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Abstract—The detection of objects on the sea floor is a complex
task. The domain of the detection and classification of naval mines
is additionally complicated by the high risk nature of the task.
Autonomous underwater vehicles have been used in naval mine
countermeasures (MCM) operations to search large areas using
sensors such as side-scan or synthetic aperture sonars. These
sensors generally have a high coverage rate, while sacrificing
spatial resolution. Conversely, sensors with higher resolution but
lower coverage (such as forward-looking sonars and electro-
optical cameras) are employed for the later classification and
identification stages of the MCM mission. However, in order
to autonomously execute a target reacquisition mission, it is
important to be able to collect and process data automatically and
in near real-time, onboard an Autonomous Underwater Vehicle
(AUV). For this purpose, an Automatic Target Recognition (ATR)
system is required. This article proposes an ATR, which can
be used on board an autonomous vehicle, capable of detecting
mine-like objects in forward-looking sonar data. The ATR
combines a detector and a classifier, based on convolutional
neural network models, with a probabilistic grid map that filters
out false positives and combines reported detections at nearby
locations. A strategy, combining a survey pattern with target-
mapping maneuvers automatically activated by the ATR, has
been designed to maximize the performance of this ATR. The
whole system has been tested in simulation as well as using
data from previous mine countermeasure exercises, the results
of which are presented here.

Index Terms—Unmanned underwater vehicles, sonar detection,
machine learning, automatic control

I. INTRODUCTION

IN 1854, the United States president John Quincy Adams

defined mine warfare as ”not fair and honest” [1]. However,

these deadly devices, considered to be the most cost-effective

form of naval warfare [2], continue to be employed and

enhanced to the present day.

The manufacture and deployment of mines is relatively

cheap, while detecting and removing them is a costly and

dangerous effort. More than 50 countries currently have the

capacity to deploy naval mines [3], with this number contin-

uing to increase in recent decades [4]. Such devices might

also be built and deployed by terrorist groups, as a form of

underwater improvised explosive devices (IED). Therefore, it
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is paramount to develop mechanisms to detect and counteract

them.

Mine sweepers, mine hunters and MCM vessels, are the

most employed systems to neutralize these threats. Mines

sitting on the seabed (bottom mines) can be hard to detect,

as features of the sea floor can obscure these devices from

sonar. These mines use to carry a much larger warhead than

moored ones and can have very sophisticated sensors which

make them much harder to sweep [5]. To defeat these bottom

mines, autonomous underwater vehicles (AUV) are increas-

ingly being employed. The standard procedure is to carry out

survey missions with a side scan sonar (SSS) or a synthetic

aperture sonar (SAS) capable of detecting Mine-Like Contacts

(MILCO). A classic approach for such a survey missions is to

have a single vehicle following a ”lawnmower” or paired-track

pattern to acquire data that may be automatically processed

or manually inspected by an operator once the vehicle is

recovered. Advanced methods use automatic target recognition

(ATR) systems on board that are able to provide the position

of a contact, with some uncertainty, while the mission is still

being executed [6]. Due to the limited resolution of these long

range sonar systems it is not always easy to classify detections

among actual mines or objects with a similar shape. To

overcome this problem, work has begun on systems composed

of multiple heterogeneous AUVs. The basic concept is that a

long-range vehicle covers a large area searching for MILCOs

while one or more AUVs, more maneuverable and equipped

with lower-range but higher-resolution sensors, reacquire each

of the contacts found during the wide area survey. This

approach provides higher resolution images and additional

viewpoints for each contact, thus simplifying the classification

process. The work presented in this article envisions this coop-

erative methodology, and develops the necessary capabilities

for an AUV, equipped with a high-resolution forward looking

sonar (FLS), to reacquire additional data of a contact given

only a rough initial estimate.

Forward-looking sonar are becoming increasingly popular

for many applications such as mapping [7], obstacle avoidance

[8] or automatic target recognition [9]. However, though high

frequency FLS can provide higher resolution images than other

sonars, the interpretation and analysis of their data is still

challenging.

There are several methods in the literature to perform

automatic object detection on sonar data. These methods are

based on different techniques such as local contrast, template

matching or machine learning to name some of the most
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used. Among these techniques, convolutional neural networks

(CNNs) have proven to be a method that generalizes well

through different scenarios [10]. However, CNNs require large

amounts of data to be properly trained, which can be a

problem in the MCM domain where data is scarce. Our

proposal consists of designing CNN models small enough

to require a limited amount of data to be trained, as well

as making use of techniques such as transfer learning when

possible and necessary. Regardless of the techniques used,

when dealing with noisy sonar data, an automatic detector

will never reach an accuracy of 100%. For this reason, we

propose to use a probabilistic grid map after the detector that

will help both to reduce the impact of false positives, and to

aggregate the weight of nearby detections who have a high

probability of belonging to the same target. This probabilistic

framework uses the spatial information of each sonar frame,

taking advantage of the FLS high frame rate.

The multiple vehicle cooperative strategy proposed in this

article was explored in the past in the NATO exercises: Trident

Juncture MCM EXperiment 2015 (TJMEX’15) and Olives

Noires MCM EXperiment 2016 (ONMEX’16). In these two

campaigns, after surveying a large area with an AUV equipped

with a SAS sonar, a small AUV was sent to execute a

reacquisition mission on the contacts detected by the former. In

those exercises, the data gathered in the reacquisition mission

were then manually analyzed, once the vehicle was recovered,

to detect and classify all the targets present in them. In this

article we propose a FLS-based ATR that can be used in real

time on board an AUV to automate this process, as well as

a strategy to maximize the overall ATR performance. The

datasets from TJMEX’15 an ONMEX’16 are the basis of the

work presented here.

The paper is organized as follows. First, several works on

sonar-based ATR approaches are reviewed. Then, Section III

presents the proposed methodology. First the ATR and all the

modules that compose it are presented in detail. Then, the

strategy to be followed to maximize the ATR performance

is defined. The document continues with the results obtained

by applying the designed ATR to different data sets obtained

during previously mentioned exercises, as well as by simulat-

ing the proposed strategy for target reacquisition. The article

closes with a discussion of the results and the conclusions

drawn.

II. RELATED WORK

There is not a large body of published work regarding ATR

systems for FLS. Thankfully, some of the solutions used in

SAS or SSS can be adapted to FLS as the images generated

by these systems share some similarities. Most sonar-based

ATR makes use of one of these techniques: exploiting local

contrast, template matching, or machine learning. Some of the

most relevant proposals are reviewed next.

Several sonar-based object detection algorithms use the

local contrast between regions to identify man-made objects

within an image. To quickly calculate this local contrast, these

algorithms take advantage of the integral-image representation

described by [11]. The cascade of boosted classifiers have been

used to localize known objects both in SSS [12] and SAS

[13]. This method looks for custom-made Haar-like features

relying on previous knowledge of the target. If the geometry

of the target, as well as the spatial relation between the target

and the sonar are known, it is possible to estimate how the

shadows will be projected and where high reflection spots

will be localized. Using this information, several authors have

proposed ad hoc filters, using the integral image approach,

to segment local contrast regions. This technique has been

applied to SSS and SAS data [6], but also to low resolution

FLS [14] with considerable success. To further improve these

results, [15] proposed to create a mosaic from the area of

interest to increase the target contrast while reducing the

ATR failure rate. Also based on the contrast between acoustic

shadows and reflections [16] proposed a method that uses

saliency techniques to detect and localize a diver in FLS

imagery. The method applies frequency analysis to segment

the acoustic highlight region from its surroundings and from

this region extracting the acoustic shadow, improving overall

the localization accuracy. In general, local contrast approaches

have shown their ability to detect objects when the geometry

is known. However, the kinds of features that can be extracted

by these techniques are not always sufficient to distinguish

between similar objects.

In cases where images of the to-be-recognized target are

available, template matching techniques have also been used.

Hurtós et al. [17] presented a system able to follow a chain

using FLS data, where a template is created for each part of a

chain link (e.g., lower left corner, upper right corner, straight

segment, etc.) and detected in the FLS images using a standard

template matching algorithm. In [18] a target signature gener-

ated from a simple acoustic model is compared with the actual

SAS image of an object for classification purposes. Template

matching is a feasible approach when there are few objects to

detect or classify, those object classes are known a priori, and

their geometries do not deform or otherwise change. However,

methods based on template matching tend to be ad hoc, built-

to-purpose solutions that do not generalize very well among

similar but not exactly equal objects.

The most popular approach today, primarily in the optical

imaging domain, but also increasingly in the sonar domain,

is the use of machine learning. A method to semantically

map an underwater environment using a low resolution FLS

is presented in [19]. The method segments the structures in

the scene and provides a descriptor combining geometric in-

formation and the acoustic intensities reflected by the objects.

Then a support vector machine (SVM) is used to classify them.

SVM algorithms do not require as many data as a CNN to be

trained but need hand-crafted features. In contrast, CNNs are

able to automatically detect important features without any

human supervision, leading to generally better results at the

cost of requiring more data to be trained [20]. However, it

seems more clear every day that if enough data is available, the

methods that deliver the best results are those based on CNNs.

Several authors have designed CNNs to differentiate between 2

or more classes using FLS imagery. A CNN able to localize a

small remotely operated vehicle (ROV) was proposed in [21].

The system had to be trained with 2 sets of images: one in
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which only the small-ROV was visible and another in which

only the typical background was visible. The CNN architecture

used was a modification of the seminal CNN [22] to recognize

handwritten digits.

Valdenegro-Toro proposes a coupled detector/classifier sys-

tem also based on a CNN model [9]. The architecture has 2

convolutional layers followed by a pooling layer and 1 fully

connected layer that are common for both the detector and the

classifier. Additionally, both the detector and the classifier have

2 more fully connected independent layers. D. P. Williams

presented several ATRs to work with SAS data. One of the

first works in which he proposes a CNN to classify SAS data

is [23]. In this work, a relatively small model (i.e., ∼30k

parameters) was used to classify between 2 classes: targets

and clutter (i.e. a mine-like objects or anything else). In an

extension of this work [24], up to 8 even smaller CNN models

were used in parallel, for a similar classification task, and

their output was averaged. Williams claims that to determine

the success of a CNN it is not enough to take into account

the amount of data available for training but the relationship

between the amount of data and the capacity of the model.

While CNNs for classifying optical images have between 106

to 108 parameters to train, he proposes CNNs with less than

104 parameters. Valdenegro-Toro also explored the concept of

tiny networks in [25]. In this paper he argues not only the

capability of these models with few parameters but also the

possibility of being run in real time by computers with low

computational performance.

The coupling of CNNs to the underwater sonar domain

is complicated by the relative lack of training data. Data

collected at sea is typically more expensive than the electro-

optical analogue. Defense applications, such as MCM, suffer

additionally as training data that does exist is not necessarily

available for widespread use.

Three common solutions to mitigate the lack of training

data for CNN are data augmentation, transfer learning [26]

and synthetic data generation. Data augmentation techniques

include data transformations such as scaling, cropping, flip-

ping, padding, rotating, translating or changing contrast, which

can artificially increase the training set size. When dealing

with sonar images most of these conventional procedures

should not be applied, because of the unique geometry and

physics of target-sensor relationship. For example, to respect

the properties of shadows generated by the sonar, images

should not be rotated and only flipped around the range axis.

Scaling images will also change the signal to noise ratio

(SNR) and, obviously, any changes that affect color cannot

be applied. Regarding transfer learning, several authors have

exploited it by using CNNs, trained with very large optical

image data sets, and then re-trained some or all their layers

with sonar imagery. Published articles are not conclusive about

the benefits of this method. Some examples, applied to SAS

data, use pre-trained AlexNet and/or VGG-Net models [27],

[28] with promising results. Others demonstrate that a custom

model trained from scratch can outperform a fine-tuned pre-

trained VGG-16 CNN in the context of seafloor classification

[29]. Finally, new data can be generated synthetically. A

classic approach to synthesizing underwater sonar data is to

use simulation techniques such as ray tracing [30] or tube ray

tracing [31]. Some of these methods can even work in real time

[32]. However, simulations do not present all the artifacts that

real sonar images have. Other solutions apply style transfer

techniques to the simulation-derived images to mitigate these

problems [32]. However, nowadays, one of the most promising

approaches is the use of Generative Adversarial Networks

(GANs) [33]. GANs are used for realistic data generation and

have been applied in the underwater sonar domain mainly to

generate SSS and SAS images [34] [35] but also for FLS [36].

There are few frameworks in the literature that address

the whole problem of target reacquisition in the context of

MCM missions. One of them is [37], in which the process

of reacquiring a target while gathering FLS images with an

AUV is described. The target position is identified using a

SSS-based ATR and the gathered FLS images are analyzed

once the mission finalizes. Another ATR working with FLS

data was presented in [38]. It shows a modification of the

ATR presented in [14] running on a FLS mosaic, built in real

time, instead of using the raw data coming directly from the

FLS.

III. METHODOLOGY

This article proposes both an automatic target recognition

(ATR) system and a data fusion step to be employed in local

MCM search problems (called reacquisition). Both the ATR

and the data fusion element have been designed to carry out

target reacquisition missions in the context of mine counter-

measure (MCM) operations. The ATR uses high resolution

forward looking sonar (FLS) images and is composed of

several modules that can run online onboard an autonomous

underwater vehicle (AUV). The envisioned strategy commands

the vehicle to gather data with the FLS, combining a survey

pattern with automatically activated target-mapping maneu-

vers.

A. Automatic Target Recognition

In the reacquisition strategy we envisage, the proposed ATR

is the key component. The ATR ingests the FLS imagery and

the vehicle odometry and returns the position and, if possible,

the class of all detected targets. The ATR is composed by

three main modules: a detector, one or more classifiers and

a probabilistic grid map. Following the current trend in both

optical and sonar object detection applications, we have de-

cided to develop both the detection and classification modules

using convolutional neural networks (CNNs). The function

of the probabilistic grid map is three-fold: to filter out false

positives; to combine multiple detections into a single one; and

to spatially average the classifier results. Standard probabilistic

tools have been used in the grid map implementation. The

overall architecture of detector, classifier and the grid map is

depicted in Fig. 1.

The detector and classifier of the proposed ATR have been

tailored to the ARIS 3000 FLS model [39]. However, the main

principles could be easily adapted to other high resolution FLS

devices. The ARIS 3000 has up to 128 beams spaced 0.25◦

apart, with a total field of view of 30◦ horizontal and 15◦
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Fig. 1. Automatic Target Recognition framework.

vertical with an along-beam resolution that ranges from 3 mm

to 10 cm (see Fig. 2). Up to 1024 samples per beam can be

obtained producing 128 × 1024 px polar images at 4 to 15Hz.

The sonar can operate on two frequencies, 1.8MHz and 3MHz,

with a maximum range of 15 m when using the lower.

Using the FLS at its maximum range presents some issues.

Since all images are discrete at 128 × 1024 px maximum,

the higher the range, the lower the resolution of the generated

images. In addition, small variations in the AUV orientation

may cause large changes in the ensonified areas (in particular

at the furthest ranges), resulting in distorted images that are

not useful for the ATR. In our tests we have seen that

using half of its maximum range (i.e., 7.5 m) is a good

compromise between coverage and resolution. To keep the

physical proportions of the objects mapped by the sonar, first,

the images gathered by the sonar, in polar coordinates, are

transformed to Cartesian coordinates. Then, because the mine-

like targets to be detected are between 0.75 and 1.5 m long,

each sonar image is divided into overlapping clips to form

regions of interest. A procedure has been implemented to

create squared clips with a desired size and minimum overlap.

Fig. 3 shows the clips obtained from an ARIS frame, already

transformed to Cartesian coordinates, using a clip size of 1.5

× 1.5 m and a minimum overlap between clips of 40%. In

this example 9 clips were obtained. From them, 3 contain only

background, 3 are mainly covered by the target and the other

3 contain a mix of both (i.e., background with a small portion

of the target). About 15% of the image is not being used as a

result of forcing the clips to be square. The number of clips

per frame may vary depending on: the sonar range, the size of

Fig. 2. Forward Looking Sonar geometry: (a) top view and (b) side view
with and schematic of a typical image (represented in Cartesian coordinates).
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Fig. 3. Example of a FLS frame with 9 square clips where a cylindrical-
shaped target can be seen.

the clips and the minimum overlap required. It is worth noting

that we want the ATR to work online. Therefore, if each frame

is divided into ∼10 clips and the sonar is working at ∼5 Hz,

the ATR must be able to process ∼50 clips per second.

When the vehicle is far from the bottom or the roll or pitch

are not adequate, the frames taken by the FLS contain little or

no information. Also, if the surge or the angular velocity are

too high, FLS images are distorted and useless for detection

or classification purposes. Therefore, it is preferable to discard

these frames to avoid introducing erroneous information into

the system. When the FLS gathers a frame, a filter based on

the AUV odometry determines whether the vehicle attitude,

velocity (both linear and angular) and altitude are between

certain user-defined thresholds that allow the FLS to correctly

generate an image, and thus whether the image is a candidate

to be ingested into the ATR. If a frame passes this filter, a set

of clips are subsampled from it. For each clip, 2 processes are

carried out. First, the position that the clip is mapping, with

respect to the global system, is computed. Basic geometry

operations involving the position and attitude of the AUV

carrying the FLS, the transformation between the vehicle and

the sonar and the sonar configuration parameters (i.e., window

start, window length, sonar field of view and resolution) are

used assuming an orthographic projection. We consider the sea

floor to be planar and horizontal for this purpose, such that

any pixel from FLS imagery corresponds to a geographic point

on the flat horizontal sea floor. On the other hand, each clip

is analyzed by the detector module. If the detector triggers a

positive detection (i.e., an object of interest is detected within

the clip), the clip is also passed to the classifier module. This

classifier considers detection to be of one of two classes: target

or clutter. If the clip belongs to a target class, the contact

with its resulting classifier information are stored. Otherwise,

the detection is not considered. The position of the clip, the

detection probability and, if available, the estimated target

class are sent to the grid map system that combines all this

information into a grid structure.

1) Detection Module: To implement the detection module,

4 of the CNN models presented in the related work [9], [22]–

[24] were tested. A summary of each one of these models

is presented in Table I. All these models use the ReLU

activation function in all the layers, except for [23] where

a Sigmoid function was used. From the two models proposed

by Valdenegro-Toro and reviewed in the Related Work, [25]

would possibly be more appropriate considering the small size

of the available data set. However, since the article focuses on

the overall framework and not on the individual performance

of each component, we have used here the model presented

in [9] to test a wider range of models instead of using an

algorithm, which despite offering better performance with

limited data, presents a similar approach to [23] and [24].

Also, of the 8 models proposed in [24] only the one that

produced the best results with our data set was included in

this comparison (called ”Net B”, in that reference).

The data used to train these models were collected in two

campaigns. One was carried out in the St. Feliu de Guixols

(Spain) harbour with the only purpose of gathering data to

train these models. It includes 5 different objects, 3 of them

deployed for this purpose, as well as images from the sea

bottom. This data was taken by a team from Universitat

de Girona (UdG), in collaboration with the NATO Centre

for Maritime Research and Experimentation (CMRE), with

a Sparus II AUV using an ARIS 3000 FLS. The second

campaign was carried out by a CMRE team at the Balearic

Islands (Spain) using the BlackCAT vehicle, a Bluefin 21 AUV

modified to perform MCM missions, equipped with the same

sonar model. Although in the second campaign only one target

was detected and it appears in very few frames (i.e., only 72

frames), all the data was acquired at open sea and, therefore,

it presents interesting phenomena such as sand ripples. The

data collected in both scenarios have been combined to create

a training and a validation data set where the targets used

in the validation have never been seen during training (see

Table II). The original frames were manually labelled and all

clips, generated automatically, containing more than 50% of

a target label were considered as a target clip, while those

containing less than 10% of a target were considered seabed.

Most of the frames in this data set contained only seafloor

images. In total, only around 2000 images contained an

object of interest. Therefore, data augmentation operations

were applied to those frames in which a target was mapped

to balance both classes. Specifically, all clips containing a

target were translated in various directions and flipped around

the range axis. The data augmentation process has been

executed automatically. This has resulted in a few more images

containing targets than without.

All models in Table I were trained using a root mean square

propagation optimizer and a binary cross entropy loss criterion

for 100 epochs. The equivalent size of the clips was set at

∼1.4×1.4 m, which in this data set corresponds to clips that
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TABLE I
CNN MODELS FOR ATR USING SONAR DATA IN LITERATURE

Cite Capacity
Input size

w×h px @channels
Architecture

Accuracy
avg. last 50 epochs

[22] 2578 28×28 @ 1

Conv(5, 5) @ 4
MaxPool(2, 2) @ 4

Conv(5, 5) @ 12
MaxPool(2, 2) @ 12

FullConnected(192, 1)

87.74% ± 2.66%

[23] 30201 167×167 @ 1

Conv(32, 32) @ 6
AvgPool(2, 2) @ 6
Conv(17, 17) @ 8
AvgPool(2, 2) @ 8
Conv(7, 7) @ 10

AvgPool(2, 2) @ 10
Conv(5, 5) @ 24

AvgPool(2, 2) @ 24
FullConnected(216, 1)

82.20% ± 4.01%

[9]
objectness

1845409 96×96 @ 1

Conv(5, 5) @ 32
MaxPool(2, 2) @ 32

Conv(5, 5) @ 32
MaxPool(2, 2) @ 32

FullConnected(14112, 128)
FullConnected(128, 96)
FullConnected(128, 1)

80.62% ± 2.25%

[24]
Net B

1509 267×267 @ 1

Conv(8, 8) @ 4
AvgPool(4, 4) @ 4

Conv(6, 6) @ 4
AvgPool(4, 4) @ 4

Conv(4, 4) @ 4
AvgPool(2, 2) @ 4

Conv(5, 5) @ 4
AvgPool(2, 2) @ 4
FullConnected(4, 1)

79.55% ± 1.58%

TABLE II
COMPOSITION OF THE DATA SETS USED TO TRAIN AND EVALUATE THE TARGET DETECTION MODELS

Class Train Validation

Sea bottom
(background)

Harbour around objects 1, 2 and 3
Open-sea days 1 and 3

(6816 images)

Harbour around objects 4 and 5
Open-sea day 2
(1132 images)

Object
of interest
(targets)

Harbour objects 1, 2 and 3
(8470 images)

Harbour objects 4 and 5
Open-sea objects day 2

(1141 images)

range from 300×300 to 400×400 px depending on the sonar

configuration used. Each clip was scaled down to the network

input size and normalized with µ = 0.5 and σ = 0.5 before

being processed.

The average accuracy obtained for each model, with our

datasets, for the last 50 epochs is shown in Table I. All

the values are around 80% with the exception of Y. Le

Cun network. This model achieves a better performance at

expenses of reducing the input size to only 28 × 28 px. This

significantly improves the SNR but makes small objects almost

impossible to detect.

According to the results obtained, several new models were

designed, taking into account the following considerations:

• Relation between the input size of the model and its first

filter. Unlike optical architectures, where the use of small

filters is dominant, when dealing with FLS images, we

have experimented that it is important for the first filter

to be relatively large. This could be explained by two

reasons: the lack of detail and the high presence of noise

in the sonar images.

• Use of average pooling instead of max pooling. This

has been pointed in the literature as a technique to

deal with noisy images [23]. In our tests we get small

differences using the average or the maximum pooling,

but we consistently obtained slightly better results with

the average pooling.

• Reduced capacity. Overfitting is a well known problem

for high capacity models when trained with small data

sets [24]. According to the limited size of our training

data set and the fact that the detector has to be executed

on board an AUV with limited computational budget,

keeping a low number of parameters is of paramount

importance.

• Input size should be large enough to allow the detection

of medium size objects but small enough to allow scale

down the frame clips thus improving its SNR.
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Fig. 4. Accuracy over epochs for each CNN model using the validation
dataset.

The two most successful models that we have designed are

described in Table III. These models significantly improve

over the previous results. The main characteristics are: a

significantly large initial filter (i.e., 16×16 and 32×32), use of

average pooling, small capacity (i.e., ∼ 104 parameters) and an

input size of approximately 50% of the original image clip size

(i.e., 167× 167). A batch normalization layer have also been

added after each convolution layer to accelerate the training

process [40]. Fig. 4 shows a comparison of the accuracy for

all the models in Table I and Table III.

2) Classification Module: The classification module is used

as a second step, only if the detector has indicated that the clip

contains an object of interest. The classifier is multi-class, but

each class must be labelled as target or clutter. Only clips

classified as a target classes, are sent to the next classification

module or the probabilistic grid map system (see Fig. 5).

Training a multi-class classifier from scratch requires a large

data set. However, we only have available a few hundred

images of each of the classes that we would like to recognize.

This amount of images is insufficient to properly train a

classifier from zero. For this reason, we have used a technique

known as transfer learning [26]. The idea behind transfer

learning is to reuse part of a model already trained for a similar

purpose. In our case, we have used the convolutional layers

from the detector model in the classifier. Therefore, only the

last fully connected layers of the classifier have been trained

using the limited data set available. The convolutional layers

perform the feature extraction. An example of the features

extracted by these layers can be seen in Fig. 6 where the

intermediate responses generated by the FLS tiny model (see

Table III) are shown. Despite it not being easy to interpret

this responses, looking at the output after the first average

pooling, it seems that channels 1 and 4 have segmented the

main shadows in the input image, channel 2 the highlights and

channel 3 the background. After the second average pooling,

spatial information is almost completely lost and it is difficult

to see which channels have segmented one element or another.

Two classifiers were implemented using the same methodol-

ogy. The first one was designed to recognize 4 different objects

of interest, all of them labeled as targets: truncated cone (see

Fig. 5. Example of detection/classification with 3 different clips: clip 1 does
not trigger any detection and therefore is not further processed. Clips 2 and
3 trigger detection and are analyzed by Classifier 1 which classifies clip 2 as
a clutter class, and no further process is carried out, and clip 3 as a target
class. Clip 3 is further processed until Classifier N classifies it as target class
2. This information is sent to the probabilistic grid map system.

Fig. 7(a) and (b)), horizontal cylinder (see Fig. 7(c)), box with

rounded corners (see Fig. 7(d)) and two blocks linked (see

Fig. 7(e)).

A total of 1,685 images (i.e., ∼400 clips per class) were

available in our data sets. These images were divided into a

training and a validation data sets, with a ratio of 80%-20%.

To train the classification model using transfer learning, the

detector weights for the convolutional layers were fixed and

the last fully connected layers were modified and trained using

the new data set. Both the FLS tiny and the FLS small models

were tested, obtaining the best results with the FLS small.

The two fully connected layers at the end of this model,

were replaced by a FullConnected(288, 128) with ReLU

activation followed by a FullConnected(128, 4) layer with

a Sigmoid activation. To train the classifier, the cross-entropy

loss criterion and the Adam optimizer were used for 200

epochs. Fig. 8 shows the accuracy and loss for the training

and validation data over epochs. The averaged accuracy in the

last 50 epochs reaches 91.92% ± 0.90% for the training data

set and it drops to 82.43% ± 2.85% for the validation one.

The confusion matrix in Table IV depicts how all the available

clips are classified by the model. The most difficult objects

to differentiate are the horizontal cylinder and the box with

rounded corners. These two classes, due to their geometries

and the nature of sonar imagery, are imaged quite differently

depending on the aspect angle. Moreover, when these two

classes appear only partially on a clip, the in-view component

is very similar and the classifier easily confuses them.
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TABLE III
PROPOSED CNN TO DETECT OBJECTS OF INTEREST ON SQUARED CLIPS FROM CARTESIAN SONAR IMAGES

Name Capacity Input size Architecture Accuracy

FLS tiny 9661 167×167 @ 1

Conv(16, 16) @ 4
AvgPool(4, 4) @ 4
Conv(11, 11) @ 8
AvgPool(4, 4) @ 8
Conv(6, 6) @ 16

AvgPool(2, 2) @ 16
FullConnected(16, 4)
FullConnected(4, 1)

90.00% ± 1.56%

FLS small 41749 167×167 @ 1

Conv(32, 32) @ 4
AvgPool(2, 2) @ 4
Conv(15, 15) @ 8
AvgPool(2, 2) @ 8
Conv(8, 8) @ 16

AvgPool(2, 2) @ 16
Conv(5, 5) @ 32

AvgPool(2, 2) @ 32
FullConnected(288, 32)
FullConnected(32, 1)

91.53% ± 2.03%

TABLE IV
TARGET CLASSIFICATION MATRIX

Input Vs. Classifier Output linked blocks cylinder horizontal truncated cone box with rounded corners

linked blocks 431 11 4 17

cylinder horizontal 26 354 8 15

truncated cone 1 23 321 7

box with rounded corners 13 60 4 386

The second classifier was trained to eliminate false detec-

tions triggered by sand ripples. The presence of sand ripples

is one of the most frequent elements that may generate false

positives in the detector module. Looking at the sand ripples

in Fig. 7(i) and (j) and the cylindrical object in Fig. 7(c) it is

easy to see the similarity between the two. Medium sized rocks

also trigger the detector module producing false positives. Un-

fortunately, we were unable to collect enough data from them

to train a classifier. The same process detailed before was used

changing only the last layer for a FullConnected(128, 2).
The training data set contained: 1717 mine-like object clips,

labeled as target, and 1998 sand ripple clips, labeled as clutter.

The accuracy obtained was 88.83%± 2.14%.

It should be noted that when sufficient computational re-

sources are available, it is possible to run both classifiers one

after the other. In this case, for instance, we would run the sand

ripples classifier first and, if the clip is classified as a target,

we could run the target classifier next as shown in Fig. 5.

3) Probabilistic Grid Map System: Using the CNN models

presented before, the accuracy to predict if an image contains

a target is ∼90% and the one to correctly classify a detected

target is even lower. However, these results can be improved

overall if the FLS frames are not considered independent ob-

servations but a representation of a particular space. Mapping

each frame clip to a reference coordinate system will allow a

higher-accuracy estimation of which zones are more likely to

contain a target, and to better classify each detection.

As shown in Fig. 1, the probabilistic grid map system

receives the position of the clip in the reference coordinate

system, the output of the detection module and, if available,

the probability of belonging to a target class. The output of

the detector is a value between 0 and 1 where 0 means 100%

sure that the input is background and 1 means 100% sure

that the input contains an object of interest. In order to map

the detectors output to a binary category, a decision threshold

(θ) must be defined. This threshold is problem-dependent and

must be tuned for each application. Usually, the best accuracy

is achieved when both false positive and false negative are

in equilibrium. However, for some applications can be more

important to avoid false negatives or false positives. If the

number of false negatives has to be reduced, θ has to be

lowered, while if the number of false positives has to be

reduced, θ has to be increased.

In the target reacquisition missions that we have analyzed,

the frames containing a target account for less than 3% of the

total. Due to the FLS high frame rate, when a target appears

in the sonar field of view, it will appear in several consecutive

frames. Combining these two ideas, we consider that it is better

to incorrectly classify one of these frames containing a target

as background than to get a 4 or 5% more false positives in

the remaining 97% of data.

To see the performance of a classification model at all

classification thresholds a receiver operating characteristic

curve (ROC), as the one shown in Fig. 9, is used. This curve

plots the true positive (TP) rate against the false positive (FP)

rate for the FLS tiny model. Measuring the area under the

ROC curve (AUC) provides aggregate measure of performance

across all possible classification thresholds. The AUC ranges

from 0 to 1 being 0 a model whose predictions are 100%

wrong and 1 a model whose predictions are 100% correct.
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Fig. 6. Intermediate responses for an input image (i.e., a truncated cone) using the FLS tiny model. The output for the first 4 layers is shown individually. For
the others, convolution, batch normalization, ReLU activation and average pooling are grouped. Note that images size do not match its real size to improve
their visualization.

The FLS tiny classifier has an AUC of 0.9768.

An important difference of our system with respect to a

binary classifier (i.e. a detector), is that we use a probabilistic

module after it, and therefore, we do not want the output of

the detector to be true or false but a probability.

To obtain a corrected probability, zt, according to the

detector output (pt) and the decision threshold (θ), equation (1)

is used.

zt =











pt

2θ
, if pt < θ

1

2
+

pt − θ

2(1− θ)
, if pt ≥ θ

(1)

To accumulate all the probabilities obtained in a nearby

place, a standard grid map is used [41]. The cell update policy

for this grid map is defined by (2), where P (n|zt) is the

probability to have a target in cell n given a measurement

zt, where zt is the detector output pt corrected by (1). P (n)
is a prior probability and the previous estimate is defined by

P (n|z1:t−1).

P (n|z1:t) =

[

1 +
1− P (n|zt)

P (n|zt)

1− P (n|z1:t−1)

P (n|z1:t−1)

P (n)

1− P (n)

]

−1

(2)

Assuming that the distribution of targets in the map is

initially unknown, all grid cells are initialized with P (n) =
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Fig. 7. Examples of frame clips. (a) and (b) truncated cone; (c) horizontal
cylinder; (d) box with rounded corners; (e) two blocks linked; (f) to (h) show
background clips; (i) and (j) sand ripples;

0.5 ∀ n ∈ grid. To optimize the update process, log-odds are

used as in (3).

L(n|z1:t) = L(n|z1:t−1) + L(n|zt)

L(n) = log

[

P (n)

1− P (n)

]

(3)

A certain degree of adaptability in the grid is desired

because not all the objects in the map are static (e.g., fish

swimming within the FLS field of view) . To achieve this

adaptability, a clamping update policy that defines an upper

and lower bound on the cell estimate is applied using (4) per

[42].

L(n|z1:t) = max(min(L(n|z1:t−1) + L(n|zt), lmax), lmin),
(4)

with lmax = 29.93 and lmin = −29.93. Relatively high

clamping values have been chosen as the probabilities obtained

after applying (1) are always very close to 0 or 1.

The grid map is updated as the FLS frames are processed.

At any moment (e.g., at the end of each survey track), the

grid map can be checked to see if any cell has a probability

of containing a target above a certain threshold. Only cells

Fig. 8. 4-classes Multi-class classifier (a) accuracy and (b) loss over epochs
for both training and validation data sets.

Fig. 9. ROC for the FLS tiny model with an AUC of 0.9768.
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accumulating a minimum number of detections are considered

valid in order to ensure a consistent result. Since a single target

can be detected in several nearby cells, a non-maximum sup-

pression (NMS) filter is applied to avoid multiple detections

for the same target.

Every time the grid is updated with a positive detection,

both the frame from which the clip came and the estimated

probability of belonging to a target class are stored in a

database linked to the grid (see Fig. 1). When the ATR is

interrogated, it can return any of the following elements: the

resulting grid map, a list with the position of all detected

targets, the averaged estimated class of each target and/or a

set of images that triggered each detection. The size of this

information represents a small fraction of the total size of the

data gathered by the AUV during the survey. Depending on

the number of images per target included it can range from

some kilobyte to a few dozen megabytes. Such data can be

transmitted using a low bandwidth channel like an acoustic

modem. This allows for faster operations avoiding recovery

of the vehicle or transmission the raw data which is usually

in the order of some gigabytes.

B. Target Reacquisition Strategy

The BIONDo AUV (see Fig. 10), in which the ATR frame-

work will be first deployed, is a Sparus II class AUV built

by Iqua Robotics [43] and modified by the CMRE to be used

in MCM missions. The AUV has three thrusters (one vertical

and two horizontal) that provide it with great maneuverability

as well as hovering capability. It has a complete navigation

sensor suite including a Doppler velocity logger (DVL) and

a high-performance inertial navigation system (INS), several

communication interfaces (i.e., WiFi, acoustic modem and

radio) and an ARIS 3000 FLS [39] as its main perception

sensor.

BIONDo uses the COLA2 software architecture [44] and

is compatible with the distributed framework for embed-

ded collaborative autonomy D2CAF [45]. Within D2CAF,

BIONDo can be considered as an autonomous agent with

target reacquisition capabilities and therefore can be tasked by

any other agent that requires this service. When a reacquisition

task is created, if D2CAF allocates it to BIONDo, it receives

the position (latitude, longitude), the area (width, height) and

the orientation in which one or several MILCOs have been

obtained. This zone should be close to BIONDo’s current

location and relatively small: BIONDo, and in particular the

designated FLS, is not intended to survey large areas, but to

revisit MILCOs already detected by other means. An area

is given instead of a single point because it is necessary to

survey around a given MILCO position in order to allow its

re-localization. An error of several meters may exist between

the MILCO given position and the one in which it is reacquired

due to the differences that may exist between the navigation

solutions of the different vehicles in the detection-reacquisition

chain. Targets detected after a reacquisition mission can be

reported back to D2CAF.

The ARIS 3000 FLS installed in the BIONDo AUV has a

maximum range of 15 m. However, to ensure the necessary

Fig. 10. BIONDo AUV, a Sparus II class vehicle prepared for MCM
reacquisition missions. It includes a high-performance INS and an ARIS 3000
FLS. BIONDo AUV is rated for depths up to 200 m.

resolution and the quality of the images taken, an average

range of 7.5 m is used. With this configuration, if the vehicle

navigates between 2 to 3 m over the bottom, the FLS frames

start at around 3 m from the sonar and extends ∼4.5 m

covering less than 3.5 m across track (see Fig. 2). Therefore,

to ensure full coverage, the tracks of the survey mission have

to be placed very close (i.e., between 2 and 3 m away). A

standard lawnmower pattern (see Fig. 11(a)) can be used for

this purpose. However, because the vehicle has to turn 180◦ in

less than 3 m, resulting trajectories can be difficult to follow.

To avoid unstable maneuvers, a sliding box trajectory (see

Fig. 11(b)), where the AUV only has to execute 90◦ turns,

can be used instead. While executing this survey patterns, if

a target is reported by the ATR, a target-mapping maneuver

can be triggered. This maneuvers consists on mapping a

specific position (i.e., the position in which the target has been

detected) from different points of view as seen in Fig. 11(c)

and (d). It is important to highlight that these target-mapping

maneuvers can only be executed if the position of the target to

map is known with a high accuracy and the AUV navigation

solution has not drifted much since the detection was made.

A hovering capable vehicle like BIONDo AUV is well-suited

for this kind of trajectory. Different target-mapping shapes can

be defined. They range from a simple cross (see Fig. 11(c))

to a more complex back and forth double cross shape (see

Fig. 11(d)). While the first will be faster to execute, the second

will provide more viewpoints of the target and a larger area

with multiple views.

Fig. 12 presents the architecture implemented to leverage

the ATR results during mission execution. When the AUV is

targeted by the D2CAF to reacquire a MILCO, it receives in-

formation about its approximate position. A sliding box survey

mission is automatically generated around the general MILCO

position. The vehicle navigates to the survey area on surface,
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Fig. 11. Target reacquisition trajectories. (a) Lawnmower and (b) sliding box
pattern are both useful for searching an area. (c) simple cross and (d) multi-
view cross are useful for collecting data on a single position. Starting and
ending position are indicated by a triangle and a square respectively.

to have access to GPS data, and once there it is submerged

to reach the initial point of the survey mission. The ATR is

then enabled and the survey starts. At the end of each survey

track the ATR is interrogated. It returns the position of each

new target candidate, and the survey mission is paused and

a target-mapping maneuver is executed over each candidate

position. If the navigation allows it, this interrogation can be

done every 2 or 4 survey tracks instead. As soon as the survey

is completed, the information calculated by the ATR (i.e., the

position, class, and a set of images for each detected target)

can be transmitted. The gigabytes of information collected

by the vehicle during the mission are summarized in a few

megabytes of data that can be sent even using a low-bandwidth

communication channel.

IV. RESULTS

In this section the ATR proposed before is tested using data

sets collected during previous MCM exercises at sea. Both

the detection and classification models as well as the benefits

of using the introduced probabilistic grid map are evaluated.

Next, an overall performance assessment of the reacquisition

strategy is shown.

A. ATR Results

Specific results for the detection and classification modules

have already been reported in Table III and Table IV. Ac-

cording to these results, the FLS small model behaves slightly

better than FLS tiny both for detection and classification tasks.

However, FLS small capacity is more than 4 times larger

and, therefore, requires more computational power to execute.

When running FLS tiny in a computer with an i7 CPU and

without GPU acceleration, it takes ∼4 ms to analyse a clip

while FLS small takes almost twice the time (i.e., ∼7 ms).

Considering that the ATR evaluation must be done for each

clip in each frame (i.e., ∼50Hz), we propose to use the

FLS tiny architecture for the detection model, and use the

FLS small for the classification module activated only when

a positive detection is triggered.

To analyze the ATR performance in the context of a real

mission, data from previous campaigns were used. In partic-

ular, data gathered during the NATO exercises TJMEX 2015

in Cartagena (Spain) and ONMEX 2016 in Hyéres (France),

as well as data gathered in St. Feliu de Guixols (Spain)

in preparation for these two trials. In all of these trials, a

Sparus II AUV equipped with an ARIS 3000 FLS executed a

predefined survey trajectory over an area where a MILCO was

previously detected. At the end of each inspection, the vehicle

was recovered and the acquired data was manually processed.

The AUV navigation suite used in all these exercises was based

on a DVL and a low cost MEMS-based INS.

One of the goals of this paper is to show that with the

proposed ATR it is possible to detect all the targets present

in a surveyed area automatically online. It is worth noting

that all the missions in which the vehicle flew over a target

in the these campaigns have been used. Moreover, none of

the data sets used to train and validate the detection model

contain images from any of these 3 campaigns, which shows

the system’s generality.

The detector threshold was set at 0.999 to avoid false

detections and the minimum number of hits per cell to be

considered valid was established at 5. These values were used

for all tests reported in this article. The clip size for each

mission varied from 1.2 to 1.4 m, depending on the sonar

parameters with which the experiment was performed. The

size of the grid cells were always set to half the size of the

clips.

Fig. 13 presents three missions performed during TJMEX

campaign. Figures 13 (a), (c) and (e) show the vehicle’s

estimated trajectory in blue and the positive detections reported

by the ATR detector as red stars. A dashed green circle has

been added as a ground truth at the position where the target

was manually identified.

Figures 13(b), (d) and (f) show the resulting grid maps

for each run. White squares represent cells with a probability

between 0 to 0.5 to contain a target while light pink to red

squares have a probability between 0.5 to 1. We consider that

a cell contains a target only if its probability is over 0.95.

Moreover, only cells with a minimum number of updates are

shown, indicating the actual sensor coverage.

In the first mission (see Figures 13(a) and (b)) the detector

triggers 112 positive detections corresponding to 52 different

frames. From these, only 2 were false positives and were

filtered out by the grid map. Up to 5 cells were marked as

containing a target but because they were all together, the

NMS filter had no problems getting the ATR to report a single

detection. The clip size was set at 1.25 m for this particular

experiment.

In the second mission (see Figures 13(c) and (d)) the

detector generated only one false positive. However, the target

was seen twice during the survey and, due to the large drift of
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Fig. 12. MCM target reacquisition architecture.

the AUV, it appears in two different locations (see Fig. 13(c)).

The false detection disappeared after accumulating all cell

updates but the two regions in which the target was detected

also appeared in the grid map. In total, 282 detections were

obtained scattered in an area of 3.5 × 4 m around the target

and 6 cells were marked in the grid map with a probability

over 0.95. Depending on the size of the NMS filter used, one

(i.e., NMS > 4.0) or two detections (i.e., 1.5 < NMS < 4.0)

were reported by the ATR. It is worth mentioning that the

new navigation suite in the BIONDo AUV, which incorporates

the same DVL but a high performance INS, should greatly

mitigate this drift.

The third mission (see Fig. 13 (e) and (f)) was again over

the first target. During the inspection, the vehicle crossed a

school of fish near the southern edge of the trajectory area

causing multiple detections (see Fig. 14(a)). However, these

detections were not consistent over time and the probabilistic

grid map filtered them out. At the end of the survey, only the

real target position was reported by the ATR.

In the first and third experiments, the deployed target was

completely different than the objects used to train the 4-

classes classifier (see Fig. 14(c)). Therefore, the classifier

was unable to identify the target among any of the classes

learned. In the second run, the deployed target was a horizontal

cylinder (see Fig. 14(b)). Despite in some frames it was

misclassified, averaging all the classifier estimations it was

correctly identified.

In the TJMEX trials it was observed that the AUV had some

difficulties following the survey trajectory. For this reason, in

ONMEX the lawnmower pattern was replaced by a sliding

box pattern. Fig. 15 presents two missions performed during

ONMEX. In the trials area, the soil was smooth but with rocks

of different sizes scattered around. Most of these rocks were

small enough that they did not trigger the detection module

systematically. Only one of these contacts (see Fig. 14(d)) was

detected consistently enough to appear on the grid map (see

detection in Fig. 15(a) around 9 m South and 16 m West).

The only target present in the area was also detected in the

West edge of the surveyed trajectory. Due to many frames in

which only half of the target appears, it was misclassified as

a box with rounded corners instead of a horizontal cylinder

(see Fig. 14(e)). The mission was repeated but changing the

center of the survey area for the position in which the target

was located in the previous survey. Fig. 15(c) shows the result

of this second run. Up to 7 areas triggered the target detection

model but only the one located around 13 m North and 22

m West, corresponding to the mine-like target, was persistent

enough to not be filtered by the probabilistic grid. All other

detections, corresponding to small- or medium-sized clutter,

were filtered out. In this second run the target was correctly

classified as a horizontal cylinder. The second survey was

aborted before completion due to a sonar malfunction. It is

worth noting that, despite using the same navigation suite than

in TJMEX, vehicle drift was much lower during these trials.

The last environment was more challenging because the

bottom had several areas covered by sand ripples. To filter

them, we used the classification model able to differentiate

between targets and sand ripples. In the first trial a lawnmower

pattern was used. By chance, the path of the vehicle was

almost parallel to the sand ripples. With the classifier disabled,

the detector found 463 possible detections (see Fig. 16(a)).

The grid map was able to group all these detections into

only 3 candidates, one of which was the desired target (see

Fig. 16(b)). Enabling the sand-ripple classifier, only 83 of these

detections remained (see Fig. 16(c)) and the grid map had no

problems to filter out the scattered false positives returning

only a target candidate corresponding to the real mine-like

object (see Fig. 16(d)).
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Fig. 13. TJMEX MCM reacquisition trials. Figures (a), (c) and (e) show the vehicle’s trajectory in blue and the detections reported by the detection module
as red stars. A dashed green circle has been added as a ground truth at the position where the target was manually identified. Figures (b), (d) and (f) show
the resulting grid map. White squares represent cells with a probability between 0 to 0.5 to contain a target while light pink to red squares have a probability
between 0.5 to 1. Only squares in which at least 5 updates have been accumulated are shown.
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Fig. 14. Examples of frame clips gathered during TJMEX and ONMEX
trials. Clip (a) shows one of the frames mapping a shoal of fish that caused
several false positives. Clips (b) and (c) show the deployed targets in TJMEX.
Clip (d) corresponds to a stone present in ONMEX survey area that triggered
systematic false positives. Clip (e) contains part of a horizontal cylinder target
deployed in ONMEX that was misclassified as a box with rounded corners
by the system.

The same area was inspected again using a sliding box

pattern and centering the target better. The same orientation

was used, however, because a different survey pattern was

used, some tracks mapped the sand ripples perpendicularly,

producing even more false detections than in the previous ex-

ecution. Without using the sand ripples classifier, the detector

generated 2739 positive detections (see Fig. 16(e)) and the grid

map system returned 5 candidate positions from which one

was the real target (see Fig. 16(f)). Enabling the sand-ripple

classifier, only 387 detections were triggered (see Fig. 16(g))

and, in the grid map, only the cell containing the target has a

probability over 95% (see Fig. 16(h)). Executing the 4-class

classifier in chain after the target-clutter classifier the deployed

target was correctly identified in both trials.

With these two experiments it can be seen that the classifier

is very effective in filtering out a particular type of false pos-

itives. In this particular scenario, about 90% of the detections

produced by sand ripples were eliminated, while less than 10%

of the detections produced by the real target were marked as

clutter.

B. Target Reacquisition Strategy Results

The previous section has shown the ability of the proposed

ATR to detect and classify targets in FLS data sets collected

during previous MCM exercises in different locations and

conditions. Next, the performance of the proposed target

reacquisition strategy has been evaluated based on 3 factors:

the coverage, the navigation drift and the detection accuracy.

It is obvious that the system can only detect the presence

of targets in regions that have been covered by the sonar.

According to the sonar geometry, at 7.5 m range the sonar

should cover around 3.5 m across track. However, several fac-

tors reduce the effective coverage. Some of these are: square

clips cause part of each frame to be discarded; some frames

are discarded due to the odometry filter; and small variations

in the AUV heading cause a considerable displacement in the

FLS footprint because the sonar is always mapping several

meters in front of its own position. In the previous trials it

was seen that the AUV had difficulties following a lawnmower

pattern where the tracks were very close. However, the sliding

box trajectory can also result in unexplored gaps as shown

in Fig. 16. To evaluate the coverage, taking into account the

trajectory pattern and the separation between tracks, several

simulations were conducted. In these simulations, the dynamic

model of the Sparus II AUV [46], and the same trajectory

controllers used in the actual vehicle, were used. A grid map

with 0.5 m2 cells was set in all the simulations and a cell

was considered visited if at least 5 updates were accumulated

in it. Fig. 17 shows the result of executing a lawnmower and

a sliding box pattern, at 3.5 m and 2 m distance between

tracks. The figure shows that the sliding box pattern gives, on

average, a 10% better coverage than the lawnmower. It can

also be seen that, to ensure a coverage of more than 90%, the

tracks have to be at around 2 m distance with this particular

sonar configuration.

The coverage analysis was done assuming an almost perfect

localization. However, it was shown in the previous subsection

that the navigation drift is one of the major problems to tackle.

If the vehicle has a large drift, it is difficult to ensure coverage

as well as to associate detections. To improve this, the MEMS-

based INS installed in standard Sparus II AUVs has been

replaced in the BIONDo AUV by a high performance INS

that allows to reduce the localization drift over time.

To assess the performance of the target reacquisition strat-

egy, several mission were simulated over an area with 2 targets,

placed at (7.5, -5) and (-1, 1). Regarding the ATR simulation,

since generating realistic FLS images synthetically is complex

and beyond the scope of this work, instead of generating sonar

clips and running them through the detector module, the ATR

performance was emulated, bypassing the simulation of the

sonar data at the sensor level. To set the detection probability

of the detector module, the values obtained in real tests were

used. According to the results in Section IV-A, the accuracy

of the ATR is between 95% and 99.99% when dealing with

data from previous MCM campaigns. When dealing with the

data set that was created to validate the different CNN models,

the accuracy decreases to ∼90%. It is worth noting that this

validation dataset contains more extreme cases than what is

typically found in the real missions. In the simulations, the

ATR accuracy was set first to 99.9% and then to 90% and the

localization drift was tuned to resemble both the high-accuracy

INS first and the MEMS-based INS later.

Fig. 18 shows the obtained results when the accuracy of the

ATR was set at 99.9% and the navigational drift commensurate

with that of the high-grade INS available in the BIONDo.

The two existing targets were discovered and only a simple

target-mapping maneuver was performed on each of them.

The few false positives produced by the ATR were filtered

out by the probabilistic grid system. When the ATR accuracy

was reduced to 90% (see Fig. 19) hundreds of false positives

were reported by the ATR. These resulted in 5 target-mapping

maneuvers being triggered. The additional data provided by
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Fig. 15. ONMEX MCM reacquisition trials. Figures (a) and (c) show the AUV trajectory and the detection output while figures (b) and (d) present the
resulting grid map.

these supplementary tracks allowed the probabilistic grid to

filter out the false positives and only the position of the two

targets was returned at the end of the mission.

When the same analysis was done using a less precise

localization system, the main difference observed was that

the coverage of the sliding box was significantly reduced. In

our tests, this reduction went from 94% to 79.8% considering

only the area covered by the sliding box pattern and not

the additional tracks added by the target-mapping maneuvers.

Though the two targets are correctly detected, as shown in

Fig. 20 and Fig. 21, in a third of the simulations executed, one

of the two targets was not detected because the area in which

it was located was not covered. Of course, these results depend

on how poorly the vehicle is localized. In Fig. 21, the lower

accuracy of the ATR was not a major issue for the probabilistic

grid system which marked only 2 cells with a probability

greater than 0.95 of containing a target. Using the additional

information provided by the target-mapping maneuvers, the

system filtered out the false detections and kept only the valid

target positions. Because the mapping maneuver was executed

at the end of each survey track, the relative drift was small

and the detection positions thus didn’t change significantly.

V. DISCUSSION

Results reported in Section III and IV have assessed the

target reacquisition strategy and demonstrated the accuracy of

the proposed ATR.

The ATR module has demonstrated an accuracy over 95%

when dealing with real data from missions never encountered

during its training phase. The classifier model has shown a

lower accuracy (i.e., ∼80% with 4 classes and ∼90% with only

two classes), but was overall sufficient to correctly classify

most of the targets or to filter out many clutter elements. The

probabilistic grid map system has proven to be a key module

within the ATR. Most of the false positives generated by the

detector were due to rocks, swimming fish, noise in the sonar

data or sand ripples. Detections produced by sonar noise or fish

occur sporadically and are spatially inconsistent. Therefore,

when more data from the same region is observed, those

detections are filtered out. The same applies to small clutter,

mainly rocks, on the background: if they are observed several

times or from different points of view, most of them disappear

from the probabilistic grid map because their detection is

not consistent. It is normal for medium to large objects,

including rocks, to be detected as objects of interest by the

detector module. Differentiating which of these objects should
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Fig. 16. St. Feliu de Guixols shoreline and first reacquisition trials. Figures (a) and (c) show the same AUV trajectory and the target detection output while
figures (b) and (d) present the resulting grid map. Figures (e) and (f) show the AUV same trajectory and the target detection output while figures (g) and
(h) present the resulting grid map. The difference between (a) and (b) with respect to (c) and (d) and (e) and (f) woth respect to (g) and (h) is that the
target-clutter classifier was disabled in the former pairs and enabled in the latter.
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Fig. 17. Coverage comparison executing a lawnmower and a sliding box
pattern in a 30 × 15 m area at a constant altitude of 2 m and a velocity
of 0.5m/s with tracks at different separation. The green dots represent clip
centers. (a) using a lawnmower with tracks at 3.5 m the coverage is 62.8%,
(b) with a lawnmower with tracks at 2 m, the coverage is 84.5% (c) using a
sliding box pattern with tracks at 3.5 m the coverage is 69.4%, and (d) with
a sliding box survey with tracks at 2 m, the coverage reaches 94%. Reducing
the tracking space from 3.5 m to 2 m, the execution time is increased a ∼34%.

be considered a target or clutter is the responsibility of the

classifier.

Sand ripples have also proven to be very problematic.

Unlike rocks or sporadic elements that cause detections at

a particular position or moment, sand ripples may trigger

consistent detections over a large area. In this situation it

was key to have a classifier trained to differentiate between

objects of interest and specific clutter elements. During the

experiments, we also observed that the best way to deal with

sand ripples was to orient the survey pattern parallel to them

and avoid imaging the ripples perpendicular to the sonar.

In summary, the ATR was able to estimate the position of

the deployed target in 7 out of 7 target reacquisition missions.

Only in one, a medium-sized rock was also identified as a

possible target. For the missions carried out in an area with

sand ripples it was necessary to use a specific classifier, able

to filter out the ripples, to obtain only one target. Otherwise,

Fig. 18. Simulation of a reacquisition MCM mission using the proposed
strategy. A high-precision navigation system and an ATR with an accuracy of
99.9% are simulated.

the ATR reported up to four more false candidates. However,

even without using this specific classifier, the position of

the deployed target was correctly estimated. The classifier

was also used to identify the targets in 5 trials. In 4 of

them, the target was correctly identified, while in one it was

misclassified, mainly because only partial images of it were

obtained.

Using simulation tools the ATR coverage was also evaluated

under different conditions. The sliding box pattern was shown

to provide slightly more coverage than the lawnmower pattern

(i.e., around a 10%).

The proposed strategy, that combines a survey with auto-

matically triggered target-mapping maneuvers, was also tested.

Several conclusions can be drawn from the tests carried out.

Concerning the target-mapping maneuvers at the end of each

survey track, they allow the system to eliminate most of the

false positives introduced by the ATR. Furthermore, these

additional maneuvers provide multiple views for each target,

which gives added confidence to the results.

Finally, it has been observed that it is essential to reduce the

vehicle drift. Otherwise, it is not possible to ensure complete

coverage of the survey area, and it is more difficult to associate

detections to targets.
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Fig. 19. Simulation of a reacquisition MCM mission using the proposed
strategy. A high-precision navigation system and an ATR with an accuracy of
90% are simulated.

VI. CONCLUSIONS

The purpose of this article was twofold. Firstly, an ATR

for forward looking sonar, designed to run online on board

an AUV, and capable of detecting and classifying mine-like

targets, was developed. Secondly, a strategy was defined to

exploit the performance of this ATR, as well as to obtain

multiple views of each of the detected targets.

To develop the ATR, several models based on CNNs,

already available in the literature, were tested using FLS

data. Insights from those previous works led to the design

of two new models, with improved performance when dealing

with this particular sonar data. These models can be used to

detect objects of interest in FLS imagery but they can be also

retrained, using transfer learning, as multi-class classifiers to

identify specific targets or clutter elements. Next, a probabilis-

tic mechanism based on a grid map was implemented, acting

as a spatial filter, to improve the overall ATR results. This

system is capable of filtering out inconsistent detections as

well as combining different detections belonging to the same

target. Although CNNs and probabilistic grids are well-known

techniques, the main novelty of this work lies in the unique

way in which they have been combined and adapted within the

Fig. 20. Simulation of a reacquisition MCM mission using the proposed
strategy. A MEMS-based INS navigation system and an ATR with an accuracy
of 99.9% are simulated.

presented framework. The proposed ATR has been tested with

data acquired in previous MCM missions. It has been shown

to be able to re-locate all targets in a given area producing very

few, if any, false positives when thresholds are set aggressively.

It is well understood that there is a trade off between false

alarm rate and the aggressiveness with which low-scoring

contacts are excluded. Operationally, in the context of defence

and especially MCM related domains, this has important

implications regarding acceptable risk. The best mitigation

is to improve classifier performance while decreasing the

exclusion mechanisms (such as the threshold, in our case).

The envisioned architecture, combining autonomous reac-

quisition trigger with ATR outputs, has also been tested

through multiple simulations.

The whole system may run in real-time on board a vehicle

and is now being deployed in the BIONDo AUV to be tested

in future MCM campaigns. As new data from these cam-

paigns becomes available, both the detector and the classifier

models can be retrained to improve their performance. We

believe that the classifier is the module that might benefit

the most from this additional data, especially to differentiate
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Fig. 21. Simulation of a reacquisition MCM mission using the proposed
strategy. A MEMS-based INS navigation system and an ATR with an accuracy
of 90% are simulated.

between clutter classes (e.g., rocks, seaweed, small objects)

and target classes. This would reduce the number of false

positives making the system even more robust. The framework

presented is modular enough to be extended. For example, a

simultaneous localization and mapping module, that uses the

detections as landmarks, could be added to improve the overall

navigation. Likewise, a terrain classification module linked

to a live trajectory optimization system could be included

to select the classification models to be used as well as to

optimize the shape and orientation of the target reacquisition

trajectories to be executed. A multi-aspect classifier could even

be used to perform target-mapping maneuvers in a smarter

way. Moreover, the new INS installed in the BIONDo AUV

should reduce the navigation drift significantly, producing

more consistent coverage.
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