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Abstract: The system of marks created by Dr. Ernest Gardenyes and Dr. Lambert Jorba was first
published as a doctoral thesis in 2003 and then as a chapter in the book Modal Interval Analysis in 2014.
Marks are presented as a tool to deal with uncertainties in physical quantities from measurements or
calculations. When working with iterative processes, the slow convergence or the high number of
simulation steps means that measurement errors and successive calculation errors can lead to a lack of
significance in the results. In the system of marks, the validity of any computation results is explicit in
their calculation. Thus, the mark acts as a safeguard, warning of such situations. Despite the obvious
contribution that marks can make in the simulation, identification, and control of dynamical systems,
some improvements are necessary for their practical application. This paper aims to present these
improvements. In particular, a new, more efficient characterization of the difference operator and a
new implementation of the marks library is presented. Examples in dynamical systems simulation,
fault detection and control are also included to exemplify the practical use of the marks.

Keywords: modal interval analysis; interval arithmetic; marks; uncertainty modeling; indiscernibility

1. Introduction

Measurements of a variable are made using numerical scales. Usually, the value of a
measurement is associated with a real number, but this association is not exact because of
imperfect or partial knowledge due to uncertainty, vagueness or indiscernibility.

Incomplete knowledge comes from limited reliability of technical devices, partial
knowledge, an insufficient number of observations, or other causes [1]. Among the different
types of uncertainty, we find imprecision, vagueness, or indiscernibility. Vagueness, in the
colloquial sense of the term, refers to ambiguity, which remains in a datum due to lack of
precision, although its meaning is understood. An example could be the measurement of
a person’s weight using a scale, which provides a value within a range of scale accuracy,
e.g., between 75 and 75.2 kg. Uncertainty refers to imperfect or unknown information.
For example, it is known that the weight of a car is within limits (1000–1500 kg), but the
exact value is unknown due to missing information, such as the number of occupants and
the load.

The problems of vagueness and uncertainty have received attention for long time by
philosophers and logicians (e.g., [2,3]). Computational scientists have also provided new
tools for dealing with uncertainty and vagueness, such as interval analysis, either classic
intervals [4,5] or modal intervals [6,7], fuzzy set theory [8,9] and rough set theory [10].

Indiscernibility has also received the attention of philosophers. The identity of indis-
cernible [11] states is that no two distinct things are exactly alike. It is often referred to as
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“Leibniz’s Law” and is usually understood to mean that no two objects have exactly the
same properties. The identity of indiscernibility is interesting because it raises questions
about the factors that individuate qualitatively identical objects. The marks, which are
presented and developed in this paper, are outlined to address indiscernibility.

For example, the temperature in a room can be measured with a thermometer at
different location points within the room to obtain a spatial distribution. So the temperature
is not, for example, 20 ◦C but an interval of values, between, for example 19 and 21 that
represents the different values of the temperature in the room. It does not represent the
temperature of the room, which might be necessary for the modeling of an air-conditioning
system. The temperature is at this time one value of the interval [19,21], considering
the points of this interval as being indistinguishable. This is a known issue in handling
“lumped” or “distributed” quantities. Moreover, the thermometer used as a measurement
device has a specific precision and provides a reading on a specific scale, which is likely
translated to another digital scale to be used in computations. Therefore, a real number or
even an interval is not able to represent the read temperature.

Until the 20th century, the preferred theory for modeling uncertainty was probability
theory [12], but the introduction of fuzzy sets by Zadeh [8] had a profound impact on the
notion of uncertainty. At present, sources of uncertainty remain an active challenge for the
scientific community, and different research efforts are directed toward finding solutions to
deal with these uncertainties, such as using Bayesian inference for predictions of turbulent
flows in aerospace engineering [13], fuzzy sets for time series forecasting based on particle
swarm optimization techniques [14], modal intervals for prediction modeling in grammat-
ical evolution [15], interval analysis method based on Taylor expansion for distributed
dynamic load identification [16] or rough sets to evaluate the indoor air quality [17].

In this article, marks are presented as a framework to deal with quantities represented
in digital scales because this methodology can take into account many the sources of uncer-
tainty. In any use of a mathematical model of a physical system, such as simulation, fault
detection, or control, the system of marks provides values for the state variables and, simul-
taneously, their corresponding granularities, which represent a measure of the accumulated
errors in the successive computations. This performance leads to the following:

• Define intervals of variation for these variables values.
• Decide the valid values, i.e., which have a meaning, provide by the semantic theorem.
• Warns from which simulation step the obtained values will be meaningless because

the granularity is greater than the previously fixed tolerance.

In the following sections of this paper, we present and review marks theory and basic
arithmetic operations. The main contributions of this paper are the following:

1. A new characterization for the difference operator;
2. A new characterization for the difference operator;
3. a new implementation of the marks library and software developments that are

needed to apply these methodologies.

To demonstrate the applicability and potential of marks, a well-known benchmark in
process control in which the problems of uncertainty, imprecision, and indiscernibility are
present is introduced. After introducing the benchmark, three different problems built on
it are presented and solved, using marks: simulation, fault detection, and control.

2. Marks

An approach to deal with the inaccuracy associated with any measurement or compu-
tation process with physical quantities is built by means of an interval tool: marks, which
define intervals in which it is not possible to make any distinction between its elements,
i.e., indiscernibility intervals. Marks are computational objects; however, initial marks can
come from either direct or indirect readings from a measurement device. Therefore, it is
necessary to represent them on a computational scale to acquire suitable computation items.
When a measurement reading or a computation is obtained as a number on a numerical
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scale, the resulting value has to be associated to a subset of R of indiscernible numbers
from this value. Each point of this subset has the same right to be considered as the value
of the measurement or computation. This kind of subsets leads to the concept of a mark
considered a “spot” of certain size, called the “granularity” of the mark.

Let DIn be a digital scale in floating point notation. A mark on DIn is a tuple of the
following five real numbers:

• Center: a number c on the digital scale, which is the reading of the mark on DIn.
• Number of digits: the number of digits n on the digital scale DIn, n = 15 computing

in double precision.
• Base: the base of the number system b, usually b = 10.
• Tolerance: an uncertainty that expresses the relative separation among the points of

the scale that the observer considers as indiscernible from the center. It is a relative
value greater or equal than b−n, which is the minimum computational error on the
digital scales. It is a measure to decide if the mark is to be accepted as valid.

• Granularity: an error g, coming from the inaccurate measure or computation, which
will increase in every computational process. It must include the imprecision of the
measure, devices calibration errors, inaccuracy of the physical system concerned,
etc., and it is always expressed in relative terms, i.e., a number between 0 and 1, less
than tolerance.

As the numbers n and b are specific on the digital scale DIn, and the value of the
tolerance t is assigned for the user, the mark will be denoted by m = 〈c, g〉. Tolerance t,
number of digits n and base b define the type of the mark. The set of marks of the same
type is denoted by M(t, n, b).

The center of a mark is a reading in a measurement device, so it carries an error and an
uncertainty associated to the problem under study. Both yield the value of its granularity.
The center and granularity define the mark on the digital scale. Now, it is possible to
start the computations required by the mathematical model. The errors in each step of the
computations will increase the value of the granularity.

The granularity and tolerance must satisfy a minimum condition of validity of the
mark as follows:

b−n ≤ g < t < 1, (1)

These concepts are developed in [7,18], which contain the definition of a mark, its com-
ponents (center, tolerance, granularity, and base number of the numerical scale), features
(valid or invalid mark and associated intervals), relationships (equality and inequality),
basic operators (max, min, sum, difference, product, and quotient) and general functions
of marks and semantic interpretations through associated intervals to the operands and
the results.

2.1. Basic Operators of Marks

Operations between marks are defined for marks of the same type and the result is also
of the same type as the data. In this way, the tolerance is constant along with any computa-
tion, but the granularity increases, reflecting the step-by-step loss of information, which
constitutes the deviation of the computed value from the exact value. An extract definition
of elementary operators is presented after this, together with a different characterization of
the operator difference.

The extension fM of a basic operator f ∈ {max, min,+,−, ∗, /} to two given marks
x = 〈cx, gx〉 ∈ M(t, n, b) and y = 〈cy, gy〉 ∈ M(t, n, b) is the following:

fM(x, y) = 〈di( f (cx, cy), gz〉 ∈ M(t, n, b)

where di( f (cx, cy)) is the digital computation of the function f at (cx, cy) on the scale DIn,
supposing a minimum relative displacement of di( f (cx, cy)) with regard to the exact value
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f (cx, cy); and gz is the granularity of the result, which has to be gz ≥ max(gx, gy) and is
specified as the following:

gz = γx,y + b−n

where the value b−n is the computation error of di( f (cx, cy)), which is the minimum error
of any computation. Any computation has to carry this error by adding b−n. The term γx,y
is the smallest number, verifying the following:

f (cx, cy) ∗ [1 + γx,y, 1− γx,y] ⊆ f R(cx ∗ [1 + gx, 1− gx], cy)

f (cx, cy) ∗ [1 + γx,y, 1− γx,y] ⊆ f R(cx, cy ∗ [1 + gy, 1− gy])

where f R is the modal syntactic extension of f [7].
For the operators min and max, no computations with the centers are necessary and

the resulting granularity is gz = max(gx, gy). The results are transformed to the following:

max{x, y} = 〈max{cx, cy}, max{gx, gy}〉 (2)

min{x, y} = 〈min{cx, cy}, max{gx, gy}〉 (3)

x+ y = 〈cx + cy, max{gx, gy}+ b−n〉 (4)

x− y =




〈cx − cy, max

{
gx, gy,

∣∣∣ |cx |
|cx |−|cy |

∣∣∣gx,
∣∣∣ |cy |
|cx |−|cy |

∣∣∣gy

}
+ b−n〉 if cx 6= cy

〈0, max
{

gx, gy
}
〉 if cx = cy

(5)

x ∗ y = 〈cx ∗ cy, max{gx, gy}+ b−n〉 (6)

x/y = 〈cx/cy, max
{

gx,
gy

1− gy
)

}
+ b−n〉 (7)

where cx and cy are think positive for the operators + and −.
The difference in the particular case of two marks with equal centers is 0 without

any computation. There is a similar situation with the maximum and minimum oper-
ators. In these cases, the granularity of the result must be the greatest of the operands’
granularities.

Two shortcomings in the use of marks as numerical entities are evident. The first one
concerns the granularity of the difference between two marks x and y with positive but near
centers. In its formula, the difference between the two centers appears as the denominator
in a fraction. Consequently, when the centers are close, the granularity can be large enough
to invalidate the mark, i.e., when granularity is larger than the tolerance, thus invalidating
any further result. This can be avoided by taking into account the two real numbers x
and y:

x− y =
xm − ym

xm−1 ∗ y0 + xm−2 ∗ y1 + . . . + x1 ∗ ym−2 + x0 ∗ ym−1 ,

hence, it is possible to compute the difference x− y as the following:

x− y = (xm − ym)/(xm−1 ∗ y0 + xm−2 ∗ y+ . . . + x ∗ ym−2 + x0 ∗ ym−1) (8)

where m is a natural number large enough so that xm and ym are not near. The center of the
resulting mark is cx − cy, but its granularity is both different and lesser.

Firstly, to avoid overflows in the computations of xm and ym it is convenient to normal-
ize, a priori, the two marks to be divided by the greater mark m = max(x, y). For example,
if, cy < cx then, m = x, and the normalized marks are the following:

u = x/m = 〈1, gu〉, v = y/m = 〈c, gv〉,
with 0 < c < 1, and the difference is at this time the following:

u− v = (um − vm)/(um−1 ∗ v0 + um−2 ∗ v+ . . . + u ∗ vm−2 + u0 ∗ vm−1). (9)
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The power of one mark 〈cx, gx〉m with m a natural number is a particular case of a product
with the same factors 〈cx, gx〉m = 〈cx, gx〉 ∗ · · · ∗ 〈cx, gx〉 then, by induction it is the following:

〈cx, gx〉m = 〈cm
x , gx + (m− 1)b−n〉.

Then, the numerator of (9) is as follows:

N = um − vm = 〈1, (gu + (m− 1)b−n〉 − 〈cm, gv + (m− 1)b−n〉

and can be calculated by means of the former formula (5). If cm ≤ 1/2, then the following
holds:

N = 〈1− cm, max((gu + (m− 1)b−n)/(1− cm), gv + (m− 1)b−n)〉, (10)

interchanging gu and gv when cx < cy.
N will be a valid mark when its granularity is small, i.e., when the term cm is less than

a fixed small number ε < 1/2, for example ε = b−n. So,

m = [log (b−n)/ log(c)]. (11)

The computation of the denominator of the Equation (9) is not problematic because
all their terms are positive:

um−1 = 〈1, max(gu + (m− 2)b−n〉
um−2 ∗ v1 = 〈c, max(gu + (m− 3)b−n, gv) + b−n〉 =

= 〈c, max(gu + (m− 2)b−n, gv + b−n)〉
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
um−i ∗ vi−1 = 〈ci−1, max(gu + (m + i− 1)b−n, gv + (i− 2) ∗ b−n) + b−n〉

= 〈ci−1, max(gu + (m− i)b−n, gv + (i− 1)b−n)〉
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
u1 ∗ vm−2 = 〈cm−2, max(gu, gv + (m− 3)b−n) + b−n〉 =

= 〈cm−2, max(gu + b−n, gv + (m− 2)b−n)〉
vm−1 = 〈cm−1, gv + (m− 1)b−n)

it results to

D = 〈(1m − cm)/(1− c), max(gu + mb−n, gv + (2m− 1)b−n)〉. (12)

Dividing N and D

u− v = N/D

and, eventually de-normalizing by multiplying by m,

x− y = (u− v) ∗m. (13)

For example, for t = 0.05, b = 10, n = 15, the formula (5) gives the following:

〈3.121, 0.0001〉 − 〈3.1212, 0.0001〉 = 〈−0.0002, 1.560600〉,

which is an invalid mark because the granularity is larger than 1. From (11), m = 538995
and (13) give the following:

〈3.121, 0.0001〉 − 〈3.1212, 0.0001〉 = 〈−0.0002, 0.010101〉,

a valid mark.
The second shortcoming is the necessity to calculate the elementary functions (exp,

log, power, trigonometric,. . . ) for marks. This is possible with power series but when
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the convergence is slow, run time can belong. A better alternative is to use the routines
©FDLIBM developed at SunSoft, Sun Microsystems, to approximate these functions using
polynomials. The computational processes for marks were developed and integrated
into MATLAB in the MICELab research group (Institute of Informatics and Applications,
University of Girona). The code to perform computations with marks can be found in [19].

2.2. Associated Intervals

The theory of marks is a by-product of modal intervals theory, linked by the “im-
proper” [7] associated interval to a mark denoted by Iv(m):

Iv(m) = c ∗ [1 + t, 1− t], (14)

where * is the product of a real number by an interval. Its domain, or set of its points, is
referred to as Iv′ and called the indiscernibility margin of m. Another related interval is the
external shadow defined by the following:

Exsh(m) = Iv(m) ∗ [1− g, 1 + g] = c ∗ [1 + t, 1− t] ∗ [1− g, 1 + g], (15)

necessary to obtain the semantic meaning of a computation made using marks. As g < t,
the external shadow is an improper interval that verifies the inclusion of Exsh(m) ⊆ Iv(m).

2.3. Semantic Theorem for Marks

The associated intervals allow the semantic properties of Modal Intervals to be applied
to the results of functions of marks. Given the marks x1, . . . , xn ∈ M(t, b, n), the continuous
Rn to R function z = f (x1, ..., xn) and the modal syntactic extension f R of f , then the
following holds:

f R(Iv(x1), . . . , Iv(xn)) ⊆ Exsh(z).

This inclusion confirms the important Semantic Theorem for a function of marks,
which provides meaning to any valid result in the evaluation of a function. If the mark z

is the calculus of a function of marks, z = fM(x1, . . . , xk), supposing that all the involved
marks are valid, then we have the following:

(∀z ∈ Exsh′(z)) (∃x1 ∈ Iv′(x1)) . . . (∃xk ∈ Iv′(xn)) z = f (x1, . . . , xn). (16)

So, every point of the external shadow Exsh′(z) is a true value of the function f for
some values of the variables in the intervals Iv′(x1) . . . Iv′(xn).

The external shadow interval depends on the tolerance and the granularity of the
mark, which shrinks the interval width with the unavoidable increase of the granularity.
As the value approaches the tolerance (the center), the interval width tends to zero. This
effect causes a loss of significance, which in many cases, is possible to avoid by performing
a “translation” to avoid small values of the state variables. For example, adding a constant
to the values of the state variables and scaling the common tolerance, if it depends on
these values.

3. Benchmark
3.1. Benchmark Description

The popular three-tank benchmark problem is used to exemplify the usefulness of
marks in the context of uncertainty, vagueness, and indiscernibility [20,21]. It consists
of three cylindrical tanks of liquid connected by pipes of circular section, as depicted in
Figure 1. The first tank has an incoming flow, which can be controlled using a pump
(actuator) and the outflow is located in the last tank.
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a pump (actuator) and the outflow is located in the last tank.

Figure 1. Schematic representation of the three-tank system.
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The model in form of difference equations for this systems is196

h1(t + 1) = h1(t) + ∆t · (q1(t)− c12 · srh12 · cc1)/s1

h2(t + 1) = h2(t) + ∆t · (q2(t) + c12 · srh12 · cc1 − c23 · srh23 · cc2)/s1

h3(t + 1) = h3(t) + ∆t · (q3(t) + c23 · srh23 · cc2 − c30 · srh30 · cc3)/s3

with (17)

srh12 = sign(h1(t)− h2(t)) ·
√
|h1(t)− h2(t)|

srh23 = sign(h2(t)− h3(t)) ·
√
|h2(t)− h3(t)|

srh30 = sign(h3(t)− 0) ·
√
|h3(t)− 0|

where the state variables h1, h2, h3 are the level of liquid in the tanks, s1, s2, s3 their197

respective areas, q1, q2, q3 the incoming flows, c12, c23, c30 the valves constants which198

represent the flux between the tanks and ∆t is the simulation step, in seconds.199

The following values have been considered: the three tanks are the same heights
h = 2 m, areas s1 = s2 = s3 = 1 m2, and intermittent inputs of the maximum incoming
flows (in m3/s) are

q1 = 0.01 , q2 = q3 = 0. (18)

For the valves’ constants (in m5/2/s) the values are

c12 = 0.009 , c23 = 0.008 , c30 = 0.007 (19)

and the initial liquid levels (in m) are

h1(0) = 0.1 , h2(0) = 1.5 , h3(0) = 0.6. (20)

As an example of the application of marks for this benchmark model, we present200

three general problems related to many mathematical models: simulation, fault detection,201

and control to show the suitability of the marks for dealing with mathematical models202

with uncertainty and indiscernibility.203

Figure 1. Schematic representation of the three-tank system.

The model in form of difference equations for this systems is

h1(t + 1) = h1(t) + ∆t · (q1(t)− c12 · srh12 · cc1)/s1

h2(t + 1) = h2(t) + ∆t · (q2(t) + c12 · srh12 · cc1 − c23 · srh23 · cc2)/s1

h3(t + 1) = h3(t) + ∆t · (q3(t) + c23 · srh23 · cc2 − c30 · srh30 · cc3)/s3

with (17)

srh12 = sign(h1(t)− h2(t)) ·
√
|h1(t)− h2(t)|

srh23 = sign(h2(t)− h3(t)) ·
√
|h2(t)− h3(t)|

srh30 = sign(h3(t)− 0) ·
√
|h3(t)− 0|

where the state variables h1, h2, h3 are the level of liquid in the tanks, s1, s2, s3 their
respective areas, q1, q2, q3 the incoming flows, c12, c23, c30 the valves constants which
represent the flux between the tanks and ∆t is the simulation step, in seconds.

The following values were considered: the three tanks are the same heights h = 2 m,
areas s1 = s2 = s3 = 1 m2, and intermittent inputs of the maximum incoming flows (in
m3/s) are the following:

q1 = 0.01 , q2 = q3 = 0. (18)

For the valves’ constants (in m5/2/s) the values are

c12 = 0.009 , c23 = 0.008 , c30 = 0.007 (19)

and the initial liquid levels (in m) are

h1(0) = 0.1 , h2(0) = 1.5 , h3(0) = 0.6. (20)

As an example of the application of marks for this benchmark model, we present
three general problems related to many mathematical models: simulation, fault detection,
and control to show the suitability of the marks for dealing with mathematical models with
uncertainty and indiscernibility.

3.2. Simulation

Two different types of simulations have been performed: using real numbers and
using marks, with a simulation step of ∆t = 5 and 1000 steps of simulations (5000 s in all).
The results using real numbers, for the three state variables are represented in Figure 2.
The intermittent input flow gives the sawtooth shape for the values of h1.
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Two different types of simulations have been performed: using real numbers and205

using marks, with a simulation step of ∆t = 5 and 1000 steps of simulations (5000 s206

in all). The results using real numbers, for the three state variables, are represented in207

Figure 2. The intermittent input flow gives the sawtooth shape for the values of h1.208

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

t(s)

0

1

2

h
1
(m

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

t(s)

0

1

2
h

2
(m

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

t(s)

0

1

2

h
3
(m

)

Figure 2. Three-tank system. Simulation results for the three state variables using real numbers.

For the simulations using marks, all magnitudes are considered as marks whose209

centers are the former real numbers and granularities have been fixed to g = 0.00001,210

for all the marks. The levels of liquid into the tanks are influenced by perturbations211

and the dynamics of the inputs and outputs of liquid. Calling pr this variation, the212

tolerance can be calculated by t = pr/h. Taking pr = 0.10, the common tolerance for all213

the simulations is t = 0.05. Unlike the granularities, the tolerances have to be equal for214

all the marks.215

Results are shown in Figure 3 that contains the intervals associated to the marks,216

drawn in form of little vertical segments. Together, they are represented by the dark217

band of the figure. The run time for the t = 5000 s of simulation has been 200 s.218
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h2(2500) = 〈1.003461, 0.000011〉 , Iv′(h2(2500)) = [0.953299, 1.053623]
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h1exp(2500) = 1.6± 0.01 m,

h2exp(2500) = 1± 0.01 m,
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Figure 2. Three-tank system. Simulation results for the three state variables using real numbers.

For the simulations using marks, all magnitudes are considered as marks whose
centers are the former real numbers and granularities have been fixed to g = 0.00001, for all
the marks. The levels of liquid into the tanks are influenced by perturbations and the
dynamics of the inputs and outputs of liquid. Calling pr this variation, the tolerance can be
calculated by t = pr/h. Taking pr = 0.10, the common tolerance for all the simulations is
t = 0.05. Unlike the granularities, the tolerances have to be equal for all the marks.

Results are shown in Figure 3 that contains the intervals associated to the marks,
drawn in form of little vertical segments. Together, they are represented by the dark band
of the figure. The run time for the t = 5000 s of the simulation is 200 s.
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Figure 3. Three-tank system. Simulation results for the three state variables using real numbers.The
dark bands are only apparent. They are the accumulation of the 1000 little vertical segments which
represent the intervals associated to the resulting marks in the 1000 simulation points

is contained in them and, thus, consistent with the model (17).223

However, for t = 5000 s the results are224

h1(5000) = 〈0.018793, 0.000011〉 , Iv′(h1(5000)) = [0.017854, 0.019733]

h2(5000) = 〈0.017685, 0.000011〉 , Iv′(h2(5000)) = [0.016801, 0.018569]

h3(5000) = 〈0.012397, 0.000011〉 , Iv′(h3(5000)) = [0.011778, 0.013017].

with the associated intervals too narrow to obtain reasonable results with the related225

semantic (16).226

The heights values contained in the associated intervals (14) are consistent with the227

model, but these intervals depend on the value of the center of the mark because their228

widths tend to zero, as shown in the final parts of the graphics in Figure 3. To avoid this229

effect, in this benchmark, it is possible to change to a physical system (Figure 4), where230

the common height of the tanks is h + hexc. The behaviour of the liquid levels along the231

simulations is the same for the two physical systems.232

To do this in the simulation algorithm, it is sufficient to add hexc to the initial values233

of the state variables h1, h2 and h3 and to scale the tolerance to t/(h + hexc). This scaled234

tolerance depends on hexc, which when increased for small granularities, the width of all235

the associated intervals moves near to 2 · pr.236

For the case hexc = 2, the tolerance is t/(h + hexc) = 0.025. The simulation results237

after subtracting hexc to the final values of h1, h2 and h3 can be found in Figure 5.238

Now the outputs for the step number 500 (t = 2500 s) are239

h1(2500) = 〈1.588474, 0.000167〉 , Iv′(h1(2500)) = [1.498802, 1.678147]

h2(2500) = 〈1.003461, 0.000167〉 , Iv′(h2(2500)) = [0.928407, 1.078515]

h3(2500) = 〈0.525883, 0.000167〉 , Iv′(h3(2500)) = [0.462763, 0.589003],

Figure 3. Three-tank system. Simulation results for the three state variables using real numbers. The
dark bands are only apparent. They are the accumulation of the 1000 little vertical segments which
represent the intervals associated to the resulting marks in the 1000 simulation points
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In accordance with the semantic of marks (16) these results mean that, for one instant,
for example i = 500 (time t = 2500 s), the model outputs the result in these marks and
related associated intervals:

h1(2500) = 〈1.588474, 0.000011〉 , Iv′(h1(2500)) = [1.509068, 1.667881]

h2(2500) = 〈1.003461, 0.000011〉 , Iv′(h2(2500)) = [0.953299, 1.053623]

h3(2500) = 〈0.525883, 0.000011〉 , Iv′(h3(2500)) = [0.499595, 0.552171].

An experimental state value like

h1exp(2500) = 1.6± 0.01 m,

h2exp(2500) = 1± 0.01 m,

h3exp(2500) = 0.52± 0.01 m.

is contained in them and, thus, consistent with the model (17).
However, for t = 5000 s the results are the following:

h1(5000) = 〈0.018793, 0.000011〉 , Iv′(h1(5000)) = [0.017854, 0.019733]

h2(5000) = 〈0.017685, 0.000011〉 , Iv′(h2(5000)) = [0.016801, 0.018569]

h3(5000) = 〈0.012397, 0.000011〉 , Iv′(h3(5000)) = [0.011778, 0.013017].

with the associated intervals too narrow to obtain reasonable results with the related
semantic (16).

The heights values contained in the associated intervals (14) are consistent with the
model, but these intervals depend on the value of the center of the mark because their
widths tend to zero, as shown in the final parts of the graphics in Figure 3. To avoid this
effect, in this benchmark, it is possible to change to a physical system (Figure 4), where
the common height of the tanks is h + hexc. The behaviour of the liquid levels along the
simulations is the same for the two physical systems.
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Figure 4. Schematic representation of the extended three-tank system.

Figure 5. Extended three-tank system. Simulation results for the three state variables using real
numbers.The dark bands are only apparent. They are the accumulation of the 1000 little vertical
segments which represent the intervals associated to the resulting marks in the 1000 simulation
points

Figure 4. Schematic representation of the extended three-tank system.

To do this in the simulation algorithm, it is sufficient to add hexc to the initial values
of the state variables h1, h2 and h3 and to scale the tolerance to t/(h + hexc). This scaled
tolerance depends on hexc, which when increased for small granularities, the width of all
the associated intervals moves near to 2 · pr.

For the case hexc = 2, the tolerance is t/(h + hexc) = 0.025. The simulation results after
subtracting hexc to the final values of h1, h2 and h3 can be found in Figure 5.
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points

Figure 5. Extended three-tank system. Simulation results for the three state variables using real
numbers.The dark bands are only apparent. They are the accumulation of the 1000 little vertical
segments which represent the intervals associated to the resulting marks in the 1000 simulation
points.

Now the outputs for the step number 500 (t = 2500 s) are the following:

h1(2500) = 〈1.588474, 0.000167〉 , Iv′(h1(2500)) = [1.498802, 1.678147]

h2(2500) = 〈1.003461, 0.000167〉 , Iv′(h2(2500)) = [0.928407, 1.078515]

h3(2500) = 〈0.525883, 0.000167〉 , Iv′(h3(2500)) = [0.462763, 0.589003],

and for the step number 1000 (t = 5000s) are the following:

h1(5000) = 〈0.020353, 0.000011〉 , Iv′(h1(5000)) = [0.000000, 0.070838]

h2(5000) = 〈0.019152, 0.000011〉 , Iv′(h2(5000)) = [0.000000, 0.069607]

h3(5000) = 〈0.013426, 0.000011〉 , Iv′(h3(5000)) = [0.000000, 0.063738],

where the effect of the small center values over the associated intervals widths has disap-
peared. Associated intervals are truncated to avoid negative values for the heights values.

The model results and the initial granularities are strongly dependent on one another
because of the inevitable increase of the granularities throughout the simulation. So, if the
initial granularity is changed to g = 10−4, then in the simulation step i = 903 (time
t = 4515 s) the resulting marks are invalid (1) (the granularity is larger than tolerance)
and all the subsequent results are invalid. For g = 10−3 in the simulation step, i = 86 and
g = 10−2 are only valid for the eight first simulation steps.

As a rule of thumb, starting from a granularity g = 1e− n, if to arrive until g = 1e−
(n + 1) lasts p simulation steps, then to get a granularity 10 times larger, g = 1e− (n + 2),
lasts near to p/10 steps more. This quasi-exponential dependence causes invalidity of
non-small granularities to be reached quickly, independently from the fixed value for the
tolerance.

3.3. Fault Detection

The goal is to detect the presence of a fault in a system and indicate the location of
the detected fault (fault isolation). It is assumed that only the measurements of the liquid
levels, which are influenced by leakage in one tank or clogging in a valve are available.
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In accordance with the semantic of marks (16), a fault is detected when a measurement
(within an interval of uncertainty) is outside the estimated band of associated intervals
obtained by simulation using marks, indicating that it is not consistent with the model.
Therefore, if the model is correct, the measurement is not. These measurements are
generated simulating the behavior of the system in the following situations:

• The system is non-faulty until t = 500 s, and from this time on, there is a leakage in
tank 1 of approximately 0.25% of the water inflow. The results are shown in Figure 6,
where the bands are the results of the simulation using marks and the line is the values
of the heights of the liquid in the tanks for the faulty system. The comparison shows
the effect of the leakage. The line is below the band from the instant t = 500 s for tank
1 and over the band for tanks 2 and 3.

• The system is non-faulty until t = 500 s and from this time on, there is a clogging
between tanks 2 and 3 of 50% of the nominal flow. Figure 7 shows the effect of the
clogging. The line is below the band from the instant t = 500 s for tank 3 and over the
band for tanks 2 and 1, some instants later.

The simulations were performed until t = 1000 s to underline the comparisons.
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Figure 6. Faulty three-tank system: Leakage of approximately 0.25 % of the water inflow in tank 1
from t = 500 s. Blue bands represent the computation using marks while red lines correspond to
the measured values of the three state variables
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Figure 7. Faulty three-tank system: clogging between tanks 2 and 3 from t = 500 s. Blue bands
represent the computation using marks while red lines correspond to the measured values of the
three state variables.

Figure 6. Faulty three-tank system: Leakage of approximately 0.25 % of the water inflow in tank 1
from t = 500 s. Blue bands represent the computation using marks while red lines correspond to the
measured values of the three state variables.
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Figure 7. Faulty three-tank system: clogging between tanks 2 and 3 from t = 500 s. Blue bands
represent the computation using marks while red lines correspond to the measured values of the
three state variables.

3.4. Control

An elementary open-loop control was developed to show the usefulness of the model
using marks in control systems. The process variables to be achieved are target heights
of the liquid in the tanks, (or, in this test, arbitrarily chosen from the real simulation with
the model, see Figure 2). For example, the ones represented by black dots in Figure 8.
These outputs are controlled by the input flows to each tank in form of percentages
k1(t), k2(t), k3(t) of the maximal flows q1 = q2 = q3 = 0.01.
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Figure 8. Three-tank system. Target heights to be achieved in open loop control.
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d3(t)).289

The result is a set of percentages for every instant, t. The output of the model is290

the band of associated intervals in Figure 9. The target heights are very close to being291

contained in the corresponding marks. Therefore, they can be consider as consistent292

with the model for the inputs flows defined by k1(t), k2(t) and k3(t).293

4. Conclusions294

Real numbers are the "ideal" framework for dealing with quantities associated with295

physical phenomena. However, real numbers are not attainable and "disappear" when296

the observer obtains the value of a quantity. The alternative is digital numbers but a297

measurement value will become a point on a digital scale depending on the phenomenon298

itself, the accuracy, correctness, and errors of the devices used in the measurement, and299

the numbers of digits used to represent it on the digital scale.300

A mark represents, in a consistent procedure, the point information provided by301

a digital scale. The system of marks has an internal structure that reflects not only the302

losses of information inherent in the readings on a digital scale and the evolution of the303

computations from them but also the indiscernibility of the observed phenomena.304

The computations performed using marks also reflect the gradual loss of informa-305

tion due to numerical errors and truncations and give relevant warnings for decision306

making, either on the acceptability of the results or on the usefulness of seeking more307

precision to achieve the necessary validity.308

In conclusion, marks are appropriate framework for any iterative process , within309

current research conditions and certain assumptions where uncertainty is significant and310

can be generalized when needed. For example, if the process is a long simulation with311

many steps or an iterative approach with slow convergence, it is necessary to control312

the accumulation of experimental, scaling, and computational errors so as not to let it313

exceed the tolerance set by the observer.314

Figure 8. Three-tank system. Target heights to be achieved in open loop control.
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When at instant t, the later and nearest target height is above the interval associated to
the output mark h1(t) or h2(t) or h3(t), then k1(t) = 1 or k2(t) = 1 or k3(t) = 1. When it is
under, then k1(t) = 0 or k2(t) = 0 or k3(t) = 0. Finally, when it is inside the interval, then
k1(t) = d1(t) or k2(t) = d2(t) or k3(t) = d3(t), where d1(t) is the relative distance between
the target height and the center of the interval h1(t) (the same for d2(t) and d3(t)).

The result is a set of percentages for every instant, t. The output of the model is the
band of associated intervals in Figure 9. The target heights are very close to being contained
in the corresponding marks. Therefore, they can be considered consistent with the model
for the inputs flows defined by k1(t), k2(t) and k3(t).
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Figure 9. Three-tank system. Simulation results for the open loop control of the liquid heights.

The benchmark presented is a good example of the use of marks for an iterative315

process. Marks prove to be a correct and satisfactory tool for modelling physical systems316

with uncertainties in their variables and parameters. Marks provide a double contri-317

bution to any computational process: 1) the granularity as a good timely test for the318

validity of any result, and 2) they provide meaning to any valid result by means of the319

semantic theorem. The final semantics of a simulation using marks is just the one needed320

for problems like fault detection, control, or parameter identification (via optimization)321

of a mathematical model against a set of experimental data with uncertainties. This322

opens a wide field of applications for marks.323
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Figure 9. Three-tank system. Simulation results for the open loop control of the liquid heights.

4. Conclusions

Real numbers are the “ideal” framework for dealing with quantities associated with
physical phenomena. However, real numbers are not attainable and “disappear” when
the observer obtains the value of a quantity. The alternative is digital numbers but a
measurement value becomes a point on a digital scale depending on the phenomenon
itself, the accuracy, correctness, and errors of the devices used in the measurement, and the
numbers of digits used to represent it on the digital scale.

A mark represents, in a consistent procedure, the point information provided by
a digital scale. The system of marks has an internal structure that reflects not only the
losses of information inherent in the readings on a digital scale and the evolution of the
computations from them, but also the indiscernibility of the observed phenomena.

The computations performed using marks also reflect the gradual loss of information,
due to numerical errors and truncations, and give relevant warnings for decision making,
either on the acceptability of the results or on the usefulness of seeking more precision to
achieve the necessary validity.

In conclusion, marks are an appropriate framework for any iterative process, within
current research conditions and certain assumptions, where uncertainty is significant and
can be generalized when needed. For example, if the process is a long simulation with
many steps or an iterative approach with slow convergence, it is necessary to control the
accumulation of experimental, scaling, and computational errors so as not to let it exceed
the tolerance set by the observer.
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The benchmark presented is a good example of the use of marks for an iterative
process. Marks prove to be a correct and satisfactory tool for modeling physical systems
with uncertainties in their variables and parameters. Marks provide a double contribution
to any computational process: (1) the granularity as a good timely test for the validity of any
result, and (2) they provide meaning to any valid result by means of the semantic theorem.
The final semantics of a simulation using marks is just the one needed for problems like
fault detection, control, or parameter identification (via optimization) of a mathematical
model against a set of experimental data with uncertainties. This opens a wide field of
applications for marks.
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