
Convexity and symmetry of central configurations in the

five-body problem: Lagrange plus two

E. Barrabés1, J. M. Cors2, A. C. Fernandes3, C. Vidal4

May 26, 2021

Abstract

We study convexity and symmetry of central configurations in the five body problem when
three of the masses ara located at the vertices of an equilateral triangle, that we call Lagrange
plus two central configurations. First, we prove that the two bodies out of the vertices of the
triangle cannot be placed on certain lines. Next, we give a geometrical characterization of such
configurations in the sense as that of Dziobek, and we describe the admissible regions where
the two remaining bodies can be placed. Furthermore, we prove that any Lagrange plus two
central configuration is concave. Finally, we show numerically the existence of non-symmetric
central configurations of the five body problem.

1 Introduction and main results

Central configurations of the planar n-body problem correspond to configurations r = (r1, . . . , rn),
ri ∈ R2, i = 1, . . . , n, for positive masses m1, . . . ,mn moving under the Newtonian gravitational
attraction such that the acceleration at each mass point is a constant multiple of the relative
position with respect to the center of mass C:

λ(ri −C) = r̈i =

n∑
j = 1
j 6= i

mj

r3ij
(rj − ri), (1)

for all i = 1, . . . , n (in suitable units so the gravitational constant G = 1), where rij = |ri − rj | is
the Euclidean distance between the bodies at ri and rj .

One of the reasons for the importance of the central configurations is that they lead to the so
called homographic solutions of the planar n-body problem: the initial shape of the configuration
is preserved as time varies. The first homographic solutions were found in the three-body problem,
the collinear solution of Euler (1767, consisting in three bodies aligned) and the equilateral triangle
solution of Lagrange (1772, consisting in three bodies of arbitrary mass located at the vertices of
an equilateral triangle).

Counting up rotations and translations in the plane there are exactly five classes of central
configurations for each choice of positive masses when n = 3. The finiteness of the number
of classes of central configurations was a question posed by Chazy in [4], Wintner in [27], and
reformulated by Smale in [25] as a challenge question for the 21st century. In a computer assisted
proof, Hampton and Moeckel, in [16], gave an affirmative answer when n = 4 and any choice of
the masses. This result was obtained analytically by Albouy and Kaloshin in [2], and extended
the result to n = 5 for almost all choice of the masses. The question about the finiteness of the
number of classes of central configurations is open for n > 5. We refer the reader to [19, 22, 24],
and the references therein, for a wider introduction on central configurations, their usefulness and
open problems.
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The study of the geometry of central configurations is a complementary matter to the finiteness
conjecture. An often studied geometric property is convexity. A configuration is convex if the
polygon defined by the configuration have all interior angles less than or equal to 180 degrees,
while is strictly convex if all interior angles are strictly less than 180 degrees. Otherwise the
configuration is concave.

MacMillan and Bartky in 1932 ([20]) showed that for any four positive masses and any ordering
of the bodies there exist a convex central configuration, and using the Perpendicular Bisector The-
orem (see Theorem 3) it must be strictly convex. MacMillan and Bartky also derived a geometrical
condition which is necessary and sufficient to achieve non trivial configurations in the four-body
problem, remaining to check the positivity of the masses. This geometrical condition is named
sometimes as Dziobek’s condition, see [10] and references therein. Recently, Corbera, Cors and
Roberts [7] have classified the full set of convex central configurations in the Newtonian planar
four-body problem.

In the five-body problem Williams ([26]) and Chen and Hsiao ([6]) study the existence of convex
central configurations and give some geometric properties. Moreover, Llibre and Gidea ([13]) and
Chen and Hsiao ([5]) show that in the five-body problem it is possible to achieve a convex but
non-strictly convex central configurations, in contrast with the four-body problem. But questions
concerning the characterization or classification of the set of convex central configurations in the
five-body problem still remain open. See for example [1, 6] and references therein.

Hampton in [15] introduces the concept of stacked central configurations in which a proper
subset is also a central configuration. We follow the notation (n, k)-stacked central configuration
introduced in [11], where n represents the total number of bodies and k, with k = 1, . . . , n − 3,
the bodies that can be removed maintaining the configuration central. Hampton shows a family of
concave central configurations where three bodies are at the vertices of an equilateral triangle and
the other two placed symmetrically respect to one perpendicular bisector line of the triangle. Since
then, several authors have paid attention to this kind of central configurations in the five-body
problem, see for instance, [8, 9, 11, 12, 13, 17, 18, 21, 23]. Several questions arise. One inquiry
posted recently by Cornelio, Álvarez-Ramı́rez and Cors in [9] is the following: For a given central
configuration of n-body problem, what is the number of (n, k)-stacked central configurations, for
all k = 1, . . . , n − 3? When n = 5 and excluding collinear configurations, the authors give the
answer: there can be none, one or two. Another question posed is: are there convex central
configurations of the n-body problem for which is possible to add a body and yet to have a convex
central configuration? For n = 4 the authors of [12] gave a negative answer. A different proof is
given in [6].

In all the discussed studies about stacked central configurations of the five-body problem we
observe two main characteristics: all of them are symmetric and none of them are strictly convex.
From that observation, one interesting question arise: are those two conditions necessary to have a
stacked central configuration? In the case of the (5, 1)–stacked central configurations, the answer
is affirmative. Fernandes and Mello, in [12], show that there exists only one (5, 1)–stacked central
configuration consisting in a square of equal masses at the vertices plus a body with arbitrary mass
at the center of square. Therefore, such a central configuration is symmetric and concave. In the
case of the (5, 2)-stacked central configurations, Gidea and Llibre in [13] prove the existence of a
symmetric non-strictly convex stacked central configuration where three of the bodies are in Euler
configuration.

In the present work, we study the existence of central configurations in the five-body problem
assuming that three bodies are located at the vertices of an equilateral triangle, that we call
Lagrange plus two central configurations. In particular, all of these configurations are (5, 2)-stacked
central configurations. Let r = (r1, r2, . . . , r5) be a configuration out of the collision set, i.e., we
assume rij > 0, for all i 6= j. An equivalent set of equations for central configurations (1) is given
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by the Andoyer’s equations (see the references [3] and [14])

fij =

n∑
k = 1
k 6= i, j

mk (Rik −Rjk) ∆ijk = 0, (2)

for 1 ≤ i < j ≤ n, where Rij = r−3
ij and ∆ijk = (ri − rj) ∧ (ri − rk) is twice times the oriented

area defined by the triangle with vertices at ri, rj and rk. Notice, for a given configuration
r = (r1, r2, . . . , r5), system (2) is a system of linear equations A(r) ·M = 0 for the mass vector
M = (m1 . . .m5)t.

Our first goal is to give a geometric characterization of Lagrange plus two central configurations
in the five-body problem in the sense of Dziobek’s condition.

Theorem 1. Consider a five-body configuration r = (r1, r2, . . . , r5) so that r1, r2, r3, form an
equilateral triangle, there are no three bodies lined-up, and none of the two remaining bodies r4, r5
is located on a bisector line of the triangle.

(i) If the system of Andoyer’s equations (2) has solution for mi, i = 1, . . . , 5 with m4,m5 6= 0,
then the system{

(R14 −R24)(R15 −R35)∆124∆135 − (R15 −R25)(R14 −R34)∆125∆134 = 0,
(R14 −R24)(R25 −R35)∆124∆235 − (R15 −R25)(R24 −R34)∆125∆234 = 0,

(3)

is satisfied.

(ii) If the configuration r satisfy the equations (3), then the system of Andoyer’s equations (2)
has non-trivial solution.

Notice that geometric condition (3) only depends on the relative positions of the bodies. After
that, positivity in the masses must be checked from Andoyer’s equations to ensure the existence
of Lagrange plus two central configurations. The proof of Theorem 1 is given in Section 3. Also,
in that section we include a characterization of the admissible regions in the plane where the two
bodies out of the equilateral triangle can be placed (Proposition 4).

The second goal is to give an answer to the questions posted above about the convexity and
symmetry of Lagrange plus two central configurations. More concretely:

• Are there convex central configurations of the five body problem formed by piling up two
bodies to the Lagrange central configuration?

• Are there non-symmetric central configurations of the five body problem formed by piling
up two bodies to the Lagrange central configuration?

With respect to the convexity, we prove following result in Section 4.

Theorem 2. Let r = (r1, r2, . . . , r5) be a planar convex central configuration of the five-body
problem. Then there are no three vertices of the pentagon forming an equilateral triangle.

Next result is then a straightforward consequence of Theorem 2 and the result about (5,1)
stacked central configurations of Fernandes and Mello [12].

Corollary 1. Consider a central configuration of the five–body problem. If the configuration is
strictly convex, then the configuration is not stacked.

We notice that the claims of Theorem 1 and 2 are valid not only for the Newtonian potential,
but also for any homogeneous potential 1/rα.
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Finally, with respect to the question whether the symmetry is a necessary condition for the
existence of stacked central configurations, the answer is negative. In Section 5 we show numeri-
cally the existence of non-symmetric central configurations containing an equilateral triangle. We
perform a massive numerical exploration in the admissible regions, given in Proposition 4, to find
all non-symmetric Lagrange plus two central configurations. It turns out that all non-symmetric
central configurations of five bodies containing an equilateral triangle are placed around the two
families of symmetric central configurations already shown by Hampton ([15]) and Llibre, Mello
and Pérez-Chavela ([18]).

2 Preliminary results

Given five bodies with masses m1, . . . ,m5 and located at r1, . . . , r5 (ri ∈ R2, i = 1, . . . , 5), we
denote by cij the line that passes through ri, rj , and by lij the bisector line of the segment defined
by the points ri, rj . See Figure 1.

Figure 1: A five body configuration where three bodies are at the vertices of an equilateral triangle,
with lines cij (solid) and lij (dashed). According to Perpendicular Bisector Theorem applied with
respect ri and rj , this configuration cannot be central.

We recall the Perpendicular Bisector Theorem, see [22], which is a geometric tool to check if
a configuration can be central (see Figure 1 for an example of a configuration not allowed by this
property).

Theorem 3 (Perpendicular Bisector). Let ri and rj be two positions of a planar central configu-
ration, and consider the two open double cones determined by the lines cij and lij. If one of the
double cone has nonempty intersection with the central configuration, then so does the other open
double cone.

We introduce a technical lemma that gives a relation between the areas of the triangles ∆ijk

given by any configuration of five points, see for instance [26].

Lemma 1. Consider five points in the plane ri, i = 1, . . . , 5, and ∆ijk = (ri− rj)∧ (ri− rk) twice
times the oriented area defined by the triangle with vertices at ri, rj and rk. Then the following
equations hold:

• ∆345∆123 −∆235∆134 + ∆234∆135 = 0,

• ∆345∆124 −∆245∆134 + ∆234∆145 = 0,

• ∆345∆125 −∆245∆135 + ∆235∆145 = 0,
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• ∆145∆123 −∆135∆124 + ∆134∆125 = 0,

• ∆245∆123 −∆235∆124 + ∆234∆125 = 0,

• ∆123 −∆124 + ∆134 −∆234 = 0,

• ∆123 −∆125 + ∆135 −∆235 = 0,

• ∆124 −∆125 + ∆145 −∆245 = 0,

• ∆134 −∆135 + ∆145 −∆345 = 0,

• ∆234 −∆235 + ∆245 −∆345 = 0.

Proof. It is a straightforward computation from the definition of ∆ijk.

Consider now that three of the five bodies are located at the vertices of an equilateral triangle,
that is, in Lagrange plus two configuration, see Figure 1. In the following propositions, we show
that there are forbidden locations for the other two if the whole configuration is central.

Proposition 1. Consider a five-body central configuration r = (r1, r2, . . . , r5) so that three of them
form an equilateral triangle. If the two remaining bodies are aligned with one of the vertices of the
triangle, then they must be on the bisector line of the other two vertices.

Proof. Without loss of generality we can suppose that r1, r2 and r3 are at the vertices of the
equilateral triangle ordered counterclockwise, and that r4 and r5 are aligned with r3, see Figure 2.
Consider the Andoyer’s equations (2) corresponding to f12, f13 and f23. Using that R12 = R23 =
R13 we have that

f12 = m4(R14 −R24)∆124 +m5(R15 −R25)∆125 = 0,

f13 = m4(R14 −R34)∆134 +m5(R15 −R35)∆135 = 0,

f23 = m4(R24 −R34)∆234 +m5(R25 −R35)∆235 = 0.

Figure 2: Configuration of five bodies such that three are at the vertices of an equilateral triangle,
and the other two are aligned with one of the vertices.

From the first equation of Lemma 1, and the fact that ∆345 = 0, we have ∆234∆135 = ∆235∆134.
Using this relation,

∆124 (∆234f13 −∆134f23)−∆234∆134f12 = m5(R15 −R25)∆234(∆124∆135 −∆134∆125) = 0.

Again from Lemma 1, using the fourth equation, the expression ∆124∆135−∆134∆125 = ∆145∆123.
Clearly, ∆123 6= 0. On the other hand, if ∆145 or ∆234 are zero means that four bodies are
aligned and contradicts, by Perpendicular Bisector Theorem, the fact the configuration is central.
Therefore, R15 = R25 which is only possible if r4 and r5 are on the perpendicular bisector of r1
and r2. This concludes the proof.
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In fact, Llibre and Mello [18] consider a five-body configuration where three bodies are on the
vertices of an equilateral triangle and the other two bodies are on a perpendicular bisector, and
show the existence of three families of central configurations. Proposition 1 says that these three
families are the only central configurations when three of the bodies form an equilateral triangle
and the two remaining bodies are aligned with one of the vertices.

Proposition 2. Consider a five-body central configuration r = (r1, r2, . . . , r5) so that three of them
form an equilateral triangle. Then, none of the two remaining bodies can be aligned with two of
the vertices of the triangle.

Proof. Without loss of generality, we can consider that r1, r2 and r3 are at the vertices of an
equilateral triangle ordered counterclockwise, and that r4 ∈ c12. Applying the Perpendicular
Bisector Theorem with respect to r1 and r2, we have that r5 ∈ c12 or r5 ∈ l12. The first case is not
possible, because there are no central configurations of the five body problem with four bodies in
a line. Thus r5 ∈ l12. We use again the Perpendicular Bisector Theorem twice: first, with respect
r1 and r4, we have that r5 must be in a different half plane defined by the line c12 than r3; second,
with respect r1 and r3, r4 cannot be located between r1 and r2. See Figure 3.

Figure 3: Lagrange plus two configuration where r4 ∈ c12

Introducing ∆124 = 0, R15 = R25, ∆235 = −∆135 into equations f13 and f23 of Andoyer’s
equations, we have that

f13 + f23 = m4

(
(R14 −R34)∆134 + (R24 −R34)∆234

)
= 0. (4)

As m4 6= 0, we have that the second factor, which depends only on r4, must vanish. Without loss
of generality, we consider that the side of the triangle equals 1 and r4 is at the right hand side of
r2 at a distance a > 0. Therefore,

R14 =
1

(1 + a)3
, R24 =

1

a3
, R34 =

1

(1 + a2 + a)3/2
,

and ∆134 = −
√

3 (1 + a)/4, ∆234 = −
√

3 a/4. Introducing into the equation (4) we get

1

(1 + a)2
+

1

a2
=

1 + 2a

(1 + a2 + a)3/2
.

Squaring both sides one gets a polynomial with all the coefficients positive, so the equation has no
solution for a > 0, which proves the claim.

Proposition 3. Consider a five-body central configuration r = (r1, r2, . . . , r5) so that three of them
form an equilateral triangle. If one of the two remaining bodies is on a bisector line of the triangle,
then the other one is on the same line.
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Proof. The proof is straightforward using the Perpendicular Bisector Theorem with respect the
bisector line that contains two bodies.

3 Geometric condition for Lagrange plus two central con-
figurations

In this section we give proof of Theorem 1 that states a geometric condition on the configuration of
five bodies with three at the vertices of an equilateral triangle, in order to have non-trivial solutions
for the masses of Andoyer’s equations. We avoid two particular configurations: when three of the
bodies are aligned or when any of bodies, excluding the vertices of the triangle, is on a bisector
lij of the triangle. Notice that if a configuration is central, by Propositions 1, 2 and 3, these two
particular configurations are excluded except in the case that three of the bodies are on the same
bisector line lij , studied by Llibre and Mello [18]. Therefore, we can exclude them from our study.

Moreover, after the proof of Theorem 1, we study the admissible regions where the two bodies,
that are not at the vertices of the equilateral triangle, can be placed.

3.1 Proof of Theorem 1

We recall the hypothesis of the theorem. Consider a five-body configuration r = (r1, r2, . . . , r5) so
that r1, r2, r3, form an equilateral triangle, there are no three bodies lined-up, and none of the two
remaining bodies r4, r5 is located on a bisector line of the triangle. Without loss of generality, we
suppose r1, r2, r3 ordered counterclockwise.

First, we want to see that if the system of Andoyer’s equations have non-trivial solution for mi,
i = 1, . . . , 5, with m4,m5 6= 0, then the system (3) is satisfied.

We consider the system of Andoyer’s equations given in (2) as a linear system for the masses

A ·M = 0, (5)

where A ∈ M10×5 and M = (m1 . . .m5)t. Notice that, from the hypothesis, all ∆ijk 6= 0, for all
i, j, k. We introduce in the equations the fact that the mutual distances between r1, r2 and r3 are
equal. In particular, the subsystem given by the equations corresponding to f12, f13 and f23: m4(R14 −R24)∆124 +m5(R15 −R25)∆125 = 0,

m4(R14 −R34)∆134 +m5(R15 −R35)∆135 = 0,
m4(R24 −R34)∆234 +m5(R25 −R35)∆235 = 0,

(6)

must have non-trivial solution. Notice that all the coefficients of m4 and m5 in (6) cannot vanish
because r4, r5 /∈ lij , i, j = 1, 2, 3. Then, for a fixed configuration, system (6) must have rank one,
that is,

F1(r4, r5) := (R14 −R24)(R15 −R35)∆135∆124 − (R15 −R25)(R14 −R34)∆134∆125 = 0,
F2(r4, r5) := (R14 −R24)(R25 −R35)∆235∆124 − (R15 −R25)(R24 −R34)∆234∆125 = 0,

(7)

which is the system of the statement (3).

Second, we want to see that if system (3) is satisfied, then Andoyer’s equations have non-
trivial solution for mi, i = 1, . . . , 5. More concretely, we will prove that under the hypothesis the
Andoyer’s linear system (5) has kernel of dimension at least one. Equations (3) ensure that system
(6) has rank one, so we can remove two equations (for example the ones corresponding to f13 and
f23) from (5) to obtain the linear system

A ·M = 0, (8)

with A ∈M8×5. We want to prove that there exist non trivial solutions of (8).
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First, using the relations in Lemma 1, five of the ∆ijk can be written in terms of the other five
as follows:

∆234 = ∆123 −∆124 + ∆134,
∆235 = ∆123 −∆125 + ∆135,

∆145 =
∆124∆135 −∆125∆134

∆123
,

∆245 =
∆123∆124 + ∆135∆124 −∆123∆125 −∆125∆134

∆123
,

∆345 =
∆123∆134 −∆125∆134 −∆123∆135 + ∆124∆135

∆123
.

(9)

For simplicity in what follows we write ∆234, ∆235, ∆145, ∆245 and ∆345 instead of the correspond-
ing expressions.

Second, we can obtain R14 and R15 from equations F1 = 0, F2 = 0, as follows. Using the third
relation in (9), we write the system (3) as:

∆145∆123R14R15 + a1R14 + b1R15 + c1 = 0,
a2R14 + b2R15 + c2 = 0,

for a certain coefficients ai, bi, ci, depending on the other Rij and ∆ijk. Then, the above system
is solved for R14 and R15, and has two solutions:

R14 = R24, R15 = R25, (10)

and

R14 =
1

∆235∆145∆123
(∆135Θ2R24 + ∆125Θ3R34),

R15 =
1

∆234∆145∆123
(∆134Θ2R25 + ∆124Θ3R35),

(11)

where
Θ2 = ∆124 (∆135 + ∆123)−∆125(∆134 + ∆123),
Θ3 = ∆134 (∆125 −∆123)−∆135 (∆124 −∆123) .

Recall that r4, r5 /∈ l12, so the solution (10) is not admissible. Therefore, R14 and R15 are given
by (11).

Then, we introduce (9) and (11) in equations (8). Using a computer algebra system (concretely
the software Mathematica), a generator of the kernel of the matrix is obtained of the form(

N1

K(R24 −R34)∆123
,

N2

K(R24 −R34)∆123∆234
,

N3

K(R24 −R34)∆123∆234
,
−(R25 −R35)∆235

(R24 −R34)∆234
, 1

)
, (12)

where Ni, i = 1, 2, 3 are expressions depending on Rij and ∆ijk and

K = ∆125∆134(R12 −R25)(R12 −R34)−∆124∆135(R12 −R24)(R12 −R35). (13)

The expressions for Ni can be found in the Appendix.

Recall that r4 /∈ l23, so R24 − R34 6= 0. If K 6= 0, the system (8) has kernel of dimension one,
with the generator given by (12), so there exists non-trivial solutions of Andoyer’s equations.

It remains to prove that the same is true when K = 0. We proceed as follows:

• First, we isolate one of the Rij from the equation (13), introduce the expression obtained
into (8) and compute its kernel.

• If in the expressions obtained, all the denominators are not null, we are done.

• If there are denominators that can be null, we consider those cases apart, repeating the
process. At each step, we introduce the new restrictions into (8) and compute again its
kernel.
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More concretely, the restriction K = 0 leads to diferent cases:

• Case 1. From the equation K = 0, if R34 6= R12 we isolate R25:

R25 =
∆125∆134R12(R12 −R34) − ∆124∆135(R12 −R24)(R12 −R35)

(R12 −R34)∆134∆125
.

We introduce the above expression in (8), obtaining the matrix A1, which has kernel gener-
ated by: (

(R12 −R34)∆234

∆124K1
,
−(R12 −R34)∆134

(R12 −R24)∆124
, 1, 0, 0

)
, (14)

where

K1 = R12 +
R34∆125∆345 −R24∆135∆245

∆235∆145
.

If K1 6= 0 and R24 6= R12 we are done. On the contrary, we have to study two new cases:

– Case 1a: K1 = 0. We solve this equation for R24:

R24 =
R12∆235∆145 +R34∆125∆345

∆135∆245

We introduce this expression in A1, and the resulting matrix has a kernel generated
by and the vector (1, 0, 0, 0, 0). Thus, we have a non-trivial solution for Andoyer’s
equations.

– Case 1b: R24 = R12. In this case, substituting the restriction into (13) we also obtain
R25 = R12, and introducing both restrictions into the system (8), we have that all the
coefficients corresponding to m2 are nul. Therefore, (0, 1, 0, 0, 0) is a non-trivial solution.

• Case 2: K = 0 and R34 = R12. Introducing this restriction into (13), we have that

∆124∆135(R12 −R24)(R12 −R35) = 0,

where R12 − R24 6= 0 because r4 /∈ l23. Therefore, we have R35 = R12, and similarly to the
case 1b, introducing the restrictions into into the system (8), we have that all the coefficients
corresponding to m3 are nul. Therefore, (0, 0, 1, 0, 0) is a non-trivial solution.

In all the cases, we have found non-trivial solutions. This concludes the proof of Theorem 1.

Remark. In the proof of Theorem 1 we obtain a generator of the kernel of the Andoyer’s linear
system in all cases. But in the case K = 0, we point out that any solution of the Andoyer’s
equations have one or more masses (but not all) that vanish. Clearly, those cases cannot be central
configurations.

In particular, from the proof of Theorem 1 we have the following equivalence:
Under the hypothesis of Theorem 1, Andoyer’s equations have solutions with m4,m5 6= 0 if and
only if the configuration r satisfies the geometric condition (3) and K 6= 0.

3.2 Admissible regions

If we restrict to symmetric solutions, there are two possibilities: when the line of symmetry contains
only one of the bodies, which must be a vertex of the triangle, or when the line of symmetry contains
three bodies, one vertex and the other two bodies.

In the first case, if we take the line of symmetry to be the bisector l12 (similar results are
obtained considering the other bisector lines), the two equations in (3) are equal and can be
written as

(R24 −R34)∆234 + (R14 −R34)∆143 = 0. (15)

If r4, r5 /∈ l12, then the equation (15) has two disconnected components. Taking a system of
reference such that the axes correspond to c12 and l12, we can write r4 = (x, y), and r5 = (−x, y),
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Hampton ([15]) shows that for any x such that r4 is in the interior of the triangle, there exists
one value y such that the configuration of the five bodies is central and r4, r5 are located along
the curve defined by (15) that connect the vertices r1 and r2, and goes through the barycenter of
the triangle (inner symmetric central configurations). Llibre, Mello and Pérez-Chavela ([17]) show
that only for a certain range of values of x such that r4 is in the exterior of the triangle there exists
one value of y for which a central configuration exists and r4, r5 are located along two pieces of a
curve outside the triangle that goes through one vertex (outer symmetric central configurations).
See Figure 4.

Figure 4: Curves given by equation (15) (dashed black lines) and arches (continuous red lines) that
correspond to the location of r4, r5 in the inner and outer symmetric central configurations of the
five-body problem with three masses at the vertices of an equilateral triangle (see [15, 17]).

If r4, r5 ∈ l12, then three families of central configurations are obtained, see [18].

In order to study non-symmetric central configurations, using the geometric condition of The-
orem 1, we characterize the admissible regions for r4, r5, when they are not on any bisector.

Definition 1. Consider a five-body configuration r = (r1, r2, . . . , r5) so that r1, r2, r3, form an
equilateral triangle. Let r = r12 = r13 = r23 be the side of the triangle, cij be the line that passes
through ri, rj, and lij be the bisector line of the segment defined by the points ri, rj. We define
the following open regions (see Figure 5):

• T1 is the triangle limited by l13, l23 and c23;

• T2 is the unbounded region limited by c23, l23, and c13;

• T3 is the unbounded region limited by c13 and l12;

• S1 is the triangle limited by l13, l23 and c13;

• S2 is the unbounded region limited by c23, l13 and c13;

• S3 is the unbounded region limited by c23 and l13;

• S4 is the unbounded region limited by c12 and l13.

Next result shows that any central configuration can be obtained, by symmetries and rota-
tions, from a central configuration where the bodies r4 and r5 are located in the regions given in
Definition 1.

Proposition 4. Consider a central configuration of five bodies r = (r1, r2, . . . , r5) so that r1, r2, r3,
form an equilateral triangle and r4, r5 /∈ lij, i, j = 1, 2, 3. Let Ti, i = 1, 2, 3 and Sj, j = 1, . . . , 4
the regions given in Definition 1.
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Figure 5: Regions given in Definition 1 when r1, r2 and r3 are ordered counterclockwise.

1. There exist a central configuration r that can be obtained from r applying rotations of angle
±2π/3 and reflections through any of the bisector lines lij, i, j = 1, 2, 3, such that r1, r2, r3
still are at the vertices of an equilateral triangle and r4 ∈ T1 ∪ T2 ∪ T3.

2. If r4 ∈ Ti, i = 1, 2, 3, then one of the following occurs:

(a) if r4 ∈ T1 ∪ T2, then r5 ∈ S1 ∪ S2 ∪ S3,

(b) if r4 ∈ T3, then r5 ∈ S4,

Proof. Without loss of generality, we can suppose that r1, r2 and r3 are ordered counterclockwise.

Clearly applying rotations of angle ±2π/3 and reflections through any of the bisector lines lij ,
i, j = 1, 2, 3, any central configuration can be transformed to a central configuration such that
r4 ∈ T1 ∪ T2 ∪ T3. Notice that the bisectors lines are excluded by hypothesis and lines cij are not
allowed by Proposition 2. This concludes statement 1.

To prove the statement 2 we use the geometric condition established in Theorem 1. For
convenience we write equations (7) as following

F1 = F124F135 − F134F125 = 0, and F2 = F124F235 − F234F125 = 0, (16)

where Fklm = (Rkm − Rlm)∆klm. Clearly, when r4 ∈ Ti, i = 1, 2, 3, F124 < 0 and F234 > 0.
Moreover, when r4 ∈ T1 ∪ T2, F134 > 0, whereas if r4 ∈ T3, then F134 < 0.

First suppose that r4 ∈ T1 ∪ T2. If F125 < 0, then equations (16) have solution only if F135 > 0
and F235 > 0. These three inequalities define three regions (see Figure 6) which share the same
double cone defined by the lines c2 and l23 as the region T1 ∪ T2. By the Perpendicular Bisector
Theorem that is not allowed. Therefore F125 > 0, and in that case, the equations (16) have solution
only if F135 < 0 and F235 < 0. That corresponds to the region S1 ∪ S2 ∪ S3.

When r4 ∈ T3, a similar augment leads to r5 ∈ S4.

4 On the convexity of Lagrange plus two central configura-
tions

In this section we prove that there no exist convex central configurations of the five body problem
containing an equilateral triangle. This result can be proved regardless of the existence of the
geometric condition obtained in the previous section.

11



Figure 6: The regions defined by F125 < 0, F135 > 0 and F235 > 0 (see proof of Proposition 4).

We distinguish between strictly convex configurations, i.e., all the interior angles of the poly-
gon are strictly less than 180 degrees, and convex, but non-strictly convex, configurations. For
simplicity, the later will be called non-strictly convex configurations.

In the first case, we will use the Theorem of Cheng and Hsiao, (see Theorem 6.1 in [6]), for
five-body strictly convex central configurations:

Theorem 4 (Cheng-Hsiao). For any strictly convex five-body central configuration, all exterior
edges are less than r0 = (M/λ)1/3, where λ is the multiplier of equation 1 and M is the total mass.
The number of interior edges larger than r0 is either 5, 4, or 3. If there are precisely three interior
edges larger than r0, then the other two interior edges must cross each other.

We notice that from the proof of the theorem, in the case when three interior edges are larger
than r0, we can obtain that the other two, that must cross each other, do not emanate from the
same vertex. That is, the crossing point is not at any vertex rj .

We first suppose that we have a strictly convex configuration with three bodies at the vertices
of an equilateral triangle. Without loss of generality we consider that r1, . . . , r5 are disposed coun-
terclockwise. We examine two possibilities, depending whether the three bodies in the equilateral
triangle are correlative or not. Without particularization, we consider the cases:

(i) The position vectors r3, r4 and r5 form an equilateral triangle (correlative);

(ii) The position vectors r1, r2 and r4 form an equilateral triangle (non-correlative).

In the case (i) we have that r34 = r35 = r45. Let S be the open half-cone defined by the half
lines starting at r4 and passing through r3 and r5. As the configuration is strictly convex, it implies
that r1 and r2 must belong to S outside of the equilateral triangle, see Figure 7, left. Nevertheless,
this situation is not admissible by the Perpendicular Bisector Theorem applied at the vertices of
r4 and r5 (Figure 7, right). So, do not exist any central configuration strictly convex of type (i).

In the case (ii) we have that r12 = r14 = r24, and r14, r24 are interior edges. From Theorem
4, since the two diagonals r14 and r24 are equal to one side (r12), the other three interior edges
r13, r25 and r35 must be greater than r12. See the forbidden region for r3 and r5 in Figure 8.
Nevertheless, this configuration contradicts Theorem 4, since the diagonals r14 and r24 do not
cross in the interior of the pentagon. So, do not exist any central configuration strictly convex of
type (ii).

Next, we suppose that we have a non-strictly convex configuration containing an equilateral
triangle. Suppose that the vertices are r1, r2 and r3 and ordered counterclockwise. Notice that
the Perpendicular Bisector Theorem 3 prevents from four aligned bodies in a central configuration.
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Figure 7: Left: The strictly convex permitted region for r1 and r2. Right: The shadow region
corresponds to one of the open cones generated by r4 and r5, showing that the configuration is not
central.

Figure 8: Arrangements of the vector positions in the case (ii) where the vertices of the equilateral
triangle are not correlative. The gray region is not permitted.

Therefore, if the configuration is non-strictly convex, three of the bodies must lie on the same
line. So, there are two possibilities: the three aligned bodies contain two of the vertices or just
one. The first case is not possible from Proposition 2. In the second case, from Proposition 3 the
configurations is concave. This ends the proof of Theorem 2.

5 Non-symmetric Lagrange plus two central configurations

In this section we show numerically the existence of non-symmetric central configurations of the five
body problem in which three of the masses are located at the vertices of an equilateral triangle. As
we mention before, it is known that there exist two families of symmetric central configurations of
this problem: a family inside the equilateral triangle (inner central configurations, Hampton [15]),
and a family outside the triangle (outer central configurations, Llibre et al. [17]). See Figure 4.

We can consider that r1, r2 and r3 are the vertices of the equilateral triangle ordered coun-
terclockwise. By Theorem 1, the admissible configurations for central configurations are those
satisfying (3) such that the solution of the Andoyer’s equations give all mi > 0. By Proposition 4,
it is enough to study their location for r4 and r5 in the regions Ti, i = 1, 2, 3 and Sj , j = 1, . . . , 4
respectively. See Figure 5. The inner symmetric central configurations are such that r4 ∈ T1 and
r5 ∈ S1, whereas the outer ones are such that r4 ∈ T2 and r5 ∈ S2.

We assume a system of reference of axes c12 and l12 in which r1 = (−1, 0), r2 = (1, 0),
r3 = (0,

√
3), r4 = (x, y) and r5 = (u, v). For each one of the regions Ti, i = 1, 2, 3, we take a grid of

values (x, y) (by taking a step of 5×10−4 and 10−3 for variables x and y respectively) within a ball
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(we will see that for values of (x, y) far away we did not find any solution of the equations). Then,
for any fixed (x, y) we solve the system (3) for the variables (u, v) by an iterative scheme. For each
solution, we substitute the values (u, v, x, y) into the system of Andoyer’s equations (2), where the
equations corresponding to f13 and f23 are removed. The linear system for the masses is solved by
using singular value decomposition (SVD) to determine the kernel of the matrix (with a precision
up to 10−7). We keep the values for which a generator of the kernel has all the components of the
same sign.

By the explorations performed, we have obtained that there exist central configurations only
when (r4, r5) ∈ T1 × S1 and (r4, r5) ∈ T2 × S2. That is, there only exist non-symmetric central
configurations in the regions surrounding the curves of symmetric central configurations. In Fig-
ure 9 we show the locations r4, r5 for which there exist non-symmetric central configurations. We
notice that in the case of outer central configurations (with r4, r5 outside the equilateral triangle),
we only find central configurations confined inside a ball of center r3 and radius the length of the
side of the triangle. Therefore we conjecture that Proposition 4 can be improved by deleting T3,
S3 and S4 from the statement, and restricting the regions T2 and S2 by r3j ≤ r12.

Figure 9: Locations for r4 and r5 for which there exists a non-symmetric central configurations of
the five body problem containing an equilateral triangle. The black curves represents the symmetric
central configurations given by equation (15).

6 Discussion and conclusions

We study central configurations in the five-body problem when a proper subset of the configuration
form an equilateral triangle and so is also a central configuration of the three-body problem:
Lagrange plus two configuration. In that sense the study can be categorized inside the stacked
central configuration class. As far as we know, all the five-body stacked central configurations
found till now have two main characteristics: are symmetric and concave, with the exception of
one symmetric family that is convex, but non-strictly convex, since three of the bodies are aligned.

Under the previous considerations we give a geometric characterization, similar to Dziobek’s
condition for four bodies: any Lagrange plus two central configuration must satisfy a system of
two equations that depends only on the location of the bodies. Using this geometric condition, we
are able to limit the regions where the two bodies out of the Lagrange configuration can be placed.

Furthermore, we prove that is impossible to have convex central configurations in the five-body
problem with three bodies at the vertices of an equilateral triangle. In particular, there are no
(5,2)-stacked central configurations strictly convex.
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Finally, using the geometric characterization of the configuration, we carry out an exhaustive
numerical study to explore the existence of non-symmetric Lagrange plus two central configura-
tions. As far as we now these are the first non-symmetric central configurations exhibited in the
five-body problem.

Among other things, it is still an open question the existence of non-symmetric five-body central
configurations with three aligned bodies.

7 Appendix

The expressions Ni, i = 1, 2, 3 in equation (12) are the following:

N1 = ∆235∆123∆145

(
(R35 −R45)(R25R34 +R12R24)

+ (R45 −R34)(R24R35 +R12R25) + (R34 −R35)(R24R25 +R12R45)
)

N2 = ∆125∆2
134(∆123 − ∆125)R34(R25 −R35)(R34 −R45)

+ ∆124∆2
135(∆123 − ∆124)R35(R24 −R34)(R35 −R45)

+ ∆124∆2
135∆134

(
R24R35 (R34 −R45) −R24R25 (R34 −R35) −R25R34 (R35 −R45)

)
+ ∆123∆145∆134(∆123 − ∆125)R12(R25 −R35)(R34 −R45)

− ∆123∆145∆135(∆123 − ∆124)R12(R24 −R34)(R35 −R45)

− ∆123∆145∆134∆135R12

(
R24(R35 −R45) −R25(R34 −R45) + R45(R34 −R35)

)
+ ∆134∆135R34R35

(
∆123∆124 (R35 −R45) + ∆125 (∆123 (R34 −R45) + ∆124 (R34 + R35 − 2R45))

)
+ ∆134∆135R34R25

(
∆125 (∆124 − ∆123)R34 + (∆123 (∆125 − ∆124) + ∆125∆134)R35

+ (∆123∆124 − ∆125 (∆124 + ∆134))R45

)
− ∆134∆135R24R25 (∆123 (∆124 − ∆125) − ∆125∆134) (R34 −R35)

− ∆134∆135R24R35

(
∆124 (∆125 − ∆123)R35 + (∆123 (∆124 − ∆125) − ∆125∆134)R34 + ∆125∆234R45

)

N3 = ∆123∆124∆125∆345R24(R23R34 −R25R35 −R2
35)

+ ∆123∆124∆145∆235R24R35R45

− ∆123∆124∆135∆245R
2
24 (R25 −R35)

+ ∆123∆125R25R34 (∆124∆345R35 − ∆134∆245R25 + ∆145∆234R45)

− ∆123∆145R12R45 (∆125∆234R34 − ∆124∆235R35)

− ∆123∆145R12R24 (−∆123∆245R25 − ∆125∆234R45 + ∆124∆235R35)

− ∆123∆145R12R25 (∆124∆235R45 − ∆125∆234R34)

+ ∆123∆245R24R25 (∆125∆134R25 + ∆123∆145R45)
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