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Abstract

We present an alternative perturbational approach free of basis set superposition

error (BSSE) within the framework of the chemical Hamiltonian approach (CHA). The

new formulation (CHA-S-MP2) is based on canonic (and orthogonal) CHA orbitals

obtained from a hermitized CHA Fock operator. The final expression shows a consid-

erable simplification of the method as compared to the previous CHA-MP2 formal-

ism. Numerical full geometry optimizations of water and hydrogen fluoride dimers

and potential energy surfaces for helium and argon dimers for several basis sets are

presented. The present method is compared to both the counterpoise and previous

CHA-MP2 BSSE correction schemes, showing a remarkable agreement between all

three methods. However, the wrong behavior using the aug-cc-pVDZ basis set

indicates that the present method is not as robust as the original non-hermitian

CHA-MP2 formulation.
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1 | INTRODUCTION

István Mayer's legacy in the field of quantum chemistry is overwhelming. While being most known for the general expression of bond order and

valences in non-orthogonal basis, his paper “Towards a Chemical Hamiltonian” published in this journal almost 40 years ago remain in my opinion

one of his most memorable achievements [1]. In that study he paves the road for an energy decomposition into genuine chemical terms (i.e., as

interaction between atoms occurring within the molecule), which gained much interest many years later, including both its Hilbert-space [2] and

real-space [3] realizations. That was the main focus of István's interests, namely extracting chemical information from well-founded wavefunction

analysis techniques. Curiously enough, the so-called chemical Hamiltonian approach (CHA) soon reached particular interest in the field of inter-

molecular interactions, as it represented a novel way of dealing with the basis set superposition error (BSSE) [4] in an a priori fashion. So, perhaps

deviating from the original purpose, István's research focused for quite a while on developing the CHA-version of different electronic structure

methods to achieve BSSE-free description of intermolecular complexes [5] (and even some early incursions into the less known intramolecular

BSSE problems) [6, 7]. Thus, starting from the CHA-self consistent field (SCF) method [8, 9], a full-CI version [10] was derived and successfully

tested, followed by a delicate perturbational treatment leading to the CHA-MP2 scheme [11, 12].
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The alternative was, and still is, the so-called counterpoise (CP) scheme by Boys and Bernardi [13]. In CP, the energy of a complex is corrected

from BSSE in an a posteriori fashion, by evaluating the energy lowering of the monomers when borrowing the basic functions of the other moie-

ties (ghost orbitals). At that time, it was shown [12, 14] that (i) both CP and CHA o strategies lead to very similar results in terms of interaction

energies and geometrical parameters and (ii) the differences between both approaches are smaller than the BSSE itself.

A mandatory feature of any BSSE-correction method is that the BSSE correction must tend asymptotically to zero when appropriately

increasing the basis set size, that is, in the complete basis set limit. It is worth to recall that another a priori BSSE-correction scheme, the so-called

SCF for molecular interactions (SCF-MI) [15], failed at this test, as true charge-transfer effects were also removed from the interaction.

A reformulation form Nagata et al. [16] that included one-electron corrections overcame this pitfall but this avenue was not further explored,

leaving CHA as the only a priori alternative to CP correction.

Both CP and CHA methodologies exhibits correct asymptotics, however, even though it is relatively easy to reach basis set converged results

at Hartree–Fock level (or for single-determinant wavefunctions in general), when including electron correlation the situation is quite different.

The accumulated experience [17–21] shows that BSSE tends to zero asymptotically but slowly, and hence a proper BSSE correction is mandatory

even for very large basis sets. For instance, Wieczorek et al. [18] showed that a residual BSSE (CP-corrected) of 0.23 kcal/mol is still present in a

MP2(FC)/aug-cc-pVQZ calculation for the water dimer, whereas at the Hartree–Fock level the BSSE is just 0.02 kcal/mol with the same basis set.

As far as the computational cost is concerned, a conventional CP-corrected calculation of a molecular complex composed by N interacting

fragments involves 2 N + 1 calculations, where N + 1 of them involve the whole basis set of the molecular system. Therefore, for a dimer, the

computational cost of a CP calculation is about three times that of the corresponding conventional uncorrected one. The advantage of the CP

method is that any property expressed from the total molecular energy can be potentially CP-corrected. That means analytical gradients and

harmonic frequencies can be easily derived (provided they are available for the given level of theory) [22].

On the other hand, the CHA-SCF equations can be efficiently implemented so that the computational cost is virtually independent on the

number of monomers and their nature [23]. However, the CHA generalization of the MP2 theory (CHA-MP2) [11,12] involves three four-index

transformations so that the computational cost represents again roughly three times that of the conventional E2 calculation. Thus, a single-point

CHA-MP2 calculation is computationally equivalent to a CP-MP2 one for a dimer and superior for larger molecular aggregates. However, the lack

of analytical gradients and higher derivatives still makes the CP method more efficient for potential energy surface (PES) exploration of molecular

systems with large number of degrees of freedom.

The main feature of the CHA methods is that they use to non-hermitian operators. In particular, CHA-SCF uses a non-hermitian Fock opera-

tor to obtain the molecular orbitals and a conventional hermitian Fock operator to obtain the energy (the so-called CHA with conventional energy

[CHA/CE] recipe [8]). Moreover, the CHA-MP2 method itself proved to be really challenging [11]. Here, a zeroth order Hamiltonian is built up on

the not orthogonal (and not necessarily real) canonic CHA-SCF orbitals and their orbital energies. Then, biorthogonal perturbation theory is

applied to obtain the first-order wave function correction, while forced by the CHA/CE concept, the second order energy correction is calculated

by using the conventional Hamiltonian, by means of a generalized Hylleraas functional [24] to guarantee the energy to be real even in the case of

complex CHA-SCF orbitals.

István justified this by pointing out that the BSSE itself is a non-physical phenomenon, hence no hermitian operator is expected to be asso-

ciated to it. However, two decades after his seminal CHA paper, Mayer showed (again on this journal) that a set of orthogonal CHA-SCF

canonic orbitals can be obtained as eigenvectors of a hermitian effective Fock matrix [25]. The energy obtained with the Slater determinant

built out of those orbitals is exactly the same one can get by orthogonalizing the occupied space spawned by the CHA-SCF non-orthogonal

eigenvectors of the non-hermitian CHA Fockian. Both sets of molecular orbitals are related trough a unitary transformation and provide the

same density matrix (P-matrix). The story behind the paper is charming. He had the opportunity to discuss the CHA-SCF methodology with

P. O. Löwdin, while visiting his group in Florida. Lowdin was not satisfied with the fact the theory used non-hermitian operators and told to

István “I am sure that you will be able to get the same results also by using a hermitian Fock matrix.” Hence the title of the paper: “Fulfilling
Lowdin's prediction” [25].

This breakthrough allowed a more efficient determination of the total energy since, contrary to the earlier formulations, the Fock matrix to be

diagonalized in every step of the self-consistent calculation was now hermitian. But, more important, is the fact that since the CHA-SCF canonic

orbitals are now eigenvectors of a hermitian Fock matrix (and hence orthogonal), the electron correlation could be potentially introduced in a

much simpler way than the quite involved original CHA-MP2 theory.

I will now introduce what most probably was the last effort of István devoted to the BSSE problem. We had worked on this alternative

CHA-MP2 formulation based on canonic (and orthogonal) CHA orbitals back in 2005 but never published it, for the reason may be apparent by

the end of this manuscript. In the next section the new method is described in more detail. We will briefly describe the hermitized CHA-SCF equa-

tions and the novel CHA-S-MP2 perturbative extension. Details of the previous non-hermitian CHA-SCF and CHA-MP2 methods are given else-

where [9, 11]. Finally, numerical full geometry optimizations of prototypical molecular complexes like water and hydrogen fluoride dimers are

presented, where the new scheme is compared to both the CP-MP2 and CHA-MP2 results for several basis sets. The performance of the method

is further explored by calculating the potential energy surface for the helium dimer.
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2 | THEORY

2.1 | The CHA-SCF scheme

The CHA affords a partitioning of the Fock operator in intraatomic and interatomic contributions by a “mixed” second quantization formalism [1]

using the (non-orthogonal) atomic orbital basis. Let us define hA as the monoelectronic term of the Hamiltonian associated to the monomer A of a

molecular complex,

ĥ
A ¼�1

2

XNa
i¼1

r2
i �
XNa
i¼1

X
α∈ A

Zα

riα
, ð1Þ

the total Hamiltonian being

Ĥ
A ¼�1

2

XNA

i

r2
i �
XNA

i

XMA

α

Zα

riα
þ
XNA

i≠ i

1
rij
þ
XMA

α≠ β

ZαZβ

Rα
, ð2Þ

where NA, MA, and Zα correspond to the number of electrons, number of atoms and their corresponding charge, of the monomer A.

The action of operator (1), of intramolecular nature with respect to the molecular complex, on a basis function assigned to A can be formally

expressed as

ĥ
AjφA > � P̂

A
ĥ
AjφA > þ 1� P̂

A
� �

ĥ
AjφA > , ð3Þ

where

P̂
A ¼

X
i, j∈ A

jχAi > S�1
Að Þ ij < χ

A
j j, ð4Þ

is the projector on the subspace spawned by the atomic orbitals of A. As the basis set increases, the second term hopefully diminishes, being zero

in the hypothetical case of the complete basis set. It is expected that the contribution of the first term is larger than that of the second. But, most

importantly, in the case of the isolated monomer calculation or for an exact solution, one has trivially

ĥ
AjφA > ¼PAĥ

AjφA > : ð5Þ

Hence, the second term on the rhs of Equation (3) is responsible for the BSSE. In order to obtain a molecular complex description consistent

with that of the composing monomer this term must be dropped from the Hamiltonian of the molecular aggregate. That means one must perform

the following substitutions

ĥ
AjφA > ) P̂

A
ĥ
AjφA > ,

1
r12

jφA
i 1ð ÞφA

j 2ð Þ> ) P̂
A
1ð ÞP̂A 2ð Þ 1

r12
jφA

i 1ð ÞφA
j 2ð Þ> , ð6Þ

for the mono- and bi-electronic term, respectively. It can be seen that, by performing these substitutions, the intramolecular integrals that corre-

spond to the representation of the operator in the given basis set are transformed in the following way.

χ ih jĥA χ j
�� �) X

μ,ν∈ A

SiμS
�1
Að Þμυ χνh jĥA χ j

�� �¼ χ ijĥ
Ajχ j

n o
8j∈A, 8i

χ iχ jjχkχ l
� �) X

μ,ν,σ,ρ∈ A

SiμSjνS
�1
Að ÞμσS

�1
Að Þυρ χσχρjχkχ l
� �¼ χ iχ jjχkχ l

� 	8k, 1∈A,8i, j: ð7Þ
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Note that not all integrals are CHA-transformed; only when the atomic orbital of the right-hand side of the integral (ket) belongs to fragment

A. The projectors act on the right-hand side of the integrals, so that the CHA-transformed integrals do not satisfy the usual symmetry, leading to

a non-Hermitian SFC problem.

2.2 | The hermitized CHA-SCF equations

In the original derivation [8, 9] of the CHA-SCF equations within the LCAO framework, the following condition was used to obtain the solutions

cþq F
CHAci ¼0; q∈ virt:, i∈ occ: ð8Þ

where cq and ci are the vectors of the corresponding ith occupied and qth virtual orbitals and FCHA is the non-hermitian CHA Fockian, whose

elements can be expressed as (for a closed-shell case)

FCHAμν ¼ μjĥjν
n o

þ
X
κ,τ

2 μκjντf g� μκjτνf gð ÞPτκ : ð9Þ

The quantities μ ĥ νj g
���n

and μκ ντj gf correspond to the CHA-transformed one- and two-electron integrals over the AO's of Equation (7). Due

to the particular form of the CHA transformation, the one and two-electron integrals used to build the CHA Fockian do not have the usual sym-

metry properties and hence, FCHA is non-hermitian.

It can be readily seen [8, 9] that Equation (1) is equivalent to solve the corresponding eigenvalue problem in an iterative fashion,

FCHAci ¼ Sciεi , ð10Þ

were the non-orthogonal right eigenvectors must be orthogonalized in order to obtain the occupied orbitals to build the CHA Fockian for the next

iteration, and the virtual orbitals can be obtained from the set of left eigenvectors, ecq, by solving

ecqþFCHA ¼ εqecqþS: ð11Þ

However, as pointed out in Reference [25], Equation (1) refers only to the virtual- occupied block of the FCHA matrix expressed in terms of

the MO basis. Thus, one can construct the following effective hermitian Fock matrix, Feff

Feff ¼
Focc:occ: FCHAþ

virt:occ:

FCHA
virt:occ: Fvirt:virt

 !
, ð12Þ

from the corresponding blocks of the conventional, F, and FCHA matrices expressed in the MO basis. In the next step, this hermitian matrix is

back-transformed to the AO basis and diagonalized in order to get the orbital coefficients to be used in the next iteration. Upon convergence, the

condition in Equation (8) is fulfilled and the total energy can be calculated in the usual manner (expectation value of the conventional Hamiltonian)

using the molecular orbitals thus obtained. It is worth to note again that the same total energy obtained with the previous non-hermitian

CHA-SCF method is recovered with full machine accuracy [25].

2.3 | The hermitized CHA-MP2 (CHA-S-MP2) formalism

In the CHA theory, the energy must always be calculated using the conventional Hamiltonian, whereas the CHA Hamiltonian is used to provide

the BSSE-free wavefunction. For that reason, in the perturbative formalisms within the CHA framework, two sets of unperturbed and perturba-

tion operators are introduced, that is, those of the conventional Hamiltonian

Ĥ¼ Ĥ
0þ V̂, ð13Þ

and those of the CHA Hamiltonian
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Ĥ
CHA ¼ Ĥ

0þŴ: ð14Þ

In both cases, the unperturbed Hamiltonian is chosen to be the CHA Fockian, being the unperturbed eigenfunctions the single-determinant

wavefunctions built up of the respective eigenvectors, and the unperturbed eigenvalues the sums of eigenvalues.

In the CHA-MP2 [11] formalism, the unperturbed Hamiltonian is the non-hermitian CHA Fockian, so neither the unperturbed nor

the perturbation operators involved are hermitian. Consequently, the second-order energy correction is obtained by means of a gener-

alized Hylleras functional [24] that takes into account the non-hermiticity of the operators involved, yet ensuring the second order

energy term to be real. Furthermore, the unperturbed wavefunctions (Slater determinants built up of the canonic non-orthogonal

CHA-SCF orbitals) are non-orthogonal in general, and hence the different doubly excited determinants overlap with the single-excited

and ground state one.

As shown in Reference [11] (we wish not enter into detail into the previous CHA-MP2 formalism), the final expression for the second-

order energy correction contains contributions from single-excited and ground-state determinants, apart from the double-excited ones.

Besides, since an auxiliary orthonormal basis is introduced, up to three four-index transformations are needed to actually compute the

energy.

We will show now how the problem is greatly simplified if we make use of the effective Fock matrix described in Equation (12). In this case,

the unperturbed Hamiltonian is constructed from the eigenvalues and eigenvectors of the effective CHA Fock matrix. Since it is hermitian, the

unperturbed eigenfunctions (Slater determinants built up of the orthogonal CHA orbitals) are now orthogonal.

Our aim is to get perturbational approximations to the CHA/CE full-CI problem, in which the expectation value of the conventional Hamilto-

nian is calculated over the eigenfunction of the CHA Hamiltonian. Hence, the strategy is to calculate the first-order wave function with the CHA

perturbation operator and then expand the expectation value of the conventional energy for the sum of the zero- and first-order wave functions

by keeping terms up to second order. It can be easily seen that in this way the energy can be expressed as the sum of the zero-th and first-order

terms

E0 ¼
Ψ0jĤ0jΨ0
D E

Ψ0jΨ0

 � E1 ¼ Ψ0jVjΨ0


 �
Ψ0jΨ0

 � , ð15Þ

and a second-order energy contribution, given by the Hylleraas functional [26]

J2 ¼ ψ1jĤ0�E0jψ1
D E

þ2Re ψ1jV̂�E1jψ0
D E

: ð16Þ

Note that the sum of the zero and first order energies is nothing but the CHA/CE SCF energy so the total CHA-S-MP2 energy will be

ECHA-S-MP2 ¼ E0þE1þ J2 ¼ ECHA-SCFþ J2: ð17Þ

At this point, we just need a first-order correction to the wavefunction. A simple way to obtain it is to use the expression given by the

Rayleigh-Schrödinger perturbation theory,

ψ1
�� �¼X

k

ψ0

 ��Ŵ ψ0

k

�� �
E0�E0k

ψ0
k

�� �
, ð18Þ

with the following perturbation operator

Ŵ¼ Ĥ
CHA� Ĥ

0 ¼
X
i< j

r�1
ij

n o
�
X
i

veff ið Þ: ð19Þ

In the equation above, expression
P

i< j r�1
ij

n o
stands for the CHA-transformed two-electron operator, whereas

P
iv

eff ið Þ is the Hartree-Fock

coulomb and exchange potential of the effective CHA Fockian.

The next step is simply to substitute Equation (18) into the Hylleraas functional of Equation (16)
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J2 ¼
X
l

X
k

Ψ0j bWjΨ0
k

D E
E0�E0k

0@ 1A*

Ψ0
k jbH0�E0jΨ0

l

D E Ψ0 j bW jΨ0
l

E0�E0l

 !

þ2Re
X
k

Ψ0j bWjΨ0
k

D E
E0�E0k

Ψ0
k jbV�E1jΨ0

D E

¼
X
l

X
k

Ψ0j bWjΨ0
k

D E
E0�E0k

0@ 1A*

E0l �E0
� �

Ψ0
k jΨ0

l


 � Ψ0 j bW jΨ0
l

E0�E0l

 !

þ2Re
X
k

Ψ0j bWjΨ0
k

D E
E0�E0k

Ψ0
k jcV jΨ0i�E1 Ψ0

k jΨ0

 �D �

,
�

ð20Þ

where the perturbation operator is

V̂¼ Ĥ� Ĥ
0 ¼

X
i< j

r�1
ij �

X
i

veff ið Þ:: ð21Þ

Taking into account that the CHA-SCF equations fulfill the Brillouin theorem, and hence the first-order correction to the wavefunction con-

tains only doubly excited determinants, we obtain after some manipulations

J 2ð Þ ¼�
X
k

ψ0jŴjψ0
k

D E��� ���2
E0�E0k

þ2
X
k

ψ0jŴjψ0
k

D E
ψ0
k jV̂jψ0

D E
E0�E0k

: ð22Þ

The integrals involved in the previous equations can be expressed, similarly to the Møller–Plesset theory, in terms of the CHA transformed

ψ0jŴjψ rs
ab

D E
¼ ψ0j

X
i< j

r�1
ij

n o
jψ rs

ab

* +
� ψ0j

X
i

veff jψ rs
ab

* +
¼ ab

rsn o
, ð23Þ

and conventional

ψ0jV̂jψ rs
ab

D E
¼ ψ0j

X
i< j

r�1
ij jψ rs

ab

* +
� ψ0j

X
i

veff jψ rs
ab

* +
¼ ab

rsh i
, ð24Þ

two-electron integrals over the molecular spinorbitals.

Substituting Equations (23) and (24) into Equation (22) we obtain the final expression for the second-order correction to the energy

J2 ¼
X

a< b∈ occ

r < s∈ virt

2 ab
rsn o

rs
abh i

� ab
rsn o��� ���2

εaþεb�εr �εs
, ð25Þ

and, in the case of a closed-shell system

J2 ¼2
X
a,b

r,s

abjrs½ � 2 abjrsf g� abjsrf gð Þ
εaþεb� εr �εs

�
X
a,b

r,s

abjrs½ � 2 abjrsf g� abjsrf gð Þ
εaþεb�εr �εs

X
a,b

r,s

2 abjrs½ �� abjrsf gð Þ 2 abjrsf g� abjsrf gð Þ
εaþεb�εr �εs

,
ð26Þ

where the summation runs over spatial molecular orbitals.
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It can be easily seen that Equation (26) reduces to the conventional Møller–Plesset second-order correction when the BSSE perturbation is

switched off (i.e., abkrsf g� abkrs½ �). Furthermore, Equation (26) implies only two four-index transformations so that the computational cost of the

CHA-S-MP2 calculation is just twice that of a conventional uncorrected MP2 calculation. It should be stressed that, contrary to the CP method,

the computational cost does not depend on the number of interacting fragments.

F IGURE 1 Geometrical parameters of the water and hydrogen fluoride dimers

TABLE 1 Interaction energies (in kcal/mol) and geometrical parameters (Å and degrees, see Figure 1) of the (H2O)2 complex with several basis
sets at the MP2, CP-MP2, CHA-MP2, and CHA-S-MP2 levels of theory

Basis set Method ΔEint rO–O α β

6-31G** MP2 �7.12 2.910 9.1 100.2

CP-MP2 �5.07 2.990 1.4 134.6

CHA-MP2 �5.34 2.959 4.4 123.6

CHA-S-MP2 �5.26 2.962 3.1 129.3

6-31++G** MP2 �6.47 2.907 3.5 133.1

CP-MP2 �4.87 3.013 2.3 136.3

CHA-MP2 �4.82 3.029 2.2 135.4

CHA-S-MP2 �5.01 2.981 1.8 140.3

6-311G** MP2 �7.00 2.903 4.6 116.0

CP-MP2 �4.59 3.038 2.4 135.1

CHA-MP2 �5.02 2.983 0.8 134.5

CHA-S-MP2 �5.12 2.976 0.5 134.9

6-311++G** MP2 �6.07 2.916 2.0 136.0

CP-MP2 �4.56 3.018 3.1 136.4

CHA-MP2 �4.65 2.999 1.6 138.1

CHA-S-MP2 �4.96 2.979 1.9 138.0

6-311++G(2df,2p) MP2 �5.49 2.914 3.6 127.1

CP-MP2 �4.55 2.960 2.2 133.4

CHA-MP2 �4.63 2.958 5.4 123.8

CHA-S-MP2 �4.71 2.945 5.2 124.3

cc-pvdz MP2 �7.53 2.907 5.4 105.0

CP-MP2 �4.21 3.047 0.1 138.2

CHA-MP2 �4.70 2.956 2.2 128.4

CHA-S-MP2 �4.65 2.956 1.6 130.2

aug-cc-pvdz MP2 �5.50 2.903 6.3 120.7

CP-MP2 �4.45 2.977 5.7 122.8

CHA-MP2 �4.48 2.970 3.9 126.1

CHA-S-MP2 �3.55 3.017 4.1 130.0

MP2 limita �4.98 2.925 4.3 128.2

Abbreviations: CHA, chemical Hamiltonian approach; CP, counterpoise.
aReference [21].
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3 | COMPUTATIONAL DETAILS

The hermitized CHA-SCF and CHA-S-MP2 methods were implemented as independent FORTRAN-77 code interfaced with a slightly modified

version of the HONDO8 package [27] from which proper one and two-electron integrals are obtained. We were limited to up to 255 basis func-

tions and up to nine primitives per basis function.

Concerning the PT correction term, two four index transformations must be computed, namely, a conventional and a CHA-modified one. The

key point for an efficient implementation of the method is to compute on the fly the contribution of each four-center integral of the AO basis to

the CHA-transformed integrals over the MO. That is, the CHA-modified integrals over the AO-s are never computed explicitly. One only must dis-

tinguish between intermolecular and intramolecular contributions and, obviously, the transformation should be carried out in four consecutive

steps to achieve N5 scaling.

Since the CHA-S-MP2 is a simplification of the more involved original CHA-MP2 method, the actual implementation of our code can compute

either of the two PT methods simply by selecting the proper zeroth-order Hamiltonian (canonic non-orthogonal orbitals eigenvectors of the CHA

Fockian or the canonic eigenvectors of the effective hermitian Fockian).

TABLE 2 Interaction energies (in kcal/Mol) and geometrical parameters (Å and degrees, see Figure 1) of the (HF)2 complex with several basis
sets at the MP2, CP-MP2, CHA-MP2, and CHA-S-MP2 levels of theory

Basis set Method ΔEint rF–F α β

6-31G** MP2 �7.80 2.540 46.9 49.5

CP-MP2 �4.72 2.799 6.9 114.8

CHA-MP2 �4.85 2.734 7.8 113.1

CHA-S-MP2 �4.57 2.741 10.1 111.7

6-31++G** MP2 �5.02 2.772 7.5 115.4

CP-MP2 �4.25 2.838 7.0 115.9

CHA-MP2 �4.06 2.847 7.1 117.1

CHA-S-MP2 �3.98 2.843 7.8 116.2

6-311G** MP2 �6.16 2.708 17.5 95.2

CP-MP2 �4.21 2.849 5.9 122.5

CHA-MP2 �4.54 2.791 8.2 116.9

CHA-S-MP2 �4.61 2.781 8.0 116.6

6-311++G** MP2 �4.69 2.788 6.5 121.0

CP-MP2 �3.86 2.877 8.6 118.7

CHA-MP2 �3.92 2.865 8.1 118.4

CHA-S-MP2 �4.06 2.844 7.9 118.2

6-311++G(2df,2p) MP2 �4.92 2.758 7.3 111.1

CP-MP2 �3.99 2.817 7.2 114.5

CHA-MP2 �4.03 2.805 6.9 114.3

CHA-S-MP2 �4.07 2.787 7.6 111.8

cc-pvdz MP2 �7.06 2.589 47.2 49.9

CP-MP2 �4.17 2.834 5.7 119.7

CHA-MP2 �4.61 2.746 7.6 114.9

CHA-S-MP2 �4.50 2.746 6.6 116.4

aug-cc-pvdz MP2 �4.91 2.741 5.5 111.5

CP-MP2 �4.04 2.810 6.9 111.6

CHA-MP2 �3.91 2.832 5.4 116.4

CHA-S-MP2 �3.04 2.885 7.4 113.3

MP2 limit �4.37a 2.72b 6.7b 111.7b

Abbreviations: CHA, chemical Hamiltonian approach; CP, counterpoise.
aReference [28].
bReference [17].
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4 | ILLUSTRATIVE CALCULATIONS

We present full numerical geometry optimizations at the CHA-S-MP2 level (all electrons were correlated) of two prototype hydrogen-bonded

complexes, namely water and hydrogen fluoride dimers. The interaction energies and geometrical parameters (see Figure 1) are gathered in

Tables 1 and 2, respectively. The geometrical parameters and interaction energies are compared with previous CHA-MP2 (numerically) optimized

[23] and both CP-MP2 and MP2 (analytically) optimized [14, 23] structures.

F IGURE 2 Potential energy surfaces of the helium dimer at the MP2/cc-pVXZ, (X = D, T, Q) levels of theory
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The effect of BSSE correction on interaction energies and intermolecular distances is well-known [14] and will not be addressed here in detail.

Our aim is to explore the capabilities of the proposed BSSE-correction method at the correlated level. Hence, we present results carried out with

rather small basis sets, too.

First of all, we will focus on differences between the three BSSE-correction schemes. Except for the 6-31++G** basis set, the CHA-MP2

interaction energies lie between the uncorrected and CP-corrected one. The largest difference between both BSSE-corrected energies is less than

F IGURE 3 Potential energy surfaces of the helium dimer at the MP2/aug-cc-pVXZ, (X = D, T, Q) levels of theory
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0.5 kcal/mol (water dimer, MP2/6-311G**). In this particular case, the difference with respect to the uncorrected energy is about 2 kcal/mol, that

is 40% of the overall value.

Concerning the CHA-S-MP2 results, they are very close to the CHA-MP2 ones. The largest discrepancy is about 0.3 kcal/mol, except for the

aug-cc-pVDZ basis set (this case is discussed in more detail below). Also, the effect on the intermolecular RO–O and RF–F distances matches that

of the interaction energy.

Interestingly, the inclusion of diffuse functions in the basis sets drives to a larger difference between both CHA methods, whereas with the

basis sets that do not include such special functions the results almost coincide. In our opinion, this effect is due to the fact that these diffuse

functions are too spread over the molecule and it is rather questionable to assign them only to a given monomer. It is also known that the conven-

tional CHA method exhibits difficulties when the fragments strongly overlap, as it is the case of intramolecular interactions [6] or strong ionic

molecular complexes [29].

A much weaker intermolecular interaction such as He2 has also been considered. The potential energy surfaces of the He���He interaction in

the range of 2.5–5 Å for the cc-pVXZ and aug-cc-pVXZ, (X = D, T, Q) basis set families are depicted in Figures 2 and 3, respectively. In a previous

study, Lee et al. [30] have estimated a MP2 limit value for the interaction energy of this system of �21.4 μH, still far from the �31.4 μH experi-

mental value [31]. Our results are in excellent agreement with those of Lee et al. The curves corresponding to the cc-pVXZ family show that the

F IGURE 4 MP2/aug-cc-pVDZ potential energy surfaces of the helium dimer (top) and argon dimer (bottom)
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BSSE is responsible for most of the binding energy, especially for the cc-pVDZ basis set. In this case, BSSE correction lead to unbound curves in

all cases. The differences between both CHA approaches is negligible, whereas the CP-MP2 curve lies always above the rest, showing a larger

BSSE correction.

The inclusion of diffuse function (see Figure 3) is essential for the correct description of the interaction. In this case, the CHA-MP2 curves lie

above the CP-MP2 ones, but the difference is smaller than the BSSE itself. By increasing the basis set to triple zeta this effect is diminished

whereas the aug-cc-pVQZ curves are practically coincident. Note, however, that the results corresponding to the aug-cc-pVDZ basis set have

been obtained after uncontracting the 1s orbital of this basis.

As mentioned above, the CHA-S-MP2/aug-cc-pVDZ results strongly deviate from the respective CHA-MP2 and CP-MP2 values for the two

hydrogen-bonded systems. In fact, the difference between the CHA-S-MP2 and CHA-MP2 interaction energies are of the same order of the BSSE

itself, �1 kcal/mol. Accordingly, the O–O and F–F distances are also overestimated. It is to be mentioned that others have also found problems

associated with this particular basis set [28]. We repeated the calculations by uncontracting the basis set and the problem disappeared.

In the case of He2 and Ar2 the results are particularly odd, as illustrated in Figure 4. The CHA-S-MP2 interaction energies converge to the dis-

sociation limit from above, as an unphysical shoulder (much significant in the case of He2) is observed. The limitation of this basis set is confirmed

by the fact that the uncorrected SCF curve exhibits a rather deep minimum. The CHA-SCF method properly corrects for this situation, however,

the further inclusion of electron correlation though CHA-S-MP2 cannot lead to a proper description of the weak interaction. We have identified

the diffuse s-type orbital of the basis as responsible for this odd behavior. If removed, the shoulder in the curve disappears. However, that essen-

tially leads back to the cc-pVDZ basis. On the other hand, if more flexibility is given to the basis set just by uncontracting the 1s orbital, the prob-

lem is also solved, as shown in Figure 3 in the case of He2. These kind of problems are reminiscent of the known limitation of conventional CHA

to deal with strong overlap (e.g., the intramolecular BSSE problem) [7].

A careful analysis of the situation seems to indicate that the CHA-S-MP2 scheme, though much more efficient computationally than the more

involved CHA-MP2, is not as robust as the latter when dealing with strong overlap. The origin of the difference is on the definition of the zero-th

order Hamiltonian. In fact, in the case of the CHA-MP2 method, some of the effects due to the BSSE are already included in the zero-th order

Hamiltonian, since it is chosen to be non-hermitian. On the contrary, when using the effective Fockian as zero-th order Hamiltonian in the

CHA-S-MP2, the non-hermiticity is necessarily contained into the perturbation operator. In other words, the eigenvectors of the effective Fockian

are such that the virtual-occupied block of the CHA Fockian vanishes, but this is not true in general for the occupied-virtual one, for instance. This

non-hermiticity might be at the heart of the failure of the CHA-S-MP2 method, albeit only observed for the problematic aug-cc-pVDZ basis set.

Yet, similar problems might also appear for strongly bound complexes described with diffuse functions, where overlap effects are larger.

A good compromise might be to include the non-hermiticity into the zeroth order Hamiltonian, yet keeping the benefits of the occupied and

virtual orthogonal molecular orbitals. This will lead to a non-diagonal zero-th order Hamiltonian, similarly to other MP2 formulations with non-

canonic orbitals [32,33]. It would be important to determine whether such a formulation could be implemented efficiently enough to compete

with the non-hermitian CHA-MP2 method.

5 | CONCLUSIONS

We describe an alternative perturbational approach free of BSSE within the framework of the CHA. The new formulation is based on the canonic

and orthogonal CHA orbitals obtained from a hermitized CHA Fock operator. Significant simplification of the method as compared to the previous

CHA-MP2 formalism is achieved in the present formulation, so that the computational burden of the CHA-S-MP2 calculation is just twice that of

a conventional uncorrected MP2 calculation. Also, the computational cost is independent of the number of interacting fragments. The results

obtained are in excellent agreement with both the CHA-MP2 and CP-MP2 methods for both hydrogen bonded and weak molecular interactions

with one exception. The difficulties arisen with the aug-cc-pVDZ basis set indicate that the present method is not as robust as the original non-

hermitian CHA-MP2 formulation.
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