix that represents the partial derivative of transforming fi from
the sensor frame {S} to the world frame {W} with respect to the feature in the sensor
frame:

J1�(k) =
∂xv(k)� fi(k)

∂xv(k)

∣∣∣∣
xv=x̂v(k), fi(k)= f̂i(k)

(42)

J2�(k) =
∂xv(k)� fi(k)

∂ fi(k)

∣∣∣∣
xv=x̂v(k), fi(k)= f̂i(k)

(43)

Once a feature is added to the state vector, its endpoints are also saved for future
re-observations.

4.6. Object Feature Observation

From the object semantic segmentation, object features are received as xyz positions
in the sensor frame {S}. The first step before the update is the feature association. Already-
mapped features in the state vector are transformed to the sensor frame together with their
uncertainty. As for the line features, a JCBB algorithm is used to ensure consistency in
the associations. Once this association is solved, we have two kinds of observations: re-
observed features that were already in the state vector or new features that are candidates
to be added to the state vector.

4.6.1. Object Feature Re-observation

As in the previous case, each feature observation z(k) associated with an already
mapped feature fj has an observation Equation (30). In this case, since we use point
features instead of lines, a different hj function is used:

hj(xv(k), fj(k)) = 	xv(k)⊕ fj(k). (44)

where ⊕ and 	 are the conventional compounding and inverse compounding operations
commonly used in the SLAM literature.

Given the point feature observation (32), computing the observation matrix H fj (33)
involves computing the Jacobians J1j (34) and J2j (35) of the point feature observation
function hj given in (44). In this case, the matrix size is 3× (9 + 4nl + 3no) since the points
are tri-dimensional. In a similar way as was used in Section 4.5.1, the stacked observation
matrix H(k) can be computed as shown in (36), though, in this case, its dimension is
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3s× (9 + 4nl + 3no). Finally, the covariance matrix of the observation can be built as a bloc
diagonal matrix as shown in (37) being, in this case, a 3s× 3s matrix.

Then, a standard EKF update is applied using these matrices.

4.6.2. New Object Feature Observation

As for the line features, after updating all the object position observations which
have been associated to point map features, the remaining non-associated features are
considered as candidates to be incorporated to the state vector. The process followed to
map the newly discovered objects is equivalent to the one conducted with the pipe lines.
The main difference is how the world reference feature position is computed:

fj(k) = xv(k)⊕ fi(k) (45)

which, in this case, uses the conventional vector compounding operation. Therefore, the
vector augmentation equations are equivalent to (40) and (41), substituting � by ⊕, J1�
by J1⊕ and J2� by J2⊕. Please note that in this case, the hj function used to compute the
Jacobians is now the one reported in (44).

5. Experimental Results
5.1. Experimental Setup

The underwater test scene consisted of an industrial structure comprising pipes and
valves, with an approximate size of 1.4 m width, 1.4 m depth and 1.2 m height (Figure 9).
For the testing, this structure was positioned at the bottom of a 5 m deep water tank,
while the Girona500 AUV [60] moved in a trajectory around it while always facing the
underwater structure. The laser scanner measurements were obtained at a distance ranging
from 2 to 3.5 m from the underwater structure at a rate of 0.5 Hz. Maintaining a constant
distance to the observed structure ensures better results as observed in [61]. The dataset
was acquired and stored in a Robot Operating System (ROS) bagfile to be processed offline,
consisting of the AUV navigation data (DVL at 5 Hz, pressure at 8 Hz and AHRS at 20 Hz),
and the point clouds of 245 laser scans gathered with our laser scanner.

Figure 9. Experimental setup in the water tank with the Girona500 AUV. (left) Industrial structure
before deployment. (center) Underwater view of the water tank during the experiments. (right) The
3D visualizer with a scan of the structure.

The 245 scans were processed, containing a total of 1268 object observations of
20 unique objects from 6 different classes, and 1778 pipe observations of 12 unique pipes.
More details on the experimental setup can be found in [6].

A video showcasing the segmentation and SLAM results can be found in https:
//www.youtube.com/watch?v=flFoUrDN-rc

https://www.youtube.com/watch?v=flFoUrDN-rc
https://www.youtube.com/watch?v=flFoUrDN-rc
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5.2. SLAM Results

The proposed SLAM algorithm with line and object features was compared first with
the same algorithm without the feature updates, consisting of a DR navigation. Since no
features are used in DR, the resulting map contains all the observations received from the
semantic segmentation module (Figure 10a). Nevertheless, the SLAM solution provides a
consistent map with all the pipes and objects from the structure (Figure 10b). Note that the
lower corner is never observed in this dataset, and thus, the corner object, as well as the
full length of the bottom pipes, are not included in the final map.

To assert the convergence on the state estimation for pipes and objects, one can look at
the volume of the uncertainty bounding ellipsoid, which can be computed as ∏i λi, where
λi are the eigen-values of the uncertainty matrix corresponding to the feature. For better
numerical stability, by avoiding multiplications of small numbers that can lead to numerical
errors, volumes can be calculated in the logarithmic space as ∑i log(λi). Figures 11 and 12
show how the uncertainty-bounding ellipsoids for each feature decrease through time with
each re-observation of the feature and maintain constant values when the features are not
re-observed.

(a) (b)
Figure 10. Comparison of maps obtained from DR and SLAM with the NED reference frame. (a) DR
with 1778 pipes and 1268 objects. (b) SLAM with 12 pipes and 20 objects.
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Figure 11. Uncertainty volumes with regards to experiment time for the 12 pipe features.
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Figure 12. Uncertainty volumes with regards to experiment time for the 20 object features.

Looking at the vehicle state vector, we can observe that vehicle positions in the xy
plane reach a significantly smaller uncertainty than the DR solution (Figure 13).
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Figure 13. Comparison between DR and SLAM mean values and ±2σ covariances for robot position.

It is worth noting that the DR covariance shows several peaks of uncertainty due to
the DVL not being able to provide velocity measurements to bound the error. This can be
clearly seen in the vehicle state velocity (Figure 14), where the DVL failures are more clearly
seen by the growing uncertainty. DVL failures are common in water tank experiments due
to the beams impacting the vertical walls. However, the SLAM solution greatly reduces the
uncertainty during those events, providing a more accurate estimation.
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Figure 14. Comparison between DR and SLAM mean values and ±2σ covariances for robot velocity.

5.3. Object Segmentation Results

Significantly better results have been achieved using the segmentation method de-
scribed in Section 3.4 compared to our previous solution. The new method correctly
segments the handle of the valve, which is a salient feature of this object. This can be
appreciated in Figure 15, which is a good example of a Butterfly object segmentation. This
improvement leads to a better recognition rate with the CVFH descriptor.

Figure 15. Segmented view of the butterfly valve along with the handle.

5.4. Object Recognition Results

Figure 16 and Table 3 show the confusion matrices of the object recognition method.
The row labelled SYN shows the confusion matrix, which was computed using synthetic
data and the CVFH descriptor only. This confusion matrix is the same as the one presented
in [33] and is included here for comparison. The rows labeled DESC, BAYS and SEM
show the experimental results of applying the method described in this paper to the
dataset reported above. These rows show the confusion matrices when using the CVFH
alone, together with the Bayesian estimate, and the result of incorporating the semantic
information about the pipe connectivity. The figure shows that, in general, for each row
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(SYN, DESC, BAYS and SEM), the column related to the ground truth class is always the
one with the highest recognition rate. It also shows that, in general, the recognition rate
grows when incorporating Bayesian estimation and semantic information. Please note that
we separate the results (DESC, BAYS and SEM) to provide an insight into how the method
works. Nevertheless, the row SEM, which corresponds to the output of the complete
recognition pipeline, incorporates both Bayesian estimation and semantic information.
Therefore, focusing on this row, it can be clearly seen that a good recognition rate is
obtained for all objects, with R-tee being the most challenging one, since it is often confused
with the 3-way-valve.

On the other hand, Table 4 shows the assessment of the results based on the accuracy,
precision, recall and F1 score [62]. Three object classes, namely Ball-Valve, Elbow and
Butterfly-Valve, have a balanced trend between recall and precision, resulting in a high F1
score that improves progressively from the descriptor-based to the Bayesian, and then to
the semantics-based method.

The 3-Way-Valve has a high recall, meaning that the system works well recognising
it when actually scanning (TP) and that there is a low number of False Negatives (FNs).
However, it has a low precision, meaning that the number of FPs is high. Unfortunately,
this leads to a poorer F1 score. The high number of FPs (R-Tees wrongly detected as 3-way-
valves) may be explained by the fact that most of the R-Tees are located at the bottom, on the
floor. This means that these objects are far from the laser scanner, and therefore, their point
cloud is noisier and of lower resolution (i.e., the point density is considerably lower). The
R-Tees are particularly sensitive to noise. As can be seen in the database, the object views
have smooth continuous curvatures compared to the scanned ones, which produce noisy
surfaces. These noisy surfaces distort the results of the descriptor, given that the descriptor
is based on the computation of surface normals from the point cloud.

In contrast, the R-tee class achieves high precision (low number of FPs) but low recall
(high number of FNs) due, again, to the high number of R-Tees detected as 3-way-valves.
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Table 3. Confusion matrices expressed as a numerical %. The objects 1, 2, 3, 4, 5 represent, respectively: a Ball-Valve, an Elbow, a R-Tee, a 3-Way-Valve, and a Butterfly-Valve. We highlighted
the best recognition for each object, which coincides with the correct class and the usage of semantic information.

Descriptors Experiment

Objects

Ball Valve Elbow R-Tee 3-Way-Ball-Valve Butterfly-Valve

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

C
V

FH

SYN 63 10 7 19 2 2 75 7 1 1 4 27 65 1 1 9 3 1 84 1 17 5 1 21 54

DESC 60.46 18.11 1.28 9.44 10.71 2.74 80.82 4.11 9.59 2.74 1.68 38.13 19.18 28,78 12.23 39.64 5.41 0.9 49.55 4.5 21.76 12.35 7.06 25.29 33.53

BAYS 82.65 0 0 0 17.35 1.37 90.41 1.37 6.85 0 6.47 10.55 51.32 19.42 12.23 1.8 0 0 95.5 2.7 0 0 0 0 100

SEM 82.65 0 0 0 17.35 0 73.97 17.81 8.22 0 0 3,12 64.75 32,13 0 0 0 0 100 0 0 0 0 0 100

Table 4. Assessment of the recognition performance through accuracy, recall, precision and F1 score. We highlighted the best results in blue color, which are all consistent with the use of
semantic information, except for 3-Way-Ball-Valve, where the best F1 score was achieved using the Bayesian estimation method.

Descriptors Experiment

Objects

Average Ball Valve Elbow R-Tee 3-Way-Ball-Valve Butterfly-Valve
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C
V

FH

DESC 0.42 0.49 0.46 0.38 0.4 0.60 0.72 0.66 0.42 0.81 0.19 0.30 0.42 0.19 0.79 0.31 0.42 0.50 0.21 0.29 0.42 0.34 0.36 0.35

BAYS 0.76 0.84 0.73 0.74 0.76 0.83 0.92 0.87 0.76 0.90 0.60 0.72 0.76 0.51 1 0.68 0.76 0.95 0.55 0.70 0.76 1 0.58 0.74

SEM 0.80 0.84 0.78 0.78 0.8 0.83 1 0.91 0.80 0.74 0.81 0.77 0.80 0.65 0.95 0.77 0.80 1 0.44 0.61 0.80 1 0.71 0.83
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Figure 16. Confusion matrices.
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6. Conclusions

This paper has presented a semantic mapping method using non-coloured point
clouds and navigation sensor data. The method includes semantic segmentation (of planes,
pipes and objects) paired with a feature-based SLAM filter and a semantic-based recognition
based on multiple views of each tracked object. The methods were tested against real data
gathered with an AUV in a water tank with a man-made pipe structure.

Semantic segmentation attained better performance in selecting the sets of points
belonging to each object than in our previous work. This reduced the negative impact
of the presence of points belonging to pipes that made recognition more difficult. The
"mushroom" shape bounding box used over the pipe intersections allowed the computation
of object candidates with the potential presence of handles, thus enabling a better crop of
the input scan that tightly encapsulates the object with handle to be recognized.

Feature-based SLAM provided an accurate object tracking that allowed the integration
of multiple views of the same object acquired at different times in order to better estimate
their class. Moreover, it produced a consistent map of the structure while also providing
navigation corrections that compensated for the effects of inconsistencies in navigation due
to errors in DVL measurements. The integration of the recognition and the SLAM module,
where information is passed back and forth, was instrumental to the higher performance
of the approach and to the ability to create a semantic map of all recognized objects.

7. Future Work

Future research plans will continue in the direction of combining the representations
of SLAM and object recognition to provide a more accurate and detailed 3D semantic
map while providing recognition with more complete views. The object recognition
approach we used, based on SLAM, mainly consists of two modules: a Bayesian semantic
information-based method for recognition and the SLAM system. Since SLAM provides
long-term consistent navigation, one future improvement will be to use this navigation to
fuse several scans, which will provide more comprehensive views of the objects. Having
more complete views has the potential to improve both the accuracy of object recognition
and the reliability of pose estimates, especially in challenging scenarios with significant
changes in viewpoints.

A longer term strategy to improve the observation quality is to perform view planning
in order to reduce the ambiguity caused by poorly observed objects. Such view planning
should be multi-objective in the sense of taking into account multiple objects simultaneously
and should be guided towards the next best views that solve the ambiguity between the
most probable classes for each object. Continuing this work, future efforts will be directed
toward the goal of grasping and manipulating such objects.
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