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Abstract. In a general setting of a Hamiltonian system with two degrees of freedom
and assuming some properties for the undergoing potential, we study the dynamics
close and tending to a singularity of the system which in models of N -body prob-
lems corresponds to total collision. We restrict to potentials that exhibit two more
singularities that can be regarded as two kind of partial collisions when not all the
bodies are involved. Regularizing the singularities, the total collision transforms into
a 2-dimensional invariant manifold. The goal of this paper is to prove the existence
of different types of ejection-collision orbits, that is, orbits that start and end at total
collision. Such orbits are regarded as heteroclinic connections between two equilibrium
points and are mainly characterized by the partial collisions that the trajectories find
on their way. The proof of their existence is based on the transversality of 2D-invariant
manifolds and on the behavior of the dynamics on the total collision manifold, both of
them are thoroughly described.

1. Introduction

In Celestial Mechanics the goal is to understand the dynamical behavior of N particles
which interact under their mutual newtonian gravitational attraction. Although many
studies have been devoted to this problem, whose dynamics turns out to be tremendously
rich from a dynamical point of view, it is very far from being well understood. A
particular critical point to understand the dynamics of the N -body problem is to identify
the behavior near the total collision and the escape to infinity. This is typically done
by introducing a boundary total collision manifold for each of the energy surfaces and
by constructing the missing components of its boundary as other submanifolds, which
represent the asymptotic behavior at infinity. This can be obtained, first, through
a McGehee’s change of coordinates (plus a scaling of time) that allows to blow up the
origin (where the total collision of the bodies takes place), and, secondly, by generalizing
McGehee’s change of variable in the configuration space to blow up the infinity. See
[15], [6], and [18] on how to apply the blow up of the origin for different three or four
body problems. In [8] surges this novel idea of blowing up the infinity, where the authors
study the total collision and infinity manifolds associated to several problems.

An intriguing question is concerned with the so called ejection-collision orbits (ECO),
that is, trajectories where all the bodies eject from the same point and after some time
they collide at the same point. Taking into account the collision manifold, ECO may
be regarded as heteroclinic connections between suitable hyperbolic equilibrium points
of the blown up dynamical system, that is, ECO are obtained from the intersection
of the invariant manifolds associated with these equilibrium points. Simó and Llibre
[19] consider the N -body problem in Rd (being d any dimension), and characterize the
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transversality between these stable and unstable manifolds. A general reference for
collisions in N -body problems is due to Saari [16].

In this paper, we consider the general system of ODE with two degrees of freedom:

(1)

{
q̇ = A−1p,
ṗ = ∇U(q),

where q ∈ R2 \∆, p ∈ R2, A is a diagonal constant matrix, A = diag(a1, a2), a1, a2 > 0,
and U is an homogeneous function of degree -1 on R2\∆. We remark that such a system
defines a general setting that, in particular, includes some subproblems of the N -body
problem. Moreover U is singular in ∆, that corresponds to all the possible collisions
between the bodies (in the context of the N -body problem). In particular q = 0 ∈ ∆
corresponds to the total collision of all the bodies. A main goal of this paper is focussed
on the ejection-collision orbits. More concretely, we want to prove the existence of ECO
under certain conditions of the potential U (that will appear later on). We will follow
the ideas already used, for specific problems, by McGehee, Lacomba, Saari, Kaplan,
etc. One direction to tackle this problem has been to consider few body problems, as
the collinear three body problem [15, 7] or the isosceles three body problem [6]. Some
others have some symmetries involved, as the symmetric collinear four body problem
[10, 1, 4], the trapezoidal four body problem [9, 3, 2], and the rhomboidal four body
problem [5] and [12]. Some of them depend on parameters associated to the masses.

These problems have been given much attention, and they share several common
properties that we generalize and use to obtain information to prove analytically the
existence of ECOs. In a prior paper by the authors of this article [4], a family of ECO was
obtained from a numerical point of view in the symmetric collinear four body problem.

Our main objectives are two. First, in a general setting of a Hamiltonian system of
two degrees of freedom as in Eq. (1) with a potential with specific characteristics, to
describe the main characteristics of its dynamics in which the collision manifold play a
key role. This is done in Sections 2 and 3. Secondly, to prove the existence and to give
a classification of the ECO that can be obtained depending on the specific behavior of
the 1D-invariant manifolds on the total collision manifold. The main results are given in
Theorems 1–4. In order to accomplish our aims, we will review and show results already
known in specific three and four body problems, where we shall see that the dynamics
are essentially the same. So, we will recover here all of them.

2. General setting

In this section, we give the conditions for the undergoing potential, U in (1), recall
some particular examples, derive the regularized equations of the model and present the
main features (we consider a suitable Poincaré section and define the collision manifold)
that will play an essential role along the paper.

2.1. Statement of the problem. We consider the problem defined by a Hamiltonian
system with two degrees of freedom and Hamiltonian function

(2) H(q,p) =
1

2
pTA−1p− U(q),
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q ∈ R2 \∆ ⊂ R2, p ∈ R2, A is a diagonal constant matrix, A = diag(a1, a2), a1, a2 > 0,
and U is an homogeneous function of degree −1 with some properties to be specified
later. We can think of an N -body problem with the Newtonian potential (we will show
some of these problems later), where q = 0 is a singularity that corresponds to the total
collision of the bodies. The model was also considered, for example, by Mart́ınez [13, 14]
to study the existence of Shubart-like orbits. Here, we recall some known features of
the model. For more details see the aforementioned articles.

It is well known that the Hamiltonian H is a constant of motion for the N -body
problem. We confine our attention to a fixed negative level of energy H = h < 0. Thus,
we have the following classical result.

Proposition 1. Consider the Hamiltonian system given by (2). Then, bounded motion
can only occur for h < 0.

The proof of this result is based on the Lagrange-Jacobi equation Ï = U + 2h, where
I = 1

2
(qTAq) is the moment of inertia, and the fact that U is a homogeneous function

of degree −1. See, for instance, Proposition 4.1 in [16].

Our goal is to study the existence of ejection-collision orbits (ECO from now on).
Roughly speaking, an ejection orbit is an orbit that “starts” at q = 0, and a collision
orbit is an orbit that “ends” at q = 0 (we give the precise definition later on). Therefore,
it is mandatory to regularize the singularity q = 0. Regularization theory is a tool that
allows us to transform a singular differential equation into a regular one, in such a way
that we can analyze, under the regularized equations, the behavior of solutions leading
to collisions.

We use McGehee’s coordinates [15], that not only regularize but perform a blow up
of the total collision q = 0. First, the following change to a polar-like set of coordinates
r, θ, is introduced:

r2 = qTAq, q = rs = r(A−1)1/2(cos θ sin θ)T .

where sTAs = 1. Differentiating, q̇ can be written as

q̇ = ṙ s + rθ̇ u,

where u = (A−1)1/2(− sin θ cos θ)T , so that uTAu = 1, sTAu = 0, and the radial
component of the velocity is given by ṙ = sTp. Next, variables v, u are defined as

v = r1/2ṙ, u = r3/2θ̇,

so that p = r−1/2A(v s + u u).
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Introducing the new coordinates (r, v, θ, u) together with the scaling in time given by
dτ = r−3/2dt, the equations of motion become

(3)



dr

dτ
= rv,

dv

dτ
=

v2

2
+ u2 − V (θ),

dθ

dτ
= u,

du

dτ
=
−vu

2
+ V ′(θ),

where V (θ) = rU(q) and V ′ = dV/dθ. Clearly, the system of equations (3) can be
extended to r = 0, which is an invariant manifold of the system.

The energy relation h = H in these new variables is written as

(4) hr =
1

2
(v2 + u2)− V (θ).

Notice that for any fixed energy level h < 0,

(5) V (θ) + hr = 0

is the zero velocity curve which limits the region in configuration space where the motion
is admissible (see Figure 1).

We want to prove the existence of ECO under certain conditions for the potential
V (θ). As it is common in this kind of problems, the leading actors in the dynamics
of the problem are the invariant manifold r = 0, the existence of unstable equilibrium
points and the behavior of the invariant manifolds associated to them. Next result states
the hypotheses on the potential V (θ) to ensure the existence of the key ingredients.

Proposition 2. Assume that V (θ) is such that

V (θ) =
cb

sin(θb − θ)
+

ca
sin(θ − θa)

+ Ṽ (θ),

where θ ∈ (θa, θb) for fixed values θa, θb such that 0 < θb − θa ≤ π, and

• ca > 0, cb ≥ 0 are constants, and cb = 0 if and only if θb − θa = π;

• Ṽ (θ) > 0 is a smooth bounded function in [θa, θb];
• V (θ) has only one non-degenerate critical value at θ = θc ∈ (θa, θb), which is a

minimum.

Then, the system of equations (3) has two equilibrium points, denoted by E±, given
by r = 0, v = ±vc, θ = θc, u = 0, where v2c = 2V (θc). Both equilibrium points E±

are saddle points, and there exist invariant manifolds W u/s(E±). Restricted to a fixed
energy level H = h, dim(W u(E−)) = 1, dim(W s(E−)) = 2 and dim(W u(E+)) = 2,
dim(W s(E+)) = 1.

See [13] for the proof of the last proposition, and a discussion about the linear ap-
proximation of the invariant manifolds depending on θc. Simó and Llibre [19] give a
condition on the potential at the critical point to prove the existence of transversal in-
tersection of the invariant manifolds associated to total collision and total ejection in
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a general n-body problem of dimension d. In our case, the condition is fulfilled by the
fact that θc is a non-degenerate critical value.

In Figure 1 we show the configuration space (q1, q2), which is a subset of the half-cone
θ ∈ (θa, θb) limited by the zero velocity curve (5).

 0
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q1

θ=θc

Figure 1. Left: qualitative picture of the configuration space of the
system (3), where the zero velocity curve (5) is also shown. Right: example
of an ejection trajectory in the configuration space in the model SC4BP
for α = 1 (see Section 2.2).

In the models of N -body problems, when a collision between two or more bodies
occurs, the distance between them becomes zero and the velocity of the colliding particles
is infinite. This corresponds to a singularity for Newton’s equations. As we mentioned,
one kind of collision occurs when all particles of the system collide simultaneously, and
corresponds to r = 0. In fact, the manifold defined as

(6) C := {(r, θ, v, u)| r = 0, θa < θ < θb, u
2 + v2 = 2V (θ)},

is invariant under the flow given by equations (3), and it is called the total collision
manifold. By Proposition 2, the equilibrium points E± ∈ C.

It is relevant that the flow on C is almost-gradient with respect to v, see [15]. That
is, introducing the energy relation (4) in the second equation of system (3), dv/dτ =
hr + u2/2, so when r = 0, dv/dτ ≥ 0. Later on, we will strongly use this property of
the flow on the total collision manifold C.

Other singularities appear when “partial” collisions occur, that is, collisions when not
all of the bodies are involved. The simplest one, a binary collision, arises when two
bodies occupy the same point. Also there can be collisions of more than two bodies
or simultaneous collisions of different clusters of particles. Under the hypotheses of
Proposition 2, these additional singularities occur at θ = θa,b. Therefore, we will say
that we have a collision of type a or b depending on whether θ = θa or θ = θb.

Next we define ejection and collision orbits. These are orbits that tend, backwards
and forwards respectively, to r = 0, so they belong to the invariant manifolds of the
equilibrium points W u/s(E±). As we will see, the one dimensional invariant manifolds
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are embedded in the collision manifold C, so we only consider the trajectories on the
two dimensional invariant manifolds for their definition.

Definition 1. We say that an orbit is a collision orbit if it is contained in W s(E−) and
an ejection orbit if it is contained in W u(E+). An orbit is an ejection–collision orbit if
it is contained in W s(E−) ∩W u(E+).

Therefore, an ejection-collision orbit (ECO) satisfies lim
τ→±∞

r(τ) = 0.

From now on, we consider that we are under the hypotheses of Proposition 2 and the
energy is fixed at a value h < 0.

2.2. Examples from Celestial Mechanics. Next, we provide a few examples of prob-
lems from Celestial Mechanics that match the general model presented.

• The rectangular four body problem (Rec4BP). In this problem, four equal masses
lie at the vertices of a rectangle, so that their positions and velocities are sym-
metric with respect to two axes, vertical and horizontal, passing through their
center of mass, placed at the origin. Its potential can be written as

V (θ) = 2 +
2

cos θ
+

2

sin θ
,

for θ ∈ (0, π/2). The two singularities correspond to two double collisions. See,
for example, [18, 11].
• The rhomboidal four body problem (Rh4BP). In this problem, there are two

different pairs of equal mass particles, m1 = m3 and m2 = m4 and α is the mass
ratio between them. The bodies are placed at the vertices of a rhombus with
initial positions and velocities symmetric with respect to the diagonals of the
rhombus. The potential is given by

V (θ) =
1√

2 cos θ
+

α5/2

√
2 sin θ

+
4
√

2α3/2

√
α cos2 θ + sin2 θ

,

for θ ∈ (0, π/2). As in the previous example, the two singularities correspond to
two double collisions. See, for example, [5, 12].
• The symmetric collinear four body problem (SC4BP). In this problem four bodies

of masses, m4 = α, m2 = 1, m1 = 1, and m3 = α, α > 0, are collinear, ordered
from left to right and moving symmetrically by pairs about their center of mass.
In this case, the potential writes

V (θ) =
1√
2

(
1

cos θ
+
α5/2

sin θ

)
+

2
√

2α3/2

sin θ −
√
α cos θ

+
2
√

2α3/2

sin θ +
√
α cos θ

for θα ≤ θ ≤ π/2, where θα = arctan(
√
α ). The singularity θ = θα corresponds

to double binary collisions between m4 and m2, and m1 and m3, and the singu-
larity θ = θπ/2 corresponds to single binary collisions between m1 and m2. See,
for example, [10, 3, 4].
• The collinear three body problem (C3BP), where three masses m1,m2 and m3

form a collinear configuration, labelled from left to right. The potential is given
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by

V (s) = sin(2λ)

(
m1m2

(b2 − b1) sin (λ(s+ 1))
+

m2m3

(a3 − a2) sin (λ(1− s))

+
m1m3

(b2 − b1) sin(λ(s+ 1)) + (a3 − a2) sin(λ(1− s))

)
,

where s ∈ (−1, 1) and λ is a constant depending on the masses of the system.
The singularities correspond to collisions of the left binaries, s = −1, or collisions
of the right binaries, s = 1. See [15, 7].
• A symmetric planar 2N body problem. Consider 2N equal masses located in a

configuration in which the mass mj is symmetric to mj+1 with respect the line
θ = jπ/N , j = 1, . . . , N . Due to the symmetries of the problem, it reduces to a
two degrees of freedom system with potential

V (θ) =
1

sin(π/n− θ)
+

1

sin(π/n+ θ)
+ Ṽ (θ),

for −π/N ≤ θ ≤ π/N , and Ṽ (θ) analytic. See, for example, [14].

2.3. Regularization of non-total collisions. In the present model, the system of
equations (3) has singularities at θ = θa and θ = θb. These singularities correspond
to distinct partial collisions for the different N -body problems. For instance, for the
Rec4BP, both singularities correspond to double binary collisions between two different
pairs of bodies, whereas for the SC4BP, θ = θα corresponds to a double binary collision of
the two particles on the left and the two particles on the right, and θ = π/2 corresponds
to a single binary collision of the two particles at the center.

The two singularities at θ = θa, θb can be removed simultaneously through a Sundman
type regularization. See [13], and the references therein for more details. Consider the
functions

W (θ) = f(θ)V (θ) and F (θ) =
f(θ)√
W (θ)

,

where f(θ) = sin(θ−θa) sin(θb−θ) if θb−θa 6= π, and f(θ) = sin(θb−θ) otherwise. Notice
that W (θ) is a positive and bounded smooth function in [θa, θb]. Then, introducing a
new variable and the change of time

w = F (θ)u, dτ = F (θ)ds,

the system of equations (3) transforms into

(7)



dr

ds
= rvF (θ),

dv

ds
= F (θ)

(
2hr − v2

2

)
+
√
W (θ),

dθ

ds
= w,

dw

ds
= −F (θ)

vw

2
+
W ′(θ)

W (θ)

(
f(θ)− w2

2

)
+ f ′(θ)

(
1 +

f(θ)

W (θ)
(2hr − v2)

)
,

where W ′ = dW/dθ.
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The energy relation H = h (4), in these new variables, writes

(8) W (θ)w2 + f(θ)2v2 = 2f(θ)2rh+ 2W (θ)f(θ).

Notice that if (r, v, θ, w) is a solution with energy h, then (λr, v, θ, w) is also a solution
with energy λh, with λ > 0. Therefore, it is enough to fix any negative value for h.

We will study the system of differential equations (7) in the regularized and reduced
McGehee coordinates (r, v, θ, w) on the phase space F = [0,∞)×R× I×R, I = [θa, θb].
A solution of the above set of ordinary differential equations, also called orbit, will be
denoted by Γ = {γ(s, ξ)}s (or just by γ(s)), where γ(0, ξ) = ξ.

Notice that system (7) exhibits the symmetry

(9) S : (r, v, θ, w, s)→ (r,−v, θ,−w,−s).
This can be phrased in terms of solutions as follows: if γ(s) = (r(s), v(s), θ(s), w(s)) is
a solution then Γ defined as:

(10) γ(s) = (r(−s),−v(−s), θ(−s),−w(−s))
is also a solution.

The claim of Proposition 2 persists in the new variables, so system (7) has two hyper-
bolic equilibrium points E±, with coordinates (r, v, θ, w) = (0,±vc, θc, 0). Next result
states the existence of an orbit that connects both equilibrium points (see [13]). It
is called the homothetic solution because the configuration maintains the same shape
along its evolution for all the time, only changing its size.

Proposition 3. For every fixed level of energy H = h < 0, there exists a solution of
the system of equations (7) of the form

γh(s) = (r(s), θ = θc, v(s), w = 0),

such that r(s) −→
s→±∞

0.

Notice that this is an ejection-collision orbit since it starts and ends at r = 0.

2.4. Poincaré section and map. In this section we introduce a convenient Poincaré
section, which shall be a keystone to show the existence of ECO. We consider as a
Poincaré section the set where partial collisions occur, that is, where θ = θa,b. Notice
that, from the energy relation (8), any point on Σ also must satisfy w = 0.

Definition 2. We denote by Σ is the union of two half planes Σa,b:

Σ = Σa∪Σb = {(r, v, θ, w) | r ≥ 0, w = 0, θ = θa}∪{(r, v, θ, w) | r ≥ 0, w = 0, θ = θb} .

Next, we present a property which shows that if a solution is such that the variable
θ(s) is on the right side of θc increasingly, or on the left side but decreasingly, then the
orbit must reach the section Σ. It has been proved useful in the context of different
N -body problems, as shown in [7, 20] for the C3BP or [17, 10, 4] for the SC4BP.

Proposition 4. Let γ(s) be a solution of the system given by (7) such that a certain
time s0, either θ(s0) > θc and w(s0) > 0 or θ(s0) < θc and w(s0) < 0. Then, the
trajectory must reach the section Σ at least once.
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Proof. We may assume that θ(s0) > θc and w(s0) > 0, and we will see that the orbit
must reach the section Σb. In the other scenario, the orbit must reach Σa, and it can be
proved using the same arguments.

First, let us prove that θ(s) cannot reach a maximum at θ < θb and s > s0. Indeed,
assume there exists s∗ such that, θ(s∗) 6= θb, w(s∗) = 0 and w(s) > 0 for s ∈ (s0, s

∗).
From the properties of function V , we have that V (θ(s∗)) > 0, V ′(θ(s∗)) > 0, and using
equations (7) and (8) we obtain

dw

ds
(s∗) = f(θ(s∗))

V ′(θ(s∗))

V (θ(s∗))
> 0,

so θ(s) has a minimum in s∗, but this is impossible since θ(s) increases in (s0, s
∗).

Since θ(s) is bounded between θa and θb, then either

(i) θ(s) reaches Σb and the proposition is proved;
(ii) or θ(s) tends asymptotically to θb. Let us prove that this situation is not possible.

The corresponding solution would satisfy that

lim
s→+∞

θ(s) = θb, lim
s→+∞

w(s) = 0 and lim
s→+∞

dw

ds
(s) = 0.

However, using equation (7), if θ = θb and w = 0, then
dw

ds
(θb) = − sin(θb−θa) 6= 0,

which is a contradiction.

�

In Figure 1 right, we show an orbit of the SC4BP exhibiting different partial collisions
(when θ = θa,b) and crossings with the section θ = θc. Actually, in [17], the authors use
this later section to construct a Poincaré map in order to describe the dynamics for this
problem. However, in general, a trajectory experiences a sequence (maybe finite) of par-
tial collisions, where the solution reaches Σa,b. This idea has been exploited by different
authors when studied the three and four body problems mentioned in Section 2.2, by
introducing symbolic dynamics and characterizing the orbits by the sequence of partial
collisions that they suffer. See, for example, [7, 20, 10, 17, 4], and references therein. In
[7, 10, 4] the authors show that, in order to deal with ejection-collision orbits, the use
of Σ is quite more appropriate.

We will follow the same idea. We consider the Poincaré map (in forward time) defined
on Σ

(11) P : Σ −→ Σ,

as P(Z) = Φs(Z), where Φs is the flow associated to the system (7), and s is the first
positive time needed to reach the section Σ starting at Z. In a similar way we define
P−1, the Poincaré map in backward time.

2.5. Collision manifold. We have already defined the total collision manifold C in (6),
and for simplicity, in the new variables the total collision manifold is also denoted by C.
It corresponds to equation (8) for r = 0 and it is a 2-dimensional manifold, topologically
equivalent to a sphere minus four points, independent of the total energy h, see Figure 2.
It is invariant under the flow (7), which is gradient-like with respect the variable v, that
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is, dv/ds ≥ 0. It is also the boundary of the energy constant manifold H = h, for every
fixed level of energy h. We can think the space as a book of infinite sheets where a fixed
level of energy corresponds to a sheet of the book, and the spine corresponds to the zero
level of energy, which is precisely the total collision manifold.

E
+

E
-

Figure 2. Qualitative scheme of the total collision manifold C. The two
equilibrium points E± are also shown.

Next results provide us with useful information about the solutions on the total col-
lision manifold C, information that later will be meaningful to describe the dynamics of
the invariant manifolds of E+,−.

Lemma 1. Consider the system given by (7) on the manifold C and a solution γ(s).
Then, all the maxima and minima of θ(s) correspond to points where w = 0 and either
θ = θa,b or v2 = 2V (θ).

Proof. By the third equation in (7), the extrema of θ(s) satisfy that w(s) = 0. On the
collision manifold C, using (8), we have that

f(θ)2v2 = 2W (θ)f(θ).

If f(θ) = 0, then by definition θ = θa,b. If f(θ) 6= 0, then v2 = 2W (θ)/f(θ) = 2V (θ). �

Proposition 5. On the collision manifold C, any solution is such that the variable θ
oscillates from maxima to minima on Σ and/or the curve v2 = 2V (θ), w = 0.

Proof. By Proposition 4 and Lemma 1 it is enough to see that the orbit cannot tend
asymptotically to the curve v2 = 2V (θ), w = 0. Suppose that it does as v increases

while s → ∞. Then, lim
s→∞

dw

ds
= 0. But along any point on such curve, using (7) and

(8), we have that
dw

ds
= f(θ)

V ′(θ)

V (θ)
6= 0,

which is a contradiction. �

In Figure 3 we show some orbits on the collision manifold in the SC4BP for different
values of the parameter of the problem.



EJECTION-COLLISION ORBITS IN TWO DEGREES OF FREEDOM PROBLEMS 11

Remark. As a consequence of Proposition 4, any solution in C is such that forwards
in time, θ(s) either oscillates infinitely between maxima and minima while v(s)→∞, or
oscillates a finite number until the orbit tends to E+ (analogously backwards in time).
In particular any heteroclinic orbit connecting E− and E+ will describe a finite number
of oscillations between Σa and Σb.

Notice that on the collision manifold the variables θ and w are bounded, whereas the
variable v ∈ (−∞,+∞). When a solution of equations (7) on C is such that v → ±∞,
we say that it escapes through the right arm if θ > θc, respectively through the left arm
if θ < θc.

3. Dynamics on the invariant manifolds

As stated in previous sections, on one hand, the problem given by equations (7) has a
collision manifold C corresponding to the blow-up performed at r = 0, and on the other
hand, there exist two hyperbolic equilibrium points, E± ∈ C, and their corresponding
invariant manifolds, see Proposition 2. The knowledge of the qualitative behavior of the
flow on the total collision manifold will lead us to read off the behavior of orbits passing
near total collision, ejecting from or reaching total collision.

As stated in Proposition 2, the equilibrium points are hyperbolic and, for a fixed value
of the energy h, each one has associated two invariant manifolds: one of dimension one,
the other of dimension two. Due to the symmetry (9), the invariant manifolds associated
to E− are symmetric to the ones associated to E+. Therefore, it is enough to describe
the behavior of, for example, W u/s(E−). These invariant manifolds are already well
known and studied in the three and four body problems mentioned in Section 2.2, see
for example, [6, 9, 18]. In the next section we will describe their behavior in detail and
establish some nomenclature.

3.1. One dimensional invariant manifolds. We start by describing the behavior
of W u(E−) (and by symmetry, we have that of W s(E+)), which is a one dimensional
invariant manifold with two branches, each one being specific solutions of the system. We
will denote by W u

−(E−) (respectively W u
+(E−)) the branch going torwards the half-space

w < 0 (resp. w > 0). Notice that also, by the third equation of (7), the positive branch
goes towards θb, whereas the negative branch moves towards θa. The first important
property is that W u(E−) ⊂ C. Second, as we have seen in Section 2.5, any given
branch is an orbit that initially goes back and forth between Σa and Σb and then it can
only exhibit two different behaviors: either it tends to E+ (becoming an heteroclinic
connection) or the trajectory “escapes” towards v → +∞ along one of the upper legs
of the total collision manifold. See Figures 3 and 4.

There exist three possible cases, named after Lacomba [9]. The non-degenerate case,
in which there are no heteroclinic connections on C between the equilibrium points and
the branches of W u

±(E−) go through the upper legs of C (Figure 3). In the symmetric
degenerate case, both branches of W u

±(E−) coincide with the branches of W s
±(E+),

so there exist two heteroclinic connections between the equilibrium points (Figure 4,
center). In the (non-symmetric) degenerate case, only one branch of W u(E−) coincides
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with one branch of W s(E+), while the other branch of W u(E−) escapes along one of
upper legs of C (Figure 4, left and right).
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Figure 3. Branches of the invariant manifolds W u
+(E−) (in red) and

W u
−(E−) (in blue) on the collision manifold in the (θ, w, v) space. The

vertical lines correspond to w = 0, θ = θa,b. Also their intersections with
the section Σ are shown. The plots show the four different scenarios in
the non-degenerate cases: types I, II, III, IV (see the text and Table 1).
The four samples plotted correspond to the SC4BP for different values of
the mass parameter (see Section 2.2), which illustrate the behavior in our
general setting.

Figure 4. Branches of the invariant manifolds W u
+(E−) (in red) and

W u
−(E−) (in blue) on the collision manifold in the (θ, w, v) space in the

degenerate cases (not all of them are represented). The three samples
correspond to the SC4BP for different values of the mass parameter.

Observe that in the non-degenerate case, initially both branches of the invariant
manifolds go through partial collisions θ = θa,b alternatively, and then exhibit the same



EJECTION-COLLISION ORBITS IN TWO DEGREES OF FREEDOM PROBLEMS 13

type of partial collisions going up along one upper arm of C. In the degenerate cases,
the branches corresponding to heteroclinic connections only exhibit a finite number of
partial collisions.

In fact, the branches of the one dimensional invariant manifolds can be characterized
by the number of full turns around the total collision manifold C (the number of oscil-
lations of the variable θ between θa and θb). More concretely, we say that a branch of
a 1D-invariant manifold makes a full turn if the variable θ varies from θc to θc passing
through θa and θb just once. For example, the orbits on Figure 3 top left, make two full
turns, whereas those on plot top right make one and a half turn.

The number of full turns and their intersections with the section Σ allow us to char-
acterize the 1D-invariant manifolds as follows. Consider the successive intersections of
each branch with the the section Σ (see Definition 2)

W u
±(E−) ∩ Σ =

{
U±j
}
j≥1 and W s

±(E+) ∩ Σ =
{
S±j
}
j≥1 ,

where U±j = (0, θa,b, u
±
j , 0), S±j = (0, θa,b, s

±
j , 0) and {u±j }j≥1,{s±j }j≥1 are increasing

sequences (see Figure 3). In the non-degenerate cases the sequences are infinite, whereas
in the degenerate cases some or all of them are finite. Notice that, using the symmetry
of the system we have that

s−j = −u+j and s+j = −u−j .

For simplicity, we will simply just denote by u±j , s
±
j the points U±j , S±j , respectively.

Let S be the set of all possible sequences, just taking into account the elements a and
b. We define

I+ : W u(E−) −→ S
Γ −→ σ = (σ1, σ2, . . . , σn, . . . )

where

σj =

{
a if the j-th intersection of Γ with Σ is at Σa,
b if the j-th intersection of Γ with Σ is at Σb,

for j ≥ 1.

The sequence I+(Γ) codes the partial collisions (intersections with Σ) forwards in time
for the unstable manifold. Similarly, we can define I− on W s(E+), obtaining a sequence
of partial collisions backwards in time. Using the symmetry of the problem we have that

I+(W u
+(E−)) = I−(W s

−(E+)) and I+(W u
−(E−)) = I−(W s

+(E+)).

We classify the behavior of the 1-dimensional manifolds W u
±(E−) and W s

±(E+) using
the number of full turns of each branch, their intersections with the section Σ and the

map I+. In what follows, the sequence ?, •, n). . ., ?, • denotes that the sequence ?, • is

repeated n times. For example, the sequence (b, a, n). . ., b, a, b, b, b, . . .) represents an orbit
with a sequence of n pairs of collisions b, a (a collision of type b followed by a collision
of type a) and then the orbit only has collisions of type b forwards in time. Analogous
interpretations are given for other sequences.

The non-degenerate cases are classified in four types:
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(1) Type I: Both branches make n full turns around C (see Figure 3 top left), before
escaping through different arm:

I+(W u
+(E−)) = (b, a, n). . ., b, a, b, b, b, . . .),

I+(W u
−(E−)) = (a, b, n). . ., a, b, a, a, a, . . .).

Then, the sequences u±j and s±j are ordered as follows. Along the line C ∩ Σb:

· · · < s−2n+3 < s−2n+2 < s−2n+1 < u+1 < s+2n < u−2 < s−2n−1 < u+3 < s+2n−2 <

· · · < s−3 < u+2n−1 < s+2 < u−2n < s−1 < u+2n+1 < u+2n+2 < u+2n+3 < . . .

Along the line C ∩ Σa:

· · · < s+2n+3 < s+2n+2 < s+2n+1 < u−1 < s−2n < u+2 < s+2n−1 < u−3 < s−2n−2 <

· · · < s+3 < u−2n−1 < s−2 < u+2n < s+1 < u−2n+1 < u−2n+2 < u−2n+3 < . . . ,

see Figure 5.

Figure 5. Ordering of sequences {s±j }, {u±j } (see Section 3.1) and

{p±j }, {q±j } (see Section 3.2) along C ∩ Σa,b for the non-degenerate case
Type I. Figures left and right represent bottom and top parts of C, re-
spectively.

(2) Type II: Both branches make n full turns and a half (see Figure 3 top right),
before escaping through a different arm on C:

I+(W u
+(E−)) = (b, a, n+1). . . , b, a, a, a, . . .),

I+(W u
−(E−)) = (a, b, n+1). . . , a, b, b, b, . . .).

Then, the sequences u±j and s±j on C ∩ Σb are ordered as follows:

· · · < s+2n+4 < s+2n+3 < s+2n+2 < u+1 < s−2n+1 < u−2 < s+2n < u+3 < s−2n−1 <

· · · < s−3 < u−2n < s+2 < u+2n+1 < s−1 < u−2n+2 < u−2n+3 < u−2n+4 . . . .

To obtain the ordering on C ∩ Σa, change the sign plus by minus.
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(3) Type III: The positive branch makes n full turns whereas the negative branch
makes n and a half (see Figure 3 bottom left), before escaping both through the
right arm:

I+(W u
+(E−)) = (b, a, n). . ., b, a, b, b, b, . . .),

I+(W u
−(E−)) = (a, b, n+1). . . , a, b, b, b, . . .).

The sequences u±j and s±j along C ∩ Σb satisfy

· · · < s−2n+3 < s+2n+3 < s−2n+2 < s+2n+2 < s−2n+1 < u+1 < u−2 < s+2n <

s−2n−1 < u+3 < u−4 < · · · < s+4 < s−3 < u+2n−1 < u−2n <

s+2 < s−1 < u+2n+1 < u−2n+2 < u+2n+2 < u−2n+3 < u+2n+3 < u−2n+4 . . . .

In this case, along C ∩ Σa we have the following ordered finite sequence:

u−1 < s+2n+1 < s−2n < u+2 < u−3 < s+2n−1 < s−2n−2 <

· · · < u+2n−2 < u−2n−1 < s+3 < s−2 < u+2n < u−2n+1 < s+1 .

(4) Type IV: The positive branch makes n full turns and a half whereas the negative
branch makes n turns (see Figure 3 bottom right), before escaping both through
the left arm:

I+(W u
+(E−)) = (b, a, n+1). . . , b, a, a, a, . . .),

I+(W u
−(E−)) = (a, b, n). . ., a, b, a, a, . . .).

In this case, along C ∩ Σb there is a finite number of intersections:

u+1 < s−2n+1 < s+2n < u−2 < u+3 < s−2n−1 < s+2n−2 <

· · · < u−2n−2 < u+2n−1 < s−3 < s+2 < u−2n < u+2n+1 < s−1 .

Along C ∩ Σa the ordering is the following:

· · · < s+2n+2 < s−2n+2 < s+2n+1 < u−1 < u+2 < s−2n <

s+2n−1 < u−3 < u+4 < · · · < s−4 < s+3 < u−2n−1 < u+2n <

s−2 < s+1 < u−2n+1 < u+2n+1 < u−2n+2 < u+2n+2 < u−2n+3 < . . . .

Along the paper, we will refer to each one of the above cases. We summarize them in
Table 1.

Type I+(W u
+(E−)) I+(W u

−(E−))

I (b, a, n). . ., b, a, b, b, . . .) (a, b, n). . ., a, b, a, a, . . .)

II (b, a, n+1). . . , b, a, a, a, . . .) (a, b, n+1). . . , a, b, b, b, . . .)

III (b, a, n). . ., b, a, b, b, . . .) (a, b, n+1). . . , a, b, b, b, . . .)

IV (b, a, n+1). . . , b, a, a, a, . . .) (a, b, n). . ., a, b, a, a, . . .)

Table 1. Codes of the partial collisions exhibited by the branches of
the unstable manifold W u(E−) (and by symmetry, the stable manifold
W s(E+)) in the non-degenerate cases depending on the number of full
turns (n or n and a half).
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In the degenerate cases, there are three cases. If it is non-symmetric, one of the
branches connect with the equilibrium point E+, so its image by I+ is a finite sequence,
whereas the other one exhibits one of the behaviors described above. In the symmetric
degenerate case, both branches have associated a finite sequence in S, see Figure 4.

3.2. Two dimensional invariant manifolds. Next, we describe some features of the
behavior of the 2-dimensional invariant manifolds W u(E+) and W s(E−). In Figure 6 we
show a qualitative representation of such invariant manifolds. We observe that if r > 0,
then the projection of the motion in the space (θ, w, v) takes place inside the collision
manifold. This can be deduced from equation (8). For θ fixed, the motion takes place in
an ellipse in the plane (v, w) with semiaxes that are maxima when r = 0 (since h < 0):
θa ≤ θ ≤ θb and

W (θ)w2 + f(θ)2v2 ≤ 2W (θ)f(θ).

However we plot the manifolds outside C for a clearer visualization (following the first
plots by Lacomba et al.)

Figure 6. Qualitative behavior of the 2D-invariant manifolds W u(E+)
and W s(E−).

More concretely:

• The invariant manifolds are glued to the total collision manifold C, not only by
the equilibrium point: the intersections are

(12) W u(E+) ∩ C = Γu± and W s(E−) ∩ C = Γs±,

where each Γu± (resp. Γs±) is an orbit that escapes forwards (respectively back-
wards) in the v-direction, v → +∞ (resp. v → −∞) through one of the legs of
C (see, for instance [7] or [8]). Here, as for the one dimensional invariant mani-
folds, the sign + (respectively the sign −) means that the orbit initially moves
with w > 0 space (respespectively w < 0) near the equilibrium point, E+ when
referring to Γu± and E− for Γs±. See Figure 7.

As explained in Section 2.5, each trajectory performs an infinite sequence of
partial collisions:

I+(Γu+) = (b, b, b, . . .), I+(Γu−) = (a, a, a, . . .),
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and
I−(Γs+) = (a, a, a, . . .), I−(Γs−) = (b, b, b, . . .).

In fact,

Γu+ ∩ Σ = {P+
j }j≥1 ⊂ Σb, Γu− ∩ Σ = {P−j }j≥1 ⊂ Σa,

where P+
j = (0, θb, p

+
j , 0), P−j = (0, θa, p

−
j , 0), and

Γs+ ∩ Σ = {Q+
j }j≥1 ⊂ Σa, Γs− ∩ Σ = {Q−j }j≥1 ⊂ Σb,

with Q+
j = (0, θb, q

+
j , 0), Q−j = (0, θa, q

−
j , 0). The sequences {p±j } are increasing

and {q±j } are decreasing (q∓j = −p±j ). See Figure 7.

These sequences can be combined with the sequences {u±j } and {s±j }. In all
the cases it is clear that

(13) q−1 < u+1 , s−1 < p+1 , q+1 < u−1 , s+1 < p−1 .

See for example Figure 5 for the non-degenerate case of Type I.
• The solution γh(s) given in Proposition 3 belongs to W u(E+)∩W s(E−), that is,

it is an ECO that connects both equilibrium points without any partial collision.
Therefore, γh(s) does not intersect Σ.

Figure 7. Behavior of Γ
u/s
± and the homothetic solution γh(s).

From now on, we will simply just denote by q±j , p
±
j the points Q±j , P±j , respectively.

4. Ejection-Collision Orbits

In this section we prove the existence of the different types of ECO depending on
the behavior of the 1-dimensional invariant manifolds. Actually, we will characterize
the ECO by its finite number of successive binary collisions with Σ. Let σ be a finite
sequence of collisions of type a and b. Following the notation in Section 3.1, we will say
that an ECO is of type σ if its orbit describes forwards in time the finite sequence of
binary collisions encoded by σ.

The following result is straightforward from the symmetry (9).
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Proposition 6. Let Γ be an ECO of type σ = (σ1, . . . , σm). Then Γ defined as in (10)
is an ECO of type σ = (σ1, . . . , σm), with σk = σm−k+1, k = 1, . . .m.

Along the proofs of the following results, we use the notation int(K) and K for the
interior and the closure of a set K.

We start with a technical lemma and a general result for all the cases. We will denote
by W u(E+) ∩Σ1

a,b and W s(E−) ∩Σ1
a,b the first intersection (forwards and backwards in

time, respectively) of the 2-dimensional manifolds with each one of the sections Σa,b.

Lemma 2. Each one of the intersections W u(E+) ∩ Σ1
a,b and W s(E−) ∩ Σ1

a,b is an arc
contained in Σa,b whose closure has endpoints contained on C ∩ Σa,b. More precisely,

(14)
J b := W u(E+) ∩ Σ1

b = 〈u+1 , p+1 〉, Ja := W u(E+) ∩ Σ1
a = 〈u−1 , p−1 〉,

Kb := W s(E−) ∩ Σ1
b = 〈q−1 , s−1 〉, Ka := W s(E−) ∩ Σ1

a = 〈q+1 , s+1 〉,

where 〈x, y〉 denotes a closed arc contained in Σ with endpoints x, y.

Proof. We detail the proof for W u(E+) ∩ Σ1
b . The intersection with Σa follows similar

arguments, and the intersections of the stable manifold of E− are obtained using the
symmetry of the problem. Let Φs be the flow of system (7).

Consider an arc of initial conditions contained in W u(E+) and close enough to E+,
so that the arc is homeomorphic to a semicircle parametrized by an angle φ ∈ [0, π],
in such a way that φ = 0, π, correspond to points Z+ in Γu+ and Z− in Γu− respectively
(recall (12)), and φ = π

2
corresponds to a point Zh in the homothetic orbit γh. See

Figure 8.

Clearly, Φs(Z
+) intersects Σb at p+1 . Therefore, by continuity, the flow transforms the

subarc parameterized by (0, π/2) into a continuous arc contained in Σb. Moreover, for
any Z in this subarc close to Zh, the trajectory Φs(Z) has a close passage to E−. Due
to the hyperbolic character of the equilibrium point, the orbit will continue close to the
unstable branch of E−, whose intersection with Σb is u+1 . Therefore, W u(E+)∩Σ1

b is an
arc with end points p+1 and u+1 .

In a similar way, the image of the subarc parametrized by (π/2, π) is also a continuous
arc, contained in Σa, with endpoints u−1 and p−1 . �

In Figure 8, we show the idea of the proof of the Lemma 2. The projection of the
collision manifold in the (θ, v) plane and the semiplane (r, v), r ≥ 0 (that contain the
projection of the arches) are depicted jointly glued to the section Σb. From now on, the
pictures will follow this representation.

Theorem 1. For any natural number m ≥ 1, the system (7) has an ejection-collision
orbit of type

(a, m). . ., a), and (b, m). . ., b).

Proof. From Lemma 2, recall that Ja,b and Ka,b are the four arcs that correspond to the
first intersection of the unstable W u(E+) and stable W s(E−) manifolds, respectively,
with Σa,b. We give a proof of the existence of ECOs with only collisions of type b. The
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Figure 8. Sketch of the proof of Lemma 2. The collision manifold and
the semiplane (r, v), r ≥ 0 (that contains the arches) are depicted jointly
glued to the section Σb.

result for the other type of ECOs follows by repeating the same arguments considering
the other branches of the invariant manifolds and section Σa.

For n = 1, from Lemma 2 and the ordering (13), it follows that J b ∩ Kb 6= ∅. Let
us denote by E1 ∈ J b ∩Kb the point such that the arc Kb

1 := 〈q−1 , E1〉 ⊂ Kb does not
intersect J b except at E1. Clearly Φs(E1) → E± for s → ∓∞ with no other partial
collisions. Thus, it is an ECO of type (b), see Figure 8.

Figure 9. Schematic idea of the proof of Theorem 1.
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To prove the claim for any m > 1, we will follow the stable manifold W s(E−) back-
wards in time to look for intersections with J b. Recall that P is the Poincaré map (see
(11)). Notice that P and P−1 are defined for any point on Σ that does not correspond
to an ECO.

We claim that P−1(int(Kb
1)) is an arc contained in Σb whose closure is the arc 〈q−2 , s−1 〉,

that is, P−1(int(Kb
1)) = 〈q−2 , s−1 〉. On the one hand, it is clear that P−1(q−1 ) = q−2 .

Consider Z ∈ Kb
1 close to E1, and its orbit Φs(Z). Applying the same argument as in

Lemma 2, the trajectory in backwards time will have a close passage to the equilibrium
point E+ and then will follow the branch W s

−(E+). Therefore,

lim
Z→E1

Z∈Kb
1

P−1(Z) = s−1 .

Using the ordering of the points along Σb (see Section 3.1 and Figure 5), P−1(int(Kb
1))

intersects J b at a point that corresponds to an ECO of type (b, b).

Now consider E2 ∈ P−1(int(Kb
1)) ∩ J b such that the arc Kb

2 := 〈q−2 , E2〉 ⊂ 〈q−2 , s−1 〉
does not intersect J b except at E2. Using the same argument as before, P−1(int(Kb

2)) =
〈q−3 , s−1 〉 ⊂ Σb, which intersects J b. Therefore, there exists an ECO of type (b, b, b).

By induction, P−1(int(Kb
m−1)) = 〈q−m, s−1 〉 and there exists Em ∈ P−1(int(Kb

n−1))∩ J b
such that the arc Kb

m := 〈q−m, Em〉 ⊂ 〈q−m, s−1 〉 does not intersect J b except at point Em.
Therefore, for each m, there exists a point Em on Σb that corresponds to an ECO of

type (b, b, m). . ., b), with m partial collisions of type b. �

We notice that the results and proofs of Lemma 2 and Theorem 1 follow the same
arguments as in the case of the C3BP ([7]) or in the SC4BP ([10]). We remark that we
are analyzing a more general setting.

4.1. Non-degenerate cases. Next, we will prove the existence of ECO exhibiting dif-
ferent number and type of partial collisions. The results will depend on the behavior of
the 1D-invariant manifolds contained in the collision manifold C, classified in types I,
II, III and IV in Section 3.1, and the orderings explained in that section.

Theorem 2. Suppose that W u
±(E−) are of type I, and let n ≥ 1 be the number of full

turns performed by the branches of the 1D-invariant manifolds before escaping through
different arms of C. Then:

(a) There exist ejection-collision orbits exhibiting 2n+ 1 collisions of types

(b, a, n). . ., b, a, b) and (a, b, n). . ., a, b, a).

(b) There exist ejection-collision orbits exhibiting any sequence that can be obtained by
the following graph:

(b, a, n). . ., b, a, b)

(a, b, n). . ., a, b, a)(a)

(b)
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Proof. Recall that the fact that W u
±(E−) are of type I means that the branches perform

n full turns and exhibit the following behaviors respectively (see Table 1 and Figure 3,
top left):

(b, a, n). . ., b, a, b, b, . . .), (a, b, n). . ., a, b, a, a, . . .).

Therefore, as shown in Section 3.1, the intersections of the 1D-invariant manifolds with
the section Σ give the sequences u±j , s±k with a specific ordering, see also Figure 5.

From Lemma 2, Kb and J b are the arcs that correspond to the first intersection,
backwards and forwards in time, of W s(E−) and W u(E+) with Σb, respectively (simi-
larly, Ka and Ja and the section Σa). In Theorem 1, we have proved that J b ∩Kb 6= ∅
(Ja ∩Ka 6= ∅).

The arguments are done by iterating the Poincaré map P backwards in time and
following the preimages of the stable manifold W s(E−) to look for intersections with
Ja/b.

Remark. In most of the figures that illustrate the proofs, for simplicity, those arcs
that intersect are shown as if they would intersect only once. In general, this is not
necessarily the case. For this reason, in the proofs the reader will find points like E and

Ẽ that in the figures seem to be the same one, but they are not in general.

(a) First, we shall prove the existence of ECO of the form (b, a, n). . ., b, a, b). The existence

of an ECO of type (a, b, n). . ., a, b, a) can be obtained repeating similar arguments using
the arcs Ja and Ka.

Consider Ẽ1 ∈ J b ∩Kb such that the arc K̃b := 〈Ẽ1, s
−
1 〉 ⊂ Kb does not intersect

J b except at Ẽ1, see Figure 10. Clearly, P−1(s−1 ) = s−2 and

lim
Z→Ẽ1
Z∈K̃b

P−1(Z) = s+1 .

Therefore, P−1(int(K̃b)) = 〈s−2 , s+1 〉 is a continuous arc contained in Σa. Let us
suppose first that 〈s−2 , s+1 〉 ∩ Ja = ∅, see Figure 10, left. Therefore, we can take its
preimage:

P−2(int(K̃b)) = P−1(〈s−2 , s+1 〉) = 〈P−1(s−2 ),P−1(s+1 )〉 = 〈s−3 , s+2 〉,
which is an arc in Σb. Suppose also that we can repeat the argument 2n− 1 times.
That is, suppose that iterating the Poincaré map P backwards, all the preimages

P−k(int(K̃b)) ∩W u(E+) = 〈s−k+1, s
+
k 〉 ∩W

u(E+) = ∅,
for k = 1, . . . , 2n− 1. Then,

P−(2n)(int(K̃b)) = 〈s−2n+1, s
+
2n〉 ∈ Σb,

and it intersects J b = 〈u+1 , p+1 〉 because of the known ordering of the sequences on

C ∩ Σb: s−2n+1 < u+1 < s+2n. In consequence J b ∩ P−(2n)(int(K̃b)) 6= ∅. The orbit

through any of the intersection points is an ECO of type (b, a, n). . ., b, a, b), see Figure
10, left.

Now suppose that one of the preimages P−k(int(K̃b)) already intersects W u(E+).

We can suppose that k = 1 is the first preimage of K̃b that intersects the unstable
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Figure 10. Schematic idea of the proof of the existence of ECO of type

(b, a, n). . ., b, a, b).

manifold (the argument is similar for any other k), that is,

〈s−2 , s+1 〉 ∩ Ja 6= ∅,
see Figure 10, right. Then, we can consider F1 a point on that intersection such that
〈s−2 , F1〉 ⊂ 〈s−2 , s+1 〉 does not intersect Ja except at F1. Then, we take its preimage

P−1(int(〈s−2 , F1〉)) = 〈s−3 , s−1 〉 ⊂ Σb.

If this arc does not intersect J b, then we consider its preimage 〈s−4 , s−2 〉. If it inter-
sects, then there exists F2 such that 〈s−3 , F2〉 ⊂ 〈s−3 , s−1 〉 does not intersect J b except
at F2, see Figure 10, right. And we can consider its preimage, which is 〈s−4 , s+1 〉. Re-
peating the argument, at each step we can consider an appropiate subarc 〈s−k+1, Fk〉
such that the preimage of its interior is 〈s−k+2, s

±
j 〉 for a certain j ≤ k. After 2n

iterations of P−1, we will end with an arc

〈s−2n+1, s
−
j 〉, j ≤ 2n

that intersects J b. Therefore, we obtain an ECO of type (b, a, n). . ., b, a, b), see Figure
10, right.

Notice that in the above case, other ECO with less number of partial collisions
exists, although a priori we cannot ensure their existence.

(b) We notice that the existence of each one of the types that appear in the vertices of
the diagram are already shown in Theorem 1 and the previous item. Furthermore
we will prove in detail the existence of the following diagram:

(b, a, n). . ., b, a, b)

(a, b, n). . ., a, b, a)(a)

(b)

The ECOs corresponding to reverse the arrows can be proved using Proposition 6,
and the remaining ones can be obtained by the fact that the 1D-invariant manifolds
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W u(E−) and W s(E+) are of type I, repeating the same arguments that we will show
but using the negative branches of the manifolds.

First, we prove the connection

(b, a, n). . ., b, a, b) (b)

That is, the existence of ECOs of type (b, a, n). . ., b, a, b, b, m). . ., b), for any m ∈ N.

As seen in the proof of Theorem 1, for any m > 0 an ECO of type (b,m+1). . . , b)
is obtained from the arc Kb

1 ⊂ Kb, by showing the existence of a sequence of arcs

Kb
j ⊂ P−1(int(Kb

j−1)) = 〈q−j , s−1 〉 ⊂ Σb, j = 2, . . . ,m+ 1. See Figure 9.

Consider P−1(int(Kb
m)) = 〈q−m+1, s

−
1 〉, which intersects J b, and consider a point

Ẽm+1 of that intersection such that 〈Ẽm+1, s
−
1 〉 does not intersect J b except at Ẽm+1.

We now repeat the process explained in the previous item: P−1(int(〈Ẽm+1, s
−
1 〉)) =

〈s−2 , s+1 〉 in Σa, and iterating the Poincar map backwards, the preimages belong
alternatively to Σa and Σb until

P−(2n)(int(〈Ẽm+1, s
−
1 〉)) = 〈s−2n+1, s

+
2n〉 ∈ Σb,

which intersects J b. See Figure 11 left.

Figure 11. Schematic idea of the proof of the existecence of ECO of

type (b, a, n). . ., b, a, b, b, m). . ., b) (left) and (a, m). . ., a, b, a, n). . .b, a, b) (right).

Second, we prove the connection

(b, a, n). . ., b, a, b) (a)

That is, the existence of an ECO of type (a, m). . ., a, b, a, n). . .b, a, b), for any m ∈ N.

In this case we start with the last arc in the proof of item (a), P−(2n)(int(K̃b)) =

〈s−2n+1, s
+
2n〉 which intersects J b (recall Figure 10). Consider point C̃1 on that in-

tersection such that the arc 〈C̃1, s
+
2n〉 ⊂ 〈s−2n+1, s

+
2n〉 does not have any point in

common with J b except C̃1. Therefore, point C̃1 belongs to an ECO of type

(b, a, n). . .b, a, b), P−1(int(〈C̃1, s
+
2n〉)) = 〈s+2n+1, s

+
1 〉 belongs to Σa and intersects the
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arc Ja = 〈u−1 , p−1 〉 ⊂ W u(E+). Each of these intersections correspond to an ECO of

type (a, b, a, n). . .b, a, b).

Next, let F1 ∈ 〈s+2n+1, s
+
1 〉 ∩ Ja such that that 〈s+2n+1, F1〉 does not intersects Ja

except at F1. Its preimage P−1(int(〈s+2n+1, F1〉) = 〈s+2n+2, s
+
1 〉 also intersects Ja. Any

point of that intersection corresponds to an ECO of type (a, a, b, a, n). . ., b, a, b). By the

iteration of this process, we prove the existence of ECOs of type (a, m). . ., a, b, a, n). . .b, a, b).
See Figure 11 right.

Third, we prove the connection

(b, a, n). . ., b, a, b) (a, b, n). . ., a, b, a)

That is, the existence of an ECO of type (a, b, n). . ., a, b, a, b, a, n). . ., a, b).

In the previous reasoning, we have seen that the orbit through C̃1 is an ECO

of type (b, a, n). . .b, a, b) and P−1(int(〈C̃1, s
+
2n〉) ∩ Ja 6= ∅. Consider now a point on

that intersection F̃1 such that 〈F̃1, s
+
1 〉 does not intersect Ja except at F̃1. Then

P−1(int(〈F̃1, s
+
1 〉)) = 〈s+2 , s−1 〉 is an arc in Σb. We iterate the Poincaré map P

backwards:

P−k(int(〈F̃1, s
+
1 〉)) = 〈s+k+1, s

−
k 〉

for k = 2, . . . , 2n− 1, provided that all the preimages do not intersect the unstable

manifold. For simplicity, we will suppose this is the case. If P−k(int(〈F̃1, s
+
1 〉)) ∩

W u(E+) 6= ∅ for some k, then we proceed as in item (a). The last iterate

P−2n(int(〈F̃1, s
+
1 〉)) = 〈s+2n+1, s

−
2n〉 ⊂ Σa,

which intersects Ja. The points on that intersection correspond to ECOs of type

(a, b, n). . ., a, b, a, b, a, n). . ., a, b), see Figure 12.

Figure 12. Schematic idea of the proof of the existecence of ECO of

type (a, b, n). . ., a, b, a, b, a, n). . ., a, b). It starts with the existence of C̃1, see
the text for more details and Figure 11.

This concludes the proof of Theorem 2. �
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Remark: Notice that the proofs in Theorem 2 are based on the dynamical behavior of
the 1D-invariant manifolds W s(E+) and W u(E−) and the fact that their branches are of
type I and they escape through different arms of the collision manifold after performing
n full turns. If the 1D-invariant manifolds are of type II, the behavior is similar with
the only difference that they make n and a half full turns. Therefore, using similar
arguments, the next result can be demonstrated.

Theorem 3. Suppose that W u
±(E−) are of type II, so they perform n and a half number

of full turns (n ≥ 1), before escaping through different arms of C. Then:

(a) There exist ejection-collision orbits exhibiting 2(n+ 1) collisions of types

(b, a, n+1). . . , b, a) and (a, b, n+1). . . , a, b).

(b) There exist ejection-collision orbits exhibiting any sequence that can be obtained by
the following graph:

(b, a, n+1). . . , b, a)

(a, b, n+1). . . , a, b)(a)

(b)

Next we present the results of the existence of ECO in cases III and IV of the 1D-
invariant manifolds.

Theorem 4. Consider the 1D-invariant manifold W u
±(E−):

(1) Suppose they are of type III, so the right and left branches perform n and n and
a half, respectively, full turns before escaping through the right arm of C. Then,
there exist ejection-collision orbits of the following type for any integer k ≥ 1:

(b, a, k(n+1)). . . , b, a, b) (b) (b, a, k(n+1)−1). . . , b, a, b)

(2) Suppose they are of type IV, so the right and left branches perform n and a half
and n, respectively, full turns before escaping through the left arm of C. Then,
there exist ejection-collision orbits of the following type for any integer k ≥ 1:
integer k ≥ 1:

(a, b, k(n+1)). . . , a, b, a) (a) (a, b, k(n+1)−1). . . , a, b, a)

Proof. We prove the existence of ECOs in the first case (when the 1D-invariant man-
ifolds are of type III). The case of invariant manifolds of type IV can be obtained
straightforward by interchanging a and b.

First, we prove the existence of ECO of the desired type for k = 1. The existence

of ECOs of type (b, a, n). . ., b, a, b) rely on the fact that the branch W u
+(E−) (and its

symmetric one, W s
−(E+)) escapes through the right arm of C, which is the same scenario

than in Theorem 2. Similarly, the proof of the existence of ECOs that can be obtained
from the graph
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(b, a, n). . ., b, a, b) (b)

follows the same arguments as in Theorem 2. See Figure 13 and the iterations

P−k(int(〈Ẽ1, s
−
1 〉)), k = 1, . . . , 2n.

Figure 13. Schematic idea of the proof of the existence of ECO: 1)

of type (b, a, n). . ., b, a, b) by the iteration of the Poincaré map backwards

of the arc 〈Ẽ1, s
−
1 〉; 2) of type (b, a, b, a, n). . ., b, a, b) following the previous

argument and iterating backwards the arc 〈C̃1, s
+
2n〉.

From the last step, there exists a point C̃1 ∈ P−(2n)(int(〈Ẽ1, s
−
1 〉)) that corresponds

to an ECO of type (b, a, n). . ., b, a, b), and such that the arc 〈C̃1, s
+
2n〉 does not intersects

J b. By iterating the Poincar map backwards

P−1(int(〈C̃1, s
+
2n〉)) = 〈s+2n+1, s

+
1 〉, P−2(int(〈C̃1, s

+
2n〉)) = 〈s+2n+2, s

+
2 〉.

The last arc intersects J b (see Figure 13), so there exists an ECO of type (b, a, n+1). . . , b, a, b).

Now, consider the last arc 〈s+2n+2, s
+
2 〉, and C2 and C̃2 such that the arcs

〈s+2n+2, C2〉, 〈C̃2, s
+
2 〉,

do not intersect J b except at C2 and C̃2, respectively. Iterating the arc 〈s+2n+2, C2〉 using
P backwards repeatedly, we can obtain an ECO of type

(b, a, n+1). . . , b, a, b) (b)

Using Proposition 6, we also obtain the reverse sequence. This concludes the proof for
k = 1.

To prove the case k = 2, we apply the above arguments to the arc 〈C̃2, s
+
2 〉. First,

P−1(int(〈C̃2, s
+
2 〉)) = 〈s+3 , s+1 〉, . . . P−(2n)(int(〈C̃2, s

+
2 〉)) = 〈s+2n+2, s

+
2n〉.
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The later intersects J b, which corresponds to an ECO of type (b, a, 2n+1). . . , b, a, b). Next,
from the last arc, we can consider again two subarcs: one of them is iterated back-
wards through the Poincaré map to add as many collisions of type b as desired; the

other one is iterated backwards twice to obtain an ECO of type (b, a, b, a, 2n+1). . . , b, a, b) =

(b, a, 2n+2). . . , b, a, b). From this ECO, we can consider two new arcs: one of them allows to
prove that we can add a sequence of collisions of type b, to finish the proof for k = 2,
the other one is the first step to construct the ECOs of the case k = 3.

By iterating the process, the proof is completed. �

4.2. Degenerate cases. Next we consider two of the degenerate cases, the non-symmetric
ones (see Section 3.1):

• Type D1: there is a heteroclinic connection given by W u
+(E−) = W s

−(E+), while
the other branches escape along the right arm of the collision manifold. Let n
be the number of full turns and a half performed by the coincident branches.
• Type D2: there is a heteroclinic connection given by W u

−(E−) = W s
+(E+), while

the other branches escape along the left arm of the collision manifold. Let n be
the number of full turns and a half performed by the coincident branches.

In the symmetric degenerate case, the only ECOs that can be proved to exists are
the ones listed in Theorem 1. Next results state the ECO that exist for sure in the
non-symmetric cases.

Theorem 5. Consider the 1D-invariant manifold W u
±(E−), W s

±(E+) of a degenerate
type.

(1) Suppose they are non-symmetric of type D1, and n and a half be the full turns
of the heteroclinic connection. Then, there exist ejection-collision orbits of the
following type for any integer k ≥ 1:

(a, b, k(n+1)). . . , a, b) (b)(a)

(2) Suppose they are non-symmetric of type D2, and n and a half be the full turns
of the heteroclinic connection. Then, there exist ejection-collision orbits of the
following type for any integer k ≥ 1:

(b, a, k(n+1)). . . , b, a) (b)(a)

The proof follows the arguments shown in Theorems 1 and 2. We illustrate the case
of type D1 for n = 2 in Figure 14.
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