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Abstract
Association rulemining is a powerful data analytic technique used for extracting
information from transaction databases with a collection of itemsets. The aim is
to indicate what item goes with what item (ie, an association rule) in a set of col-
lected transactions. It is extensively used in text analytics of text records or social
media. Here we use Compositional Data analysis (CoDa) techniques to gener-
ate new visualizations and insights from association rule mining. These CoDa
methods show the relationship between itemsets, their strength, and direction
of dependency.Moreover, after expressing each association rule as a contingency
table, we discuss two statistical tests to guide identification of the relevant rules
by analyzing the relative importance of the elements of the table. As an example,
we use these visualizations and statistical tests for investigating the association
of negative mood emotions to various types of headache/migraine events. Data
for those analysis comes fromN1-HeadacheTM, a digital platform where individ-
ual users record attacks and symptoms as well as their daily exposure to a list of
potential factors.
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Aitchison geometry, association rule, independence test, measure of interestingness, odds ratio
test, simplex representation

1 INTRODUCTION

A semantic database is formed by attributes and transactions. The attributes are binary variables I = {i1, i2, . . . , i n} called
items; and the transactions are the rowvectorsX= {x1, x2, . . . , xm}. For example, inweb clickstreamanalysis, theweb pages
visited are items in aweb session (a transaction). Inmarket basket analysis, a transaction is a single visit of a customer to the
supermarket and the attributes are the list of products or items bought. GivenA,B⊆ I two itemsets (sets of items) withA∩

B=∅, an association rule (AR) is an implication of the form {A⇒B}.Here, the itemsetsA andB are, respectively, called the
antecedent or left-hand-side (LHS) itemset and consequent or right-hand-side (RHS) itemset. This expresses a relationship
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TABLE 1 AR contingency table (T) for the AR {A⇒ B}

B c B
A x1 x2
c A x3 x4

of the type IF THEN and does not imply a timed sequence or a causality link. The AR {onions, potatoes}⇒{burger} is a
popular example in market basket analysis. The typical AR analysis deals with binary variables however continuous rules
can be also defined: {age > 25}⇒ {total purchase > 50€}. Using AR mining one can detect and extract useful information
from for example, unstructured semantic data commonly organized in large media, operational and customer relations
databases.1 Applications of AR mining are found in a wide range of fields such as improving the quality of production
processes,2 defect detection,3 or health surveillance.4,5 The general purpose of AR mining is to discover the associations
between items for predicting future transactions. Our approach assumes independence between transactions.6 When
independence cannot be assumed, other techniques such as sequential pattern analysis may be applied.7,8
In identifying ARs worth acting on, one applies measures of association, also called “measures of interestingness,”

that provide prioritized sorted lists of ARs. Let {A⇒ B} be the AR of interest. Let x1 be the support (relative frequency of
occurrence) of bothA andB; x2 the support of onlyA; x3 the support of onlyB; and x4 the relative frequency of transactions
where neitherA norB occur. In other words, let nk be the number of transactions which satisfy the conditions in xk, k= 1,
. . . ,4, where the total number of transactions is Σnk = m, and xk = nk/m. Table 1 shows that xk, k = 1, . . . ,4, respectively,
estimates P(A ∩ B), P(A ∩ cB), P(cA ∩ B), P(cA ∩ cB).
We present below six measures of interestingness, implemented in the “arules” R package9:

∙ support{A ⇒ B} = n1/m = x1, where n1 is the number of transactions verifying the rule, informs of the proportion of
transactions that verify the AR and it is an unbiased and consistent estimator.6

∙ confidence{A⇒ B} = support{A⇒ B}/ support{A} = x1/(x1 + x2), where support{A} is the relative frequency of trans-
actions containing the antecedent. It can be interpreted as an asymptotically unbiased and consistent estimator of a
conditional probability.6

∙ lift{A⇒B}= confidence{A⇒B}/support{B}= x1/[(x1 + x2)⋅(x1 + x3)]. It can be interpreted as a deviation under indepen-
dence of the itemsets.6,10 When lift is smaller (greater) than 1, the knowledge that A holds causes a negative (positive)
effect on the probability of B. For lift = 1, there is no effect, that is, there is no association between the itemsets.

∙ RLD{A⇒B}, the Relative LinkageDisequilibrium11 captures the level of dependence of theAR bymeasuring the relative
Euclidean distance of the AR from its linear projection on a surface with lift = 1.

∙ OR(AR) = odds(B/A)/odds(B/cA) = (x1x4)/(x2x3), (odds ratio) described as a measure of interestingness.12 The value
OR(AR) = 1 indicates independence of itemsets, OR(AR) > 1 a positive effect, and OR(AR) < 1 a negative effect. It is an
unnormalized measure that ranges between 0 and + ∞ .

∙ Yule
′
s Q (AR) = 𝑥1𝑥4−𝑥2𝑥3

𝑥1𝑥4+𝑥2𝑥3
= 𝑂𝑅∗ (AR) is a normalized version of the OR through the transformation function (OR–

1)/(OR + 1) that ranges between −1 and +1.

Lift, RLD, OR and Yule’s measures of interestingness can be classified as measures where the “interest” is expressed by
dependence,6 that is, one is measuring the association between the antecedent (LHS) and consequent (RHS). In general,
an interestingness measure M should satisfy three key properties12:

∙ P1:M = 0 if A and B are statistically independent;
∙ P2:Mmonotonically increases with P(A ∩ B) when P(A) and P(B) remain the same;
∙ P3:Mmonotonically decreases with P(A) (or P(B)) when the rest of the parameters (P(A ∩ B) and P(B) or P(A)) remain
unchanged.

For example, the Yule’s Q measure possesses these three properties and the OR(AR) verifies properties P2 and P3. An
analogous discussion can be developedwith othermeasures included in “arules” package in terms of the survey presented
in Geng and Hamilton.13
Visualization is a key aspect to understand and retain knowledge after ARmining. Most common visualizations repre-

sent rules by their measures of interestingness and by the items they are made of (A and/or B). The package “arulesViz”14
in R includes very good visualization tools including interactive features.
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F IGURE 1 Table decomposition: (A) in the simplex T = Tind⊕Tint, T u indicates the center of S4; (B) in the ilr-coordinates space
ilr(T) = ilr(Tind) + ilr(Tint). The table T (blue) is orthogonally projected to table Tind (red) in the plane < ilr2, ilr3 > . The dotted green line
represents the norm of the table Tint

F IGURE 2 Quaternary diagram for significant ARs. Observations are colored according the consequent of the ARs

This paper is about the application of Compositional Data (CoDa) analysis methods15 to text or unstructured semantic
data. For more on CoDa see http://www.compositionaldata.com or the introductory textbooks.16,17 The compositional
methods used in this work for analyzing AR are introduced in Section 2. In Section 3, two tools for AR visualization are
presented as well as several measures of interestingness from a CoDa perspective and finally an adaptation of two test
for significance. A simple example is presented in Section 4.1, where all the concepts introduced are applied and the
results are interpreted and in Section 4.2 the analysis of a real large database illustrates its real world application. Finally,
in Section 5, some concluding remarks are presented. The programming of the techniques discussed in this article was
carried out using the CoDaPack package18 and the “arules” R package.9 The artwork was created using both CoDaPack
(Figures 1–3) and R19 (Figure 4).

http://www.compositionaldata.com


4 VIVES-MESTRES et al.

F IGURE 3 3D ilr plot for significant ARs and three projections. Observations are colored according the consequent of the ARs

2 CODA AND CONTINGENCY TABLES

Each association rule can be expressed as a contingency table T (Table 1) and can be represented on the unit simplex.11
The unit simplex is defined as SD = {x = (x1, x2, . . . , xD) ∈ RD/ xk > 0, k = 1, . . . ,D and Σxk = 1}. Consequently, the 2 × 2
contingency table T (Table 1) from an AR can be considered as a composition15 of S4.
The simplex SD has its own geometry, different from the unconstrained classical Euclidean geometry.20 The three basic

operations of this particular geometry are: perturbation, powering, and inner product. These basic operations provide a
Euclidean structure of dimension D-1 to the simplex space.20 It allows to analyze CoDa, such as a contingency table, with
standard multivariate methods applied on transformed coordinates. The important initial step in implementing standard
multivariate techniques to CoDa is to construct orthonormal bases for getting the orthonormal log-ratio (olr) coordinates21
olr(x) of a composition x. When one uses a sequential binary partition22 to construct these olr bases one can express any
table T in terms of three coordinates, called isometric log-ratio coordinates: 𝐢𝐥𝐫(T) = (il𝑟1, il𝑟2, il𝑟3) . For example, the
composition represented by Table 1 (T) can be expressed in terms of the ilr-coordinates22,23:

ilr (𝐓) =

(
1

2
ln

(
𝑥1𝑥4
𝑥2𝑥3

)
,

√
2

2
ln

(
𝑥1
𝑥4

)
,

√
2

2
ln

(
𝑥2
𝑥3

))
. (1)



VIVES-MESTRES et al. 5

F IGURE 4 Geometric mean barplot representing the logratio of the geometric mean of table T for each group (ggroup(.)) divided by the
overall geometric mean (g(.))

TABLE 2 Table of independence Tind of AR {A⇒

B} (without closure for simplicity)

B c B
A 𝑥1

√
𝑥2𝑥3 x2

√
𝑥1𝑥4

c A 𝑥3
√
𝑥1𝑥4 x4

√
𝑥2𝑥3

One important benefit of such a representation is the ease of interpretation of the ilr-coordinates: the three terms indi-
cate the level of dependence in the table and therefore provide measures of dependence. The first coordinate is related
to the ORmeasure in that ilr1(T) = 1/2⋅ln(OR(AR)) and OR(AR) = 𝑒2il𝑟1(T) . This monotonic functional relation indicates
that both values have the same ranking. The second coordinate is about the relationship between the estimates of the
probabilities P(A ∩ B) and P(cA ∩ cB). Whereas the third coordinate represents the relationship between P(A ∩ cB) and
P(cA ∩ B).
Table T can be decomposed24 into the table of independence (Tind, shown on Table 2) and the table of interaction (Tint,

shown on Table 3) that have the property: ilr(T)= ilr(Tind)+ ilr(Tint). To construct those tables we need to define themul-
tiplicative column and rowmarginal vectors that areGc = C(

√
𝑥1𝑥3,

√
𝑥2𝑥4) andGr = C(

√
𝑥1𝑥2,

√
𝑥3𝑥4), respectively,

where C means the closure operation C (𝐱) = (
𝑥1

Σ𝑥𝑘
, … ,

𝑥𝐷

Σ𝑥𝑘
). Note that table Tind corresponds to independence because

Tind = (Tind)ind. The table of interaction (Tint) is derived by applying the perturbation operation to subtract tableTind from
T (Tint = T⊖ Tind). For more on tables decomposition, see Egozcue et al.24
Table 4 shows the ilr-coordinates of tables T, Tind, and Tint. Let ‖𝐓‖a = ‖olr(𝐱)‖ be the Aitchison norm of a table

T.20 Then, ‖T‖2a = ‖Tind‖2a + ‖Tint‖2a, that is, one has a decomposition of the squared Aitchison norm of table T, that is
invariant under a change of orthonormal basis.
From Equation (1) it can be deduced that zero values in table T are not allowed. It is responsibility of the analyst to

decide if those zeros are assumed as “true” structural zeros or, instead, they are produced by the sampling design. When
the analyst assumes that the zeros are true values, the common decision is to analyze them separately. On the other hand,
when the analyst assumes that zeros in a table T are a consequence of the sampling design then the zeros can be replaced

TABLE 3 Table of interaction Tint of AR {A⇒ B}
(without closure for simplicity)

B c B
A 1∕

√
𝑥2𝑥3 1∕

√
𝑥1𝑥4

c A 1∕
√
𝑥1𝑥4 1∕

√
𝑥2𝑥3
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TABLE 4 ilr-coordinates of tables T, Tind, and Tint of AR {A⇒
B} using the basis defined in Equation (1)

ilr-coordinates ilr1 ilr2 ilr3
T 1

2
ln(

𝑥1𝑥4

𝑥2𝑥3
)

√
2

2
ln(

𝑥1

𝑥4
)

√
2

2
ln(

𝑥2

𝑥3
)

Tind 0
√
2

2
ln(

𝑥1

𝑥4
)

√
2

2
ln(

𝑥2

𝑥3
)

Tint
1

2
ln(

𝑥1𝑥4

𝑥2𝑥3
) 0 0

by a small value using a Bayesian-multiplicative replacement.25 Consequently, hereafter, we assume that all values in a
table T are nonzero.

3 COMPOSITIONAL DATA AND ASSOCIATION RULES

3.1 CoDa measures for assessing independence in a table

The simplicial deviance (SD) is a measure of independence in a generic table,24 which, for a table T (Table 1), is defined
as

SD (T) = ‖Tint‖2a =
1

4
ln2

(
𝑥1𝑥4
𝑥2𝑥3

)
= il𝑟2

1 (T) , (2)

where ilr1(T) is the first ilr-coordinate of T. We can interpret the strength of the AR by the value of the ilr1 coordinate. In
other words, the closer ilr1 gets to zero, the more independence between itemsets A and B. More precisely:

∙ ilr1(T) < 0 : negative repelling effect between itemsets (A true, B less likely true)
∙ ilr1(T) = 0 : independence
∙ ilr1(T) > 0 : positive attractive effect (A true, Bmore likely true)

Note that under the standard concept of independence (and being x normalized to 1) 𝑥1 = (𝑥1 + 𝑥2)(𝑥1 + 𝑥3), or 𝑥1𝑥4 −
𝑥2 𝑥3 = 0, or 𝑥1 𝑥4 = 𝑥2 𝑥3, which can be formulated as

𝑥1𝑥4
𝑥2𝑥3

= 1 ⇔ ln

(
𝑥1𝑥4
𝑥2𝑥3

)
= 0 ⇔ il𝑟1 (T) = 0 ⇔ SD = 0.

However, the decomposition of ‖T‖2a suggests that a same SD value may be obtained with different sizes of the norm of T.
Due to that fact, the relative simplicial deviance (RSD) was introduced,24 which normalizes SD

RSD (T) = SD‖T‖2a =
il𝑟2

1 (T)

ilr(T)2
. (3)

RSD takes values in an interval [0, 1], with RSD = 0 for the independence and RSD = 1 for the maximum association; that
is, T = Tint, which corresponds to that T is purely interaction and the independent part is uniform.
We can combine the benefits of interpretation and fulfillment of the three properties of a measure M described in

Section 1 by defining the unnormalized compositional measure of association

𝐶 (AR) = il𝑟1 (T) . (4)

It is more difficult to interpret the strength of the association because the measure C(AR) takes values in (–∞ , ∞). On
the other hand, when 𝐶(AR) = 0, or when it takes values not significantly different from zero, indicates that A and B
are statistically independent (property P1 or equivalently T = Tind). Among the number of possibilities to normalize a
measure that ranges between −∞ and + ∞ as 𝐶(AR) (Eq. 4), one can select the hyperbolic tangent function26 tanh(𝑥) =
(e2𝑥 − 1)∕(e2𝑥 + 1) with the property that:

𝐶∗ (AR) = tanh (𝐶 (AR)) = 𝑂𝑅∗ (AR) = Yule
′
s 𝑄 (AR) .
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This demonstrates the properties of the Yule’s Q measure. Finally note that by its definition, ilr1(T) verifies the property
P1 described in Section 1. Because the unnormalized version of measureOR(AR) verifies properties P2 and P3, then ilr1(T)
also verifies these two properties.12 On the other hand, by its definition, the measure SD(AR) does not possess these two
properties.

3.2 CoDa-AR visualization

A composition in S4 is commonly visualized in a quaternary diagram: a tetrahedron in which each point, that is, table
T= (x1, x2, x3, x4), is plotted at a distance x1 to the face opposite to vertex x1, a distance x2 to the face opposite to vertex x2, a
distance x3 to the face opposite to vertex x3 and a distance x4 to the face opposite to vertex x4. As an example, tableT= (0.4,
0.35, 0.2, 0.05) is represented in Figure 1A. The closer an AR lies to a vertex of the tetrahedron the higher the value of that
component is in table T. If the AR lies near an edge, it means that the two components represented in the edge are the
prevailing ones in the table.While if theAR is in the center of the tetrahedron, it means that all components of the table are
represented in alike proportions. The decomposition of tableT can also be visualized in the quaternary diagram. Figure 1A
shows such a decomposition. Importantly, each table T can also be represented in R3 by means of their ilr coordinates.
The ilr coordinates of the table represented in Figure 1A are ilr(T) = (−0.63, 1.47, 0.40) and are shown in Figure 1B. Again
we can visualize the decomposition of ilr(T) in Figure 1B into the vector ilr(Tint) (green) and its orthogonal projection to
the plane < ilr2, ilr3 > , the ilr(Tind) (red).
The two plots on Figure 1 play a much important role when it comes to represent multiple AR as will be later seen in

Section 4.2. Representing rules in a quaternary diagram allows visualizing the raw data from which the rules are made
of and identify trends, patterns, and similarities. Dots inside the quaternary diagram can be colored according to other
measures of interestingness or the antecedent/consequent of the rules. The graphical representation of the ilr coordinates
of a set of rules has the same advantages than the quaternary diagram representation, but has an extra advantage in that the
independence plane (ilr1 = 0) can easily be identified; the further the dot lies form the independence plane, the stronger
the dependence between the consequent and the antecedent.
Other tools developed for visualizing CoDa can also be used for AR visualization. As an example the geometric mean

barplot27 (shown in the example on Figure 4) is an option for describing differences between groups, for example, accord-
ing to the consequent. It shows the log-ratio geometric mean of the group and the whole geometric mean. Large bars in
the plot indicate large differences in the means on a specific component in that group with respect to the overall mean.

3.3 Lift and relative linkage disequilibrium versus ilr1(T)

Given a specific AR, lift can be interpreted by a comparingits value with “1”: a lift higher than 1 indicates “stickiness”
of the precedent and antecedent while a lift lower than 1 indicate “repulsion.” Technically, lift measures how similar
is the value x1 to the product of corresponding additive column and row marginal vectors (x1 + x2)(x1 + x3). Note that
table T components are closed. On the other hand, RLDmeasures the similarity between the value x1 and the product (x1
+ x2)(x1 + x3) via the subtraction D(AR) = x1 − (x1 + x2) (x1 + x3) = x1 x4 − x2x3, which measures disequilibrium
(D).11 With no disequilibrium, or independence D(AR) = x1x4 − x2 x3 = 0 . Importantly, D(AR) takes values in [–1, 1]
and it can be shown that

lif t (AR) = 1 +
D(AR)

(x1 + x2)(x1 + x3)
.

A value D(AR) < 0 indicates a negative repelling effect; D(AR) = 0 corresponds to independence; and a positive attrac-
tion effect corresponds to D(AR) > 0. The definition of D(AR) produces some difficulties and in Kenett and Salini10
(page 153) it is pointed out that: “. . . points closer to the edges of the simplex will have intrinsically smaller values
of D.”
To solve this difficulty, the measure RLD = D(AR)/DM is proposed,10 where DM is the Euclidean distance between

the projection on the simplex of table T and the surface D(AR) = 0. RLD thus normalizes the location effect of a
table, within the simplex space. The RLD takes values in an interval [0, 1], with RLD = 0 for the independence and
RLD = 1 for the extreme association detected by the measure D(AR). For examples of RLD applications and a simple



8 VIVES-MESTRES et al.

algorithm for computing RLD, see Refs. (10), (11), (28), (29). However, since the Euclidean distance is not coherent with
the simplicial geometry,30 one could also use the Aitchison distance between two compositions x and y: 𝑑𝑎(x, y) =‖olr(x) − −olr(y)‖ , which is invariant under a change of basis. This distance evaluates relative changes in the data
components.31
From the definition of RLD, one can easily deduce that tables T, where one or more values in the vector x are equal

to zero, are not interesting to analyze. Indeed, if only one value in the vector x is equal to zero then RLD = 1, that is, the
point x takes the maximal distance to the surface D = 0. One has the same situation when the pair {x1, x4} or the pair {x2,
x3} are equal to zero. On the other hand, when the other possible pairs are zero or three values are zero, then D = 0, that
is, one has independence. However, for the case of three values equal to zero the index RLD can be misleading because it
suggests that the itemsets A and B are associated. For example, when T in Table 1 is equal to x = (0, 1, 0, 0) the estimate
for P(A ∩ cB) is 1, suggesting that the antecedent A is never followed by the consequent B. Hereafter, we assume that all
values in a table T are nonzero.

3.4 CoDa measures of significance

Asymptotic confidence intervals for the “support” and “confidence” measures of interestingness can be determined.6 In
this section, we discuss how to determine if an interestingness measure expressed by “dependence,”6 is statistically differ-
ent from random noise using a compositional approach. The library “arules” from package R provides a function to find
rules in which the antecedent and the consequent significantly depend on each other (ie, are dependent). The function
uses the classical chi-squared test and Fisher’s exact test for contingency tables. In this work, we consider two simpli-
cial approaches derived from two different sources: first, the adaptation of the classical chi-squared test for contingency
tables24; and second, a new adaptation of Haldane’s test for odds-ratios32 to evaluate the measure of interestingness sig-
nificance.
To evaluate the significance of both SD and RSDmeasures, Egozcue et al24 introduced a bootstrap algorithm. For a large

database, this procedure is computationally time consuming and still an approximative method. Analyzing the indepen-
dence in a table T is equivalent to testing the significance of the hypothesis H0: il𝑟1 (𝐓) = 0 which is equivalent to H0:
T = Tind, where Tind takes the form given in Table 2.24 The formula for the chi-squared statistic is

𝜒2 = m ⋅

4∑
k = 1

(𝑥𝑘 − 𝑔𝑘)
2

gk
, (5)

where m is the number of transactions, (x1, x2, x3, x4) are the proportions in a table T and (g1, g2, g3, g4) the val-
ues in Tind (Table 2). The statistic of Equation (5) follows a chi-squared distribution with one degree of freedom
( 𝜒2

0.05,1
= 3.8415). ARs where the statistic takes values greater than the chi-squared 95% quantile are labeled as

significant.
Assuming normality, a 95% confidence interval (z0.025 = 1.96) for an odds ratio is31(

exp

(
ln (OR) − 1.96

√
1

𝑛1
+

1

𝑛2
+

1

𝑛3
+

1

𝑛4

)
, exp

(
ln (OR) + 1.96

√
1

𝑛1
+

1

𝑛2
+

1

𝑛3
+

1

𝑛4

))
.

Here, using the connection between OR and ilr1(T), we propose to adapt this formula to define the corresponding test
(α = 0.05) for C(AR). With this approach, ARs where

||||||||||
2 ⋅ ilr1 (𝑇)√

1

𝑛1
+

1

𝑛2
+

1

𝑛3
+

1

𝑛4

||||||||||
> 1.96 (6)

are considered statistical significant and relevant for the study. In practice, we suggest applying both criteria, in Equations
(5) and (6), to discard the ARs that are nonsignificant.
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TABLE 5 Tables T, Tind, and Tint: (a) T in counts (proportions); (b) Tind; (c) Tint
(a)
T Cereal Not cereal
Basketball 2000 (0.4) 1750 (0.35)
Not basketball 1000 (0.2) 250 (0.05)
(b)
Tind Cereal Not cereal
Basketball 0.54 0.25
Not basketball 0.14 0.07
(c)
Tint Cereal Not cereal
Basketball 0.17 0.33
Not basketball 0.33 0.17

4 EXAMPLES OF APPLICATION

4.1 A simple example: basketball and cereals

As an example, consider a questionnaire where young people are asked if they like basketball and if they eat cereals for
breakfast (m = 5000). Table 5 shows the three AR tables corresponding to the full data (T), independence (Tind) and
interaction (Tint), and they are plotted in S4 in Figure 1A and according to their ilr coordinates in Figure 1B.
It can be verified that T = (0.4, 0.35, 0.2, 0.05) = Tind⊕Tint = (0.54, 0.25, 0.17, 0.07)⊕(0.17, 0.33, 0.33, 0.17), where

“⊕” is the perturbation operation.15 The vector of ilr-coordinates is ilr(T) = (−0.63, 1.47, 0.40) so C(AR) = −0.63 and
C*(AR) = −0.56. The negative values of the compositional measures of association correspond to a negative effect, that
is, given that a young person likes basketball, it is less likely that he/she eats cereal for breakfast. The positive sign
of ilr2(x) = 1.47 indicates that it is more likely that a young person likes both products than none. Moreover, because
ilr3(x) = 0.40 is positive, we can assume that people that only like one of them, prefer basketball.
The simplicial deviance is equal to SD = 0.39 that normalizes to RSD = 0.14. When the testing procedure for indepen-

dence is applied,24 we obtain both P-values below 0.5× 10−4, indicating a significant interaction.Moreover the chi-squared
statistic in Equation (5) is 501.6 also indicating a significant dependence and the value from Equation (6) is |–16.1| clearly
greater than the threshold values of 1.96 thus again indicating dependence.

4.2 Application: CoDa-ARmeasure applied to N1-HeadacheTM data

Migraine is a common disabling disease, affecting approximately 1 billion people worldwide or 11.79% of the population.33
Migraine is not a “bad headacheTM”; it can cause severe pain for hours to days and is often accompanied by nau-
sea/vomiting, sensitivity to light, sound, and odors. Aura (bright spots, flashes or wavy, zigzag vision) may occur before or
after migraine. N1-HeadacheTM is an app that enables daily self-monitoring of headache risk factors as well as symptoms,
medication, and quality of life (https://n1-headache.com/).
We are interested on understanding how negative mood factors are related to the type of headache events classified

according to the International Classification of Headache Disorders 3rd edition (ICHD-3). Each event (day) is classified
(from less to more severe) as nonheadache, headache-only, possible migraine, definite migraine or aura migraine. Note
that “headache” refers to any type of head pain, including headache-only and all types of migraine. The classification is
clinically relevant for both migraine diagnosis and treatment. Detecting mood associations with headache is important
because it might help develop early interventions that might help improve patient condition.
In this study, a transaction is a daily questionnaire answered by a user and the attributes are eight negativemood factors

(stress, anxiety, irritability, lack of happiness, sadness, angriness, boredom, lack of relaxedness) each answered on a 0-10
scale that have been categorized each into low/high at an individual level according to the individual pattern of response,
for example, stress = 5 can be a high value for one individual but it can be a low for another.
There were 462 individuals that answered ninety or more daily questionnaires each and represented 65 929 transac-

tions. For each individual, the rules having as a consequent the type of headache day and as an antecedent the low/high

https://n1-headache.com/
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TABLE 6 Geometric mean of table T components (xi) grouped by consequent

x1 x2 x3 x4
No headache 0.18 0.15 0.51 0.12
Headache only 0.12 0.18 0.06 0.60
Possible migraine 0.13 0.16 0.09 0.60
Definite migraine 0.14 0.11 0.11 0.59
Aura migraine 0.16 0.09 0.13 0.55

TABLE 7 Mean (standard deviation) of ilr coordinates SD, RSD, C(AR) C*(AR) for significant ARs grouped by consequent

ilr1 = C(AR) ilr2 ilr3 SD RSD C*(AR)
No headache –0.67 (0.26) 0.29 (0.52) –0.85 (0.44) 0.52 (0.24) 0.39 (0.24) –0.57 (0.20)
Headache only 0.96 (0.21) –1.14 (0.25) 0.79 (0.78) 0.96 (0.41) 0.30 (0.15) 0.73 (0.09)
Possible migraine 0.85 (0.17) –1.10 (0.18) 0.39 (0.60) 0.74 (0.29) 0.31 (0.10) 0.68 (0.09)
Definite migraine 1.00 (0.22) –1.02 (0.25) –0.02 (0.94) 1.05 (0.46) 0.37 (0.14) 0.75 (0.09)
Aura migraine 1.02 (0.22) –0.87 (0.37) –0.23 (0.86) 1.12 (0.63) 0.41 (0.19) 0.75 (0.10)

value of each of the eight negative mood factors were computed. Then redundant rules were removed and a Bonferroni
correction was applied to account for multiple testing. Rules being significant using any of the criteria presented in this
paper (Equations 5 and 6) were retained.
From 5646 rules identified, 1297 were found to be significant by both methods and 746 only by the chi-square one. After

the Bonferroni correction, 439 rules were left significant by any of the two methods and those are the ones we further
analyze. Note that the Fisher’s exact test for contingency tables detected 199 significant rules, fromwhich 160 are common
with the selected ones, and the classical chi-squared test detected 336, fromwhich 306 are commonwith the selected ones.
Both the Fisher’s exact test and the chi-squared test were corrected for multiple testing (Bonferroni).
The 439 rules were found on 158 individuals each contributing on average with 2.7 rules (SD = 3.7). Retained rules are

plotted on the quaternary diagram in Figure 2 and their ilr-coordinates in Figure 3 (snapshot of the 3D plot and three
projections).
Table 6 shows the geometric mean of table T components (xi) by consequent and Figure 4 shows the geometric mean

bar plot that describes the differences between groups. Table 7 shows the ilr coordinates for each group (consequent) as
well as the summary (mean and standard deviation) of the CoDa measures of interestingness presented in this paper.
Figure 2 shows that nonheadache days (gray) have overall greater values of x3 compared to the rest of headache days;

that is, they tend to occur associated with low negative mood factors. Moreover, most of them (98%) have negative values
of ilr1 (and C(AR)) which describes a negative effect, that is, given that a person has high negative mood emotions, it is
less likely that he/she has a headache-free day. Nonheadache days also have, on average, a negative ilr3 value as can be
seen on Figure 3, which means that it is more likely to have nonheadache days with low negative mood emotions than
headache days with high negative mood emotions. This because individuals in the sample have low migraine frequency;
on average 35% of days are headache days.
The normalized compositional measure of association (C*(AR)) has a negative average when the consequent refers to

nonheadache days, again indicating that they are more likely found with low negative mood emotions. This measure is
positive when there are headache days on the consequent and its value is closer to |1| and have lower variability indicating
that all types of headache days are strongly associated with negative mood emotions.
Association rules including headache only and possible migraine on the consequent have very similar tables (see

Table 6) and CoDa association measures (see Table 7); that is, the association between those events and negative mood
emotions is very similar. Moreover, we observe that as the severity of the headache event increases (from headache only,
to possible, then definite and finally aura) the proportion of x1 and x3 increase, x2 decrease, and x4 remains approximately
the same (Figure 4). This leads to a reduction on the negative average ilr2 (moving toward zero) as the headache severity
increases (Table 7) meaning that the more severe is the event the more likely it is to find it associated with high negative
mood. Moreover, among the rules in which the consequent is a headache there is a decrease on the ilr3 value with the
increase of the headache severity. This happens because, the proportion allocated into x2 and x3 changes its weigh toward
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x3 with the increase of severity. This means that the more severe is the migraine event on the consequent, the more likely
is that given a high negative mood there is a headache event.

5 CONCLUSIONS

An AR is associated to a two by two contingency table, which can be analyzed as a composition. The CoDa geometry
provides interesting visualization techniques that are needed when a large number of rules are analyzed. Compositions of
2× 2 tables are naturally represented in the quaternary diagram (S4), which allows visualizing a set ofAR and their overall
behavior in a 3D plot. Moreover, compositions can be represented bymeans of their ilr coordinates and we have presented
such a transformation that enhances the interpretability of the components. The visualization of the AR in terms of their
ilr coordinates has the advantage that the independence plane can easily be identified. The ilr plots are unique features of
the CoDa analysis.
We propose here a new compositional measure of interestingness C(AR) and its normalized version C*(AR). These

measures have properties derived from OR and Yule’s Q, respectively. Moreover, two tests are provided to confirm the
significance of a compositional measure of interestingness. Significant ARs exhibit either repelling or attractive relations
between antecedent and consequent. We have also reviewed two compositional measures of independence, SD and RSD.
All them are coherent with the simplicial geometry of the simplex and the sample space of contingency tables corre-
sponding to AR. In addition, the relation between these CoDa ARmeasures and other commonmeasures of AR facilitates
the interpretation of negative and positive effects between itemsets. The principles of coherence and scalability, that are
fundamental to CoDa, are especially relevant to AR mining. This paper demonstrates how this can be implemented and
interpreted.
The N1-HeadacheTM application shows the value of a compositional data analysis of association rules. We have used

it to extract relevant information from a large dataset by using both effective visualizations of ARs and the use of the
statistical tests for identifying ARs different than random. Moreover, we have used the CoDa measures of interestingness
to understand the size and sign of the effect of headache events related to level of negative mood emotions.
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