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Summary

SUMMARY

Phenotypic plasticity is the adaptive response gérotype to present different types of
phenotypes in response to environmental changesselladaptive responses can
contribute to a specific species occupying a spebk#bitat or habitats and, in this way,
expand its distribution area. These adaptationg een widely studied in fish and it
has been possible to confirm the great adaptalitiéy many fish species present to
environmental changes. Invasive species represemtob the greatest threats to the
conservation of biodiversity and habitats worldwidéese species are considered by
the International Union for the Conservation of INat (IUCN) as the second most
important cause of extinction of species, afterdéstruction of natural habitats.

Bleak Alburnus alburnuss a species of invasive fish in different basafighe
Iberian Peninsula. This species of cyprinid, howetas not been widely studied and
its mechanisms of invasion, establishment and estpann novel environments are still
unclear. On the other hand, lberian toothcAyghanius iberusis an endemic and
endangered species of the Iberian Peninsula indluinleRoyal Decree 439/1990 of
March 30, which regulates the national Cataloghoédtened species. The main causes
of the reduction of Iberian toothcapgmpulations are: the destruction of their habitats,
the pollution of waters and the introduction ofaswe species, such as mosquitofish
Gambusia holbrooki

This doctoral thesis expects to study some aspeictthe mechanisms of
invasion, establishment and expansion of the ineaspecies bleak in different basins
of the Iberian Peninsula and provide more infororafior a better understanding of its
biology and invasion mechanisms. On the other h@ndlso aims to compare the
morphology, metabolism and critical swimming speef two Iberian toothcarp

populations, one raised in captivity and anothee drom wild, and to use this

XXiX



Summary

information to apply it to breeding programs in t&py and improve the management
of the reintroductions of individuals raised in tagpy in their natural habitat.

In the first chapter of this thesis, the plasyi@f the fish is put in context as well
as the impact of invasive species on ecosystergsneral and in the Iberian Peninsula
in particular, as well as the effect that phenatygasticity may have on to improve the
adaptive capacities of the fish to different enmim@ntal conditions. The importance of
captive breeding of species in danger of extincsaoh as Iberian toothcarp and the
implications that their captive breeding impliesaso shown. The second chapter
describes the objectives of this doctoral thesis] #@&s scheme. The third chapter
describes the materials and methods used to carrythe different surveys and
experiments that have been made in this thesisridegy the sites where the studied
populations came from, its environmental typologiesapture, transport and
management of the individuals studied, among othieosirth chapter refers to the
different biological traits that were analyzed nmefyag growth, reproduction and diet
such as: total length recalculated at differentsaggrowth rate, body condition,
reproductive investment, length at maturity, agematurity, sex-ratio, biomass ingested,
prey richness, trophic diversity and trophic nitheadth of bleak populations that came
from different rivers of the internal basins of @lahia such as Muga, Fluvia, Cardener
and Foix. Given that these populations came frorarsi subject to the influence of a
typically Mediterranean hydrological regime (vatelbnd unpredictable environments);
in the fifth chapter the study of the same biolagicaits was considered as in the fourth
chapter but bleak populations were surveyed immba rivers of the Iberian Peninsula
such as Tagus, Segura, Ebro, Guadiana and Guadslquiich present more stable
and predictable environmental conditions, and tistsgéied traits were compared with a

bleak population from the French Sabne river, whiei® species is native. Finally, the
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sixth chapter analyzed the phenotypic plasticityeirms of physiology and morphology
of two populations of Iberian toothcarp, one ofnth'om a wild environment and the
other from captive breeding, the effect of the emunent on different biological traits
such as the critical swimming capability, metalmalsnd morphology.

In the fourth and fifth chapters, the results aadked a high variability in terms of
the biological attributes and diet of the populasictudied. The values of the biological
attributes presented characteristics more attibeitio the equilibrium strategy (high
total length and maturation, low reproductive céyagreater total length, etc.) in the
more rivers with high abundance and with more stasld predictable environmental
conditions and values more attributable to the dpidstic strategy (total length and
length of small maturation, high reproductive invesnt, smaller total length, etc.) in
those rivers where the environmental conditionsmaoee variable and unpredictable,
compared to the results of the native population.

In the sixth chapter, our results showed signficdifferences in metabolism
and morphology among the populations studied. Rixggito critical swimming speed,
no significant differences were found. Wild popidatshowed higher values of SMR,
MMR and AAS, as well as a more elongated and fasifmorphology that the captive
population. These results could be related to enmrental factors such as the presence
of predators, food availability or intra and infgesific competition among others.

In summary, these results suggest that: 1) Bleawsti a high phenotypic
plasticity in terms of life-history characteristiaad, therefore, a great ability to adapt to
different environmental conditions; 2) The popwas of Iberian toothcarp studied
differed in physiological and morphological chagaidtics in spite of sharing the same
genetic origin. As a result, this thesis provideduable information on the ability to

adapt to different environmental conditions thagald presents, when it invades new
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territories outside its native range and also walpable information for the captive
breeding programs and reintroductions of Iberiasthtcarp populations in its natural

habitat.
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RESUM

La plasticitat fenotipica és la resposta adaptativa genotip a presentar diferents tipus
de fenotips en resposta a canvis ambientals. Agglegispostes adaptatives poden
contribuir a que una espécie determinada puguiarcup habitat o habitats determinats
i d’aguesta manera, expandir la seva area dehilistéd. Aquestes adaptacions han estat
ampliament estudiades en peixos i s’ha pogut ctandtagran adaptabilitat que moltes
especies de peixos presenten als canvis ambieh&ssspécies invasores representen
una de les majors amenaces per a la conservadi liediversitat i dels habitats a
nivell mundial. Aquestes espécies estan considsrpde la Unié Internacional per la
Conservacié de la Natura (IUCN) com la segona causéa important d’extincio
d’espécies, després de la destruccié dels habaatsals.

L’alburn, Alburnus alburnusés una espeécie de peix invasora a diferents esnqu
de la Peninsula Ibérica. Aquesta espécie de dippeio, no ha estat molt estudiada i
encara no es coneixen bé els seus mecanismessiinestabliment i expansié en els
nous territoris. Per altra banda, el farg@hanius iberu€s una espécie endemica de la
Peninsula Ibérica en perill d'extincid inclosa érmReial Decret 439 / 1990 de 30 de
marg, pel qual es regula el Cataleg nacional déspéamenacades. Les principals
causes de la reduccio de les poblacions de fadetsla destruccié dels seus habitats, la
contaminacié de les aigles i la introduccié d’emmdénvasores com la gambussia
Gambusia holbrooki

Aquesta tesi doctoral pretén estudiar alguns aspelels mecanismes d’invasio,
establiment i expansio de I'espécie invasalaurnus alburnusen diferents conques de
la Peninsula Ibérica i aportar més informacié p&ina millor comprensié de la seva
biologia i mecanismes d'invasié. D’altra banda, danté com objectiu comparar la

morfologia, metabolisme i velocitat critica de mabade dues poblacions de fartet, una
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criada en captivitat i una altra de salvatge itatit aquesta informacio per aplicar-la a
programes de cria en captivitat i millorar la gégsle les reintroduccions d'individus
criats en captivitat en el seu habitat natural.

En el primer capitol d'aquesta tesi es posa erexpl# plasticitat fenotipica en
peixos aixi com l'impacte de les especies invasswbee els ecosistemes en general i a
la Peninsula ibeérica en particular, aixi com |'sfegue la plasticitat fenotipica pot tenir
alhora de millorar les capacitats adaptatives dmsxos a diferents tipologies
ambientals. També s'exposa la importancia de & esri captivitat d'espécies en perill
d'extincié com el fartet i les implicacions queskva cria en captivitat comporta. En el
segon capitol es descriuen els objectius d'aguestadoctoral, i I'esquema de la
mateixa. En el tercer capitol es descriuen els nade métodes utilitzats per dur a
terme els diferents experiments que s'han reakzagl transcurs d'aquesta tesi, on es
descriuen els llocs d'on provenien les poblacistadiades, les tipologies ambientals
d'on provenien, captura, transport i maneig deds/idus estudiats, entre d'altres. En el
quart capitol es fa referencia als diferents atsiboiologics que es van analitzar
referents al creixement, la reproduccié i la dtata com: longitud total retorcalculada a
diferents edats, index de creixement, condicié @alp inversio reproductiva, longitud
total de maduracié, edat de maduracié, sex-ratmassa ingerida, riquesa de preses,
diversitat trofica i amplitud de ninxol trofic, differents poblacions d’alburn provinents
de diferents rius de les conques internes de CGai@laom ara la Muga, el Fluvia, el
Cardener i el Foix. Donat que aquestes poblaciongepien de rius sotmesos a la
influéncia d’'un regim hidrologic tipicament medremi (ambients molt variables i
impredictibles); en el cinque capitol es va plartdjestudi dels mateixos atributs
biologics que en el quart capitol perd de poblaidialburn provinents dels principals

rius de la Peninsula Ibérica com ara el Tajo, ejuge I'Ebre, el Guadiana i el
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Guadalquivir, els quals presenten unes condiciontbientals més estables i
predictibles, i comparar els atributs estudiats amé poblacié d'alburn provinent del
riu frances Sabne, on aquesta especie és nativalltie, en el sisé capitol es va
analitzar la plasticitat fenotipica quant a fisgioi morfologia de dues poblacions de
fartet, una d’elles provinent d'un ambient salvatigtra de la cria en captivitat, per tal
de determinar I'efecte de I'ambient en diferentsbats biologics com ara la capacitat
critica de natacio, el metabolisme i la morfologia.

En el quart i cinque capitols, els resultats vaticar una elevada variabilitat pel
que fa als atributs biologics estudiats i a laal@ les poblacions estudiades. Els valors
dels atributs biologics van presentar caractetisigmés atribuibles a I'estratégia
d'equilibri (elevada longitud total i de maduradidjxa capacitat reproductora, longitud
total més gran , etc) en els rius amb més abur@anoés cabalosos i amb unes
condicions ambientals més estables i predictiblaas valors més atribuibles a una
estrategia oportunista (longitud total i longitud chaduracid petita, elevada inversio
reproductiva, tongitud total més petita, etc) enedlg rius on les condicions ambientals
s6n més variables i impredictibles, en comparaond als resultats de la poblacié
nativa.

En el sise capitol, els nostres resultats van muodiferencies significatives en el
metabolisme i la morfologia entre les poblaciortsidiades. Quant a la velocitat critica
de natacio, no es van trobar diferéncies signifieat La poblacié salvatge va mostrar
valors més alts de SMR, MMR i AAS, aixi com una folmgia més allargada i
fusiforme que la poblacié captiva. Aquests ressiladdrien estar relacionats amb
factors ambientals com la presencia de depredatomisponibilitat d'aliments o la

competéncia intra i interespecifica entre d'altres.
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En sintesi, aquests resultats suggereixen que!aluitn va mostrar una alta
plasticitat fenotipica en els atributs biological#aats i, per tant, una gran capacitat
d’adaptacié a diferents condicions ambientals; 8% poblacions de fartet iberiques
estudiades difereixen en caracteristiques fisiglogg i morfologiques malgrat
compartir el mateix origen genétic. Com a resuigtjesta tesi proporciona informacié
valuosa sobre la capacitat d’adaptar-se a les edifer condicions ambientals que
presenta I'alburn, quan envaeix nous territoria e la seva area de distribucio nativa i
també informaci6 molt valuosa pels programes derotkciO en captivitat i

reintroduccio de les poblacions de fartet en efstags ibérics.
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RESUMEN

La plasticidad fenotipica es la respuesta adaptavun genotipo a presentar diferentes
tipos de fenotipos en respuesta a cambios ambesntBistas respuestas adaptativas
pueden contribuir a que una especie determinaddapaeupar un habitat o habitats
determinados y de esta manera, expandir su argiatdbucion. Estas adaptaciones han
sido ampliamente estudiadas en peces y se ha poalidtatar la gran adaptabilidad que
muchas especies de peces presentan los cambiosndads. Las especies invasoras
representan una de las mayores amenazas paraskngrion de la biodiversidad y de
los habitats a nivel mundial. Estas especies es@msideradas por la Unién
Internacional para la Conservacion de la Naturalk#@N) como la segunda causa mas
importante de extincidn de especies, despuésadkstauccion de los habitats naturales.

El alburno,Alburnus alburnuses una especie de pez invasora en diferentes
cuencas de la Peninsula Ibérica. Esta especigdrido sin embargo, no ha sido muy
estudiada y todavia no se conocen bien sus measideninvasion, establecimiento y
expansién en los nuevos territorios. Por otra patdartet Aphanius iberuses una
especie endémica de la Peninsula Ibérica en peligrextincion incluida en el Real
Decreto 439/1990 de 30 de marzo, por el que seéaefCatalogo nacional de especies
amenazadas. Las principales causas de la reduteitas poblaciones de fartets son: la
destruccién de sus habitats, la contaminacion sladaas y la introduccion de especies
invasoras como la gambus&iambusia holbrooki

Esta tesis doctoral pretende estudiar algunosctspele los mecanismos de
invasion, establecimiento y expansion de la espiwsiasoraAlburnus alburnusen
diferentes cuencas de la Peninsula Ibérica y aporés informacion para una mejor
comprension de su biologia y mecanismos de inva§ton otra parte, también tiene

como objetivo comparar la morfologia, metabolismeelocidad critica de natacién de
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dos poblaciones de fartet, una criada en cautiveraira de salvaje y utilizar esta
informacion para aplicarla a programas de criaaetiverio y mejorar la gestion de las
reintroducciones de individuos criados en cautiyida su habitat natural.

En el primer capitulo de esta tesis se pone etextunla plasticidad fenotipica
en peces asi como el impacto de las especies nagasp los ecosistemas en general y
en la Peninsula Ibérica en particular, asi comefetto que la plasticidad fenotipica
puede tener para mejorar las capacidades adaptdivas peces a diferentes tipologias
ambientales. También se expone la importancia deidaen cautividad de especies en
peligro de extincibn como el fartet y las implicaoés que su cria en cautividad
conlleva. En el segundo capitulo se describen lgstivos de esta tesis doctoral, y el
esquema de la misma. En el tercer capitulo se ideactos materiales y métodos
utilizados para llevar a cabo los diferentes expentos que se han realizado en el
transcurso de esta tesis, donde se describen gzseki de donde provenian las
poblaciones estudiadas, las tipologias ambientdkesdonde provenian, captura,
transporte y manejo de los individuos estudiadoBgeotros. En el cuarto capitulo se
hace referencia a los diferentes atributos biotigjique se analizaron referentes al
crecimiento, la reproduccion y la dieta tales corwmgitud total retorcalculada a
diferentes edades, indice de crecimiento, condici@nporal, inversién reproductiva,
longitud total de maduracién, edad de maduraciéxyratio, biomasa ingerida, riqueza
de presas, diversidad tréfica y amplitud de nididdido, de diferentes poblaciones de
alburno provenientes de diferentes rios de lascagemternas de Catalufia como la
Muga, el Fluvia, el Cardener y el Foix. Dado quegpoblaciones provenian de rios
sometidos a la influencia de un régimen hidrolégitpicamente mediterraneo
(ambientes muy variables e impredecibles); en gitgicapitulo se planted el estudio

de los mismos atributos biolégicos que en el cuesjoitulo pero de poblaciones de

XXVili



Resumen

alburno provenientes de los principales rios d@dainsula Ibérica como el Tajo, el

Segura, el Ebro, el Guadiana y el Guadalquivis,doales presentan unas condiciones
ambientales mas estables y predecibles, y compagaatributos estudiados con una

poblacion de alburno proveniente del rio francéd8n8adonde esta especie es nativa.
Por ultimo, en el sexto capitulo se analiz6 latplakad fenotipica en cuanto a fisiologia

y morfologia de dos poblaciones de fartet, una ltds @roveniente de un ambiente

salvaje y la otra de la cria en cautividad, parerdenar el efecto del ambiente en

diferentes atributos biol6gicos como la capaciddiica de natacién, el metabolismo y

la morfologia.

En el cuarto y quinto capitulos, los resultadalcaron una elevada variabilidad
en cuanto a los atributos biol6gicos estudiadosnyleae dieta en las poblaciones
estudiadas. Los valores de los atributos biologipossentaron caracteristicas mas
atribuibles a la estrategia de equilibrio (elevémtggitud total y de maduracién, baja
capacidad reproductora, longitud total mayor, ett)os rios con mas abundancia, mas
caudalosos y con unas condiciones ambientales stables y predecibles y unos
valores mas atribuibles a la estrategia oportun{giagitud total y longitud de
maduracién pequefia, elevada inversién reprodudtivaitud total mas pequefia, etc)
en aquellos rios donde las condiciones ambiensaleanas variables e impredecibles,
en comparacion con los resultados de la poblaafima

En el sexto capitulo, nuestros resultados mostrdifenencias significativas en
el metabolismo y la morfologia entre las poblacsomstudiadas. En cuanto a la
velocidad critica de natacion, no se encontrarferehcias significativas. La poblacion
salvaje mostro valores mas altos de SMR, MMR y AAS,como una morfologia mas

alargada y fusiforme que la poblacion cautiva. &stesultados podrian estar
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relacionados con factores ambientales como la mpcesede depredadores, la
disponibilidad de alimentos o la competencia ietiaterespecifica entre otros.

En sintesis, estos resultados sugieren que: 1)Idtirm® mostré una alta
plasticidad fenotipica en los atributos biolégicasalizados y, por tanto, una gran
capacidad de adaptacion a diferentes condiciondseatales; 2) Las poblaciones de
fartet ibéricas estudiadas difieren en caractedstfisiologicas y morfolégicas a pesar
de compartir el mismo origen genético. Como redoltaesta tesis proporciona
informacion valiosa sobre la capacidad de adaptardas diferentes condiciones
ambientales que presenta el alburno, cuando innaeeos territorios fuera de su érea
de distribucién nativa y también informacion muyliasa para los programas de
reproduccién en cautividad y reintroduccion dedablaciones de fartet en los habitats

ibéricos.
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General introduction

1.1 Phenotypic plasticity in fishes

Since the appearance of the first fishes in the l&2@m period, 500 million years ago,
they have evolved giving rise to the great divgrdiat these vertebrates present today
in a wide variety of aquatic environments around world. Nowadays about 34,000
species of fish are known (Fishbase 2018), whichirzat 15,000 are freshwater species
(Tedesco et al. 2017). Freshwater ecosystamusr approximately 1% of the earth’'s
surface and, in this context; freshwater fisheswslome of the higher diversity of
species and are an important component of glolwaliversity (Reid et al. 2013). The
scope of the great diversity of freshwater fishcegpeis comparable to the extraordinary
geographic reach in its distribution and the higlyrée of endemism that they show
(Lévéque et al. 2008). This colonization of almaisy conceivable aquatic environment
presented by fishes have been given by adaptationslifferent environmental
conditions at the anatomical, physiological, bebakal and ecological level. For
example, Jalili et al. (2015) demonstrated that rtteephological differences between
different Alburnus filippi populations were related to the environmental rpatars of
the two different habitats where they lived, shayvia clear relationship between
morphology and environment. Phenotypic plasticitg @enetic adaptation have been
considered two alternate mechanisms that diffemrganisms can use to adapt to
environmental local conditions (Crispo and Chapr2a@t0). The pressure of natural
selection can affect the genetic variation of aypaion over several generations,
resulting in an adaptation of the population to trevalent local environmental
conditions (Cain and Sheppard 1954; Kettlewell 19B8rger and Lynch 1995;
Kawecki and Ebert 2004; Andrew et al. 2010). Adapthhenotypic change may occur
within a generation, producing locally adapted mitgpes without genetic change

(Steinger et al. 2003; Ghalambor et al. 2007; LAtt&t al. 2007; Grenier et al. 2016;
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Ho and Zhang 2018). Yet, in many systems, bothtiplasnd genetic variation

contribute to adaptive phenotypic change (Conovet &chultz 1995; Conover and
Baumann 2009). Nowadays it is known that phenotppasticity is an important factor

in the evolution which is under genetic control ahdt may or may not be adaptive
(Caswell 1983; Pigliucci 2006).

Phenotypic plasticity is defined as the ability afgiven genotype to produce
different phenotypes in response to varying envirents (Scheiner 1993; Pigliucci
2005). Phenotypic plasticity in fishes has beenl saldied and it is known that
facilitates fish’'s adaptations under certain enwinental conditions modying their
behavioural, life-history, physiological and morpdgical traits (Stearns 1989; Scheiner
1993; Agrawal 2001; Hoverman and Relyea 2007; Alexa et al. 2014; Oufiero and
Whitlow 2016; Norin et al. 2016). All responseseaiavironmental cues by phenotypic
plasticity are originated at the cellular level dhdse can be explained by processes that
regulate the expression of genes in response tooenvental changes (Schlichting and
Smith 2002). The type and degree of plasticitysgecific to environmental conditions
and to the individual traits of organisms; for exde the same trait may be plastic in
response to changes in temperature, but not tolthege of nutrients, or a certain trait
may be plastic in response to temperature whileh@ndrait does not (Pigliucci 2006).
Plasticity is the result of numerous physiologinachanisms, including transcription,
translation, enzymatic and hormonal regulation,t tpbeoduce local or systemic
responses (Whitman and Agrawal 2009). Phenotypastigity can be visualized using
the "reaction norm" concept. Reaction norm candfadd as a specific function of the
genotype that relates to each phenotype with théra@mment in which it has been
produced (Platt and Sanislow 1988). Reaction narams be reversible or irreversible

(Stearns 1989). When environmental change occeestion norms produce a new
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phenotype with no genetic change. This new pherotgn be genetically fixed if
natural selection keeps operating only in the newirenmental (Figure 1) (Pigliucci
2006), although other studies have shown thatnbtsnecessary that the environmental

stimulus continue for the new trait to be expregadtie following generations.
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Figure 1. Scheme in relation to: environment phgoet genotype and reaction norm. A) Genotypic feaatorm
illustrating phenotypic plasticiy concept. Linepresent the norm of reaction of each genotype;eslappresent
measure of the degree and pattern of phenotypgtigits. Genotypes 1 and 3 show wide plasticityt displays
opposite patterns in response to the same envinnmhereas genotype 2 shows a little plasticitytfas trait in
this environment set. B) Genetic assimilation of teaction norm and the phenotypic plasticity. 1regpes the
adaptive potential of the reaction norm in a stafbwironment. 2 shows the adaptation of the indiidto a
changing environment thanks to the expressionr@va phenotype induced by the reaction norm. At tihie there
is no genetic change. 3 shows how the new phenagpee genetically fixed if the new environmerm@hditions
persist over time and how reaction norm can loastglity when it is not favoured by natural selewtiThis figure

has been adapted from (Pigliucci 2006).

For example, a study of Waddington (1953) in whaftler causing a phenotypic change
in a particular trait in individuals ofDrosophila melanogastelinduced by an
environmental stimulation (e.g. temperature), shibwhat in a few generations the
descendants showed the new trait in the absenite @nvironmental stimulus inductor
of change.

Changing environmental conditions affect the lieéshe organisms and their
adaptive response to those new environmental gonditTherefore, the adaptability to

these rapid changes in the environment is givertheyphenotypic capacity that the
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different individuals present in certain environrtarconditions. Thus, environmental

changes act on the phenotypic capacity of indivgluthis environmental pressure

determines their adaptability and survival andfum, these phenotypic changes can
influence the evolution of a certain species (Wingke 1992).

Several studies have demonstrated the wide phanoptasticity shown by
fishes in life-history traits (Vila-Gispert et @005; Fox et al. 2007; Mérona et al.
2009), swimming performance, swimming capacity anetabolism (Binning et al.
2014; Nelson et al. 2015; Oufiero and Whitlow 2Ql®prphology (Naspleda et al.
2012; Yavno et al. 2013; Istead et al. 2015), phggy (Holopainen et al. 1997,
Maruska and Fernald 2010; Crichigno et al. 2012prmgnothers, in response to
environmental changes both biotic and abiotic. @lifgh Darwin's original idea that the
history of the organism and diversification is ksga result of common descent and
natural selection remains valid, the role that ghpc plasticity plays in evolution is a
subject of wide debate within the scientific commtyr(Pigliucci 2006; Wada and
Sewall 2014). Therefore, the adaptive role of pitygmc plasticity are not clearly
demonstrated (Ghalambor et al. 2007; Levis et@l62Ho and Zhang 2018), and it is
evident the need to continue researching in tkakl fior a greater understanding the

role that phenotypic plasticity plays in the exmo of the fish species.
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1.1.1 Phenotypic plasticity in life history traits

The life-history traits include those biologicatrdtutes related directly or indirectly to

reproduction and survival of an individual (Stead#89). The patterns of the life-

history traits and their coordinated evolution defithe life-history of the species
(Adams 1980; Rochet 2000; Winemiller 2005). Thditgbof individuals to produce a

sufficient number of offspring to maintain a loregfh population in a certain area,
determines their survival (Mérona et al. 2009).sTé&lbility is related to the life-history

traits developed by the individuals, referring éproduction and growth (Stearns 1992),
that will ensure the existence of a new generafidns process is determined by the
restriction of the genetic background, which getesyghe life history of a given species
(Stearns 1992; Mérona et al. 2009) and the abititadapt to environmental changes
through phenotypic plasticity (Nussey et al. 200Phenotypic plasticity of life-history

traits in response to environmental changes has Wwed documented in fishes (Rodd
1997; Lima et al. 2002; Mims et al. 2010). For epamMérona et al. (2009) showed
changes in life-history traits such as maximum tbengbsolute and relative length at
first maturation, proportion of mature oocytesipergonad, fecundity and mean size of
mature oocytes in 14 fish species induced by plyproplasticity in response to the
construction of reservoirs to adapt to the new remvnental conditions. Further, several
studies have also shown the wide phenotypic plastitat present different species of
fish in their life-history traits such as age amzesat maturity (Roff 1982; Fox et al.

2007; Mims et al. 2010), body condition (Gibbonsketl978), reproductive investment
and egg size (Pampoulie et al. 2000), back-calkedl&Engths at age (Top et al. 2018),
fecundity (Karjalainen et al. 2016), individual @b rates (Wickins 1987) and sex
ratio. In this context, Ospina-Alvarez and Pifer(2008) found that sex-ratio of some

fish species changed depending on temperaturer Wuoek demonstrated a positive
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correlation between high temperatures and the numbenales in some fish species
such asMendia menidia Odontesthes bonariensisHoplosternum littorale and

Poeciliopsis lucida

1.1.2 Phenotypic plasticity in physiology
Metabolism is the term for a set of biochemicaktims that occur in the cells of living
organisms that generate matter and energy to sul#f&ai Metabolic rate (MR) is the
amount of energy expended by an organism in a gtiee period and this trait
provides a view of the physiological state of amreat (Brown et al. 2004). The MR
patterns observed in animal populations can beenfied by the level of activity and
physiological status, body size, temperature, foddke and anabolism (Norin et al.
2016). Regarding to ectothermic fishes, environmerhperature can affect the
physiology and oxygen demands (Chabot et al. 20ib6eneral, physiologists use
oxygen uptake when they want to measure metatatkcaf fishes (Chabot et al. 2016).
In ectotherms, the most relevant measures of enemgtabolism are maximum
metabolic rate (MMR), standard metabolic rate (SM&)d absolute aerobic scope
(AAS) (Rosewarne et al. 2016), which define metmbphenotype of an individual
(Metcalfe et al. 2016). MMR represents maximum skenm energy output for
demanding activities, usually measured as peak baeroutput during forced
locomotion (Bir6 and Stamps 2010), and is assatiaiethe maximum rate at which
oxygen can be transported from the environment itoamondria. Standard metabolic
rate (SMR) is the minimum metabolic rate necessarigeep an ectotherm alive at a
certain temperature in the post-absorptive petethw this rate the biological function
is impaired (Brett and Grover 1979; Priede 1988) & associated to the minimum rate

at which oxygen can be transported from the enwi@mt to mitochondria. Subtracting
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SMR from MMR provides a measure of absolute aersbape (AAS) and represents
the aerobic physiological capacity of fish to pemioseveral oxygen-demanding
processes simultaneously (Clark et al. 2013).

Differences in MR have been evidenced betweervitdals of the same and
different fish species (Killen et al. 2010; Binniegal. 2014; Auer et al. 2015). There
may be a variation between individuals of the sapecies for metabolic rates after
accounting for variation due to factors as tempgeaind body size in stable conditions
(Millidine et al. 2009; Norin and Malte 2011; Kileet al. 2012). The individual
variability of SMR found in fish species, is raldtto the energy demand of vital organs
and the availability of resources (Auer et al. 201dthough there are fewer studies
about individual variation of MMR than SMR, it segito be that intraspecific variation
of MMR and SMR is similar (Metcalfe et al. 2015hérefore, regarding to individuals
of the same fish species, variability in SMR and RING related to environmental
factors such as feeding, temperature, oxygen dirkyaand water flow (Killen et al.
2010; Metcalfe et al. 2015; Auer et al. 2015). leaample, Binning et al. (2015)
demonstrated differences in MMR of juvenile indivads of Acanthochromis
polyacanthusreared in different water flow regimes, showinghigher value for
individuals reared in a stronger water flow compate individuals reared in a calm
environment.

Further, it is known that MMR is related to swinmgi performance, cardiac
function and phenotypic flexibility towards enviroental perturbations (Norin and
Clark 2016). Individual SMR can also be related behavioural traits, such as
dominance, risk taking, growth rate, and amounfoofl intake (Metcalfe et al. 2015).
For example, Van Leeuwen et al. (2012) demonstrhiaidchanges in SMR of juvenile

coho salmonOncorhynchus kisutcindividuals were related to the amount of food
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consumed. At the interspecific level, metabolierdifferences are generally related to
lifestyles (Figure 2) (e.g benthig. pelagic). For example, Killen et al. (2010)

demonstrated that the metabolic level is highepahagic than benthic fish species

(Figure 2).
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Figure 2. Effect of life style on metabolic leve)(This figure has been adapted from Killen et al1(20

At last, all this information on the metabolic pb&ypes of fish species both at inter and

intraspecific level shows the great variability faictors that may be affecting the

metabolic phenotypes of fish.

1.1.3 Phenotypic plasticity in morphology
From the beginnings of the first ichthyological dies carried out by Peter Artedi
(1705-1735) and Carolus Linnaeus (1707-1778), tinet taxonomic studies and
classifications in fishes were based on the moxachl characteristics presented by
the different species. Although phylogenetic adesnare helping to reclassify the fish
species (Betancur et al. 2017), main knowledge ystematics and evolutionary

relationships of fish species, as well as the widermation about their diversity, is
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based on the study of their morphology (Arratia doddnson 2015). Morphology is the
result of genetic and environmental influences #r environmental component of
variation is commonly referred to as phenotypicsptaty (Vollestad 1992). Several
studies have demonstrated the importance of fattatsaffect morphological plasticity
such as: diet, water flow, presence of predatortsa4 and interspecific relationships,
temperature and food abundance (Stabell and Lw&Y;1%hiteley 2007; Wilcox and
Martin 2006; Weber et al. 2012; Alexandre et all£20Jalili et al. 2015; Black et al.
2017). In this context, Alexander et al. (2014) wbd morphological differences
between two populationsf Luciobarbus bocagethat were related to the type of
hydrologic regime of the environments from whicheythcame (permanenvs
temporary). The population from a permanent hydycll regime showed more
fusiform body shape, narrower head and caudal pelutower body condition and
longer and higher pectoral and dorsal fins, whengared with the population from the
temporary hydrological regime. Other studies haamahstrated that predator presence
induced significant morphological changes in fishascording to Domenici et al.
(2008), individuals of @rassius carassiushowed significant changes in morphology
induced by the presence of the preddisox luciussuch as a deep body and a high

percentage of muscle mass increasing their esocapenbtor performance (Figure 3).
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(&)

Figure 3. Crucian CarpCarassius carassijsmorphological differences induced by presencepdators(a)
Shallow-bodied morph from a predator-free pond @mdleep-bodied morph from a pond with predatocsléSbars,
10 mm. This figure has been adapted from Domenial. €2008).

Rapid adaptation to environmental changes has beesidered advantageous for fish
species, but some studies have revealed data tmtadicts this statement. For
example, Araki et al. (2007) demonstrated how a @ewerations of domestication of
rainbow troutOncorhynchus mykissan hinder the reproductive success when they are
returned to the wild. Although breeding endangefisti species in captivity is a
conservationist strategy, using wild fish parerdsreéstore wild populations and to
protect them, it is not clear that it was a wefthtgy to fight against extinction of
endangered species (Araki et al. 2007; Fraser 20@8&eri et al. 2018).

Phenotypic plasticity shown by fishes have allomébgm to survive to
environmental changes, adapt and spread for differguatic environments around the
world. Therefore, phenotypic plasticity can be duamtage for individuals to face new
situations, which also enables them to invade a&tilesin a new environment outside

their native range (Agrawal 2001; Yeh and Pricef0
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1.2 Invasive fish species on freshwater ecosystems
Freshwater ecosystems have suffered serious imgaett the introduction of invasive
species by humans (Ricciardi and Macisaac 2011¢. t&hm invasive species is often
confused with exotic species (Colautti and Macisa@84). An exotic species is an
animal, plant or microorganism species, which isoiuced outside its native range
distribution, where it does not exist naturally riBaala 2017). An invasive species is
an exotic species, which causes environmental andogic harm to the ecosystem
where it has been introduced (Beck et al. 2008aala, 2017). To become invasive, a

species must pass some steps successfully (Figure 4

Species entrained in transport pathway

Fails in
transport

Fails to
Establishment establish
Noninvasive
Invasive

Figure 4. Scheme of Invasion ProcéBmansitions that non-native species must overcanm@htinue in the invasion
process and become invasive species. This figueddan adapted from Kolar and Lodge (2001).

The impact of invasive species on native spec@sneunities and ecosystems has been
widely recognized for decades (Lodge 1993; Kevin &volin 2003), and invasive

species are currently considered an important coepoof global change (Vitousek et

13
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al. 1997). The economic impact of these speciesvident; the economic costs of
invasive species are estimated from millions tbdms of dollars annually (Pimentel et

al. 2000). In addition to the economic impacts, agive species have serious
consequences for biodiversity (Mcneely 2001; Rickiand Macisaac 2011). In fact,

they are considered by the International Uniontfhi@ Conservation of Nature (IUCN)

as the second most important cause of speciescatinafter the destruction of natural
habitats. Several studies have demonstrated thactmof invasive species on native
species and on the structure of the community @viill989; Witte et al. 1992; Wilcove

et al. 1998; Parker et al. 199ala et al. 2000And ecosystems (Vitousek and Walker
1989; Ricciardi and Rasmussen 1999; Levine et @32Charles and Dukes 2007).

Freshwater ecosystems are the most vulnerablealtslbit invasion of species (Cohen
and Carlton 1998) and more and more the numbemtobductions, accidental or

intentional, of invasive species increases (CaB8bY In the Iberian Peninsula, exotic
species have flourished, mainly released for agghuarposes or biological control, but
also as a result of accidental introductions frameagulture facilities (Maceda-Veiga et
al. 2013). The acclimatization of these speciesnis of the most important negative
factors that affect the survival of endemic spedielvira 1995). As a result, in the

Iberian Peninsula the majority of native fish spsare threatened (Elvira 1996).

Over the last few decades, the growing problenmwdsive species has led to
the development of a series of predictive modeketaon the biological attributes of
the introduced species and on the biotic and abataracteristics of the environments
where they have been introduced (Kolar and Lodd@H 2Uila-Gispert et al. 2005). For
the development of these predictive models, thdogical attributes that have been
taken into account are body size, growth rateg-History strategy and ecological

tolerances that have allowed the invasive speoiesstablish successfully (Copp et al.
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2005). Opportunistic life-history strategies swash'r”, are predicted to be favoured in
the initial stages of the establishment of a neacss and their spread, due to a low
density of individuals and in many cases, the haghilability of food. Non-native
species can succeed in unpredictable and unstabil®ements. An introduced species
that is expanding its range of distribution, ieipected that it will present features such
as early maturation and a high inversion of energyeproduction (MacArthur and
Wilson 1967; Taraghi et al. 2011) (Figure 5). Omlce species has been established,
these features do not necessarily have to be fadoét this time, success may depend
on biological features that allow introduced spegdig succeed in a more competitive
environment, the "K" vital strategy (MacArthur awdlson, 1967; Taraghi et al., 2011)
(Figure 5). In this second stage, it would be nemgsto observe a greater investment of

energy in the care of offspring and, a decreagbarninvestment in reproduction (Bohn

et al. 1998).

Proportion of
individuals surviving

\
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~
.
_____
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Age

Figure 5. "r" and "K" strategies according to MattAur and Wilson theoryThis figure has been adapted from
Taraghi et al. (2011).

1.2.1 Bleak in Iberian freshwaters
Bleak colonization and expansion in the Iberianifara represents a threat to Iberian
endemic species (Clavero and Garcia-Berthou 2086ause it is known that bleak can

easily hybridize with other cyprinids (Blachuta akditkowski, 1984; Crivelli and
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Dupont 1987). Specifically, there are hybrids wgpecies of the genuSqualius
(Wheeler 1978; Witkowski and Blachuta 1980; Kammdeaad Wuestemann 1989) as
the calandinoSqualius alburnoidegAlmodévar et al. 2012). More serious are the
hybridizations with the bermejuekchondrostoma arcasiincluded in the List of Wild
Species in Special Protection Regime (LESPE), hagarabugdnaecypris hispanica
which is included in the category of Endangeredhinitthe Spanish Catalogue of
Endangered Species (CEA). In addition, it is kndhat interspecific competition via
aggression (Vinyoles et al. 2007), has achievedidplace some native species of the
Iberian Peninsula from their natural distributi@anges (Almeida and Grossman 2014;
(Ribeiro and Leunda 2012). Bleak has shown grealwdity in its biological attributes
which indicates that this species can display avplkdenotypic plasticity in response to
the environmental conditions of each type of habita

Bleak is often used as a forage fish for anglisgiporous species such as the
american perclPerca flavescensr rainbow troutOncorhynchus mykss(Bruno and
Maugeri 1995), which could be a factor to be tak#a account to explain its presence
in the rivers of the lberian Peninsula where spisting is practiced. It has been
observed that the presence of bleak is often asgociwith the introduction of non-
native larger predators such &sox luciugs Micropterus salmoidegqElvira and
Almoddvar 2001),Sander luciopercaand Silurus glanis(Carol et al. 2003). In some
regions of Europe, it is exploited commercially litus a species not much appreciated
by anglers. Furthermore, bleak has great varigliipending on the habitat it occupies.
For example, Erdgan and Koc¢ (2017) showed that the length-weighdtiatship and
its reproductive period could vary depending onrtgeographical distribution.

The establishment of bleak and other invasive ispaa the Iberian Peninsula

has been favoured by the poor conservation of ra@ysystems and by the high
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regulation of river's flow by humans (Elvira et 4098). The construction of dams,
reservoirs and the excessive extraction of wateorder to regulate rivers, has led to a
progressive change of rivers towards more lentidrenments. It has been observed
that this alteration has occurred at the same &ishe expansion of bleak (Elvira et al.
1998). Vinyoles et al. (2007) suggested that in Wherian Peninsula, there is a
relationship between the expansion of bleak andtdmstruction of dams. The fact that
human being has made changes along the rivers andakoured the emergence of
more lentic environments is very relevant when wasader that this can favour the
spread and establishment of certain invasive spdoig¢he detriment of the endemic
species of the Iberian Peninsula.

The first citation of bleak in a river of the llgam Peninsula was in June of 1992
in the Noguera Ribagorcana, a tributary of the EHRieer (Figure 6) (Vinyoles et al.,
2007). Four years later, it was found in five monbutaries of this basin: Cinca,
Guadalope, Jalon, Matarranya and Segre (CHE 1987)he basins of the eastern
Pyrenees, the first individual of bleak was detgdtethe Muga River in 1997 (Cardona
et al. 2002). In 1999, the presence of this spagas mentioned in two more basins of
the Iberian Peninsula: to the north of the Duersirhaspecifically to the Tormes river
(Velasco 2005) and also to the south of the Guadatdpasin, in Portugal, where it has
increased its distribution to the border with Sp@@rez-Bote et al. 2004). To the east
of the Iberian Peninsula, bleak expanded througtimiEbro basin and Mediterranean
rivers such as Jacar, Turia and Mijares (Doadrig120In 2002, the presence of bleak
in the Fluvia river (eastern Pyrenees basin) was alentioned, and it is thought that
due to a particular introduction (Vinyoles et &02) (Figure 6). It was also introduced
in several reservoirs. Carol et al. (2003) pointed that this species was already in

reservoirs of the Ter, Foix and Llobregat riversthe eastern Pyrenees. During 2003,
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this species was also cited in the Arga river,ilautary of the Ebro (Vinyoles et al.
2007) (Figure 6). Later, its presence was alsalditethe Segura river basin (Andreu-
Soler et al. 2004). Then, it was detected in twsemneoirs of the Guadiana basin in the
Spanish zone (Perez-Bote et al. 2004) and in tbféke Duero basin (Velasco et al.
2005). In 2005, this species was also found inTtagus river (Vinyoles et al. 2007)

(Figure 6).
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Figure 6. Distribution of bleaklburnus alburnusn the Iberian Peninsula in 2007. This figure hasn adapted from
Vinyoles et al. (2007).

1.3 Fish species in Iberian waters
Iberian Peninsula borders with Mediterranean Se#hereast and southeast, with the
Atlantic Ocean on the west, south-west and nortetwand with Pyrenees on the
northeast. This geographical isolation, in terms fofshwater ecosystems, its
evolutionary history and the characteristics ofiver systems, have caused the Iberian
Peninsula to have a large number of freshwater reitdésh species (Doadrio et al.
2011). An endemism is a taxon that has a restritidbution, which is only present in
a certain area of the world (Morrone 2008). The bemof fish species that inhabit

freshwater ecosystems of the Iberian Peninsul® ispgcies (Doadrio et al. 2011). Of
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these, 61 are native species and of these, Sltractysfreshwater species. In Iberian
Peninsula there are also 10 species of estuaribgshand/or migratory. Of the 51
strictly freshwater species, 41 are endemic spearagch suppose more than 80% of
the freshwater species of the Iberian Peninsuldbénan freshwater ecosystems, also
inhabit 28 exotic species (Doadrio et al. 2011j.tHe 61 native species, 57 of them, are
included in some category of threat (Figure 7). 8arhthese species ateciobarbus
graellsii, Parachondostroma miegiiCobitis paludica Aphanius iberus Aphanius
baeticus Valencia hispanicaamong others (see Doadrio et al. 2011). As wee hav
already said before, the geographical situationiendvolutionary history have turned
the Iberian Peninsula into one of the regions Wwigher number of endemic freshwater
fish species over the world and many of these speeare critically endangered,
endangered or vulnerable and represent some ahtst endangered species on the

planet (Doadrio et al. 2011; Maceda-Veiga 2012y\{Fe 7).

19



General introduction

Figure 7. Current status of Iberian freshwater figlive species according to IUCN. CE) critically emgiered, E)
endangered, NT) near threatened, V) vulnerable, I[e&@t concern and ND) without enough data. Thigréghas
been adapted from Maceda-Veiga (2012).

1.3.1 Aphanius iberus conservation and breeding programs in
captivity

According to the International Union for the Constion of Nature (IUCN)A. iberus
(Iberian toothcarp) is one of the endangered spdhi are suffering a regression of its
populations in the Iberian Peninsula due to theaichpf the two main factors that affect
native/endemic species such as destruction ofatisral habitat and the introduction of
invasive species (Crivelli 2006; Maceda-Veiga, 2012nce 1990, there have been
developed conservation programmes to preservealbéaothcarp and its gene pools
(Araguas et al. 2007). Conservation programs fas #pecies have been largely
developed in the Autonomous Communities that Hustdpecies (Torralva et al. 2001).
In general, breeding programs suppose an extendmmsure in fish conservation

programs (Andrews and Kaufman 1994; Flagg et a@5]1®Berejikian 2000), and
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account for some successful reintroductions {pfyart 1995; Shute et al. 2005).
However, many studies on fish rearing reveal thah developed in captivity show
notable differences in relation to their wibdnspecifics and, in some cases,
reintroductions of captivity rearing fish could sauecological problems (Einum and
Fleming 2001). For instance, some studies demdadtthat species reared in captivity
showed divergent phenotypic development (Belk eR@08). In addition, studies with
salmonids showed that captivity rearing diminisigedetic diversity, and advanced the
growth and the age of maturity (Horreo et al. 20This could be related to ecological
differences in habitat conditions. The lack of makselection in captive breeding might
affect the population that is intended to be reticed. Normally, in natural
conditions, the most vulnerable genotypes are slted by natural selection, whereas
in captive breeding, this choice does not existthedefore, these genotypes will persist
and will be reintroduced into the natural habiftis can cause differences regarding
the behaviour, survival and growth of the reintroeli population, which could prevent
the survival of these fish when released into tiild {Brown and Day 2002). Although
the high plasticity in the life-history traits, npdrology, metabolism, and diet among
others, in relation to environmental variabilitykisown in fish (Domenici et al. 2008;
Killen et al. 2010; Almeida et al. 2012; Auer et 2015; Karjalainen et al. 2016), and
that fish reared in captivity can alter their IHestory traits related to adaptability (Le
Cam et al. 2015), captive breeding programs ofidibetoothcarp have been carried out
to help maintain its wild populations. As a consaaee, it would be very important to
have more information about the phenotypic plastiaf Iberian toothcarp under
different environmental conditions, especially undaptive breeding conditions, to

ensure that the reintroduction of this speciesaitural habitats would be successful.
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Objectives

The main objectives of this thesis are 1) to asslessphenotypic plasticity in life-
history traits of an invasive speciésburnus alburnusin freshwaters of the Iberian
Peninsula and 2) to evaluate the phenotypic plgsticn morphological and

physiological traits of an endangered speéieterusunder wild and captive breeding

conditions.

According to these objectives, the content of thesis is structured in three chapters:

Chapter 4: Inter-population plasticity in growtheproduction and dietary traits of

invasive blealAlburnus alburnusn the northeastern Iberian Peninsula

Chapter 5: Inter-population plasticity in growtheproduction and dietary traits of

invasive bleakAlburnus alburnusacross the Iberian Peninsula compared to a native

population of France

Chapter 6: Inter-population variability in physigpand morphology between wild and

captive breeding populations of endangered spégbanius iberus
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Materials & Methods

3.1Study areas
The study sites were situated at twelve locatidasiduted as follows (Figure 8): four
small water courses in Catalonia (NE Iberian Pena)s five in main rivers of the
Iberian Peninsula and one in France regarding €hkpters 4 and 5, respectively). In
the case of Iberian toothcarp, two populations wanalysed, one from the wild

(Catalonia) and another one reared in captivityafiiér 6) (see details below).
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Figure 8. Rivers wherdlburnus alburnusgpopulations were surveyed for chapters 4 and. Sabdne, 2. Muga, 3.
Fluvia, 4. Cardener, 5. Foix, 6. Ebro, 7. TaguG@adiana, 9. Guadalquivir and 10. Segura.
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3.1.1 Catalonian small water courses (Chapter 4)

As regards to Chapter 4, we analysed four bleakilatipns that came from small water
courses (i.e. streams, < 100 km river length), #rat located at < 250 m a.s.l. in
Catalonia (northeastern Iberian Peninsula) anchdrao the Mediterranean Sea (from
North to South): Muga (50°39'N/46°80’0), Fluvia ?39'N/46°68'0), Cardener
(39°95'N/46°24’0) and Foix (38°56’N/45°69'0) (se@lfe 8). These streams were
selected because they are geographically in clasemity to each other (latitude range
41°19-42°16 N, maximum distance:120 km) and, at the regional scale, possess
similar fish assemblages, limnology and geomorpimla.e. bed shape, wetted width,
flow, substratum composition, riparian vegetation gevel of human disturbances (see
details in Catalan Water Agency 2015). Bleak abunda were also similar between
study streams (CPUE = 7.6-9.6 ind 1009mAll of these conditions allow that
variations among bleak populations related to ghowéproductive and dietary traits,
are more likely to be attributable to environmeritadtors operating at the local scale
(i.e. within stream), such as food supply or hakatzilability. Furthermore, the study
streams show a typical Mediterranean hydrologiegime (i.e. autumn-winter floods
and summer droughts) and they can be used as nmegermystems for assessing the
ecological responses of this invasive species vifiteoduced to other freshwaters in the
Mediterranean region of Europe (Almeida et al. 202d4final key point for selection of
these watercourses is that bleak was introducdtese four streams around the year
2000 and thus, their populations are currently wethblished and spreading in these
habitats (Vinyoles et al. 2007). Consequently, shely populations are at the same
‘invasion stage’ and therefore, this potential efffen the assessed parameters was

controlled.
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3.1.2 Main rivers of the Iberian Peninsula (Chapter 5)

In Chapter 5, five main Iberian rivers were sampte sampling sites per river, along
a latitudinal gradient (from North to South): Ebr@1°33’'N/0°40'W), Tagus
(399°54'N/4°30'W), Guadiana (38°56'N/6°03'W), Segur@8°00°'N/1°12'W) and
Guadalquivir (37°36'N-5°46'W) (see Figure 8). Themographic coordinates are the
intermediate coordinates on the river, as two sangites were surveyed in each (see
below). For comparative purposes, we surveyed a mnaer within the bleak’s native
range close to the Iberian Peninsula, i.e. hisdflyia potential ‘donor region’ for non-
native fish introductions to this region along tke-called ‘Perpignan-Barcelona
corridor’ (see Clavero and Garcia-Berthou 2006 details on invasion routes). Thus,
the River Sadne (eastern France) was selectedefei@nce’ population, although only
one site was finally surveyed. In any case, a coaipp@a number of bleak specimens
(200 individuals, see below) were collected from River Sadne and data from the two
sampling sites in Iberian rivers were pooled fatistical analyses (i.e. no ‘site effect’
was found, see Data Analyses below). The riversi&aBbro and Segura drain into the
Mediterranean Sea, whereas the rivers Tagus, Guamdiad Guadalquivir drain into the
Atlantic Ocean. All the study rivers were selectedcause they represent large
watercourses (i.e. >300 km river length), whereaklare widely distributed and reach
relatively high abundances within the local fistsemblages. A final key point for
selection of these particular Iberian rivers weet thleak were sequentially introduced
into the different catchments and thus, their pafoihs will potentially reflect
particular ‘invasion stages’ on the examined growtproductive and dietary traits.
Specifically, bleak were introduced into the studsers in the following years (first
mention) (Vinyoles et al. 2007): Ebro in 1992, Giaad in 1999, Segura in 2004,

Tagus in 2005 and Guadalquivir in 2006. The climatehe study area of the River
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Sabne is Temperate Oceanic (800—1000 mm of meamahnainfall, 10-13 °C mean
annual temperature) (Ministry of Environment Fra@0d9), the most common climatic
conditions for the bleak’s native range in Euroleith et al. 2011). The climate regime
for the study lIberian rivers is typical Mediterrane with rainfall concentrated in
autumn-winter £500 mm) and intense summer drought (<100 mm). Teannannual

temperature ranges between 15-18 °C. The lowegtet@tures occur in winter (down

to -5 °C) and the highest in summer (>35 °C) (Migisf Environment Spain 2019).

3.1.3 Wild and captive populations of Aphanius iberus from
Catalonia (Chapter 6)

In Chapter 6, two populations of Iberian toothcasgre compared, one of them coming
from a wild population that were sampled in thedrgaline coastal lagoon of Clot de la
Lludriga located in Aiguamolls de 'Emporda salt nstaes (NE Iberian Peninsula)
(Figure 9). The Aiguamolls de 'Emporda occupies tloast of the Bay of Roses, on the
northern limit of the Iberian Mediterranean codisis a deltaic plain, originated by the
contributions of the Muga and Fluvia rivers (Ba@®Q) and consists of a set of coastal
lagoons, Mediterranean marshes (not influencedhkytide) and flood areas, among
which is the Clot de la Lludriga where we can foundd populations of Iberian
toothcarp (see Figure 12) (more details in Moremoigh et al. 1999). The other
population studied comes from the same locationitowtas raised in captivity for a
previous study in freshwater outdoor tanks (1.5 m5m x 2 m) in the University of
Girona, without any substrate or vegetation anceundtural conditions of photoperiod,

temperature and feeding.
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Figure 9. Sites where Iberian toothcarp populatiormseeded for chapter @ Indicates Costal lagoon Clot de la
Lladriga. @ Indicates University of Girona where tige population was reared. This figure has beepttl from
Moreno-Amich et al. (1999).

3.2 Studied species

3.2.1 Bleak Alburnus alburnus(Linneaus, 1758)
In the Iberian Peninsula, ble@tburnus alburnugLinnaeus, 1758), is an exotic species
that was introduced, legally and experimentallythat beginning of the 20th century in
Lake of Banyoles (Diaz-Luna and Gomez-Caruana 1988hough it was not
established successfully. Bleak is a small fistithef cyprinids' family that can reach a
maximum total length of 25 cm, although its aversige is 15 cm (Billard 1997). Bleak
can be found in fresh and brackish waters (sadsiit8—10 %o0) (Linden et al. 1979). It is
a limnophile and bentho-pelagic species. It is veatio central Europe, and its
distribution covers from the northern slope of #enees to the Urals (Bogutskaya
1997). In Greece and the Italian and Balkan pemassii is replaced by a group of
vicariant species closely related phylogeneticéldpadrio 2002). The bleak inhabits

lentic (e.g. lakes, reservoirs) and lotic habitggy. medium-large rivers). This fish
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species is highly tolerant to water pollution (Lemdet al. 1979), being able to live in
eutrophized lakes (Vinni et al. 2000), althougldoes not tolerate low oxygen waters
(Willemsen 1980). The juveniles of small size inihdhe littoral zone of rivers and
lakes. As they grow, they leave the shore and ocougre pelagic areas. Bleak is very
abundant in large rivers and European lakes (B¥&b1Wohlgemuth 1979) in which it
presents a great variety of diet and use diffetgpés of habitats (Bir6 and Musko
1995). The temperature range of the water thatgpéxies can support is between 10
and 20 °C (Baensch and Riehl 1991) although ibie tb acclimate at temperatures of
37.7-40.6 °C if the temperature increase occurdugtly (Horoszewicz 1973). In its
native area, bleak feeds in open waters, mainlgntic habitats, thus the diet is based
on zooplankton (Herzig 1994; Vinni et al. 2000; ®¥lasand Kubecka 2004). The
superior position of the mouth allows it to feedimha on zooplankton (Vasek and
Kubecka 2004), although other studies suggesitthé&o feeds on benthic invertebrates

(Bir6 and Musk6 1995), insects and algae (Valled@8b).

.........
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Figure 10. BlealAlbunus alburnusThis figure has been adapted from Lubomir Hlasek.

It is a species with a wide range of prey and i bil@e capacity to adapt its diet
according to the availability of food offered byethabitat where it is found (Almeida et

al. 2017). Variations have been described in btkakboth in European (Chappaz et al.
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1987) and Iberian reservoirs (Almeida et al. 201@)European reservoirs and lakes,
bleak can vary its position within the water coludepending on the season of the year
and depending on the circadian rhythms, feedingaoplankton in the deepest areas
during the day and rising towards the surface ghtn{where it feeds on terrestrial
invertebrates that have fallen on the surface @fhter) (Chappaz et al. 1987). Feeding
increases from February to May and decreases ii, Arich coincides with the period
of greatest activity in terms of reproduction (Rmli et al. 1993). The length of sexual
maturity in its native area ranges from 80 mm TLLG) mm (males) or 120 mm TL
(females) and reaches its sexual maturity at aGeyBars (Froese and Pauly 2012). For
this species to reproduce, the minimum temperatgairements are 14 °C (Souchon
and Tissot 2012). The bleak has shown great véitiaim the parameters related to
reproduction, such as fecundity (Mackay and Man®%9)9 the diameter of eggs
(Bonistawska et al. 2001) and energy investmentraproduction (Rinchard and
Kestemont 1996). There have been documented changeg-ratio of this species that
have been related to environmental factors. Foanid Abdeslem (2012) showed a
higher proportion of females in the Keddara resier{¢algeria) that was related to

environmental factors such as oxygen and condytivi
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3.2.2 Iberian toothcarp Aphanius iberus(Cuvier and Valenciennes
1846)

Iberian toothcarfAphanius iberugCuvier and Valenciennes, 184i8)a small endemic
fish of the Aphaniidae family from the Iberian Pesula, which is in danger of
extinction (IUCN) This species presents sexual dimorphism. Malesv shertical
silvery and grey bands in the flanks that extentheocaudal fin (Figure 11). Females,
which are larger than males, on their bodies pteseegular dark spots (Figure 11)

(Cuvier and Valenciennes, 1846)

Figure 11. Individuals oAphanius iberuspecies. A and B) Male and femalefofiberus respectively. This figure
has been adapted from Ruiz-Navarro and Oliva-Pa{@01t).

This species inhabits coastal habitats, such dsnsaishes, lagoons and some river
mouths along the Mediterranean coast of the Ibefianinsula. It is a bentho-pelagic
species and its distribution is restricted to tipar8sh Mediterranean coast (Doadrio
2002; Oliva-Paterna et al. 2006), from the Aigudmde I'Alt Emporda (Girona) to the

Albufera de Adra (Almeria) (Moreno-Amich et al. B9950nzalez et al. 2017) (Figure

12).
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Figure 12. Current distribution @&f. iberusspeciesThis figure has been adapted from Gonzalez ep@l 7).

This small fish (3-8 cm of length) is characterizgdfast growth, early maturity, high

reproductive effort and reduced life span (Garcéatibou and Moreno-Amich 1992;

Garcia-Berthou and Moreno-Amich 1993). Iberian hoatp is a euryhaline and

eurythermal species, and it is adapted to fluatgaénvironments, where pronounced
atmospheric events, such as storms or river fleadsalter salinity in a matter of hours
(Garcia-Berthou and Moreno-Amich 1999).

Human impacts on its habitat (e.g. drying marsimes lagoons for agriculture,
water pollution or aquifer overexploitation) ancetimtroduction of invasive species,
such asGambusia holbrookihave caused the reduction of its geographicaliloligion
area, being limited its habitat to brackish anddrgpline waters in coastal lagoons and
wetlands (Garcia-Berthou and Moreno-Amich 1992; ddima 2001; Rincén 2002;
Alcaraz et al. 2008). Nowadays, this species tedioon the Red List of Endangered
Species of IUCN, being one of the few lIberian figlotected by national and
international laws (Crivelli 2006). Furthermow, iberusis declared as "Endangered"
in the Red List of Spanish Vertebrates (ICONA 1986)d in the Red Book of

Vertebrates of Spain (Blanco and Gonzalez 1992)Eadangered of Extinction” in the
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National Catalog of Endangered Species [RD 430 1BOE 5.4.90)], as "Species of
Protected Wildlife" in Annex Il of the Berne Comieon (1988), as "Species of general
interest whose conservation requires the desigmatb special areas for their
conservation" in the Annex Il of the Directive diet Council of the European Union on
the Conservation of Natural Habitats and of Wildik@ and Flora (Directive 92/43 /
EEC, Fauna-Flora-Habitats) and included in AnneflLlst of species in threatened or
threatened ") of the Protocol on Specially Protgdeeas and Biological Diversity in
the Mediterranean (Barcelona, June 1995) (Torralval. 2001; Crivelli 2006). It is
estimated that Iberian toothcarp has suffered allptipn decline of at least 50% in the
last ten years (Fishbase 2019). Its distributi@aas less than 500 Kpit is fragmented
and its populations are continually declining (Dw@a®002; Fishbase 2019). Formerly,
the populations of Iberian toothcarp showed a owmatis distribution (Figure 12) but
nowadays, fragmentation of its habitat has made ¢harent populations remain
isolated in the Mediterranean littoral area of liberian Peninsula (Doadrio et al. 1996;
Oliva-Paterna et al. 2006; Alcaraz et al. 2008; £atez et al. 2017). The causes of the
decline of Iberian toothcarp populations are relaie pollution, destruction of their
habitats and the introduction of exotic speciesri@oa et al. 2001; Crivelli 2006;
Oliva-Paterna 2006; Araguas et al. 2007; Casas. é&2041). Currently, there are no
more than twenty wild populations of Iberian to@hx and some of these populations

are constantly decreasing in abundance (Oliva-Ratetral. 2006).
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3.3Field sampling
Chapters 4 and 5 focused on non-native speXiealburnusin the Iberian Peninsula.
All fish sampled were collected from May to Jund 20just before the spawning period
of bleak for each study area, and thereby avoidmgeffect of the “reproductive stage”
on diet. Moreover, year 2012 is considered to H@een hydrologically ‘average’ in the
study areas (Ministry of Environment France 2019nistry of Environment Spain
2019). As a result, the effects of particular dryvet years on growth, reproductive and
dietary traits are avoided within our studies, vahallows the data to be considered
representative for this species in the invaded kedinean region of Europe.

In Catalonian small waters courses (Chapter ®albwere collected along 10
km river (h = 10 sampling sites, one site per km) in the n@débhch of each stream by
electrofishing (2000 W pulse DC generator at 200-25 2-3 A) and dip nets (1.5 m
long pole, 30 cm diameter net, 10 mm mesh sizeg. §dmpling method consisted of
following a zigzagging and upstream direction athesite (50 m river long, 30 min). To
encompass the existing environmental variabilitgh fwere collected from all meso-
habitats present in the study streams (i.e. ruffgsr and pools), thus obtaining a
representative sample of bleak across the broagdssible body size range from every
stream. Finally, bleak individualsn (= 336: 84, 88, 83 and 81 from Muga, Fluvia,
Cardener and Foix streams, respectively) were dtoreice during transport to the
laboratory.

Sites sampled in main rivers of the Iberian Parim§Chapter 5) were 11 (2 per
Iberian river plus 1 in the River Sabdne). To encas® similar environmental
conditions, sites were specifically located in weljulated middle reaches of the main
channel, where water level fluctuations are cot@dothroughout the year, avoiding the

effects of strong increases/decreases in riverhdige. These habitat conditions are
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representative of large rivers in both the native Bberian ranges. In addition, sampling
sites were located near similar surroundings (argd use for agricultural exploitation)
and far from influences of main tributaries and tewFinally, sites were separated >50
km within each Iberian river to ensure the dataenapre representative from the study
areas and also to minimise data dependence amorgisg sites per river. A variety of
consistent sampling protocols was followed by wgdind from boats according to the
European legislation (CEN/ISO Standards, EC Divect2014/101/UE 2014). This
allowed obtaining a representative sample of bleedoss the broadest possible body
size range from each river. Catch methods consistefdllowing a zigzagging and
upstream direction in both banks at each site (®O€@ver length) by electrofishing
(2000 W pulse DC generator at 200-250 V, 2—-3 An®d per bank), dip nets (1.5 m
long pole, 30 cm diameter net, 10 mm mesh sizé&)esgets (20 x 2 m, 10 mm mesh
size) and gill nets (20 x 1 m, 10 mm mesh size, $@dtging ratio, 1.5 m deep). All
surveys followed the same sampling protocols (prgportional effort in terms of
people and time) to ensure comparability amongstiiey rivers. To encompass the
existing environmental variability, fish were cated from all meso-habitats present in
the study rivers (e.g. runs, pools, shallows). Bleadividuals sampled in this study €
1200, 100 ind. x 2 sites x 5 Iberian rivers + 200.ix 1 site from the River Sadne)
were stored in ice during transport to the labagato

Regarding to Chapter 6, specimens of wild popoihagn = 30) were collected in
July 2017 using a dip net from the hypersaline @ddagoon of Clot de la Lludriga
from Aiguamolls de 'Emporda salt marshes (NE laerPeninsula). Captive population
that comes from a previous study has been maimtameaptivity in freshwater tanks
under semi controlled conditions during 5 yearsvds reproduced naturally, there were

no predators nor other fish species in the tankkiamwas fed on the resources that
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produced the same tank. Both, wild and captive |adjoms were transported to

laboratory in tanks with supplied oxygen (two batteperated aerators with portable

pumps).

3.4 Laboratory procedures

When all individuals of the non-native bleAk alburnusarrived at the laboratory, were
measured for total length (TL, £ 1 mm). Also we swad standard length (SL, £ 1
mm) to avoid ‘noise’ given by variation of caudat fength not related to body size
(e.g. wounds and cuts in the fish skin and raygalBwere dissected to examine the
sex. Eviscerated weight (eW, + 0.1 g) was recotdeal/oid the effect of gonad and gut
masses. Regarding to reproductive parameters (ExXcepsex-ratio), traits were
analysed in mature females only, as this “fractiafi’fish population is the most
relevant for the assessment of future viability autbsequent invasiveness in small
Mediterranean-type rivers (Vila-Gispert et al. 2p0bherefore, mature females were
also measured for gonad weight (Wg, £ 0.1 mg) bgguan electronic balance. Sub-
samples (0.01 g) were taken from anterior, midd @osterior portions of each mature
ovarian lobe. Yolked oocytes were counted in ewendy-sample and measured for egg
diameter (ED, £0.01 mm) by using a PC-based imagdysis (Aphelion, ADCIS,
Saint-Contest, France). The age of the fish wasraeted by counting true annuli from
acetate impressions of scales and read on micregioo (magnification: 48x). Age
determinations were completed independently by tveaders and when the
interpretations were different, an additional regdiwvas made. If the disagreement
continued, then the sample was excluded from tlad¢yses. The total scale radius and
radius of annual increments were measured fronfatigs to the posterior edge along

the anterior-posterior axis. Regarding to diet yged, only the previous one-third of the
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intestinal tract was preserved in 4% formalin fobsequent examination to avoid any
severely digested food remains. Food items weratifted to the lowest possible

taxonomic level (e.g. Tachet et al. 2002) usingissetting microscope (40x) and
weighed using an electronic balance (wet weightitbin 0.1 mg).

As regards to Iberian toothcarp study, prior ® $iwvimming performance trials,
captive and wild fish were acclimated to experimménbnditions for 2 weeks. Fish were
placed into glass aquariums (90 |) at a temperatfir@5 + 1°C under a natural
photoperiod cycle. At least 90% of the air sataratin aquariums was provided by
vigorous aeration. The fish were fed with frozendawormsChironomussp. once a
day until satiety from the second day in the aquas. There was no mortality during
the acclimation period. To avoid postprandial éeduring the experiment, feeding
was interrupted for 24 h before the experiment ¢E@al. 2009). After the swimming
performance tests, fish were quarantined for a waeflore being returned to their

natural habitat.

3.4.1 Swim tunnel set up
To determine critical swimming speed and metabofisnthe wild and captivity-reared
populations of Iberian toothcarp, we used the nudlogy summarized as follows:
respirometry was conducted using a mini swim turiBizka-type design) with a non-
turbulent laminar flow and equipped with a contingdlow respirometer (Loligo®
Systems, Viborg, Denmark) (Figure 13). A propetiennected to the motor outside of
the respirometer generated the flow. The circidat section (170 ml volume, 100 mm
length x 26.4 mm internal diameter) was lateralbyered with non-reflecting white
screens to avoid disturbing fish by ‘mirror effécSrean et al. 2017b). An external

buffer tank was connected to the respirometer anaudomated flush pump flushed the
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air-saturated water inside the swim tunnel to emswell-mixed water in the
respirometer. The temperature in the swim tunresd Wept constant at 24-25 °C by
using a heater (Eheim Jager Model 3613; EHEIM Gndotdl Co KG, Deizisau,
Germany). To assess critical swimming speed fisrevpaced into the respirometer
and allowed to acclimatize to an initial velocitfyaa. 0.5 BL-s! (body length, taken as
the standard length of the fish, per second) fort@ recover from handling stress. After
that, velocity was progressively increased ca. 1sBlevery 20 min, which is enough to
detect changes in dissolved oxygen concentrati@u{2001). During the flush phase,
oxygen concentration inside the tunnel was supgdliech the buffer tank up to 100%
saturation for approximately 2-min period (Roseveaghal. 2016). Oxygen levels never
dropped below 70% of saturation to prevent hypoglated stress (Blaikie and Kerr
1996). Measurements of oxygen consumption wererdedousing an optical fibre
oxygen instrument (Witrox 1; Loligo® Systems, TjelBenmark). For calibration
purposes, two-point calibration with the oxygenssenwas used to record the highest
concentration value as 100% air-saturated and divedt concentration value as 0%
using a solution of sodium sulphite (@$&£;, 0.159 M). Background microbial
respiration inside the respirometer was calculatgd no fish for 10 min at the end of

each trial and was used as ‘blank’.
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Figure 13. Respirometer (1.5 I) used for measuresnehtcritical swimming capacity and metabolisimage
extracted fromhttp://www.loligosystems.com

3.5Data and statistical analyses
To determine TL at ages &. alburnusindividuals of all populations studied, non-
linear and linear equations were fitted to deteemivhich model best described the
relationship between TL and scale radius. As tkalte@g models were linear equations
for the six bleak samples, back-calculation of BLsge were estimated by the Fraser—

Lee equation (adapted from Francis 1990), as falow

TLy =TLy + (TLC — TL()) X (RA : Rc)

where Tla is TL when growth mark (i.eannulug A was formed, Tk is TL at the time
of captureRa is the distance (i.e. scale radius) from centrthéoAnnulusA, Rc is the
total scale radius at the time of capture and iSlthe intercept on the length axis from
linear regression between all 3BndRc values. Thus, the overall interceptoldcts as
a ‘weighting factor’ to reduce bias resulting frahfferences in the size distribution of
the examined populations see (Tarkan et al. 2016tHe same procedure). The

particular Tl value was 14mm, which was used as a fixed TL-saatercept.
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For comparisons of growth rates, the Hickley andtBe(1979) procedure was
followed by using back-calculated data, as follo{l9: mean TLs from all populations
were calculated at every agewhich were plotted against each mean TL atAagel
to obtain a regression line for the Walford (194gthod (used below); (2) expected
TLs at every age (eTd) were obtained from the formulae (adapted from vtbe
Bertalanffy growth equation):

and

eTL, = TL, x (1 —8%) TLo = TLy = (1 —S)

where TlyandS are theY-intercept and the slope of the Walford plot respety; (3)

all back-calculated TLs at every agewere expressed as a percentage of each;eTL
and (4) the mean percentage from different agesusead to calculate a growth index
(Gl, %) for each bleak individual. ANOVAs were ugedest for significant differences
of back-calculated TLs and Gl between populatiofs. provide an integrated
guantification of body condition (BC), eW was ugedvoid bias from gonad mass and
gut content. To assess reproductive investment i(Rfhature females, gW was used

(Maso et al. 2016). Female fecundity (FEC) waswestied according to the formula

FEC =gW x D

where FEC is the number of yolked oocytes in theenvary, gW is the gonad (ovary)
mass and is the density of yolked oocytes (number of oocygésof ovarian tissue).
ANCOVAs were used to test for significant differesdn BC (covariate: TL), RI, FEC

and ED (covariate: eW).
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Mean age-at-maturity (AaM) of each population weasculated from the
percentage of mature females in each age clasgy the following formula (adapted by
Fox and Crivelli 2001):

Amax
AaM = A [My — My )]

whereA is the age in year$/a is the proportion (from 0 to 1) of mature fish ajedA,
and Amax iIs the maximum age in the fish sample. A modifidsion of this formula
(10-mm-TL intervals in place of age classes) waslue calculate mean TL at maturity
(LaM), as per Fox and Crivelli (2001).

GLMs were used to test for differences betweenemand females on the
examined growth traits (i.e. back-calculated TL$,a8d BC), as per Almeida et al.
(2014). Because no difference was found, this categ) factor (i.e. sex) was not
included in subsequent models, so as to increasstétistical power of the remaining
sources of variation (see the same procedure ina(At and Garcia-Berthou 2007).
Data were pooled per Iberian river because thectetie ‘sampling site’ within each
river in previous GLMMs was not significant (usirgite’ as the random factor) a
comprehensive review of this statistical technigaiggiven in Johnson et al. (2015).
ANOVAs and ANCOVAs were followed bypost hoc Tukey—Kramer honestly
significant difference (HSD) tests. Sex ratio (SRale:female) was compared among
rivers using pairwise Chi-Square ?(xtests (with Yates' correction). Data were
transformed into log (x + 1) except percentage data, which were logitdformed
(Warton and Hui 2011). Assumptions of normalitydadtributions and homogeneity of

variances were verified through Shapiro-Wilks andvdne’s tests respectively.
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Regarding to dietary traits of &. alburnusstudied in this thesis, percentage of
occurrence (omitting empty guts) and percentagagdsted mass (relative to the total
ingested mass in all examined fractions of int@$tinacts) were calculated for each
food category. Four dietary parameters were caiedléor each fish: ingested mass
(mg), prey richnessy, trophic diversity (Shannon indetd;) and trophic niche breadth
(Levin index, B). Fulton’s condition factor K) was also calculated. Preliminary
analyses found no difference between sexes, thigs ciitegorical factor was not
included in subsequent data analyses. ANCOVA wasd u® reveal significant
differences between populations for the four diefmrameters. The effect of body size
was tested by using total length (TL) as the c@tarias this was a better predictor for
dietary parameters than either eWkKarAncovas were followed by post hocTukey-
Kramer honestly significant difference (HSD) td3ata were transformed by using In
(x + 1). Data normality of distributions and homogey of variances were verified
through Shapiro-Wilks and Levene’s tests, respeltivAll statistical analyses were
performed with SPSS v.19 (SYSTAT Software Inc.,daggo, U.S.A.). The significance
level was set at = 0.05. Sequential Bonferroni corrections wereqrened for every
set of multiple tests.

Related to the Iberian toothcarp study, criticalnsming speed Wcrit, cm $%)

was calculated following (Brett 1964):

Ucrit = Ur+ [Ui(TH/T))]
whereUs is the highest velocity maintained for a full 2@anperiod (cm 8%, T is the

time swum at the last velocity increment (minj)jsTthe interval time set (20 min in this

case), andl; is the velocity increment (cm’. The experiment finished when fish were
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exhaustedand could no longer swim against the current (Hag@08). Swimming
speeds were not corrected by the ‘solid-blockirfgatf because the cross-sectional area
of the fish never overcame 10% of that of the mespeter (Bell and Terhune 1970).
Oxygen consumption was calculated by fitting lineagression of the oxygen
concentration decline over time at each velocitiie Tresulting slope or regression

coefficient was used to calculate oxygen consumptides K102, mg @ h™l):

MO = — (AOf— AOb) x V

whereAOf and AOb are the rates of oxygen consumption in md ®min due to fish
respiration and microbial respiration, respectivend V is the volume of the
respirometer. Afterwards, oxygen consumption ratese then recalculated in mg O
h™L. Maxium metabolic rate (MMR) was determined astthyhest value oO; during
swimming trial, which was usually close to the é&ss$tvelocity (Srean et al. 2017). The
exponential function was used to describe relalign®etweenMO; and swimming

speed (Brett 1964; Webb 1975; Beamish 1978):

MO; =SMR x eV

where SMR, the standard metabolic rates a constant and is the swimming speed.
SMR was determined by extrapolating to zero agtiyBrett 1964). The absolute
aerobic scope (AAS) was calculated as the diffexdsetween MMR and SMR (Clark
et al. 2013). After the experimental procedureheadividual was measured (standard

body length, SL) to the nearest 1 mm and weighistl (hass, M) to the nearest 0.1 mg.
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To test for significant variations in critical swining capacity and metabolism between
the two populations of Iberian toothcarp, we coneddcan analysis of the covariance
(ANCOVA) in which population (wildversuscaptive) and sex (male and female) and
the interaction between population and sex sergefixad effects. Critical swimming
speed, SMR, MMR and AAS were used as dependemiblas, and standard length
(SL) and fish mass (M) as the covariates. ANCOVAdrare for critical swimming
speed had higher values with standard length asariate than fish mass (M), whereas
ANCOVA R-squares for SMR, MMR and AAS were the heghwith fish mass (M) as
a covariate. Thus, for results and further analygesitical swimming speed, we used
SL and for metabolic traits (SMR, MMR and AAS) weed M. The assumption of
parallelism of ANCOVA was tested analysing the nattions between the covariate
and the categorical factors. If such interactiores significant, they indicate that the
slopes are not homogeneous and the assumptionraffgtiam is thus not satisfied.
When interactions were found to be non-significtimty were removed from the model
in order to improve the statistical power of the @QVA (Garcia-Berthou and Moreno-
Amich 1993). If the interaction between species aas was found significant, an
ANCOVA was separately performed for each populatmtest for differences between

sexes. Statistical analyses were conducted witSRBfeS Statistics 25.
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3.5.1 Morphometric analysis
Individuals of Iberian toothcarp that performed Mmelthe swim tunnel and successfully
completed the test, were analysed using geometipmometry, which is based on the
modifications of the coordinates of the "landmarksitl their covariance, in order to
determine if morphological differences between patpons and sex could be related to

the critical swimming speed and metabolism.

Figure 14. Location of the 9 landmarks used inghemetric morphometric analysis to characterizebthdy shape
variation between the two Iberian toothcarp popoifest 1) Tip of the snout; 2) Dorsal head end; 3) Antedorsal
fin insertion; 4) Posterior dorsal fin insertiony Borsal caudal fin insertion; 6) Ventral caudal fnsertion; 7)
Posterior anal fin insertion; 8) Anterior anal firsertion; 9) Beginning of the operculum.

Digital photographs were taken with a Canon Handyd2S126491 (Japan) (image
resolution of 18 Mp) of the right side of each spem, and 9 landmarks were defined
and recorded as two-dimensional gndy) coordinates (Fig. 14) using the software
ImageJ 1.50i (Schneider et al. 2012). Landmark dioates were adjusted with a
generalized Procrustes analysis (GPA; Rohlf andeSl1i990). This procedure centres
each specimen onto a common centroid, scales edirapns to a common unit size by
dividing each total configuration by centroid siemed lastly rotates each specimen to a
common orientation that minimizes the differencesneen corresponding landmarks.
We estimated a ‘consensus’ form composed of thenrmeardinates for each landmark
averaged across all specimens. For each specineerstivnated 18 partial warps plus
the corresponding centroid size using the Morph08d. program (Klingenberg 2011).

To help visualising and interpreting shape diffeeshnwe used deformation grid plot
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which reflect the degree and type of shape chaegeden the consensus form and the
form of each group (population by sex combinatiamslysed.

Partial warps are the minimal shape parameterdegedo deform the
‘consensus’ configuration to each one of the amayspecimens and contain shape
information which will be analysed using multivdagastatistics (MANOVA). Next, we
conducted a multivariate discriminant function gsa (DFA, Wilks’s method) on
partial warps matrix to highlight shape differendetween populations and sexes of
Iberian toothcarp. This analysis included a craggdation procedure to identify the
percentage of correct classifications by compaittregmorphology-related classification
of each specimen made by the DFA with aupriori classification of each specimen
into one of the population by sex group. Individaabres associated with the first two
canonical axes of the DFA were correlated (Peassao'rrelation) with individual
critical swimming speed and metabolism (SMR, MMRdaAAS) to assess the
relationship between morphological variables andh fiswimming performance.

Statistical analyses were performed with the SP&#s8cs 25.
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Results & Discussion

4.1 Abstract

The bleakA. alburnusis an invasive fish in the Iberian Peninsula, vehémis
cyprinid species disturbs the highly endemic fighirfa. To provide insights into
bleak autoecology, the aim of this study was to gara growth, reproduction and
dietary traits across four lIberian streams (nogtexa Spain): Muga, Fluvia,
Cardener and Foix. These streams have similar @mental conditions at the
regional scale (e.g. Mediterranean climate, geohqgy), which allow that
variations among bleak populations are more likety be attributable to
environmental factors operating at the local s¢aée within stream). Bleak were
collected in May—June 2012, just before the spagvmeariod. In Cardener stream,
bleak showed high back-calculated lengths at agesdl 2, growth rate, body
condition and reproductive investment. In Foix atne bleak showed low back-
calculated length at age 2, growth rate, body damrdiand proportion of females,
whereas length at maturity reached the highestevaRegarding dietary traits,
Diptera larvae were the most common prey in pesggntof occurrence. As
percentage of ingested mass, flying insects (eg).gmerged Ephemeroptera) was
the most important food category in Muga and Flusteeams, other benthic
invertebrates (e.g. Gastropoda) in Cardener stegahDiptera larvae in Foix stream.
Remarkably, Foix population showed the highestkmtaf plant material and the
lowest values for total ingested mass, prey ricbn&g®phic diversity and trophic
niche breadth. Overall, results indicate that papaoih ‘status’ appears to be better in
Cardener stream, whereas in Foix stream, envirotaheanditions may be poorer
for bleak. Present findings suggest that the wideripopulation plasticity displayed
by bleak allows this non-native fish to more susbédfy invade Mediterranean-type

streams in the Iberian Peninsula. This better wstdeding of bleak population traits
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may facilitate the prediction of the most likelyeas to be colonized by this invasive

species throughout Iberian freshwaters.

4.2 Results
Bleak individuals ranged from 43 to 144 mm TL, didak mass from 0.7 to 45.3 g
eW. Significant growth differences were detectemagnback-calculated TLs at age 1
in the four examined populationSs(2e2= 36.06;P < 0.001), with bleak from Cardener
stream showing the highest mean back calculatedntLMuga population showing the
lowest mean TL. Bleak populations in Foix and Ruwtreams made a different
significant group for TL at age 1 (Table 4.1). Binces were also found for the back-
calculated TL at age F§101= 21.66;P < 0.001), with Cardener and Fluvia populations
showing the greatest mean TLs, whereas Muga anddéqulations showed the lowest
mean values (Table 4.1). Age 3 was only found itx Bad Fluvia populations, with the
latter stream showing the highest TL (Table 4.ignficant differences were found
between populations for the GFy317= 4.83;P < 0.01), which showed that the fastest
bleak growth was in Cardener and Fluvia streams tlaen Foix and Muga populations
(Table 4.1). The highest and the lowest BC wereedesl in Cardener and Foix/Fluvia
streams, respectively, with significant differenbetween population$§316= 70.08;P
< 0.001). Bleak from Muga stream made a third grimiermediate between Cardener
and Foix/Fluvia streams (Table 4.1). Regarding adpctive parameters, significant
differences were found between populations for Rje§= 3.25;P < 0.05), with the
highest adjusted Wg value in Cardener populatioiigWwed by a second group made by
Foix, Muga and Fluvia streams (Table 4.1). The ésglhmean LaM was found in Foix
stream, then Cardener and both Muga and Fluvialptpas showed the lowest values

(< 80 mm LaM) (Table 4.1). The youngest mean AaMs v@und in Fluvia stream,
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whereas the oldest mean for this parameter wasdfau Cardener stream, with both
Foix and Muga populations showing intermediate @alyTable 4.1). All bleak
populations were dominated by males, with the Mpiglaulation possessing the highest
sex-ratio ¢%s = 28.94;P < 0.05), followed by Foix, Cardener and Fluvia amms (Table
4.1).

Regarding dietary traits, diptera larvae and fiyimsects (e.g. just emerged
Ephemeroptera) were the most common prey in theiestypopulations (Table 4.2). In
terms of ingested mass, flying insects were morngomant in the Muga and Fluvia
streams. In the Cardener stream, other benthiatelwates (e.g. Coleoptera larvae or
Gastropoda) and Diptera larvae reached the greptsentages of ingested mass.
Diptera larvae and plant material were the mosuwirtgmt food mass in the Foix stream
(Table 4.2). Significant differences were found agthe bleak populations in terms of
ingested masd§321 = 4.78; P< .01), prey richnesd§321= 35.46; P< .001), trophic
diversity (Fs,321 = 32.46; P< .001) and trophic niche breadffs g1 = 25.69; P< .001).
Specifically, the least value of ingested mass feasd in the Foix stream (<10 mg,
Fig. 4.1). The remaining parameters had the sartterpawith bleak from the Muga
stream reaching the highest mean, followed by tlei& and Cardener streams, and

then the Foix population (Fig. 4.1).
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Table 4.1. Populations traits in growth and repotidm of bleakAlburnus alburnudor every study stream: back-calculated total ten@L, mm) at ages (An), Growth index (G, %), lyod
condition (BC, We in g), reproductive investment,(R/g in g), TL at maturity (LaM, mm), age at matyr(AaM, years) and sex-ratio (male + female). R&sare means (An, Gl)/adjusted

means (BC, RI) + SE. Significant differences betwbkak populations are shown by superscripts; &fikey HSD ang? test f < 0.05).

Study stream A

Muga

Fluvia

Cardener

Foix

247.9+5.7
b58.1 + 5.6
°75.0 2.5
60.3 + 6.1

A>

é86.2 £ 5.7
b98.5 + 4.1
100.3 + 4.7
479.3+7.2

As

1259+6.4

186.8

Gl

°86.2 £ 6.5
106.9 + 6.7
116.1 + 6.4
288.9 + 5.0

BC

°8.75 + 0.24
b7.76 + 0.22
°11.02 + 0.19
b7.43 + 0.20

RI

°1.29 +0.24
°1.11 £0.23
b2.33 +0.20
°1.44 +0.21

LaM

79.8
79.1
87.0
92.0

AaM

0.91
0.86
1.14
1.00

Sex-ratio

2.86
b1.36
b1.64
b1.97

10nly one A specimen was collected in Foix Stream
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Table 4.2. Diet composition of bleaburnus alburnugrom Muga, Cardener, Fluvia and Foix streaPsrcentages of occurrences (Oc., %) and ingestedan (Mass, %) are shown.

Stream Muga Cardener Fluvia Foix
Food category Oc. Mass Oc. Mass Oc. Mass Oc. ssMa
Algae and plant debris 54 11 18 2 17 10 4 25
Zooplankton 5 1 6 <1 25 4 5 1
Ephemeroptera and Plecoptera nymphs 20 2 18 1 6 4 2 3
Odonata nymphs 20 5 3 <1 1 1 1 <1
Diptera larvae 93 34 94 22 61 16 87 33
Trichoptera larvae 27 2 5 <1 2 4 9 19
Other benthic invertebrates 12 3 12 57 10 1 4 1
Nektonic insects 20 2 2 <1 10 1 9 <1
Flying insects 88 40 24 17 45 59 19 17
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Figure 4.1. Comparison of four dietary parametersbfeak Alburnus alburnusamong studied streamResults are
adjusted means + SE, after ANCOVA (covariate: TLamPple sizerf) = 326. Sampling period: May—June 2012.
Letters above columns indicate significant diffeesin bleak populations, after Tukey HSD teBts (0.05).

4.3Discussion
Life-history traits are expected to change in ahipogulations in response to variations
in biotic and abiotic conditions at the local scé#earns and Koella 1986), with this
being particularly clear in freshwater fishes (Fad Crivelli 2001). These changes also
apply to non-native species when invading new a#bife.g. Tarkan et al. 2012), where
they usually display high phenotypic plasticity ahds contribute to a more successful
invasion process (Agrawal 2001). In particular, Medanean-type rivers typically

show a high hydrological variability, including auatn-winter floods and summer
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droughts, which may promote great differences cal@onditions between contiguous
catchments (Boix et al. 2010). Accordingly, the plagion parameters examined in the
present study were highly variable between the ystatteams, suggesting wide
phenotypic plasticity in bleak. Specifically, bleglopulation “health” appears to be
better in Cardener stream, where growth, body ¢mmdand reproduction showed the
fastest rate, best status and highest investmespectively. On the contrary, bleak
populations showed overall lower growth rate, bodgdition, reproductive investment
and proportion of females in Muga and Foix streahine ability of this invasive fish to
overcome changes in local conditions has been stiswn elsewhere in the Iberian
Peninsula by Almeida et al. (2014), regarding ssteicture between contrasting
habitats (riverversus reservoir). Beside this, the present findings aowgh and
reproduction also suggest that the wide interpdjulaplasticity displayed by non-
native bleak may be a mechanism for this species rmoccessfully to invade novel
Mediterranean freshwater ecosystems. The obserakbldnd AaM in the study streams
were lower than in native populations under simdiamate conditions (e.g. > 100 mm
TL and =2 years, see Politou 1993). These two traits (0@ length and age at
maturity) are typical in populations that are in expansion stage, facilitating the
subsequent bioinvasion (Bohn et al. 2004). Stuchdh a variety of fish species,
including non-native populations, have demonstrétetl patterns of body development
vary in relation to abiotic and biotic factors ogmg at the local scale such as
temperature, competition or food availability (elgarkan et al. 2010, 2012). These
findings also support the hypothesis that bleakldtothange their growth and
reproductive traits under particular conditionshivitevery study habitat (Almeida et al.
2014). Thus, non-native species may switch thérHistory strategies at the initial

stage of invasion when they are introduced in n@gglsystems and confronted with
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variable environmental scenarios (Ribeiro and Ce#iPereira 2010; Tarkan et al.
2012). This might be related to epigenetic mectmasisn which some progeny of
invaders show a better survival rate than thosepefies in its native range. Such
phenotypic plasticity has been shown for severalmative fish species belonging to a
variety of taxonomic families: Gobiidae such ashieigd gobyPonticola kessleriand
round gobyNeogobiusmelanostomugL’avrin¢ikova and Kové 2007, Kové et al.
2009), Cyprinidae such as topmouth gudgBseudorasborand gibel cargCarassius
gibelio (Zadhorskd and Kowa2009, Tarkan et al. 2012) or Centrarchidae such as
pumpkinseedLepomis gibbosusand largemouth bass (Ribeiro and Collares-Pereira
2010).

Ecological responses, such as dietary traitsegpected to show wide plasticity
In non-native species when invading new habitatgg@#val 2001; Almeida et al. 2012,
Godard et al. 2012). Accordingly, dietary traitsrev@ighly variable among the studied
streams, indicating wide inter-population plasyiciin bleak foraging strategies
dependent on local conditions. Similarly for otlbévlogical attributes (i.e. growth and
reproduction), Masé et al. (2016) suggested thas tjreat plasticity helps to
successfully invade novel Mediterranean freshwatesystems.

The results exposed in this chapter representstaresting study on autecology
of invasive bleak in the Iberian Peninsula, paftéidy providing insights into the
population responses of this fish species to enuwental conditions at the local scale.
Nevertheless, the short period of this samplind (month) only reveals a snapshot of
the study populations and consequently, thereasnéred for monitoring inter-annual
variations of bleak traits. Moreover, the effectspiecific environmental conditions on

bleak populations is another key factor to be a®lyin subsequent years. These long-
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term studies will provide with more accurate assesds of bleak status in Iberian

freshwaters.
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5.1 Abstract

The bleakA. alburnusis an invasive cyprinid fish species in the lberReninsula.
Since its introduction, the bleak has displayetr@ng invasive character throughout
Iberian freshwaters and it is potentially dangertarsthe native fish fauna, mainly
via competition and aggression. However the infaiomaavailable on this species in
the Iberian Peninsula simply addresses spatiafillision, size structure, growth
rates and diet of temporary rivers of Catalonid, there are not information about
diet of this species in large rivers of the resthaf Iberian Peninsula. The aim of the
present study was to assess the inter-populatesti@ty in dietary traits of invasive
bleak across the Iberian Peninsula and a ‘refetematéve bleak population from
France. Five lberian rivers were surveyed (fromtNdo South): Ebro, Tagus,
Guadiana, Segura and Guadalquivir. The River Sadsesampled in France. Fish
were collected from May to June 2012, just befoeedpawning period of bleak. All
bleak individuals were measured for total length,(¥1 mm), from 55 to 199 mm,
and dissected. Only the anterior one-third of titestinal tract was preserved in 4%
formalin for subsequent examination to avoid foethains severely digested. For
dietary data we calculated percentage of occurrandethe percentage of ingested
mass per food category, ingested mass (mg), pcdness §), trophic diversity
(Shannon indexiH’) and trophic niche breadth (Levin indd®, Flying insects and
detritus were the most common food categories ouiwence. In terms of ingested
mass, detritus was the most important food categorguadalquivir, Ebro and
Tagus respectively. Significant differences wenenith between bleak populations for
ingested mass, prey richness, trophic diversity tamghic niche breadth. Therefore,
bleak could deeply shift the foraging strategy #itdr thrive in stronger flowing

waters, where zooplankton is a more limited trophgource.
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5.2Results

In total, 1200 individualsn( = 100 individuals x 2 sites x 5 Iberian rivers 802
individuals x 1 site from the River Sadne) werdamibd and processed. Body size
ranged from 44 to 199 mm TL. In order to analysewgh and reproduction traits,
significant differences were found between theestamined populations for back-
calculated TL at Age 1R 1104= 32.89; P < 0.001), Age F{gos= 41.41; P < 0.001)
and Age 35 517= 27.66; P < 0.001). Only Tagus population wagedint for back-
calculated TL at Age 4F6,180= 12.47; P < 0.001)T@ble 5.). Significant differences
were found between populations for Gk 194= 20.41; P < 0.001)r@ble 5.). Body
mass ranged from 0.65 to 53.74 g eW. Bleak populatiwere different for BC
(Fs,1103 = 7.12;Table 5.). Regarding reproductive traits, ovary mass ranigech

0.22 to 6.69 g. Significant differences were foamiong populations for RF§ 328 =
21.51; P < 0.001) T@ble 5.). Absolute FEC ranged from 732 to 380 eggs.

Significant differences were found among populaiéor FEC Fs5326 = 16.89; P <
0.001) {rable 5.). Oocyte size ranged from 0.73 to 1.41 mm ED. ddd@hces were
found between populations for EBs(32s= 14.34; P < 0.001)T@ble 5.). The highest
growth rate and best body condition, as well addtwest gonad weight and egg size,
were observed in the River Tagus. Whereas the egeatean gonad weight and
mean egg size were achieved in the River Ebro, evherundity decreased to the
lowest value found for all Iberian rivers. AlsogtRiver Segura showed the lowest
growth rate and the highest fecundity.

The youngest mean AaM was found in the River Eimtgreas the oldest mean
for this population trait was found in the RivergBea (Table 5.1). The smallest
mean LaM was found in the River Ebro, whereas #éingelst mean was found in the

River Sabne (Table 5.1). All the bleak populatioveye dominated by males, with
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SR being lower in the rivers Segura and Sadneremisehe rivers Guadalquivir,
Tagus and Guadiana comprised a second group wgtiehiSR values. The River
Ebro showed an intermediate SR value between tinesgroups (Table 5.1).

The occurrence of endemic fish prey (i.e. barbaklses, chubs) has been
continuously decreasing in the main Iberian riviensthe past decades (Maceda-
Veiga et al. 2010), with bleak currently being &qpal trophic resource in these
freshwater ecosystems.

Regarding to dietary traits Diptera larvae (e.gxoteomic Families
Chironomidae and Simuliidae), zooplankton (e.g.ewéieas) and detritus were the
most frequent food categories for the referencevegbopulation (i.e. the River
Sabne), both in terms of occurrence and ingesteds nf@iable 5.2). The Ebro
population showed a similar diet composition as petive bleak, although
Ephemeroptera and Plecoptera nymphs were also tampqorey items. For the rest
of study rivers, percentages for other categoriesevhighly variable (Table 5.2).
More in detail to be highlighted per river, vegaiatand other benthic invertebrates
(e.g. freshwater snails) were frequent food categoin the River Tagus. Flying
insects (e.g. wasps, mosquitoes or butterflies) @ncdhoptera larvae were very
common in the Guadiana and Segura populations higtest ingested mass (19%)
was for nektonic insects (e.g. water boatmen odaimry beetles) in the River
Guadalquivir. Detritus was an important food catgdor all bleak populations: 21—
42% in occurrence and 13-27% as ingested masse(bad).

Regarding dietary parameters, significant diffeesnewere found between bleak
populations for ingested mass 603 = 32.94; P < 0.001). Four distinct groups were
found (from low to high adjusted mean): Sadne/Sa@ut2 mg), Guadalquivir{25

mg), Guadiana~40 mg) and Tagus (almost 60 mg) (Fig. 5.1A). Défeses were
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also found for prey richnesbqs03= 18.68; P < 0.001). Two river groups were
found: Ebro/Sadne=3—4 prey items) and Guadiana/Guadalquivir/Tagésprey)
(Fig. 5.1B). Significant differences were foundveeén populations for trophic
diversity Fs503=19.76; P < 0.001). Two river groups were found:
Sabne/Ebro/Guadalquivir (H 1) and Guadiana/Tagus (H’' > 1.5) (Fig. 5.1C).
Differences were found between rivers for trophahe breadthKs s03= 20.49; P <
0.001). Two distinct groups were found: Sabne:(B4) and Tagus/Guadiana (B >

2). The remaining three rivers showed intermediatalues (1.6-1.7) (Fig. 5.1D).
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Table 5.1. Population traits ofin growth and reptébn of bleakAlburnus alburnusn each study river (from north to south), inchagliback-calculated total length (TL, mm) at Agei)(
growth index (Gl, %), body condition (BC, evisce@tveight (eW), g), reproductive investment (Ringo weight (gW), g), fecundity (FEC, number of aes), egg diameter (ED, mm), age
at maturity (AaM, years), length at maturity (LaMim TL) and sex ratio (SR, maléemale)

River A A As Ay Gl BC RI FEC ED AaM  LaM SR
Sabne 66.8+192 100.4+15 111.7+1.4& 113.0+4.3 100.9+0.8 1259+0.70 2.48+0.09 1829 + 382 1.14+£0.02 2.29 95.8 1.58
Ebro 626+1% 945+20 1108+1.8 113.6+3.1 93.3+0.7 11.19+0.76 2.54+0.10 1864 + 413 1.18 +0.02 1.44 80.4 2.08
Tagus 86.5+183 1285+2.1 148.2+1.8 170.2+3.6 120.1+05 17.58+0.77 1.02+0.15 3162 + 484 0.95+0.08 218 85.0 3.17
Guadiana 69.9+14 995+18 118.6+15 121.5+3.2 106.3+0.9 10.38+0.68 1.44+0.12 2800 + 496 1.05+0.02 214 90.8 3.35
Segura 48.7+1%8 74.8+1.7 1020%+1.1% 116.4+3.4 92.4+0.8 12.80 +0.67 1.68 +0.09 8069 + 364 1.11+0.08 2.87 92.0 1.4
Guadalquivir 56.2+1% 91.7+22 107.1+1.2 1184+49 100.0+0.5 8.31+0.69 1.69+0.18 5085 + 527 1.02+0.0% 2.19 83.3 3.00

Reported values are mears, (Gl) or adjusted means (BC, RI, FEC, ED) + SEecraBKNOVAs or ANCOVAs (see details in Materials amgthods section). Significant
differences among river populations are indicatgdiifferent lower-case superscript letters, aftakdy HSD andg;? (only for SR) testsR < critical P-value from Bonferroni

correction)
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Table 5.2 Diet composition of bleadtburnus alburnusn the study riversPercentages of occurrences (Oc., %) and ingestesen@Mass, %) are presented.

River: Sabne Ebro Tagus Guadiana Segura Guadalquivi
Food category Oc. Mass Oc. Mass Oc. Mass Oc. Mass c¢.O Mass Oc. Mass
Algae and plant debris 3 <1 2 5 29 17 5 3 3 <1 8 9
ZooplanktoAd 50 17 5 15 11 8 1 <1 5 3 10 6
Ephemeroptera and Plecoptera nymphs 5 9 33 21 5 10 20 23 7 21 5 12
Odonata nymphs 1 2 11 6 1 5 5 9 1 <1 1 3
Diptera larvae 69 39 27 15 3 15 3 1 59 31 3 16
Trichoptera larvae 6 1 5 <1 1 <1 15 13 6 11 1 5
Other benthic invertebrates 12 4 3 3 53 13 1 <1 12 1 71 14
Nektonic insects 1 <1 1 <1 1 <1 1 <1 1 <1 20 19
Flying insect8 3 <1 5 8 35 7 61 23 3 19 - -
Terrestrial arthropods 1 <1 1 <1 - - 1 9 1 <1 7 2
Detritus 31 27 25 26 42 24 24 18 31 13 21 14

2Acari, Cladocera and Copepoddollusca, Oligochaeta and Coleoptera larvé@grixidae and Coleoptera adul§dymenoptera, Diptera and Lepidotera;
®Araneae and Formicidae.
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Figure 5.1. Comparison of four dietary parametersbleak among studied rivefg\, B, C and D). Results are
adjusted means = SE, after ANCOVAancova (covarifitg: Sample sizen) = 326. Sampling period: May-June
2012. Letters above columns indicate significaffedgnces in bleak populations, after Tukey HSOstéB< 0.05)
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5.3Discussion
The population traits of invading species can ckamghen adapting to novel
environments (Sakai et al2001), displaying high phenotypic variability, whic
facilitates establishment success (Agrawal, 208ath ‘flexibility’ has been clearly
observed in several non-native freshwater fishgeduced to the Iberian Peninsula
(Ribeiro et al. 2008). In the present study, blgadpulations demonstrated
considerable shifts in growth and reproductivetgracross nearby river catchments,
which corroborates the results of previous, smaltale studies of bleak in the
Iberian Peninsula (Almeida et al. 2014; Masé et28l16), but also reflects the
species’ phenotypic plasticity more widely acrotss native range. For example,
bleak populations in the rivers Danube in SerbigifLet al. 2013) and Pilica in
Poland (Mann and Penczak 1984) were found to heaettey back-calculated TLs at
age 4 (140 and 160 mm respectively the latter acdesddrom SL) than observed in
the River Sabne (Table 5.1), indicating faster dhorates. Whereas, body condition
‘K’ (i.e. plumpness) in the river Danube and Pilicarevlower,~20 and=~10%
respectively, than in the River Sadne (Table 9ri}he Danube, Luji et al. (2013)
also observed a higher sex ratio (2.27) than thatd in the River Sadne (Table 5.1).
Bleak reproductive investment (GSI) in the Riverude, Belgium (Rinchard and
Kestemont, 1996), was reported to reach almost B%ightly higher value than
that £15%) in the River Sabdne. Bleak fecundity estimaits® vary across the
species’ native range, with6400 eggs reported for 5-year-old females from the
River Thames, UK (Mackay and Mann 1969), whichlimast double the mean of
~3800 eggs was estimated in 4-year-old females ffoance. Egg size also varies in
bleak, with a mean diameter of 1.48 mm for variouster courses in Poland

(Bonistawska et al. 2001), which is much highentbaserved in River Sadne bleak
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(*)1.20 mm; adjusted to 1.14 in the present resul®jerall, these data on
reproductive traits suggest that bleak populationsFrance displayed a lower
reproductive capacity (ovary mass, fecundity ang sege) than in the invasive
Iberian population, which may be due to differenicekatitude, with this being used
as a surrogate for temperature regime (e.g. Cuabset et al. 2009). Indeed, TL at
maturity increases significantly (LaM = 1.449Lat.30.664,r> = 0.606,P = 0.04)
with increasing latitude (data from Table 5.1 conelal with data for the British Isles,
(Froese and Binohlan 2003) whereby the mid-poidO(inm TL) of the reported
range 100-120 mm TL and the latitude for the RiMeames at London were used;
no such relationship was found with AaM and latgudvhich contrasts the
significant relationship between AaM and latitudeserved in European populations
of non-native pumpkinseddepomis gibbosu&opp and Fox 2007).

Bleak from the rivers Sabne and Ebro (the closestidn river to the native
range) had similar population responses (i.e. graavid reproductive traits), except
for age and length at maturity. The River Sadnedated in an area under the most
common climatic conditions for the bleak nativegann Europe (Keith et al. 2011).
The warmer Mediterranean climate of the River Ebvay promote earlier sexual
maturity in bleak. This resembles the elevated nieegrowth of crucian carp,
Carassius carassiyaunder the ‘benign’ weather conditions of Englaethtive to
other continental European locations (Tarkan e2@L6). Bleak sex ratios shifted to
males in all the study rivers, which may have béenresult of a greater predatory
pressure on females (i.e. more ‘profitable’ prewirg to their ‘nutritious content’
(eggs and ovaries) and particular behavioural straétg. higher ambulation rate
(Almeida et al. 2014). With the exception of thev&i Segura (more similar to the

native population), the effect of this predationyn@e particularly exacerbated in
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Iberian freshwaters, where a high abundance of Inott-native and native
piscivorous species co-exist (e.g. invasive fistesmorants, herons and otters).
Indeed, linear latitudinal gradients have been ¢bun certain growth and
reproductive traits of native and introduced freatex fishes throughout Europe,
such as pumpkinseed (Copp and Fox 2007; Cuchetcetsale 2009), black bullhead
Ameiurus melagCopp et al. 2016and crucian carp (Tarkan et @016). In these
studies, latitudinal variation was explained asuarcgate of temperature regime.
However, no clear pattern of increase or decreaseoliserved in bleak populations,
except in mean TL at maturity, and this relatiopsivas only valid if the estimated
mean TL at maturity for the British Isles was irddd in the regression analysis.
This otherwise lack of a relationship was probatiye to the limited latitudinal
amplitude, i.e. 37—-47°N, against 47-59°N in Cuchsset et al. (2009) and 50—62°N
in Tarkan et al. (2016) based on a greater numbestunly sitesrf = 10 and 2,
respectively). Consequently, it would be even mdiféicult to find any spatial
pattern in the examined population traits. Regaydhre time since introduction, a
pan-European study of pumpkinseed found that mazeently established
populations (<50 years since establishment) appmaxert greater reproductive
effort than those that have been established lofi@gpp and Fox 2007). According
to the available information on bleak (e.g. Vinylet al. 2007), this species was
sequentially introduced into the study Iberian mvand, thus, their populations will
potentially reflect particular ‘establishment stage the examined traits. Similarly,
as per the latitudinal variation, the period simteoduction was much shorter in the
current study (<15 years between the rivers Ebrd @&uadalquivir) and this
temporal range may not be a sufficiently-long tifreme within which to reveal a

pattern. Another potential explanation is that #stablishment stage had been
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reached in a few years after bleak introductiong. @ghn et al. 2004) and given that
the surveys were conducted in 2012 (more than Gyeam first mention for the last
invaded river), the ‘time since introduction’ effenay be ‘diluted’. In relation to the
dietary traits, given that bleak mainly inhabitdl-staters in its native area, this
species is well-adapted to play an ecological aslean open-water feeder, with diet
being chiefly based on zooplankton (Vinni et al0@0VasSek and Kuliga 2004).
Thus, planktonic Crustacea were very important ftgak in the River Sabne,
although benthic Diptera larvae and detritus wemenctonsumed. This difference
between scientific literature and the present teswhs probably because of most
surveys for bleak have been carried out in lakelsraservoirs (e.g. Vinni et al. 2000;
Vasek and Kuhika 2004), whereas bleak diet has received lesstiattein flowing-
waters. But even in lentic environments, bleak oadulate this zooplanktivorous
strategy at each particular habitat patch to irsgesesource partitioning and
consequently, reduce competition with co-existist species, such as roaRhtilus
rutilus or freshwater brearAbramis brama(Vinni et al. 2000; VaSek and Kullea
2004). Dietary indices were more similar betweea River Sabne and the River
Ebro, the closest (geographically) study area &r#ference population. This was
also observed by Latorre et al. (2018) for othgyyation responses (i.e. growth and
reproduction), which was explained in terms of dim ‘proximity’. In the main
Iberian rivers, bleak showed a high consumptionletfitus, which was also found
elsewhere within this eco-region, from streamsdservoirs (Latorre et al. 2016;
Almeida et al. 2017). More specifically, other foibeims were prominent among the
study populations, including a variety of contragtiecological features for each
trophic resource: vegetation, neuston, nekton asmthos. Thus, consumption of

algae and plant material was higher in the RiveguBaln this respect, Vinni et al.
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(2000) demonstrated that intra- and mainly intexesfir competition provided a
potential explanation to understand this resu#. (high use of vegetation) in the
native area. However, Latorre et al. (2018) did fuwotl any effect of this ‘low
nutritious’ feeding type (detritus and vegetationcompetition on the growth rate in
the River Tagus, with this population showing thghlkst values. In the Guadiana
and Segura populations, bleak took advantage gffppen the water surface, such as
fallen arthropods, which results in a low efforttéerms of energy investment. Bleak
also caught prey from the water column in the RiGwadalquivir, but this
population displayed a ‘costlier foraging altefimat as nektonic insects (e.g.
taxonomic Family Dytiscidae) require higher pursaitd capture efforts. But more
importantly, bleak fed on a great variety of beathiey, from nymphs and larvae to
molluscs and annelids, in all river populationsisTfinding indicates an elevated
capacity of this fish to use food resources appbrefess suitable to its
morphological adaptations (e.g. conspicuous supeamouth). In overall, these
results suggest that bleak could deeply changéothaging strategy, from a ‘pelagic’
to a ‘benthic’ feeder, which may aid bleak to betkteive at each Iberian river, where
zooplankton availability may be a more limited thap resource (Almeida et al.
2017). Such a significant dietary shift has besn abserved in the Iberian Peninsula
for other invasive fishes adapted to a more sthtological regime in their native
ranges, although they are phylogenetically and ggabgcally very ‘distant’ (e.g.
taxonomic Family Centrarchidae from North Amerisae Almeida et al. 2012).
Regarding dietary parameters, variation limits tfog four examined predictors
were similar as per other study areas in the lbefianinsula (Latorre et al. 2016 in
the NE; Almeida et al. 2017 in the SW). The presiata were obtained from large

rivers and the just mentioned studies includedastge and reservoirs. Thus, these
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overall results indicate that all Iberian bleak plapions possess the same capacity of
adapting to the particular habitat conditions whtmie invasive fish inhabits. No
clear pattern was found for any dietary parameterralation to the year of
introduction, which was in accordance with Latoeteal. (2018) for growth and
reproduction traits. This lack of relationship i®lpably because the establishment
stage has been reached in a few years after bigedductions (e.g. Bghn et al.
2004). However, foraging strategy appeared to ¥olla unimodal response in
relation to the latitudinal gradient (Oksanen anthd¥iin 2002), with Guadiana and
mainly Tagus showing the maximum values. A potérgiglanation is that bleak
may be more favoured by moderate Mediterraneanatdéinmn central Iberia than
Temperate conditions in the native area, wheresakldre affected by slightly more
‘severe’ ecological conditions in southern Ibesaonger summer drought with the
consequent decrease in discharge or lower oxygeh because of high temperature
(Gasith and Resh 1999). Specifically for ingesteakssn Tagus River showed the
highest value of this dietary parameter, resultmgnly one ‘statistical group’. This
could compensate a higher proportion of vegetatind detritus in the diet (see
above). Indeed, Tagus population showed the higtesit-calculated lengths at all
ages and growth index among the same study riveatorfe et al. 2018).
Additionally, more ‘benign’ conditions in centralbdria may improve the
physiological status of bleak, which facilitatesstfish species to use alternative prey
and widen its diet, with the corresponding refleatin prey richness and chiefly,
trophic diversity and breadth. In contrast to thsneralist’ strategy, more northerly
and southerly populations (i.e. distant from thérmpm, see Oksanen and Minchin
2002) displayed a ‘selective’ or 'specialist’ s&é@y, reducing the complexity of diet

composition.
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Ecological responses, such as dietary traits, liysgshow wide variability in
non-native species when invading new habitats, thith being particularly clear in
freshwater fishes (Copp et al. 2005; Almeida eR@ll2; Latorre et al. 2016). In the
Iberian Peninsula, invasive fishes usually displ@ge trophic variability under
contrasting environmental conditions, which conités to their invasion process
(Leunda 2010; Latorre et al. 2016; Almeida et 8l12). Accordingly, dietary traits
were clearly variable among the study rivers, iatliigy wide plasticity in bleak
foraging strategies dependent on particular rivesndiéions (i.e. habitat
heterogeneity, food supply). Similarly as per othidogical attributes (e.g. growth
and reproduction), this high inter-population vhiiidy is considered as a mechanism
for bleak to successfully invade novel Mediterrané@shwater ecosystems, from
streams to large rivers (Masé et al. 2016; Latateal. 2018). Indeed, Iberian
endemic species are specialized to narrow tropitices (Reyjol et al. 2007) and
this low level of co-evolutionary competition isetineason why Iberian fish fauna is
not adapted to strong invasive competitors, suchleak. This is one of the main
reasons to consider this fish species as a biaewaf high risk in the lberian
Peninsula (Almeida et al. 2013). The present wegkesents one of the few studies
on the invasion biology of a non-native fish spsgcigative to other parts of Europe,
at a large scale in the Mediterranean region obpeir Other large-scale studies of
introduced fishes in the Mediterranean region Hacesed on species non-native to
Europe and contiguous parts of Asia (e.g. Fox et2@0D7; Tarkan et al. 2012).
Overall, the present study highlights the wide ritepulation variability in growth
and reproductive traits displayed by invasive blaaloss the Iberian Peninsula. This
variety of population strategies is probably digplh to compensate the particular

environmental pressures of novel habitats andititei bleak establishment (e.g. see
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a comprehensive review in Sakai et al. 2001).Topacsfuture research include
habitat availability, fish community composition,repatory pressure, habitat
structure and water quality, in order to identife tspecies mechanisms for invading
novel ecosystems successfully. These data mayaldo better predict and mitigate
impacts exerted by this bio-invasion on the highigluable fish fauna of
Mediterranean Europe (Reyjol et al. 2007). Consetjyeenvironmental managers
should apply urgent conservation measures to domiemk populations across
Iberian freshwaters. Firstly, these measures shimadds on the target species (i.e.
fish culling), but also include actions on aquatm@bitats to restore the
‘Mediterranean conditions’ that benefit native febmmunities and hamper invasive
species (e.g. recovery of natural flow regimesgctrally the bleak (Matono et al.

2018).
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6.1 Abstract

Phenotypic plasticity occurs in many different pbigpes including behaviours, life-
history traits, morphology and physiology, in respe to abiotic and biotic factors.
Captive breeding can cause changes in the morpphalod physiology of fish. In this
sense, we investigated differences in the morplylagd physiology of wild and
captive populations of an endemic fish species fthen Iberian Peninsulaphanius
iberus(lberian toothcarp). This small fish is includedtihe IUCN list as an endangered
species. Its natural range has been greatly redaucextent decades, mainly due to the
destruction of its natural habitat and the intrdauc of invasive species such as the
Gambusia holbrookiThe aim of this chapter was to assess differentesvimming
capacity, morphology and physiology between capting wild populations of Iberian
toothcarp. Our results showed differences in mdagaho and physiology between
populations but not in critical swimming speddc(it). The wild population showed
higher values of SMR, MMR and AAS than the capipulation. These differences
could be related to environmental factors such has gresence of predators, intra-
interspecific competition, and the availability fifod and habitat complexity. There
were also differences in the morphology of the populations studied and between
sexes. Conversely to other studies, wild populasioowed a more fusiform bodies than
captive population which could be related to enwinental factors such as habitat
complexity, search for food and the presence oflggmgs. Also the higher MMR in
wild males and females was negatively correlatetth @ome morphological traits such
as narrow and elongated bodies indicating that eerfusiform body favours a greater
MMR. In addition, other morphological traits such alonger and narrower caudal fin
were correlated positively with SMR for wild malasd females. All these results seem

to indicate that differences in the environmentahditions between wild and captive
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habitats could explain morphological and metabohanges in these populations as a

result of different environmental pressures throplganotypic plasticity.

6.2 Results
6.2.1 Critical swimming speed and metabolism
In total, fifty-seven 1§ = 57) captivity-reared individuals and thirty & 30) wild
individuals successfully completed swimming perfanoe tests. Mean critical
swimming speed and metabolic traits for the wildl @aptive populations of Iberian

toothcarp were summarised in Table 6.1.

Table 6.1. Critical swimming speed and metabolidstrior the wild and captive populations of Iberi@mothcarpA.
iberus Means and standard deviations (SD) are shown. Afzirens are SL (standard body lengtl),(body mass,
Ucrit (critical swimming speed), SMR (standard metabadte), MMR (maximuml metabolic rate), AAS (absolute
aerobic scope).

Wild Captive
Males (N = 15) FemalesN = 15) Males K = 23) Females (N = 34)
Mean SD Mean SD Mean SD Mean SD

S (mm) 2.09 0.376 234 0543 230 0.256 2.45  0.427
M (g) 0.29  0.195 0.40  0.360 0.29 0.089 0.38  0.210
Uert (cm- Y 8.17 3.477 9.05 3.316 10.66  3.866 9.92 3.780
SMR (mg Q- hrY) 0.17  0.153 024 0244 0.2 0.065 0.07 0.062
MMR (mg O,- hr?) 0.36  0.210 0.49 0270 0.27 0.140 021 0.113
AAS (mg Q- ) 0.21  0.120 024 0120 0.4 0.116 0.13  0.100

ANCOVA results (Table 6.2) showed that the intamactbetween SL or M and the
categorical factors (i.e. population and sex) wasesignificant (P > 0.05), and hence
homogeneous slopes among groups were assumed eforesponse variables. The
critical swimming speedUgit) was positively correlated with SL and M and wad n
significantly different between populations and eseXTable 6.2). Metabolic traits
(SMR and MMR) were positively correlated with SL daM, and MMR was

significantly different between populations (Tab&2), being higher for wild

populations (Table 6.1). In contrast, the inte@ttbetween population and sex was
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significant for SMR after accounting for SL or Mg@le 6.2), thereby showing a
different trend between populations and sexes.i@Gaptales showed higher values of
SMR than captive femaleE( s3= 10.81; P = 0.002) whereas sexes of wild poputati
did not differ significantly from each othefFi 26 = 2.06; P = 0.163) when comparing
individuals of similar size. Absolute aerobic scop®AS) was not significantly
correlated with SL nor M, and then an ANOVA was l@ggh We found significant
differences between populatiorfs, go = 12.65; P = 0.001) but not between seXasd
= 0.02; P = 0.887). The interaction between popariaand sex was also not significant

(F1,79=1.22; P = 0.273)
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Table 6.2. Analyses of covariance (ANCOVA) of ad swimming speed and metabolic traits for wild aaptive populations of Iberian toothc#piberus

Models test differences between populations andsseith fish mass (M) and standard length (SL)a&Gates. All variables were lagransformed (P < 0.05, ** P < 0.01, *** P < 0.001).

M

Population

Sex

Population x Sex
Residuals

SL

Population

Sex

Population x Sex
Residuals

Ucrit SMR MMR
SS d.f. P SS d.f. P SS d.f. P
Rzad]: 0.132 Rzad]: 0.266 Rzadj: 0.356
0.340 1 bl 1.886 1 b 0.567 1 **
0.028 1 0.287 1.537 1 wrx 3.162 1 b
0.150 1 0.436 0.028 1 0.656 0.024 1 0.584
0.014 1 0.449 1.274 1 ** 0.267 1 0.069
2.018 83 11.321 81 6.321 80
SS d.f. P SS d.f. P SS d.f. P
Rzad]: 0.143 Rzad]: 0.258 Rzadj: 0.354
0.365 1 b 1.771 1 rrx 0.547 1 i
0.009 1 0.551 1.777 1 el 3.294 1 el
0.230 1 0.335 0.033 1 0.631 0.027 1 0.564
0.010 1 0.510 1.284 1 *x 0.270 1 0.069
6.302 77 11.436 81 6.342 80

See Table 6.1 for abbreviations of response vaabl
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Figure 6.1. Adjusted means and standard errors¢Btae Standard Metabolic Rate (SMig) populations and sex
of the Iberian toothcarp. Capital letters A, B ance§present significant mean differences betweenpgrou

6.2.2 Body shape analysis
MANOVA performed on the matrix of 18 partial wraphowed morphological
differences between populations and sex but noacdtien between population and sex

was found (Table 6.3).

Table 6.3. Summary of MANOVA of the effects of pdgtion (C = captive population; W = wild populatjorsex
(M = Male; F = Female) and their interaction on ypathape variation of\. iberus Variation was measured in 18
partial warps for each individual. For each tebt; d4 (effect) and 54 (error).

Source of variation Wilk's A F P-value
Population (C or W) 0.475 4.191 <0.001
Sex (M or F) 0.476 4.170 <0.001
Population x Sex 0.651 2.029 0.069
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DFA analysis showed significant differences betwegoups (population and sex
combinations) in axis one (Wilk®s = 0.145;y*> = 117.801; P < 0.001) and axis two
(Wilk's A = 0.382;y>= 58.742; P < 0.001). The first axis of DFA expkin67.7% of the
variation in morphology between groups and the sg¢@me explained 32.9% (Figure 6.
2). Cross-validation matrices generated from thé\ Didicated that 65.5% of captive
females (1 = 19), 73.7% of captive malea € 14), 50% of wild femalesn(= 7) and
66.7% of wild malesr(= 6), were correctly classifie priori.

The first DFA axis (DF1) primarily revealed differees in thex coordinate of the
posterior anal fin insertion (DF loading = —0.468)e x coordinate of the beginning of
the operculum (DF loading = 0.338), tlyecoordinate of the posterior dorsal fin
insertion (DF loading = 0.302), and theoordinate of the dorsal head end (DF loading
= 0.157). The second DFA axis (DF2) was mainly eisded with differences in the
coordinate of the anterior anal fin insertion (Aading = —0.572), thr coordinate of
the dorsal head end (DF loading = 0.462), xheoordinate of the ventral caudal fin
insertion (DF loading = 0.453), thecoordinate of the dorsal caudal fin insertion (DF
loading = 0.369), th& coordinate of the posterior dorsal fin insertiorF(dading = —
0.205) and thg coordinate of the beginning of the operculum (D&ding = 0.171). To
interpret the first two DFA axis we only considerémhdmark coordinates with

significant loadings (P < 0.05).
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Figure 6.2. Ordination of alA. iberusspecimens along the first two discriminant functaxes from discriminant
function analysis on partial warps data. Legendtewvbircle (CF, captive females), black circle (CMptive males),
black square (WF, wild females), white square (WiMd males). Black triangles represent centroidgtdrs A, B, C
and D represent positive and negative extremelseobbserved shape variation associated with DF Dé&daxes; N

= 87 (see figure 6.3).
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Figure 6.3. Shape comparisons of Iberian toothpapulations between consensus shape and each extedue of
the DFA axes. Consensus shape (gray line), meaacbfextreme DFA value (black line).
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Captive females were characterized by shorter healsrter and wider caudal

peduncles and deeper bodies. By contrast, wild srellewed longer heads, longer and
narrower caudal peduncles and narrower bodies. Widales and captive males
displayed an intermediate morphology along this.a®in the other hand, wild females
were characterized by shorter heads, shorter caquethlincles and narrower bodies.
These results were supported by the deformatiah gats (Figure 6.3), which reflect

the degree and type of shape change between tlsertars form and the form of each

group (population by sex combinations) analysed.

6.2.3 Critical swimming speed, metabolism and body shape

The correlation of individual DFA scores witbcrit and AAS revealed that there was
not significant correlation between morphology d@hdse traits, whereas MMR and
SMR showed significant correlation with morpholo@able 6.4). Specifically, MMR
was mainly correlated with DF1 whereas SMR was aiarrelated with DF2 (Table
6.4). Therefore, it seems that morphological aitels conferring a more shortened and
gibbous body shape may allow captive females tplayslower MMR than wild males,
whereas a more fusiform body shape may allow welmdles to display higher SMR

than the other groups compared.
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Table 6.4. Pearson's linear correlations betvigent, MMR, SMR and AAS with DF1 and DF2 of the discrimina
function analysis (DFA). Variables were logarithallg transformed (log10). (p values in parenthesis)

Ucrit MMR SMR AAS
DF1 0.026 (0.833) -0.438 (0.001) -0.231 (0.054) -0.(®136)
DF2 -0.186 (0.120) 0.320 (0.050) 0.341 (0.010) 0.14228)

6.3 Discussion

In this study, we compared swimming capacity andabmaic and morphological traits
between captive and wild populations Af iberus We found differences between
populations in metabolic traits such as SMR, MMRI a&kAS; and in morphology
between populations and sexes but notJont between populations and sexes. Several
studies have shown that phenotypic plasticity odeumany different phenotypes
including behaviour, physiology, life-history trajtand morphology, and in response to
different types of abiotic and biotic factors (Gub and Withlou, 2016). There is
evidence that metabolic rates can change in respmnsenvironmental factors such as
food availability (Burton et al. 2011; Auer et 2D15; Metcalfe et al. 2016), diet quality
(Naya et al., 2007; Killen et al. 2012; Norin et2015), temperature (Killen et al. 2010;
water salinity (Allan et al. 2006; Dalziel et aDI2; Norin et al. 2016) and presence of
predators (Fu et al. 2015; Auer et al. 2018). SHwsudies have documented that SMR
can decrease when fish are subject to a periodad festriction (Du Preez, 1987,
Wieser et al., 1992, Auer et al.,, 2015) and cameee when food supplied above
reference levels (O'Connor et al., 2000; Van Leeuekal., 2011, 2012; Auer et al.,
2015). Since the captive rearing population wasntaaed in outdoor tanks (semi-
controlled mesocosms) and was not artificially fddring their captivity, food

availability and diversity was expected to be mdreited than that of the wild
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population. Consequently, SMR differences betweepufations could be related to
differences in their recent energy intake hist®®pgenfeld et al., 2015). Further, it has
been shown before that the presence of predat@given habitat can induce prey fish
to show higher SMR than those that live in lackprgdators environments (Fu et al.,
2015; Auer et al., 2018). For example, Fu et ab1@® showed that the presence of
predators increased SMR in individuals of pale &apco platypuswhich can improve

its rapid response to avoid being preyed. Thenptiserved differences in SMR in our
study could be also attributed to differences iedption pressure among wild and

captive habitats.

Although intraspecific variation in MMR and AASave not been as studied as
SMR they seem to show similar levels of intraspecrfriation as SMR (Metcalfe et
al., 2015). Our results of MMR showed that the wilzpulation, that inhabited a high
salinity lagoon, had the highest values, wheregdivea population reared mainly in
freshwater showed lower values. Similarly, Dalaehl. (2012) have found differences
in MMR and AAS when comparing three-spined stickiefts Gasterosteus aculeatus
from populations experiencing different osmoreguhatdemands. In addition, Prakoso
et al. (2018) observed that in rock bre@plegnathus fasciatysalinity concentration
showed a positive correlation with MMR. Therefavar results suggest that differences
in water salinity between habitats could be onehef causes that would explain the
differences observed in MMR and AAS between wildl @aptive populations. In the
other hand, as Metcalfe et al. (2016) pointed BINIR variation could also be related
to the ability to catch prey and avoid predatorstHe same way, the highest MMR
showed by wild population in our study suggesteat this might be related to both
avoid predation and food search. In addition, @hr2016) suggested that AAS is

important for events such as predator-prey intemastor to overcome hydrologic
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alterations (i.e. floods). As explained above, utdoor tanks where the fish were bred
in captivity there was no predators nor hydrologiterations, and then the highest
values of AAS found in the wild population could belated to the presence of
predators and natural floods (Alcaraz et al. 2008).

About the effects of food availability on MMR andAS, in our study we found that
captive population which was subject to low fooa@i&bility showed lower MMR and
AAS than wild population. In contrast, Van Leeuwetnal. (2011) did not find any
relationship between MMR and food levels @nchorhynchus mykiisor in
Onchorhynchus kisutclalthough they found a negative relationship betwBAS and
food availability. In addition, Killen et al. (2014ound a relationship between high
SMR and reduced AAS and no effect on MMR when campgatwo populations of
Phoxinus phoxinuander different conditions of food availabilityufthermore, Auer et
al. (2016) showed a correlation between availgbiht food and SMR and AAS in
brown troutSalmo trutta but not with MMR. Conversely, Biro and Stamps QP
observed a positive correlation between SMR, MMR higher resource intake rates.
Thus, differences in MMR and AAS between populaiamour study may be related,
at least in part, to differences in habitat coaisi such as presence of predators, water
salinity concentration and food availability, altlghh we do not rule out that other
environmental factors may also influenced the MMiId AAS.

Some studies that checked SMR differences betwedesnand females, showed
that males had higher SMR than females, being tbgfences attributed to growth
differences due to food intake and to activity eliéinces between males and female
(Lucas et al. 1993; Madenjian et al. 2016). In castt Srean et al. (2017) found no sex-
dependent differences in SMR for mosquitofish byt found that MMR was

significantly higher for males than females. Theyusd that females may have a higher
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metabolic expenditure due to physiological repréecinvestment but males may be
investing more energy in locomotion while searchifagy breeding partners or
displaying territorial behaviours (Kolok 1999) thaempensating for potential sexual

differences in resting conditions.

However, our study showed that after accountingtiier effect of mass, wild
females had higher SMR than wild males and captinades had higher SMR than
captive females. Some studies have been argueeérikimbnmental fluctuations due to
seasonality (Madenjian et al. 2016) could play mpartant role in explaining sexual
differences in SMR, but unfortunately, in our stuafg did not account for these

differences, so further studies about it would beassary.

Iberian toothcarp is sexually dimorphic being rsaenaller than females (Oliva-
Paterna et al., 2006). Although it is expected #pacies that show sexual dimorphism
could also show differences in swimming spe@dgoletto 1991; Royle et al 2006,
Oufiero and Garland 2007), we did not find diffezes inUcrit between populations or

Sexes.

In this study we also found morphological diffetea between populations and
sexes. It is known that intraspecific morphologicatiation in a variety of fish species
is related to habitat differences, diet, and otli@ctors (Moles et al., 2010).
Morphological differences are expected to occurmihabitats require specific abilities,
such as fast vs. slow swimming, or slow and pregiaeoeuvring vs. cruising; and the
magnitude of these differences should be relatethéodegree of differences among
habitats (Bourke et al., 1997). Although Iberianthzarp is a species that can live in a
wide variety of brackish and freshwater habitatar(@-Berthou and Moreno-Amich,

1999), it is considered a species that prefer cemphbitats with abundant submerged
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vegetation and slow current flow (Vargas Pera, 129&8araz et al. 2008; Magellan and
Garcia-Berthou 2016), and species that live inghtypes of habitats usually show
morphological traits related to unsteady swimminghsas deep bodies through the
caudal region, medium fins and large caudal fing ww aspect ratios (broad surface
area powerful thrust; but high frictional drag) 4Bé, 1983; Walker, 1997; Domenici et
al., 2008). Unsteady swimming is useful when fistvénto make frequent fast starts,
rapid turns, and quick stops. These complex manmesuare useful for escaping
predators, capturing prey, and navigating throughmlex habitats (Langerhans, 2009).
Our results showed that wild population had a nfasform morphology, narrower

heads, narrower bodies, forward placement of tte fams, and narrower and longer
caudal peduncles than captive population. As wd bafore, wild habitat was more
complex than the captive one and it is well knowat thabitat complexity can induce
morphological changes in fishes. For example, GaeRaz et al. (2010), when
compared two three-spined sticklebdghlsterosteus aculeatympulations exposed to

different habitat complexity, they found that coeyphabitat induced more streamlined
shape and smaller heads, which they related torfgdethaviour. Similarly, Black et al.

(2017), who compared captive and wild populatioh€yprinodon bovinussuggested

that a simplified environment could have alteresldiversity and location of the prey in
the captive environment and it would cause a moatifon of the feeding behaviour and,
consequently, a change in the position of the hddidthese results suggest that
morphological differences between populations cinddelated to differences in habitat
complexity.Differences in predation pressure coalsb partly explain morphological

differences among wild and captive populations bseait is well known that the

presence of predators induce morphological changdshes (Chivers ert al., 2007;

Ekl6v and Jonson, 2007). For instance, Ingley et(2014) compared morphologies
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between three species of the geBuachyrhaphisrom different habitat types (e.g. with
and without predators) and they concluded thaptkeeence of predators can modify the
shape of fish of the same species. Although a shed and deeper caudal peduncle
may indicate a greater capacity to accelerateeagxipenses of longer steady swimming
and to enhance manoeuvrability (Webb 1994), othaties conclude conversely. For
example, Hammerschlag et al. (2018) in a study setren teleost prey species, showed
a negative correlation between abundance of predatal morphological traits
associated with predator detection and evasion ascbaudal fin size and eyes size,
which were smaller in habitats with high presentcpredators. In addition, Langerhans
et al. (2004) showed morphological differences@ambusia affinisrelated to the
presence of predators. Specifically, they foundt thshes in environments with
predators had larger caudal peduncles, smallershaad more elongated bodies. Some
of these results are in concordance with ours,esthe wild population which was

exposed to predators, displayed more fusiform lbdg captive population.

The negative correlation of some morphologicaitsr(axis 1 of the DFA) with
MMR indicated that wild males and females displayedrow and elongated bodies,
which means a more fusiform body that it is knowfavours higher MMR (Killen et
al. 2010; Killen et al. 2016; Baktoft et al. 2016).addition, some other morphological
traits such as longer and narrower caudal fin, vhi® less expensive to drag (Rouleau
et al., 2010), were positively correlated with SNIR wild males and females, then it
seems obvious that differences in environmentatitimms between wild and captive
habitats could explain morphological and metabohanges in these populations as a

result of different environmental pressures throplganotypic plasticity.

As we know, this is the first study that showedtabelic and morphological

phenotypic plasticity between wild and captive papans of Iberian toothcarp,
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suggesting that captive breeding conditions caysdggiological and morphological
changes by means of phenotypic plasticity, whichul¢toaffect the success of

reintroductions into the wild of this endangereda@es.
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In the lberian Peninsula, the acclimatization ofasive species is one of the most
important negative factors that affect the survig@lendemic species (Elvira 1995).
Numerous studies have summarized the impacts aling species on native species
and the structure of the communities (Williamso®@;9Wilcove et al. 1998; Parker et
al. 1999; Sala et al. 2000; Stein et al. 2000), thrceffects on the ecosystems (Vitousek
and Walker 1989). Ecological responses, such agarglietraits, growth and
reproduction, usually show wide variability in noative species when invading new
habitats, with this being particularly clear indhavater fishes (Stearns and Koella 1986;
Fox and Crivelli 2001; Copp et al. 2005; Almeidaaét2012; Tarkan et al. 2012). In
this context, several studies have assessed thaa#ida of fish to environmental
changes through phenotypic plasticity (Kekalainemle2010; Oomen and Hutchings
2015; Oufiero and Whitlow 2016).

In addition several studies have demonstratedddgtive breeding could affect
morphology and physiology of fishes (Gross 1998alva and Pompeu 2016) and
some of these studies have shown that these moigbal and physiological changes
reduce the survival of the individuals raised iptoaty when they are released in the
wild (Weiss and Schmutz 1999; Araki et al. 2007).

Our research has particularly focused on assesssg@henotypic plasticity of
the invasive speciedA. alburnus which could explain its adaptability to new
environments in Iberian freshwaters (chapters 4 @ndand if the endangered fish
speciedA. iberusshowed phenotypic plasticity in morphological gquinysiological traits
when comparing wild and captivity reared populagiqehapter 6). Specifically, we
hypothesized i) populations of. alburnus that came from more variable and
unpredictable environments (internal basins of [Bata, chapter 4) would present a

more opportunistic vital strategy such as smaliee st maturity, higher reproductive
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investment, smaller size, lower growth index, lowsrdy condition, early age at
maturity and more variability in its diet compositithan populations that live in more
stable and predictable environmental conditionsef(d of the rest of the Iberian
Peninsula and native population, chapter 5); i@ thative population oA. alburnus

would present a more equilibrium vital strategybsas larger size at maturity, lower
reproductive investment, larger size, higher growtex, higher body condition, later
age at maturity and less variability in its dietmgmosition than populations introduced in
different rivers of the Iberian Peninsula (chaptérand 5); iii) swimming capacity,
metabolism and morphology would be different betweeld and captive reared

populations ofA. iberus(chapter 6).

First, the assessed life-history traits showedhligigariability between the study rivers,
suggesting wide phenotypic plasticity in bleak. Speally, A. alburnuspopulations

that came from rivers with more variable and udmtable environmental conditions
(internal basins of Catalonia, chapter 4), shoveseel growth rates, high reproductive
investment, earlier age at maturity, smaller sizenaturity and more variability in

dietary traits tharA. alburnuspopulations that came from large rivers of theritbe

Peninsula and native population characterized bg leariable and more predictable
environmental conditions (chapter 5) overall. Thane, these results confirm our first
hypothesis sincé. alburnuspopulations came from more variable and unpreblieta
environmental conditions (chapter 4) showed a nomgortunistic strategy than other

studied populations.
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Second, nativé. alburnuspopulation showed the values of growth, reproaducand
dietary traits that are more characterized withildgium strategy in the different
studied populations (chapter 4 and 5). The valdeage at maturity and length at
maturity were the highest, body condition showed #econd highest value and
reproductive traits such as fecundity were the EiwEurthermore, native population
showed the highest values of zooplankton in itst diemposition, showing that
populations ofA. alburnusin native areas prefer to consume these typeaaf (golitou
1993) and a clear adaptation to a food availabiityen this species invading new areas
(chapter 4 and 5). Therefore, our results of lifgdry and dietary traits in native
population were more related to equilibrium strgtednich are representative of more
stable and predictable environmental conditionsn{#and Olden 2012). Hence, these

results confirm our second hypothesis.

Third, high variability in dietary traits were fodnbetween different invasivé.
alburnus populations studied in Iberian Peninsula whereats/@& population showed
less variability in its diet composition. Bleak migi inhabits still-waters in its native
area, this species is well-adapted to play an gamdbrole as an open-water feeder,
with diet being chiefly based on zooplankton (Vimial., 2000; VasSek and Kuti&a
2004). Our results, showed that bleak can modulasezooplanktivorous strategy at
each particular habitat patch to increase resopacktioning and consequently, reduce
competition with co-existing fish species. Therefoour findings indicate an elevated
capacity of this fish to use food resources appbréess suitable to its morphological
adaptations (e.g. conspicuous superior mouth). vieradl, these results suggest that
bleak could deeply change the foraging strategymfa ‘pelagic’ to a ‘benthic’ feeder,

which may aid bleak to better thrive at each Iberigver, where zooplankton

107



General Discussion

availability may be a more limited trophic resou(éémeida et al. 2017). Accordingly,
dietary traits were clearly variable among the gtuders, indicating wide plasticity in
bleak foraging strategies dependent on particulaer r conditions (i.e. habitat
heterogeneity, food supply). Therefore, our sedoypmbthesis in order to dietary traits,

also was confirmed.

Fourth, although differences in water flow can uoceé morphological differences
between fishes of the same species and this emtailadaptation of the swimming
capacities related to the environmental conditféuwn €t al. 2013; Senay et al. 2017), our
results showed no differences in swimming capadigtween captive and wild
populations (chapter 6). These results may be stgpitiatA. iberusis a species that
prefer to inhabit in slow water flow habitats (VasgPera 1993; Alcaraz et al. 2008),
and this type of habitats not differed excessialgaptive one (chapter 6). Further, we
found differences in physiologycal traits betwe&niberus populations (chapter 6).
Wild population showed higher SMR, MMR and AAS theaptive population. These
results suggest that environmental factors reldtedeach type of habitat where
populations came from could explain the differentmed. Specifically, we suggest
that differences in SMR could be related to foodilability (Auer et al. 2015), energy
intake history (Rosenfeld et al. 2015) and presené@redators (Fu et al. 2015; Auer et
al. 2018). MMR differences found between populaicuggest that concentration of
water salinity (Prakoso et al. 2018; Dalziel et 2012), food search and predator
avoidance (Fu et al. 2015; Metcalfe et al. 2016)Ietde the reasons to explain these
differences. Regards to AAS, environmental factush as predator-prey interactions,

hydrologic alterations (Farrell 2016) and food #adaility (Auer et al. 2015), could
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explain differences found between populations.tAdise results partially agree with our

third hypothesis.

Fifth, several studies have showed that captiveeding conditions can induce
morphological changes in body shape, head and firggortions (Swain et al. 1991;
Fleming et al. 1994; Hard et al. 2000; Solem eR@06; Belk et al. 2008). In our study
(chapter 6) high variability of morphological difences were found between captive
and wild populations and between sexes of Ibercathtarp. Shortened and deeper
caudal peduncle may indicate a greater capaciactelerate at the expenses of longer
steady swimming and to enhance manoeuvrability (W&B94), typical of more
complex habitats and related to avoid predatorsav€ely, in our results, wild
population, which came from of an environment mooenplex and with presence of
predators, showed a more fusiform morphology welrewer heads, narrower bodies
and narrower and longer caudal peduncles thanveaptipulation overall. For example,
Saraiva and Pompeu (2016), showed differences beatwaptive and wild populations
Prochilodus lineatusSpecifically, they found a higher body height avider caudal fin

in wild populations which related to the need tof@@n manoeuvres to avoid obstacles
and swim longer because they lived in a largeitteyrthan captive one. Similar results
were found by Olsson and EkIév (2005), they shomedphological differences in two
populations ofPerca fluviatilis that they related to habitat complexity and prgyet
diversity. Further, Bronmark and Miner (1992), fdua positive correlation between
body width in individuals ofCarassius carassiuand presence of predatésox lucius
Therefore, our results do not agree with severaliss carried out to date with other
species, although other studies do agree in péant auir results. Similar results to ours

were found by Gardufio-Paz et al. (2010), they skowmrphological differences
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related to the complexity of the environment am@upulations ofGasterosteus
aculeatus Specifically, like some results of our study,yHeund that fish that came
from more complex environments, in which there weyeks and plants, had more
fusiform bodies and smaller heads. They suggesdt aheore hydrodynamic body
facilitates swimming between rocks and plants asdhaller head can help to catch prey
in the interstitial spaces. Similarly, Black et §017), showed differences in the
position of the head between captive and wild pajahs ofCyprinodon bovinusThey
showed that captive population had upward repasitgpof the head that they related to
the less complex environment. Similar findings algere reported by Wilcox and
Martin (2006) withCyprinodon diabolisthey compared native and captive populations
and, like us, they showed that captive populatiat tleeper bodies and upward position
of the head than wild. Morphological differencedwsen sexes were more relevant
between captive females that showed deep bodiesvatedcaudal peduncles and wild
males, which showed fusiform bodies and long capaaluncles. Although all these
results confirm our third hypothesis, differencesrfd between populations and sexes
related to specific environmental factors of eaabitat, lead us to ponder on the need
to continue researching in this field with more @pe experiments in order to more

reliably demonstrate the morphological differenfoasd.

Sixth, some morphological features were correlatitkd physiological traits (chapter 6).
In our results, we found that wild population whidisplayed narrow and elongate
bodies were correlated to MMR and SMR (Table 64J ahowing a relationship
between a more fusiform body and higher MMR and SKPecifically to MMR our
results suggest that environmental factors reltdeslild environment such as presence

of predators, water salinity concentration and igbito catch prey would affect
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morphology and entails these changes could beetelat higher MMR (Killen et al.

2010; Killen et al. 2016; Metcalfe et al. 2016, Bdket al. 2016; Prakoso et al. 2018).
We do not rule out that food availability may alsarease MMR rates although this
latter consideration should be demonstrated withrengpecific studies. In order to
SMR, we also suggest that our results could beele environmental factors such as
food availability, presence of predators and enanggke history (Norin and Malte

2011; Fu et al. 2015; Rosenfeld et al. 2015; LialeR016), that could be affected by

the morphological features described in wild popara

Seventh, in order to avoid differences between aild captive populations, we suggest
the following recommendations to those respondibtecarrying out captive breeding
projects ofA. iberus:1) maintenance of the physicochemical charactesistf water in
relation to the natural environment (eg salinigmperature); 2) complexity of habitat
regarding the composition and structure of aquadgetation; 3) sex-ratio; 4) density of
individuals; 5) type and availability of food simail to that of its natural habitat 6)

presence of predators.

Finally, the results of this doctoral thesis evicethe important role that play different
environmental conditions to induce changes in Hifgory traits such as growth,

reproduction and dietary traits in invasi&e alburnusin Iberian Peninsula freshwaters
and how it improves the adaptation of different ylapons studied in chapter 4 and 5,
which were subjected to different environmental dibons (Stearns 1983; Stearns
1989; Scheiner 1993; Agrawal 2001; Hoverman angd2eR008). On the other hand
our results also showed that environmental factelated to captive and wild

environments such as habitat complexity, food atbdity, presence of predators,
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salinity, inter-intraspecific competition, food sela and energy food intake history
could induce physiological and morphological vaitishamongA. iberuspopulations
through phenotypic plasticity (Svanback 2004; Jonsand Jonsson 2006; Ekloév and
Jonsson 2007; Almeida et al. 2008; Saraiva andpean2014; Metcalfe et al. 2016;
Saraiva and Pompeu 2016; Liu and Fu 2018) butdt bt show any significant

influence inUcrit between studied populations.
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General Conclusions

The main conclusions of this thesis are:

1. High variability in life-history traits such agowth, reproduction and diet have

been demonstrated A& alburnuspopulations inhabiting Iberian freshwaters.

2. Invasive IberianA. alburnus populations that came from more variable and
unpredictable environments showed values of gromeroduction and dietary traits

more typical of the opportunistic strategy.

3. Invasive IberianA. alburnus populations that came from more stable and
predictable environments showed values of growgroduction and dietary traits

more related to equilibrium vital strategy.

4. NativeA. alburnuspopulation displayed life-history and dietary tsaiypical of

equilibrium strategy.

5. Phenotypic plasticity may facilitate the spread establishment &. alburnusin

new non-native areas.

6. No differences in swimming capacity between ivaptand wild A. iberus

populations have been found.

7. Differences in metabolic traits and morphologwén been demonstrated in the

studiedA. iberuspopulations.

8. Significant differences have been found in molphy and metabolic traits
between captive and wild\. iberus populations. Specifically, wild population
displayed higher SMR, RMR and MMR and more fusifdrodlies than captive one.

9. Wild population which came from a more complabitat and where there was
presence of predators showed larger caudal pedynstealler heads and more
fusiform bodies in comparison to captive one whieime from a habitat structurally

less complex and without predators.
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10. Morphological features of wil@d. iberus population such as more fusiform
bodies and longer and narrower caudal peduncles baen correlated to higher
SMR and MMR.

11. Morphological features of captive breediagiberuspopulation such as wider

bodies, shorter and wider caudal peduncle, anceildngads have been related to
lower SMR and MMR.
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Abstract. The bleak, A/burnus alburnus, is an invasive fish in the Iberian Peninsula, where this species mainly disturbs the highly endemic
fauna via competition and aggression. Despite this impact, information on bleak autecology is scarce in the Iberian Peninsula, with no
data on growth and reproduction. The aim of the present study was to compare bleak populations across four Iberian streams: Muga,
Fluvia, Cardener and Foix (northeastern Iberian Peninsula). These streams have similar environmental conditions at the regional scale (e.g.
Mediterranean climate, geomorphology). In Muga and Foix streams, bleak showed lower growth rate and back-calculated length at age 2.
Body condition was lower in Foix streams, whereas length at maturity was higher. In Muga stream, the proportion of females was lower. In
Cardener stream, bleak showed higher back-calculated lengths at ages 1 and 2, growth rate, body condition and reproductive investment.
Results showed that bleak populations are able to display wide phenotypic plasticity in small Mediterranean-type rivers. Specifically, bleak
population “health” appears to be better in Cardener stream, whereas it is worse in Muga and Foix streams. Present findings suggest that
inter-population plasticity allows bleak more successfully to invade Mediterranean fresh waters in the Iberian Peninsula.

Key words: back-calculation, body condition, non-native fish, sex-ratio, sexual maturity

Introduction this species in the Iberian Peninsula simply addresses
One of the more relatively recent arrivals in the Iberian  its distribution (Vinyoles et al. 2007) or size structure
Peninsula is the bleak Alburnus alburnus (L., 1758), (Almeida et al. 2014).

a cyprinid species native to most of Europe, from the In particular, growth and reproduction are important
Pyrenees to the Urals. In the native area, bleak inhabit  traits of fish life-history, which can show wide
lakes or still waters in medium-large rivers and feed phenotypic plasticity under contrasting local
chiefly on zooplankton (Freyhof & Kottelat 2008). conditions (e.g. Fox & Crivelli 2001, Tarkan et al.
In the Iberian Peninsula, this species was mainly 2010). However, no data on growth or reproduction
introduced in reservoirs during the 1990s as a “forage  of invasive bleak is known to exist for the Iberian
fish” for non-native piscivores such as northern pike  Peninsula. Furthermore, studies of bleak autecology
Esox lucius L., 1758, largemouth bass Micropterus in this region are mainly focused on reservoirs, with
salmoides (Lacépede, 1802) or pikeperch Sander few data from water courses (Almeida et al. 2014).
lucioperca (L., 1758) (Vinyoles et al. 2007). Since its ~ Therefore, information in the present paper is highly
introduction, the bleak has displayed a strong invasive  relevant to understand invasion features of this fish
character throughout Iberian fresh waters and it is  species in the Mediterranean region of Europe.
potentially dangerous for the highly endemic fish Consequently, the aim of the present study was to
fauna, mainly via competition and aggression (Leunda  assess the inter-population plasticity of bleak under
2010). However, the only information available on variable local conditions in Mediterranean fresh
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waters. For this purpose, bleak populations were
compared across selected Iberian streams showing
similar environmental conditions at the regional scale.
Specifically, the following population parameters
were examined: back-calculated length at ages,
growth rate, body condition, reproductive investment,
length/age at maturity and sex-ratio.

Material and Methods

Study area

Bleak populations were sampled in four small water
courses (i.e. streams, < 100 km river length), that are
located at < 250 m a.s.l. in Catalonia (northeastern
Iberian Peninsula) and drain into the Mediterranean
Sea (from North to South): Muga, Fluvia, Cardener
and Foix. These study streams were selected because
they are geographically in close proximity to each
other (latitude = 41°19'-42°16' N, maximum distance
~120km) and, at the regional scale, possess similar fish
assemblages, limnology and geomorphology, i.e. bed
shape, wetted width, flow, substratum composition,
riparian vegetation and level of human disturbances
(see details in Catalan Water Agency 2015). Bleak
abundances were also similar between study streams
(CPUE =17.6-9.6 ind. 100 m2). All of these conditions
allow that variations among bleak populations are
more likely to be attributable to environmental factors
operating at the local scale (i.e. within stream), such
as food supply or habitat availability. Furthermore,
the study streams show a typical Mediterranean
hydrological regime (i.e. autumn-winter floods and
summer droughts) and they can be used as reference
systems for assessing the ecological responses of
this invasive species where introduced to other
fresh waters in the Mediterranean region of Europe
(Almeida et al. 2014). A final key point for selection
of these water courses is that bleak were introduced
in the four streams around the year 2000 and thus,
their populations are currently well established and
spreading in these habitats (Vinyoles et al. 2007).
Consequently, the study populations are at the same
“invasion stage” and therefore, this potential effect on
the assessed parameters was controlled.

Field sampling

To achieve an accurate assessment of bleak
reproductive traits and to avoid any temporal bias
across the study streams, fish were collected for two
weeks from late May to early June 2012, just before
the spawning period of this species in the study area.
Bleak were collected along 10 km river (n = 10
sampling sites, one site per km) in the middle reach
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of each stream by electrofishing (2000 W pulse DC
generator at 200-250 V, 2-3 A) and dip nets (1.5 m
long pole, 30 cm diameter net, 10 mm mesh size). The
sampling method consisted of following a zigzaging
and upstream direction at each site (50 m river long,
30 min). To encompass the existing environmental
variability, fish were collected from all meso-habitats
present in the study streams (i.e. runs, riffles and
pools), thus obtaining a representative sample of
bleak across the broadest possible body size range
from every stream.

After each survey was concluded, to analyse
comparable samples of similar number, 80-90
undamaged bleak individuals were stored from each
study stream. They were immediately immersed in an
overdose solution of anaesthetic (MS-222) for 15 min
followed by severance of the spinal cord. Finally, bleak
individuals (n = 336: 84, 88, 83 and 81 from Muga,
Fluvia, Cardener and Foix streams, respectively) were
stored in ice during transport to the laboratory.

Laboratory procedures

On the arrival at the laboratory, bleak were measured
for total length (TL, £1 mm) and eviscerated weight
(We, £0.01 g). Also, scale samples were taken from
the area between the lateral line and dorsal fin. Then,
fish were dissected to determine gender and maturity
status in females, which were classified as sexually
mature if their ovaries contained yolked eggs (e.g.
Tarkan et al. 2009). Reproductive parameters (except
for sex-ratio) were analysed in mature females only, as
this “fraction” of fish population is the most relevant
for the assessment of future viability and subsequent
invasiveness in small Mediterranean-type rivers
(Vila-Gispert et al. 2005). Therefore, mature females
were also measured for gonad weight (Wg, 0.1 mg)
by using an electronic balance.

Age was determined by counting true annuli from
acetate impressions of scales, and read on micro-
projector (magnification: 48x). Age determinations
were completed independently by two readers and
when the interpretations were different, an additional
reading was made. If the disagreement continued,
then the sample was excluded from the analyses. The
total scale radius and radius of annual increments
were measured from the focus to the posterior edge
along the anterior-posterior axis.

Data analyses

As linear equation gave a better fit than non-linear
equation for the relationship between scale radius
and body length, back-calculation of TL at ages were



estimated by the Fraser-Lee equation (Francis 1990):
L =c+(TL,—c¢) (S/R), where L, is TL when growth
mark t was formed, TL_is TL at the time of capture,
S, is the distance from scale centre to the growth mark
t, R is the scale radius, and c is the intercept on the
length axis from linear regression between TL and
scale radius. To reduce bias due to size differences in
the size distribution of the examined populations, “c”
value was accepted as 12 mm and used as fixed body
length-scale intercept.

For comparisons of growth trajectories, Hickley &
Dexter (1979) procedure was followed: 1) mean TL
at age n were plotted against TL at age (n + 1) to
obtain a straight line for the Walford (1946) method;
2) TLs at age were obtained from the formulal =L
(I = k"), where | =TLatagen, L =1/(1-k), 1 =
interception on the y axis and k = slope of the Walford
plot (Hickley & Dexter 1979); 3) TLs at age for each
year class were expressed as a proportion (%) of the
TLs from the Walford method; 4) these proportions
were used to calculate a mean growth index (GI) and
thus to estimate relative growth of each population.
To provide an integrated impression of true body
condition (BC), eviscerated weight (We) was used to
avoid bias from the weight of gonads and gut contents.
To assess reproductive investment (RI) in mature
females, Wg was used (e.g. Almeida et al. 2014).
Age at maturity (AaM) of each population was
calculated from the percentage of mature females in
each age-class using the DeMaster (1978) formula as
adapted by Fox (1994):

a =3 (9 [f() ~ f(-1)]

where a is the mean AaM, x is the age in years, f(x)
is the proportion of fish mature at age x, and w is the
maximum age in the sample. A modified version of
this formula (10 mm TL intervals in place of age-
classes) was used to calculate mean length at maturity
(LaM) as per Fox & Crivelli (2001).

Previous analyses (i.e. GLMs) did not find differences

between males and females for the assessed parameters
on growth (i.e. back-calculations, GI, BC) and
consequently, this factor (i.e. gender) was not included
in subsequent statistical approaches. Differences in
mean back-calculated TLs were analysed by using
one-way analysis of variance (ANOVA) for repeated
measurements. One-way ANOVA was used to test
for significant differences of GI between populations.
One-way analysis of covariance (ANCOVA)
was used to test for significant differences of BC
(covariate: TL) and RI (covariate: We). ANOVAs
and ANCOVAs were followed by a post hoc Tukey-
Kramer honestly significant difference (HSD) test.
Male-to-female ratio was tested using the chi-squared
(%) test. Data were transformed by using In (x + 1).
Particularly for percentage data, logit-transformation
was used. Assumptions of normality of distributions
and homogeneity of variances were verified through
Shapiro-Wilks and Levene’s tests, respectively. All
statistical analyses were performed with SPSS v.19
(SYSTAT Software Inc., Chicago, U.S.A.). The
significance level was set at a = 0.05.

Results

Bleak individuals ranged from 43 to 144 mm TL.
Significant growth differences were detected among
back-calculated TLs at age 1 in the four examined
populations (F,,,, = 36.06, P < 0.001), with bleak
from Cardener stream showing the highest mean
back-calculated TL and Muga population showing
the lowest mean TL. Bleak populations in Foix and
Fluvia streams made a different significant group for
TL at age 1 (Table 1). Differences were also found
for the back-calculated TL at age 2 (F,, = 21.66,
P < 0.001), with Cardener and Fluvia populations
showing the greatest mean TLs, whereas Muga and
Foix populations showed the lowest mean values
(Table 1). Age 3 was only found in Foix and Fluvia
populations, with the Ilatter stream showing the
highest TL (Table 1). Significant differences were
found between populations for the GI (F,, . = 4.83,

3,317

Table 1. Population parameters of bleak Alburnus alburnus for every study stream: back-calculated total length (TL, mm) at ages (A ),
growth index (Gl, %), body condition (BC, We in g), reproductive investment (RI, Wg in g), TL at maturity (LaM, mm), age at maturity (AaM,
years) and sex-ratio (male + female). Results are means (A, Gl)/adjusted means (BC, RI) + SE. Significant differences between bleak
populations are shown by superscripts, after Tukey HSD and x? tests (P < 0.05).

Study stream A A, A, BC RI LaM AaM Sex-ratio
Muga 479+57 R6.2+5.7 *86.2+6.5 ®75+024 °1.29+024 798 091 2.86
Fluvia b58.1£5.6 98.5+4.1 1259+6.4 *106.9+6.7 *7.76+0.22 *1.11+0.23 79.1 0.86 °1.36
Cardener ¢75.0+2.5 °100.3 +4.7 °116.1+6.4  °11.02+0.19 °2.33+0.20 87.0 1.14 °*l.64
Foix %60.3£6.1 79.3+7.2 186.8 *88.9+5.0 ®743+£020 *1.44+021 920 1.00 *1.97

"Only one A, specimen was collected in Foix stream.



P <0.01), which showed that the fastest bleak growth
was in Cardener and Fluvia streams, and then Foix
and Muga populations (Table 1). The highest and the
lowest BC were observed in Cardener and Foix/Fluvia
streams, respectively, with significant differences
between populations (F, , = 70.08, P <0.001). Bleak
from Muga stream made a third group intermediate
between Cardener and Foix/Fluvia streams (Table 1).
Regarding reproductive parameters, significant
differences were found between populations for RI
(F,,5 = 3.25, P < 0.05), with the highest adjusted Wg
value in Cardener population, followed by a second
group made by Foix, Muga and Fluvia streams (Table
1). The highest mean LaM was found in Foix stream,
then Cardener and both Muga and Fluvia populations
showed the lowest values (< 80 mm LaM) (Table 1).
The youngest mean AaM was found in Fluvia stream,
whereas the oldest mean for this parameter was
found in Cardener stream, with both Foix and Muga
populations showing intermediate values (Table 1).
All bleak populations were dominated by males, with
the Muga population possessing the highest sex-ratio
(¢, = 28.94, P < 0.05), followed by Foix, Cardener
and Fluvia streams (Table 1).

Discussion

Life-history traits are expected to change in animal
populations in response to variations in biotic and
abiotic conditions at the local scale (Stearns & Koella
1986), with this being particularly clear in freshwater
fishes (Fox & Crivelli 2001). These changes also apply
to non-native species when invading new habitats
(e.g. Tarkan et al. 2012), where they usually display
high phenotypic plasticity and thus contribute to a
more successful invasion process (Agrawal 2001).
In particular, Mediterranean-type rivers typically
show a high hydrological variability, including
autumn-winter floods and summer droughts, which
may promote great differences in local conditions
between contiguous catchments (Boix et al. 2010).
Accordingly, the population parameters examined in
the present study were highly variable between the
study streams, suggesting wide phenotypic plasticity in
bleak. Specifically, bleak population “health” appears
to be better in Cardener stream, where growth, body
condition and reproduction showed the fastest rate,
best status and highest investment, respectively. On
the contrary, bleak populations showed overall lower
growth rate, body condition, reproductive investment
and proportion of females in Muga and Foix streams.
The ability of this invasive fish to overcome changes in
local conditions has been also shown elsewhere in the
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Iberian Peninsula by Almeida et al. (2014), regarding
size structure between contrasting habitats (river versus
reservoir). Beside this, the present findings on growth
and reproduction also suggest that the wide inter-
population plasticity displayed by non-native bleak
may be a mechanism for this species more successfully
to invade novel Mediterranean freshwater ecosystems.
The observed LaM and AaM in the study streams
were lower than in native populations under similar
climate conditions (e.g. > 100 mm TL and =2 years,
see Politou 1993). These two traits (i.e. low length
and age at maturity) are typical in populations that are
in an expansion stage, facilitating the subsequent bio-
invasion (Bohn et al. 2004). Studies with a variety of
fish species, including non-native populations, have
demonstrated that patterns of body development vary
in relation to abiotic and biotic factors operating at
the local scale such as temperature, competition
or food availability (e.g. Tarkan et al. 2010, 2012).
These findings also support the hypothesis that bleak
could change their growth and reproductive traits
under particular conditions within every study habitat
(Almeida et al. 2014). Thus, non-native species may
switch their life-history strategies at the initial stage of
invasion when they are introduced in novel ecosystems
and confronted with variable environmental scenarios
(Ribeiro & Collares-Pereira 2010, Tarkan et al. 2012).
This might be related to epigenetic mechanisms in
which some progeny of invaders show a better survival
rate than those of species in its native range. Such
phenotypic plasticity has been shown for several non-
native fish species belonging to a variety of taxonomic
families: Gobiidae such as bighead goby Ponticola
kessleri (Giinther, 1861) and round goby Neogobius
melanostomus (Pallas, 1814) (L avrinikova &
Kovac 2007, Kovac et al. 2009), Cyprinidae such as
topmouth gudgeon Pseudorasbora parva (Temminck
& Schlegel, 1846) and gibel carp Carassius gibelio
(Bloch, 1782) (Zahorska & Kovac 2009, Tarkan et al.
2012) or Centrarchidae such as pumpkinseed Lepomis
gibbosus (L., 1758) and largemouth bass (Ribeiro &
Collares-Pereira 2010).

The present paper represents one of the few studies
on autecology of invasive bleak in the Iberian
Peninsula (see other two examples in Vinyoles
et al. 2007 and Almeida et al. 2014), particularly
providing insights into the population responses of
this fish species to environmental conditions at the
local scale. Nevertheless, the short period of this
sampling (< 1 month) only reveals a snapshot of
the study populations and consequently, there is the
need for monitoring inter-annual variations of bleak
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