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Abstract
Minkowski natural (N + 1)-dimensional spaces constitute the framework where the 
extension of Fermat’s last theorem is discussed. Based on empirical experience 
obtained via computational results, some hints about the extension of Fermat’s theo-
rem from (2 + 1)-dimensional Minkowski spaces to (N + 1)-dimensional ones. Pre-
vious experience permits to conjecture that the theorem can be extended in (3 + 1) 
spaces, new results allow to do the same in (4 + 1) spaces, with an anomaly present 
here but difficult to find in higher dimensions. In (N + 1) dimensions with N > 4 
there appears an increased difficulty to find Fermat vectors, there is discussed a pos-
sible source of such an obstacle, separately of the combinatorial explosion associ-
ated to the generation of natural vectors of high dimension.
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1 Introduction

Boolean hypercubic structure, Natural vector spaces, Minkowski spaces, and defi-
nition of generalized scalar products permitted to describe a large set of applica-
tions, which can be utilized to various chemical problems in general, but mainly 
associated with QSPR, see for example reference [1–3], for recently published 
papers on this subject. The present paper constitutes the theoretical part of a pro-
ject encompassing a time-consuming computational effort and can be broadly 
located within the set of mathematical applications to chemistry and physics.

Three previous papers have been devoted to the problem of extending Fermat’s 
last theorem. The initial one was almost purely theoretical [4] and was setting up 
the problem, the second paper was backed up with computational information [5] 
and constituted a new step into Fermat’s theorem extension, and the third work 
recently published, presented an extended supercomputational framework to cope 
with the problem as far as possible [6].

Results of this last paper permitted to conjecture a behavior in three-dimen-
sional spaces of natural vectors, similar to the property associated with vectors in 
two-dimensional natural spaces leading to Fermat’s last theorem.

Fermat’s theorem comportment in higher dimensional natural spaces was not dis-
cussed with the aid of the information gathered from various computational sources 
yet. The present study, using a sufficiently large set of varied dimensions, will dis-
cuss the number of Fermat vectors found and the conjectures that one can imagine 
about the extension of Fermat’s last theorem to higher dimensions as well.

The existence of Fermat vectors in any dimension of natural spaces is con-
nected with the p-th order norms of the natural vectors, see references [4, 5]. The 
original Fermat’s theorem might be seen as a property of natural two-dimensional 
vectors and the numerical behavior of their Euclidean and higher-order norms. In 
this case, if one wants to extend Fermat’s theorem to any power and dimension, 
such endeavor can be explicitly described using generalized natural vector norms.

However, the norm property making some vector a Fermat one, that is: that the 
p-th order natural vector norm equals the p-th power of a natural number, which 
can be easily associated to N-dimensional Euclidean natural spaces, might be also 
connected to (N + 1)-dimensional Minkowski natural spaces. Such spaces have 
been recently introduced in several papers, see for example references [4, 12, 15] 
and will be used systematically here.

Therefore, the theoretical body of this paper will be constructed by Minkowski 
spaces rather than Euclidean spaces. In this form, Fermat’s last theorem can be 
conjectured for arbitrary dimensional Minkowski spaces. Thus, one can define 
Fermat’s vectors compliant with Fermat’s extended theorem as natural Minkowski 
vectors with zero p-th order norms.

The present work is assembled with the description of natural spaces and the 
useful operations to construct a sound structure to study the extension of Fer-
mat’s last theorem. Focus is made on the way to compute natural vector norms of 
any order because such mathematical operations constitute the background of the 
extended Fermat theorem.
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This preliminary description allows describing the Minkowski spaces of dimen-
sion (N + 1) , essential to define Fermat vectors via norms with zero value. After this 
follows an analysis of the extended Fermat’s theorem conjectures one can construct 
from empirical computational experience.

A final discussion about the increasing scarcity of Fermat’s vectors when 
Minkowski space dimensions augment finishes this paper.

2  Natural Spaces

A natural N-dimensional space is a vector space defined on the natural number set 
𝕍N[ℕ] . There might be axiomatized that the natural spaces possess an addition semi-
group, lacking subtraction, and negative numbers, as the natural number set does. 
In this sense, natural spaces might be also called semispaces. As, in general, vector 
spaces attached to such an addition structure have been named in previous literature 
[7].

Also, natural vector spaces can be easily associated with two characteristics: (1) 
the inward product [7–10] operation and (2) the complete sum operator [11]. Such 
an operation and operator permit the easy definition of powers of a vector, general-
ized scalar products, and p-th order norms [12]. A resumé of both follows so that the 
readers can avoid perusing the literature on this subject, and thus the present study 
becomes self-contained.

2.1  Inward product of two natural vectors

By the inward product of two vectors is constructed another vector of the same 
space where the factor vectors belong. The resultant inward product vector elements 
are the product of the elements of the implied vectors. That is, using for row vectors 
a Dirac’s bra notation, or:

then an inward product ⟨�� = ⟨�� ∗ ⟨�� between two vectors is defined as:

The row vector has been chosen for ease of writing, but everything 
could be described in a column vector space and the Dirac’s ket notation: 
��⟩ =

�
a
1
, a

2
, a

3
,… aN

�T , where the superscript T means transposition of the row 
vector into a column one.

Such an inward product, which allows the natural vector spaces to behave like 
the natural number set, has been previously named as diagonal, Hadamard, or Schur 
product.

The inward product of two vectors behaves like the product of scalars. There-
fore, the inward product is associative, commutative, and distributive concerning the 

(1)∀⟨a� ∈ 𝕍N[ℕ] ∶ ⟨a� =
�
aI�I = 1,N

�
=
�
a
1
, a

2
, a

3
,… aN

�
,

(2)
∀
�
⟨a� =

�
aI�I = 1,N

�
, ⟨b� =

�
bI�I = 1,N

��
⊂ 𝕍N[ℕ] ⇒

⟨p� = ⟨a� ∗ ⟨b� =
�
pI = aIbI�I = 1,N

�
∶ ⟨p� ∈ 𝕍N[ℕ]
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vector sum. It can be extended without effort to matrix–vector spaces. Obviously 
enough, inward products can involve as many vectors as inward factors as needed. 
No other natural vector properties are needed for the definition of Fermat vectors.

2.2  Complete sum of a vector

The complete sum (of the elements) of a vector: ⟨⟨��⟩ , can be defined as a linear 
operator acting on a vector yielding a scalar. That is:

and it is trivial to show that:

and that:

showing that the complete sum operator is linear.

2.3  Second‑order scalar product

The inward product of two vectors and the complete sum operator can be used 
together to redefine the scalar product of two vectors, which due to the possibility to 
describe higher-order products of this kind using the same operations, will be named 
as a second-order scalar product.

Using definitions (2) and (3) a second-order scalar product is immediately defined 
as:

2.4  p‑th order scalar product

One can now consider the inward product of p vectors as another vector belonging 
to the same vector space, or:

Therefore, the Eq. (7) defines a p-th order scalar product involving p vectors.

(3)∀⟨a� ∈ 𝕍N[ℕ] ∶ ⟨a� =
�
aI�I = 1,N

�
∶ ⟨⟨a�⟩ =

N�

I=1

aI →⟨⟨a�⟩ ∈ ℕ,

(4)∀{⟨a�, ⟨b�} ⊂ 𝕍N[ℕ] → ⟨⟨a� + ⟨b�⟩ = ⟨⟨a�⟩ + ⟨⟨b�⟩,

(5)∀⟨a� ∈ 𝕍N[ℕ] ∧ � ∈ ℕ ∶ ⟨�⟨a�⟩ = �⟨⟨a�⟩,

(6)∀{⟨a�, ⟨b�} ⊂ 𝕍N[ℕ] ∶ ⟨⟨a� ∗ ⟨b�⟩ =
N�

I=1

aIbI ∈ ℕ → ⟨⟨a� ∗ ⟨b�⟩ ≡ ⟨a � b⟩.

(7)

�
⟨aI���I = 1, p

�
⊂ 𝕍N[ℕ] ∶

p
∗
I=1

⟨aI�� ∈ 𝕍N[ℕ] →

�
p
∗
I=1

⟨aI��
�
=

N∑
J=1

�
p∏

I=1

aIJ

�
∈ ℕ,



1855

1 3

Journal of Mathematical Chemistry (2021) 59:1851–1863 

2.5  p‑th order power of a vector

In the same manner, as defining higher-order inward products, one can use the 
repeated inward product of a vector, constructing in this way a p-th natural power 
of a vector:

2.6  p‑th order norm of a natural vector

The previous Eqs. (3) and (8) permit to define the p-th order norm of a vector, 
Np

�
⟨��

�
 , because using the previously defined operations one can easily write:

Natural spaces, from the point of view of the existence of Eq. (9), can be also 
associated with Banach spaces, where a set of p-th order norms are well-defined.

3  Minkowski natural spaces and p‑th order vector norms.

From the Euclidean structure of natural vector spaces, as described in the previ-
ous paragraph, an (N + 1)-dimensional Minkowski natural space 𝕄(N+1)(ℕ) can be 
easily constructed. For more information, readers are referred to reference [12].

Now, a Minkowski space is an (N + 1)-dimensional natural space, where a 
metric vector ⟨�� , associated with the space norms, can be constructed using the 
structure:

where the vector ⟨�� = (1, 1,… , 1) is featured as the N-dimensional unity 
vector.

In this manner, having defined the metric vector (10), the p-th order norm 
Mp(⟨��) of a vector in a Minkowski natural space can be easily redefined. This 
might be performed using the complete sum of an inward product as in the Eq. 
(9), but including the metric vector (10) in the definition:

(8)∀⟨a� ∈ 𝕍N[ℕ] ∶

�
a[p]

��� =
p
∗
I=1

⟨a� ∈ 𝕍N[ℕ] →

�
a[p]

��� =
�
a
p

I
�I = 1,N

�

(9)∀⟨a� ∈ 𝕍N[ℕ] ∶ Np

�
⟨a�

�
=

��
a[p]

���
�
=

N�

I=1

a
p

I
∈ ℕ.

(10)⟨�� = (⟨��; − 1),

(11)∀⟨a� ∈ 𝕄(N+1)(ℕ) ∶ Mp(⟨a�) =
�
⟨m� ∗

�
a[p]

���
�
=

N�

I=1

a
p

I
− a

p

N+1
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4  Fermat vectors and Fermat’s last theorem.

A vector ⟨f� ∈ 𝕄(N+1)(ℕ) belonging to a Minkowski natural space can be called a 
Fermat vector of order p (or of p-th order) whenever the following equality:

holds.
Using the definition of the Fermat vectors via Eqs. (11) and (12), the so-called 

Fermat’s last theorem implies the following equation:

is accomplished.

5  Details of the computational search of Fermat vectors.

Calculations in the search of Fermat vectors have been performed within a discrete 
set of 2M natural numbers, associated with the set 𝕊M =

{
0, 1, 2,… , (2M − 1)

}
⊂ ℕ , 

related to the decimal representation of the bit strings of an M-dimensional Boolean 
Hypercube, see for example reference [16].

One can refer to the number of Fermat vectors found in a natural number batch 
�M , using a Minkowski vector space dimension (N + 1) and an order p, with the 
symbol: #(M,N, p) . Then it is obtained, that: M

0
< M

1
⇒ #

(
M

0
;N, p

)
≤ #

(
M

1
;N, p

)

.
However, obviously enough the computational time strongly increases as the 

value of the Hypercube dimension increases. In the computations presented in refer-
ence [6] and here, the maximal value of the hypercube dimension has been set to 
M = 15.

To ease the calculation involving large powers of the elements of the natural set 
�M , a vector containing the p-th power of this natural set:

is previously computed and by N[p] one can suppose that is described the set of 
all natural numbers to the p-th power. Then, the search of Fermat vectors will take 
place in a subset of the natural vector space, whose vectors are made with the ele-
ments of the powers of natural numbers, as defined by the Eq. (14). That is, with the 
vectors:

Still, when large Minkowski space dimensions are tested, the combinatorial 
explosion of all the possible created vectors might skyrocket the computing time to 
unreachable values, of course considering the authors’ limited number of available 

(12)Mp(⟨� �) = 0

(13)∃⟨f� ∈ 𝕄(2+1)(ℕ) ∶ Mp=2(⟨f�) = 0 ∧ ∀⟨v� ∈ 𝕄(2+1)(ℕ) ∶ Mp>2(⟨v�) ≠ 0,

(14)𝕊
[p]
M

=
{
0, 1, 2

p
, 3

p
,… , (2M − 1)

p}
⊂ ℕ[p] ⊂ ℕ

(15)∀

⟨
v[p]

||| ∈ 𝕌(N+1)

(
𝕊
[p]
M

)
⊂ 𝕄(N+1)(ℕ).
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computers. The evolution of computing structure perhaps will permit to obtain 
extended information on this subject soon.

The vectors 
⟨
�[p]

||| described through the Eqs. (14) and (15), tested for being Fer-
mat’s vectors, are constructed without containing nor the zero nor the unit values as 
elements.

6  Fermat vectors of order 2.

The classical Fermat theorem, proved by Wiles [13], amounts the same as to con-
sider that the following equation holds:

which constitutes another way to express the Eq. (13).
To test the second-order first part of the Eq. (16), a large number of computations 

with Minkowski natural spaces of diverse dimensions have been performed.
Computational results have shown that the next expression:

stands for a wide range of dimensions. The largest dimension tested in the Eq. 
(17) has been N = 601 . Computational results coherent with the Eq. (17) suggest it 
seems possible one can conjecture that the above equation holds for indefinite natu-
ral space dimension values.

This is the same to conjecture that: second-order Fermat vectors exist for any 
natural Minkowski space dimension.

One must, in this context of Fermat vectors of order 2, refer to some Leech and 
Lorentzian lattices, which correspond to 24-dimensional Fermat vectors of order 2 
in our notation [14].

Nevertheless, second-order Fermat N-dimensional vectors represent points, pos-
sessing natural coordinates, on the surface of an N-dimensional sphere with a radius 
set at the Minkowski coordinate in the N + 1 element.

7  Fermat vectors of order 3.

Recent exhaustive supercomputations [6] in Minkowski’s natural spaces of dimen-
sion (3 + 1) have shown a behavior similar to the vectors of the lesser dimension 
(2 + 1) . That is, empirical computational evidence allows to conjecture that the 
equation:

holds. Indicating that an extended Fermat’s theorem can be postulated on dimen-
sion (3 + 1) in the same manner as on dimension (2 + 1) . That might be stated as the 
fact that the Eq. (18) is the higher-dimensional extension of the Eq. (16).

(16)∃⟨f� ∈ 𝕄(2+1)(ℕ) ∶ M
2
(⟨f�) = 0 ∧ ∀⟨v� ∈ 𝕄(2+1)(ℕ) ∶ Mp≥3(⟨v�) ≠ 0,

(17)∀N ≥ 2 ∶ ∃⟨f� ∈ 𝕄(N+1)(ℕ) ∶ M
2
(⟨f�) = 0,

(18)∃⟨f� ∈ 𝕄(3+1)(ℕ) ∶ Mp≤3(⟨f�) = 0 ∧ ∀⟨v� ∈ 𝕄(3+1)(ℕ) ∶ Mp>3(⟨v�) ≠ 0
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However, one thing is to obtain consistent computational results, and another the 
demonstration of such an extended Fermat’s theorem conjecture.

Also, in the same way, as found in the second-order norms, as shown in the Eq. (17), 
there are Fermat vectors in higher Minkowski natural space dimensions than N = 3 that 
accept null third-order norms. That is, one can write another statement, as an equivalent 
extended conjecture, described by the Eq. (17):

the largest dimension tested on the Eq. (19) has been in this case: N = 151.
In the light of the computational experience, one can conjecture that Minkowski nat-

ural spaces of dimensions (2 + 1) and (3 + 1) behave similarly concerning the existence 
and absence of Fermat vectors of orders 2 and 3.

8  Fermat vectors of order p > 3.

In some cases, the search for Fermat vectors of higher orders has been exhaustive as 
in the lower order cases, commented in the previous paragraphs. In other issues, the 
search has not been so extensively performed because of the combinatorial difficulty 
that the calculations present. Some aspects of the computation of Fermat vectors, 
which also can be applied to the previously discussed dimensions and orders, will be 
given next.

8.1  Computational details

However, we can say that besides the supercomputing search, performed according 
to the reference [6], some tests have been achieved in i7 and i9 desktop computers, 
through Python code.

Such a code does not use the whole possible set of natural vectors, as defined in the 
Eqs. (14) and (15), but a randomly chosen subset amounting to a selected percent of the 
total number of candidate vectors as defined in the Eq. (15) to be tested. Such a proce-
dure permits obtaining Fermat vectors within a reasonable computational time. Results 
from such random calculations have produced coincident matches with the exhaustive 
tests performed in a supercomputer environment. Such coincidences can be seen as a 
way to empirically validate the proposed conjectures.

8.1.1  On the infinite cardinality of Fermat’s vectors

Note that, when a Fermat vector ⟨� � of p-th order: 
⟨
� [p]

||| is found, this just means that 
there exist an infinite number of Fermat vectors, as all the homothetic vectors obtained 
as:

(19)∀N ≥ 3 ∶ ∃⟨f� ∈ 𝕄(N+1)(ℕ) ∶ M
3
(⟨f�) = 0,

(20)Mp

�
⟨f�

�
= 0 ∧ ∀� ∈ ℕ ∶

�
f
[p]
�

����
= �

p
�
f[p]

��� → Mp

�
�⟨f�

�
= 0
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also possess the corresponding p-th order norm null.

8.2  The case of dimension (4 + 1) : meta‑Fermat vectors

It could have been interesting to find out a comparable behavior for higher dimen-
sional Minkowski natural spaces, similar to the results obtained in the previously 
described paragraphs, concerning lesser dimensions.

To have some hint about the possibility to extend the Fermat theorem to higher 
dimensions, several computational tests have been performed within Minkowski 
spaces of dimension (4 + 1) . The obtained computational results permit that the fol-
lowing general statement:

might be conjectured. The Eq. (21) perhaps shows that in Minkowski natural 
spaces of greater dimension there could appear anomalous meta-extensions of Fer-
mat’s theorem, like the one found in (4 + 1) dimensional Minkowski natural space, 
where Fermat vectors of dimension (4 + 1) and order 5 have been found.

8.3  The higher dimensions case.

Computations with a large number of vectors and diverse Minkowski natural space 
dimensions show that it seems the meta-Fermat vector extension of order 5 in (4 + 1) 
dimension, does not easily appear in the tested higher dimensions ([N > 4] + 1) . On 
the contrary, as the Minkowski natural space dimension grows larger, it is more dif-
ficult to find higher-order Fermat vectors.

In the light of the large set of numerical tests performed, one can conjecture the 
following statement, though:

Results with larger order Minkowski norms have yielded no Fermat vectors wear-
ing a zero norm. However, such a result does not signify that they do not exist. Sim-
ply under the computational constraints used no vector of this kind was found.

It looks as the zero norms of order 5 constitute some limit, which the performed 
numerical computational analysis has been unable to trespass.

As a consequence, it is not advisable to transform this last finding, contained in 
the Eq. (22), into a conjecture, as nothing opposes obtaining, ahead in time, zero 
norms within larger orders and bigger dimension spaces.

It is a matter of computer power and calculation costs to find out.
Alternatively, one can rely on the plausible development of a theoretical struc-

ture, able to explain the detailed nuances about the existence of the Fermat vectors 
in complicated vector landscapes, similar to the one which was performed by Wiles 
[13] within the order 2 and the (2 + 1) dimensional case.

(21)∃⟨f� ∈ 𝕄(4+1)(ℕ) ∶ Mp≤5(⟨f�) = 0 ∧ ∀⟨v� ∈ 𝕄(4+1)(ℕ) ∶ Mp>5(⟨v�) ≠ 0,

(22)∀N ≥ 5 ∶ ∃⟨f� ∈ 𝕄(N+1)(ℕ) ∶ Mp≤5(⟨f�) = 0.
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8.4  Resumé

Fermat’s last theorem originally set up in spaces of (2 + 1) dimensions seem 
extensible to Minkowski’s natural spaces of dimension (3 + 1) . Also, in dimen-
sion (4 + 1) , there appears that Fermat vectors with zero norms up to order 5 
might be found. Therefore, a conjecture extending a Fermat theorem up to this 
anomalous order number seems to be conceivable.

Higher dimensions provide Fermat vectors of lower order in abundance but, 
for instance, dimension (5 + 1) provides a scarce amount of Fermat vectors of 
order 5. Such scarcity makes it difficult to extend the Fermat theorem up to this 
dimension, although it seems plausible that it can be so.

Higher dimensions ([N > 5] + 1) produce Fermat vectors, but of orders ≤ 5 . A 
fact which thwarts the possibility to extend a Fermat theorem conjecture upwards 
from Minkowski’s natural spaces of dimension (5 + 1) . Unless high-speed com-
putations, better than the ones used here can be tested in the future.

9  Fermat hypersurfaces and the scarcity of Fermat vectors

The reason for the difficulty of finding Fermat vectors of higher orders and 
dimensions is not at all easy to explain, though. The culprit of this complexity 
can be associated with many factors, which perhaps will appear more clearly 
when extensive computations could be developed, dedicated to shedding light 
on the search of Fermat vectors of higher dimensions and orders. Whenever one 
can overcome the combinatorial explosion of the generated natural vectors within 
larger dimensions and the corresponding bigger orders.

Perhaps, to understand a little bit better the problem we are facing, one might 
use the fact that vector powers in Minkowski natural spaces represent points, 
bearing coordinates made solely of natural numbers, but contained within a high 
dimensional surface, mostly defined over the rational (or real) field.

A Fermat hypersurface might be described within a Minkowski semispace as:

with the parameter r taken as a constant. It must be noted that, when the order 
is p = 2 , the hypersurface of the Eq. (23) represents an N-dimensional sphere of 
radius r.

The probability that a point, lying into a higher dimensional, higher-order 
rational (or real) hypersurface, could coincide with coordinates made by powers 
of natural numbers, seems that decreases significantly by augmenting the dimen-
sion and the order of the hypersurface described in the Eq. (23).

That is, associating the right side of the Eq. (23) with a function:

(23)

∃p ∈ ℕ ∧ r ∈ ℚ
+ ∧ ∃⟨x� ∈ 𝕍N

�
ℚ

+
�
∶ rp =

N�

I=1

x
p

I
≡

���
x[p]

���; − rp
����

�
= 0,
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for a constant parameter r, one can say there is an infinite number of vectors 
⟨x� ∈ 𝕍N

�
ℚ+

�
 fulfilling the Eq. (24).

Now, a Fermat vector, like the one defined in the Eq. (12), will fit into such a 
function as in the Eq. (24), taking into account the use of a constant natural param-
eter r, in the same way as the vector defined with:

This fact plausibly produces a dramatic scarcity of Fermat vectors when incre-
menting the space dimension and the order of the associated norms. An empirical 
fact that has been computationally observed.

Performing computations in search of Fermat vectors, when the parameter r, the 
power p, and a vector ⟨� � are found, fulfilling the Eq. (25), then one can say such 
occurrence corresponds to find a unique natural point fulfilling the function (24).

In other words, as far as we know, every element of a large number of obtained 
Fermat vectors corresponds to a unique natural position on some Fermat hypersur-
face of order p and radius r, defined as shown in Eqs. (23) or (24).

This can explain perhaps the observed computational fact that Fermat vectors, in 
case they exist, become more and more scarce when Minkowski space dimension 
and norm order become larger than 5.

9.1  Some test computations describing Fermat vectors associated with the same 
hypersurface.

Some extra computation search of Fermat vectors has been performed using the ale-
atory algorithm described before in Sect. 8.1, to illustrate the nature of Fermat vec-
tors as natural points in a Fermat hypersurface.

Interesting results corresponding to Fermat vectors possessing the same param-
eter r can be found as explained below in various computation batches, attached 
to the same space and power, indicating the nature of Fermat vectors as different 
unique natural points belonging to the same Fermat hypersurface attached to the 
constant parameter r.

For batches associated with #(7, 4, 3) several vector triples having the same 
parameter r have been found. For batches like #(7, 3, 2) even some quadruple Fermat 
vectors possessing the same parameter r had resulted from the computation.

It is interesting to note that #(7, 10, p)
[
p = 6, 7, 8

]
 yield, after several days of 

computation, no Fermat vectors. However, using 
[
p = 3, 4, 5

]
 , apart from the exist-

ence of Fermat vectors, at every value of p, many pairs of Fermat vectors with the 
same parameter r did appear.

A test of large dimensions has been also performed in the form 
#(7, 25, p)

[
p = 4, 5

]
 , with the result of obtaining several vectors containing scarce 

Fermat vector pairs, with the same parameter r , when the lower power  
[
p = 4

]
 was 

(24)Fp

�
⟨x��r

�
=

N�

I=1

x
p

I
− rp → Fp

�
⟨x��r

�
= 0,

(25)∃r, p ∈ ℕ ∧ ∃⟨f� ∈ 𝕍N(ℕ) ∶ Fp

�
⟨f��r

�
= 0.
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observed, but no Fermat vectors at all were generated with the higher power value [
p = 5

]
.

When both dimension and power raise, the number of possible Fermat vectors 
increases to an exceptionally large amount, even if the generating Mersenne power 
is not too big.

This behavior of Fermat vectors can be used empirically to explain the scarcity of 
such vectors as the parameters #(M,N, p) become larger.

10  Conclusions

As a result of exhaustive computations to find out p-th order Fermat vectors in 
(N + 1) dimensional natural Minkowski spaces, one can empirically extend Fermat’s 
last theorem beyond the (2 + 1) dimensional spaces.

Certainly, such findings are empirical, therefore the obtained results shall be for-
mulated in the form of a conjecture.

One can describe a plausible (N + 1) dimensional Fermat conjecture, in the form 
provided by Eqs. (16), (17), (18), (19), (21), and (22).

That there cannot be used a unique expression is due to the anomalous behavior 
encountered at the dimension (4 + 1).

Something similar could be found in higher dimensions. However, for the 
moment, the computationally explosive nature of the combinatorial problem, asso-
ciated with the search for Fermat vectors of higher dimensions, has not provided 
another comparable result.
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