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Specially thanks to Martin, Pepus, Santi, Glòria, Marina, Marc, Vera and Juanjo for opening
me the doors to the compositional data research group and also for giving me the opportunity
of teaching. No doubt I have learnt a lot from each one of you.

My also sincere gratitude to Rafael de Cid for the opportunity of learning from you and working
together. I feel very lucky to combine this PhD thesis with the research in the GCAT project.
It has been a plus for my doctorate and academic training. Thank you Rafa and all the nice
colleagues from the GCAT lab for the great atmosphere and all your support during the last years.

Thank you to the Data Analytics ‘Beabloo’ team for all the great working experience and good
moments we had fun. To ‘la colla amb en Txorri’ for all the good dinners and calçotades in
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• Poster contribution at European Human Genetics Conference 2016. Graphical tools for
estimating family relationships. Galván-Femeńıa, I., Graffelman, J., de Cid, R. &
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Abstract

The present thesis is a compendium of three research articles produced between 2015 and 2019.
All these three articles have a common link: they are different contributions based on compo-
sitional statistical methodology and statistical inference of genetic relatedness. In brief, Com-
positional Data are random vectors with strictly positive components whose sum is constant.
These components represent parts of a whole which only carry relative information. Therefore,
Compositional Data is usually represented as proportions or percentages. Relatedness is based
on the principle of allele sharing between individuals for a given set of genetic markers. The
larger the proportion of alleles shared between a pair of individuals, the more likely they are to
be related.

In the first work presented in this thesis, we review the classical graphical methods used to detect
relatedness and introduce the analysis of Compositional Data for relatedness research. For any
genetic marker, two individuals can share 0, 1 or 2 alleles. Allele sharing analysis is based on
alleles identical by state (IBS) and alleles identical by descent (IBD). Two alleles are IBS if they
are identical in terms of their DNA composition and do not necessarily come from a common
ancestor. Otherwise, two alleles are IBD if they are derived from a common ancestor. A re-
markable difference between IBS and IBD alleles is that IBD is an unobservable measure, and
therefore it is necessary to estimate the probabilities of sharing 0, 1 or 2 IBD allelles by max-
imum likelihood procedures. The IBD probabilities are essential for relatedness research, since
they have reference values for any family relationship category and it allows to classify them.
Classical graphical methods based on IBS alleles depict the mean and the standard deviations
of the number of shared IBS alleles over genetic variants. The scatterplot of the proportion of
sharing zero and two IBS alleles has been also considered in the literature. Both representations
of allele sharing data are able to detect outliers which correspond to potentially related individ-
uals. Regarding the graphics based on IBD alleles, some authors represent data in an scatterplot
of any combination of two out three IBD probabilities. Therefore, we propose the use of tools of
Compositional Data analysis such as the ternary diagram and the isometric log-ratio transfor-
mation of the IBS/IBD probabilities. The ternary diagram is used to represent simultaneously
all three IBS/IBD allele probabilities in contrast to the classical two-dimensional scatterplot. On
the other hand, we introduce the isometric log-ratio transformation to overcome the problems of
the Euclidean distance interpretation in the constrained space of the IBS/IBD allele sharing data.

In the second article, we propose the analysis of IBS genotype sharing data instead of the clas-
sical IBS allele sharing data. This allows us to analyse the genetic data in more than three
dimensions. We consider genotype sharing counts as a six-part composition and explore the
data using log-ratio biplots based on principal component analysis. Classification of pairs of
individuals into family relationship categories is performed using linear discriminant analysis. In
this context, the log-ratio biplot approach is compared with the classical plots in a simulation
study. In a non-inbred homogeneous population the classification rate of the log-ratio principal
component approach outperforms the classical graphics across the whole allele frequency spec-
trum. Furthermore, the log-ratio biplot is able to identify accurately family relationships up
to and including fourth degree relationships. The log-ratio biplot methodology uncovered the

1



detection of three-quarter siblings, a family relationship which has received very little attention
in the literature. Consequently, the third article finishes the thesis with the development of an
additional statistical methodology such as the likelihood ratio approach. The likelihood ratio
approach is developed to infer three-quarter siblings in genetic databases. We derive the IBD
probabilities for three-quarter siblings and calculate likelihood ratios to distinguish three-quarter
siblings from full-siblings and half-siblings.

To illustrate all the results of this doctoral thesis we use genetic markers from worldwide hu-
man population projects such as the Human Genome Diversity Project and the 1000 Genomes
Project, as well as from a local prospective human cohort of the Genomes of Catalonia (GCAT).
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Resum

Aquesta tesi doctoral és un compendi de tres articles de recerca prodüıts entre els anys 2015 i
2019. Els tres articles tenen un vincle comú: són aportacions diferents basades en la metodologia
de les dades composicionals i en la inferència estad́ıstica de relacions familiars. Breument, les
dades composicionals són vectors aleatoris amb components estrictament positius la suma dels
quals és constant. Aquests components representen parts d’un tot que només aporten informació
relativa. Per això, les dades composicionals acostumen a representar-se en proporcions o per-
centatges. L’anàlisi de relacions familiars es basa en el principi del compartiment d’al·lels entre
individus per a un conjunt determinat de marcadors genètics. Com més gran és la proporció
d’al·lels compartits entre un parell d’individus, més probabilitat hi ha que siguin individus de la
mateixa familia.

En el primer treball d’aquesta tesi, revisem els mètodes gràfics clàssics utilitzats per detectar
relacions familiars i introdüım l’anàlisi de les dades composicionals per a la investigació de rela-
cions familiars. Per a qualsevol marcador genètic, dos individus poden compartir 0, 1 o 2 al·lels.
L’anàlisi de comparticiød’al·lels es basa en al·lels idèntics per estat (identical by state, IBS) i
al·lels idèntics per descendència (identical by desent, IBD). Dos al·lels són IBS si són idèntics
quant a la seva composició d’ADN i no necessàriament provenen d’un avantpassat comú. En
cas contrari, dos al·lels són IBD si provenen d’un avantpassat comú. Una diferència notable
entre els al·lels IBS i IBD és que l’IBD és una mesura que no es pot observar, i per tant cal
estimar. Les estimacions de les probabilitats de compartir 0, 1 o 2 al·lels IBD es poden realitzar
per màxima versemblança. Les probabilitats IBD són essencials per a la investigació en relacions
familiars, ja que tenen valors de referència per a qualsevol categoria de relació familiar i això
permet classificar-les. Els mètodes gràfics clàssics basats en al·lels IBS representen la mitjana i
les desviacions estàndard del número d’al·lels compartits sobre un conjunt de marcadors genètics.
Altrament, el gràfic de la proporció de compartir zero i dos al·lels IBS també s’ha considerat en
la literatura. Ambdues representacions permeten detectar parelles d’individus que són potencial-
ment de la mateixa familia. Pel que fa als gràfics basats en al·lels IBD, alguns autors representen
en un diagrama de dispersió qualsevol combinació de dues de les tres probabilitats IBD. Per tant,
proposem l’ús d’eines pròpies de l’anàlisi de dades composicionals com ara el diagrama ternari i la
transformació isométrica log-quocient de les probabilitats IBS/IBD. El diagrama ternari s’utilitza
per representar simultàniament les tres probabilitats d’al·lels IBS/IBD en contrast amb el clàssic
diagrama de dispersió bidimensional. D’altra banda, introdüım la transformació isométrica log-
quocient per superar els problemes de la interpretació de la distància Euclidea a l’espai restringit
dels al·lels IBS/IBD.

En el segon article, es proposa l’anàlisi de dades de genotips compartits IBS en lloc de les
clàssiques dades d’al·lels compartits IBS. D’aquesta manera, podem interpretar les dades amb
una dimensionalitat més gran. Considerem que els recomptes de genotips compartits són una
composició de sis parts i explorem les dades mitjançant biplots basats en log-quocients derivats de
l’anàlisi dels components principals. La classificació de parelles d’individus en les diferents cate-
gories de relacions familiars es realitza mitjançant l’anàlisi discriminant lineal. En aquest context,
es compara el biplot basat en log-quocients amb els gràfics clàssics en un estudi de simulació.
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En una població homogènia sense endogamia, la taxa de classificació correcta del biplot basat en
log-quocients és superior als gràfics clàssics a tot l’espectre de freqüències al·leliques. A més, el
biplot basat en log-quocients permet identificar amb precisió relacions familiars fins a quart grau.
La metodologia del biplot basada en log-quocients va permitir la detecció de tres quarts germans,
una relació familiar que ha rebut molt poca atenció en la literatura. En conseqüència, el tercer
article finalitza la tesi amb l’elaboració d’una metodologia estad́ıstica addicional basada en la raó
de versemblances. Aquest enfocament es desenvolupa per inferir tres quarts germans en bases de
dades genètiques. Derivem les probabilitats IBD per a tres quarts germans i calculem les raons de
versemblança per distingir els tres quarts germans d’entre germans i mig germans (germanastres).

Per il·lustrar tots els resultats d’aquesta tesi doctoral, s’utilitzen marcadors genètics de projectes
de població humana procedent de tot el món com el Projecte de la Diversitat del Genoma Humà
i el Projecte 1000 Genomes, aix́ı com d’una cohort humana prospectiva local dels genomes de
Catalunya (GCAT).
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Resumen

Esta tesis es un compendio de tres art́ıculos de investigación producidos entre 2015 y 2019. Los
tres art́ıculos tienen un v́ınculo común: son diferentes contribuciones basadas en la metodoloǵıa
de los datos composicionales y en la inferencia estad́ıstica de relaciones familiares. Brevemente,
los datos composicionales son vectores aleatorios con componentes estrictamente positivos cuya
suma es constante. Estos componentes representan partes de un todo que solo aportan infor-
mación relativa. Por ello, los datos composicionales generalmente se representan como pro-
porciones o porcentajes. El análisis de relaciones familiares se basa en el principio de alelos
compartidos entre individuos en un conjunto de datos de marcadores genéticos. Cuanto mayor
sea la proporción de alelos compartidos entre una pareja de individuos, más probable es que sean
de la misma familia.

En el primer trabajo presentado en esta tesis, revisamos los métodos gráficos clásicos utilizados
para detectar relaciones familiares y presentamos el análisis de los datos composicionales para la
investigación de relaciones familiares. Para cualquier marcador genético, dos individuos pueden
compartir 0, 1 o 2 alelos. El análisis de compartimiento de alelos se basa en alelos idénticos
por estado (IBS) y alelos idénticos por descendencia (IBD). Dos alelos son IBS si son idénticos
en términos de su composición de ADN y no necesariamente provienen de un ancestro común.
Por otro lado, dos alelos son IBD si se derivan de un antepasado común. Una diferencia notable
entre los alelos IBS e IBD es que IBD es una medida no observable y, por lo tanto, es necesario
estimarla. Las estimaciones de las probabilidades de compartir 0, 1 o 2 alelos IBD se pueden
realizar por máxima verosimilitud. Las probabilidades IBD son esenciales para la investigación
de relaciones familiares, ya que dispone de valores de referencia para cualquier categoŕıa de
relación familiar y esto permite clasificarlas. Los métodos gráficos clásicos basados en alelos IBS
representan la media y las desviaciones estándar del número de alelos IBS compartidos sobre
un conjunto de marcadores genticos. Aśı mismo, el diagrama de dispersión de las proporciones
de marcadores para los cuales dos individuos comparten cero o dos alelols IBS también se ha
considerado en la literatura. Ambas representaciones pueden detectar parejas de individuos que
son potencialmente de la misma familia. Con respecto a los gráficos basados en alelos IBD,
algunos autores representan en un diagrama de dispersión cualquier combinación de dos de las
tres probabilidades IBD. En este primer trabajo proponemos el uso de las técnicas propias del
análisis de datos composicionales, como son el diagrama ternario y la transformación isométrica
log-cociente de las probabilidades IBS/IBD. El diagrama ternario se utiliza para representar
simultáneamente las tres probabilidades de alelos IBS/IBD en contraste con el diagrama de dis-
persión bidimensional clásico. A su vez, presentamos la transformación isométrica log-cociente
para superar los problemas de la interpretación de la distancia Euclidea en el espacio restringido
de los alelos compartidos IBS/IBD.

En el segundo art́ıculo, proponemos el análisis de datos del compartimiento de genotipos IBS en
lugar del compartimiento de alelos IBS clásico. De esta forma, podemos interpretar los datos del
compartamiento de genotipos con mayor dimensionalidad. Consideramos que los recuentos de
compartimiento de genotipos constituyen una composición de seis partes y exploramos los datos
utilizando biplots basados en log-cocientes derivados del análisis de componentes principales. La
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inferencia estad́ıstica de las relaciones familiares se realiza mediante análisis discriminante lineal.
En este contexto, el enfoque basado en el bibplot de log-cocientes se compara con las gráficas
clásicas en un estudio de simulación. En una población homogénea no endogámica, la tasa
de clasificación correcta del enfoque basado en el bibplot de log-cocientes supera a los gráficos
clásicos en todo el espectro de frecuencias alélicas. Además, el biplot basado en log-cocientes es
capaz de identificar con precisión las relaciones familiares hasta las relaciones de cuarto grado
inclusive. La metodoloǵıa biplot basada en log-cocientes permitió la detección de tres cuartos
hermanos, una relación familiar que ha recibido muy poca atención en la literatura. Por ello,
el tercer art́ıculo con que finaliza la tesis presenta el desarrollo de una metodoloǵıa estad́ıstica
adicional, como es el enfoque basado en la razón de verosimilitud. Este enfoque se desarrolla
para inferir tres cuartos hermanos presentes en bases de datos genéticas. Deducimos las proba-
bilidades IBD para tres cuartos hermanos y calculamos razones de verosimilitud para distinguir
tres cuartos hermanos de hermanos y medios hermanos (hermanastros).

Para ilustrar todos los resultados de esta tesis doctoral, utilizamos marcadores genéticos de
proyectos de población humana procedente en todo el mundo, como son el Proyecto de Di-
versidad del Genoma Humano y el Proyecto 1000 Genomas, aśı como de una cohorte humana
prospectiva local del Genoma de Cataluña (GCAT).
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Chapter 1

Introduction

1.1 Motivation

The research work developed during this doctoral thesis is part of the coordinated project CODA-
RETOS “Análisis de datos composicionales y métodos relacionados” (Ref: MTM2015-65016-C2-
1-R; Ministerio de Economia y Competitividad), specifically, part of the subproject TRANS-
CODA, of which one of the main research lines is “Biomarcadores y marcadores genéticos”. The
topic of this thesis is based on compositional methodology and statistical inference of family
relationships by using genetic markers and forms part of this research line.

Statistical genetics is a branch of statistics based on the analysis of genetic variation and inherited
traits. Population-based genetic association studies form an important area in statistical genetics
(Foulkes, 2009). These studies search for genetic factors related to disease and assume a random
sample of unrelated individuals from a homogeneuos human population. However, in practice,
samples of individuals used in association studies often contain one or more individuals from the
same family. To accomplish with the assumption of independent individuals, pairs of individuals
from the same family are usually identified and removed prior to association analyses (Anderson
et al., 2010). Thus, the motivation of this thesis is to study and where possible, improve different
statistical techniques that can detect and identify family relationships between individuals from
the same human population.

1.2 Background

A good understanding of basic genetic principles is necessary for what follows (Chapter 1; Laird
and Lange (2010)). Briefly, the human genome refers to all the genetic material that is inherited
across generations. The genetic information is stored on chromosomes located in the nucleus
of the cell. The human genome is composed of 23 pairs of chromosomes. From each pair, one
chromosome is inherited from the mother and the other one from the father. A chromosome is
a deoxyribonucleic acid (DNA) molecule formed by large nucleotide sequences, associated with
proteins. The DNA sequences are constituted of four nucleotides: adenine (A), cytosine (C),
guanine (G) and thymine (T). Variations in the DNA sequence at a specific site in the human
genome are referred to as alleles. The genotype of one individual is formed by the two alleles in-
herited from his or her parents. A pair of genotypes is in linkage disequilibrium if their alleles are
inherited together by the descendants (Chapter 5; Laird and Lange (2010)). The group of alleles
that are inherited together from a single parent is known as a haplotype. Genetic markers are
known locations of the human genome that have allelic variation and contain information con-
cerning the family relationships of the individuals that have been genotyped. The most common
types of genetic markers are the single nucleotide polymorphism (SNP) and the microsatellite or
short tandem repeat (STR).

9
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Microsatellites are short DNA sequences which are repeated. The length of the repeated DNA
sequences is constant for each STR and ranges from 2 to 6 nucleotides. Individuals have ge-
netic variability because their alleles of determined regions of DNA vary. Microsatellites are
very powerful to distinguish each individual from the population due to the presence of multiple
alleles which lead to high genetic variability between individuals. Particularly, the number of the
repeated sequences across STRs varies between unrelated individuals. For this reason, they are
commonly used for forensic DNA studies and paternity testing (Vieira et al., 2016). On other
hand, SNPs are common throughout the human genome, they occur once in every 300 nucleotides
on average. Nowadays, the economic cost of genotyping multiple SNPs in the human genome is
decreasing. Consequently, SNPs are mostly used for large scale genome wide association studies
(GWAS, Visscher et al. (2017)).

Many relatedness investigations are based on the principle of allele-sharing. A pair of individuals
can share 0, 1 or 2 alleles for any genetic marker. The allele sharing can be considered either
by state if the DNA composition of the alleles are identical but the alleles do not come from a
common ancestor (identical by state, IBS), or by descent if the alleles originate from a common
ancestor (identical by descent, IBD) (pages 195-196; Laird and Lange (2010)). The degree to
which individuals share alleles indicates the extent to which they are related. Thus, individuals
from the same family share on average more alleles than unrelated individuals.

Relatedness investigations are performed for mainly two reasons: verifying documented relation-
ships and guaranteeing independence of individuals in the database. Population based genetic
association studies are focused on the analysis of data derived from homogeneous populations
of unrelated individuals with the aim to measure the disease status under investigation such as
cancer or other complex diseases (Foulkes, 2009). Many statistical methods used in these studies
(such as standard regression models, t-tests, logistic regression) assume that the observations
(individuals) are independent. These techniques can fail and inflate the false positive rate in
association genetic studies if independence is not satisfied. This phenomenon is also referred
to as “cryptic relatedness” (Voight and Pritchard, 2005). For this reason, this thesis analyzes
the degree of dependence between individuals by using allele sharing analysis. This allows the
analyst to filter the database by removing one individual from each pair of the detected family
relationships prior to association analyses. However, classical allele sharing analysis based on
proportions or probabilities of IBS/IBD alleles does not take into account that these data oc-
cupy a constrained space. This property is characteristic of Compositional Data where standard
statistical methods can lead to a misinterpretation of the data (Chapter 1, Pawlowsky-Glahn
et al. (2015)). Hence, the novelty of the present thesis is to introduce compositional statistical
techniques in IBS and IBD allele sharing studies.

Compositional Data (CoDa) are random vectors (also referred to as compositions) with strictly
positive components whose sum is constant. These components represent parts of a whole which
only carry relative information. Many examples of CoDa can be found in different fields: geology
(geochemical elements), economy (income/expenditure distribution), demography (population
percentages), ecology (abundance of different species), metabolomics (molar concentrations),
microbiome (relative abundances of bacteria), genetics (genotype frequencies), etc. As afore-
mentioned, Compositional Data have the property that the compositions occupy a constrained
space whose values range from 0 to 100, or any other constant. Such a restricted space is known
as simplex (Aitchison, 1986). This is a remarkable difference with the standard statistical ap-
proaches which assume that variables occupy the usual Euclidean space whose values range from
-∞ to +∞. Another property of CoDa is that distances between compositions should satisfy the
scale invariance, permutation invariance and subcompositional coherence principles (Aitchison,
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1992). These principles are not satisfied in the case of using the standard Euclidean distance
between compositions (Aitchison et al., 2000). To deal with the restricted space of CoDa and
the problems of interpretation of distances between compositions, transformations such as the
additive log-ratio transformation (alr, Aitchison (1986)), the centered log-ratio transformation
(clr, Aitchison (1986)) or the isometric log-ratio transformation (ilr, Egozcue et al. (2003)) are
commonly applied (Pawlowsky-Glahn and Buccianti, 2011; Pawlowsky-Glahn et al., 2015). This
is also referred to as the principle of working in coordinates because operations and metrics in
the simplex are equivalent to ordinary operations and metrics in coordinates (Mateu-Figueras
et al., 2011). In order to satisfy the former principles described of CoDa, we take into account the
compositional nature of the proportions or probabilities of the allele sharing analysis of identical
by state/descent alleles. In this way, the inference of family relationships based on scatterplots
of log-ratio transformations using compositional distances will be properly defined.

This thesis illustrates two situations where the techniques from the analysis of Compositional
Data enrich the statistical methods used in the allele sharing analysis:

• Graphics.
There are several graphical methods for representing pairs of individuals and detecting
family relationships by allele sharing analysis. It is possible to detect related individu-
als by plotting percentages of sharing 0, 1 or 2 IBS alleles across all the genetic markers
(Rosenberg, 2006). Another option for detecting close relatives graphically is by plotting
the means and variances of the number of shared IBS alleles between individuals across
genetic markers (Abecasis et al., 2001). Studies of relatedness can also be based on the
probabilities that the alleles are shared identical by descent. These probabilities depend on
the relatedness: monozygotic twins, full-siblings, parent-offspring, avuncular, first cousins,
etc. Identity by descent is essential to research on relatedness. The probabilities of sharing
0, 1 and 2 alleles IBD are known as the Cotterman coefficients, denoted by k0, k1 and k2 re-
spectively (Cotterman, 1941). These can be estimated by maximum likelihood (Thompson,
1975, 1991; Milligan, 2003), the IBD probabilities (k0, k1, k2) are chosen to maximize the
probability of an observed pair of genotypes given by the likelihood function across genetic
markers (Wagner et al., 2006; Weir et al., 2006). The kinship coefficient (φ) is also relevant
for relatedness research and is defined as φ = k1/4 + k2/2. The IBD probabilities and the
kinship coefficient are commonly plotted in a scatterplot for determining the family rela-
tionships. Compositional Data Analysis can be applied to allele-sharing analysis because
the fraction of sharing 0, 1 and 2 IBS alleles (denoted by p0, p1 and p2 respectively) and
the Cotterman coefficients can be considered as 3-part compositions. This is due to the
fact that the three components sum to one (p0 + p1 + p2 = 1 and k0 + k1 + k2 = 1). This
approach provides two graphical methods to detect family relationships by plotting the
vector of (p0, p1, p2) or (k0, k1, k2) in a ternary diagram and by plotting the isometric log-
ratio transformation of the vector of (p0, p1, p2) or (k0, k1, k2) in ilr-coordinates (Egozcue
et al., 2003).

• Log-ratio biplots.
As aforementioned, the usual graphical approach for detecting family relationships is to plot
allele sharing probabilities, either IBS or IBD, in a two-dimensional scatterplot. This ap-
proach ignores that allele sharing data across individuals has in reality a higher dimension-
ality, and neither regards the compositional nature of the counts of shared genotypes. The
log-ratio biplot based on principal component analysis of Compositional Data overcomes
these restrictions (Aitchison, 1983; Aitchison and Greenacre, 2002). This leads to entirely
new graphics that are essentially useful for exploring relatedness in genetic databases from
homogeneous populations.
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On other hand, the log-ratio biplot methodology uncovered the existence of three-quarter
siblings, a family relationship which has received very little attention in the literature. For
this reason, this thesis develops additional statistical methodology such as the likelihood
ratio approach in order to confirm and identify three-quarter siblings:

• Three-quarter siblings.
Existing IBS/IBD methods are able to identify first degree family relationships (parent-
offspring or full-siblings), second degree (half-siblings, avuncular or grandparent-grandchild)
or more distant relationships. Three-quarter siblings (3/4S) is a family relationship whose
individuals share fewer alleles than first degree relationships and more alleles than second
degree relationships. A 3/4S pair has one common parent, while their unshared parents can
be full-siblings or parent-offspring. In practice, the 3/4S relationship is hard to discover in
the usual scatterplot of the IBD probabilities. Thus, it opens the doors to other method-
ologies such as the likelihood ratio approach (Thompson, 1986; Boehnke and Cox, 1997;
Weir et al., 2006; Katki et al., 2010; Heinrich et al., 2016) to infer this type of relationship.

1.3 Research articles

The situations described in the former section derive three original works focused on the estima-
tion of family relationships by using genetic markers.

• The first article of this doctoral thesis is entitled Graphics for relatedness research
and has been published in Molecular Ecology Resources. A copy of this article can be found
at page 31. In this article, we review the most common graphics used in IBS/IBD allele
sharing analysis for identifying family relationships. Furthermore, two additional graphical
methods from the field of compositional data analysis are proposed: the ternary diagram
to display all three allele sharing probabilities simultaneously and scatterplots of isometric
log-ratios of IBS/IBD probabilities to overcome the problems with the Euclidean distance
interpretation in the classical graphics. We illustrate all graphical tools with genetic data
from the HGDP-CEPH diversity panel (Rosenberg et al., 2002), using 377 microsatellites
genotyped for 25 individuals from the Maya population of this panel. R functions for
making the graphics of this article are available from https://github.com/ivangalvan/

graphics-relatedness-research.

• The second article is entitled A log-ratio biplot approach for exploring genetic re-
latedness based on identity by state and has been published in Frontiers in Genetics.
A copy of this article can be found at page 45. In this article, we propose a log-ratio
biplot approach based on principal component analysis to identify family relationships by
using only IBS alleles. The proposed approach takes into account the compositional na-
ture of the 6-part composition derived from the genotype sharing counts. This leads to
new graphics for detecting relatedness with higher dimensionality than the two-dimensional
classical graphics. The discriminatory power of the log-ratio biplot approach outperforms
the classical plots in a simulation study. Furthermore, simulations show that with 35,000
independent biallelic variants, log-ratio principal component analysis, combined with dis-
criminant analysis, can correctly classify relationships up to and including the fourth degree.
Genome-wide SNP datasets from the 1,000 Genomes Project (1000 Genomes Project Con-
sortium et al., 2015) and the GCAT Genomes For Life cohort project (Obón-Santacana
et al., 2018; Galván-Femeńıa et al., 2018) are used to illustrate the proposed method. R
code for reproducing the log-ratio biplot developed in this this article is available from
https://github.com/ivangalvan/LR-kinbiplot.

https://github.com/ivangalvan/graphics-relatedness-research
https://github.com/ivangalvan/graphics-relatedness-research
https://github.com/ivangalvan/LR-kinbiplot
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• The third article is entitled A likelihood ratio approach for identifying three quar-
ter siblings in genetic databases and has been submitted to Heredity. A copy of this
article can be found at page 63. In this article, we derive the theoretical IBD proba-
bilities and the kinship coefficient for three-quarter siblings (3/4S), a relationship whose
individuals share fewer alleles than first degree relationships but more alleles than sec-
ond degree relationships. We show that the detection of 3/4S in a scatterplot of the IBD
probabilities is difficult. For this reason, we propose a likelihood ratio approach to distin-
guish 3/4S from full-siblings and second degree relatives. We use simulated data and a
genome-wide array dataset from the GCAT Genomes for Life cohort project to illustrate
the procedure. R code for using the likelihood ratio approach to detect 3/4S is available
from https://github.com/ivangalvan/LR-3.4S.

1.4 Structure of the thesis

The remainder of this doctoral thesis is structured as follows. Chapter 2 describes the objectives
of this thesis. Chapter 3 summarizes the statistical methods used to identify family relationships.
Chapter 4 is the core of this thesis and shows a copy of the published and submitted articles.
Chapter 5 synthesizes the main results and contains a discussion of the articles. The thesis
finishes with the conclusions and further lines of research.

https://github.com/ivangalvan/LR-3.4S
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Chapter 2

Objectives

The main aim of this doctoral thesis is to study and propose statistical methods to identify family
relationships by using genetic markers. The methods based on the analysis of Compositional Data
provide two original contributions in the field of relatedness research. The first contribution is
based on the use of ternary diagrams and scatterplots of log-ratio transformations. The second
contribution is based on log-ratio biplots derived from principal components analysis. On the
other side, statistical inference based on a likelihood ratio approach provides another contribution
for identifying three quarter siblings relationships.

2.1 Objectives of the core of the doctoral thesis

The objectives of this thesis can be enumerated as follows:

Obj. 1. Review or study the classical statistical methods based on identity by state/descent for
identifying family relationships.

Obj. 2. Use of the statistical methods from Compositional Data Analysis for relatedness research.

Obj. 3. Provide a statistical method for identifying three quarter sibling relationships.

These objectives have been addressed in three different publications that have been reviewed or
are in revision by external reviewers. Table 2.1 shows the relationship between the publications
and the objectives addressed in this thesis.

Objective
Research article 1 2 3

Graphics for relatedness research X X

A log-ratio biplot approach for exploring genetic relatedness
based on identity by state

X X

A likelihood ratio approach for identifying three quarter sib-
lings in genetic databases

X X

Table 2.1: Relationship between the objectives from the core of the thesis and the research
articles published or submitted.

15



16 CHAPTER 2. OBJECTIVES



Chapter 3

Methodology

In this chapter the main methods used in this doctoral thesis are described. Firstly, the statis-
tical methods from the field of Compositional Data Analysis used for relatedness research are
illustrated. We outline the basic principles of the log-ratio methodology, the geometric structure
of the simplex and the log-ratio principal component analysis, followed by an overview of the
classical methods for identifying family relationships based on identical by state/descent alleles.

3.1 Compositional Data

This section is a summary of the basis of the analysis of Compositional Data (CoDa). The exam-
ples, notation and organization of the following five subsections have been extracted with prior
consent from the doctoral thesis of Comas Cuf́ı (2019), whose text is based on the lecture notes
of Pawlowsky-Glahn et al. (2011) and the doctoral thesis of Mart́ın-Fernández (2001); Mateu-
Figueras (2003) and Vives-Mestres (2014). Further reading on the analysis of Compositional
Data can be found in the books Pawlowsky-Glahn and Buccianti (2011) and Pawlowsky-Glahn
et al. (2015).

Following on from the developments of Compositional Data in the last decades, a compositional
vector of D parts, x = (x1, x2, . . . , xD), is defined as a vector in which the only relevant infor-
mation is contained in the ratios between its components. All the components of the vector are
assumed strictly positive whose sum is constant. Hereafter, components are called parts and a
compositional vector is called a composition.

The assertion that all the relevant information is contained in the ratios implies that, if α is a
real positive number, then (x1, x2, . . . , xD) and (αx1, αx2, . . . , αxD) convey the same information
and are indistinguishable. Therefore, a composition is a class of equivalent compositional vectors
(Barceló-Vidal and Mart́ın-Fernández, 2016).

The constant sum constraint of Compositional Data can complicate the statistical analysis and
the interpretation of the data. For example, the classical correlation coefficient between two
components of a composition cannot be interpretable as usual. In fact, K. Pearson stated that
components with the same denominator provide a false or spurious correlation (Pearson, 1897).
This fact makes the interpretation of Compositional Data from a classical statistical point of
view difficult.

Consequently, Aitchison (1982, 1986) developed a specific methodology with the main idea that
Compositional Data represent parts of a total and therefore the only information they have is
the relative. That is, the only way to obtain information from one part is by comparing with
another part. This leads to the ratios between parts and for mathematical convenience to the
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analysis of log-ratios. Hence, it can be said that the analysis of Compositional Data is based on
the analysis of the log-ratios between the parts of a composition.

3.1.1 Basic concepts

Definition 3.1 A D-part composition is a vector (D × 1) whose components x1, x2, . . . , xD
are strictly positive real numbers (i.e. x1 > 0, x2 > 0, . . . , xD > 0), whose sum is constant
x1 + x2 + . . .+ xD = κ and have relative information.

Commonly, κ = 1 or κ = 100 if the data is transformed to proportions or percentages respectively.
It is worth noting that a composition do not necessarily sum a constant, data that is measured
in concentrations units such as mg/l or molar, and data that represent relative abundances such
as microbiome datasets are also compositional (Gloor et al., 2017).

Definition 3.2 The sample space of the compositions is the simplex SD, and is defined as

SD = {(x1, x2, . . . , xD)|xi > 0, i = 1, 2, . . . , D;
D∑

i=1

xi = κ}.

The 3-part compositions with κ = 1 (D = 3) are inscribed in an equilateral triangle in R3,
located at the perpendicular plane to the vector (1, 1, 1) (Figure 3.1, left). However, it is more
usual to represent the data in the ternary diagram (Figure 3.1, right), which is an equivalent
representation. A ternary diagram is an equilateral triangle whose points x = (x1, x2, x3) are
located to a distance x1 from the opposite side of the vertex X1, to a distance x2 from the
opposite side of the vertex X2 and to a distance x3 from the opposite side of the vertex X3. In
the case D = 4, the simplex is represented on a regular tetrahedron of height equals to one.

x1

x2

x3

x1 x2

x3

●

x3

x1x2

x

Figure 3.1: Equivalent representations of the 3-part compositions in R3 (left) and in the ternary
diagram (right).

In order to obtain the constant sum constraint κ, the composition is divided by the total sum of
the parts and multiplied by κ. This operation is known as closure.

Definition 3.3 For any vector of D real positive components x = (x1, x2, . . . , xD) ∈ RD+ the
closure of x is defined as:

C(x) =

(
κ · x1∑D
i=1 xi

,
κ · x2∑D
i=1 xi

, . . . ,
κ · xD∑D
i=1 xi

)
.
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From a compositional point of view, note that the closure operation does not modify the relative
information between the parts of a composition. The closure operation provides a criterion to
select one of the representatives of the equivalence class (Barceló-Vidal and Mart́ın-Fernández,
2016). The graphical representation of the closure operation is shown in Figure 3.2 (left): the
closure of x moves the point through the line (equivalence class) from the origin to x to the
intersection with the plane

∑
xi = κ. Instead of x, the new representative of the equivalence

class will be C(x).

*

*

C(x)

x
1

2 3

x’

     x

Figure 3.2: Left: Graphical representation of the closure operation. Right: Subcomposition
x′ ∈ S2 represented as a linear projection of x ∈ S3.

Because the analysis of Compositional Data relies on the relative information (ratios between
parts), it can be shown that all the log-ratios of a D-part composition can be obtained by the
D − 1 ratios xi/xD for i = 1, 2, . . . , D − 1 (Aitchison, 1986). Thus, the dimension of a D-part
composition is D − 1.

Frequently, attention is focused on a group of parts of a composition. Thus, ratios of parts
within the selected group are considered relevant, whereas ratios involving some part, not in
the group, are ignored. This corresponds to the definition of a subcomposition including only
the parts in this group. The graphical representation of the subcomposition in the simplex can
be considered as a composition of lower dimension obtained by projection. Figure 3.2 (right)
shows the subcomposition x′ ∈ S2 formed by the first two parts of x ∈ S3, this is the result of
projecting x into the side 12 from the vertex 3.

3.1.2 Principles of the analysis of Compositional Data

The statistical methods applied to Compositional Data should satisfy specific principles. These
principles should be coherent with the nature of Compositional Data. All principles of Compo-
sitional Data analysis must be based on the following general principle: “Compositional Data
quantitatively describe the parts of some whole and they provide only relative information be-
tween their components”. This general principle is embodied in the following particular princi-
ples: scale invariance, permutation invariance and subcompositional coherence (Aitchison, 1992).

The scale invariance principle states that the results of the analysis are the same for any mea-
sured unit of the composition. The analysis of ratios satisfies this principle, because in the ratio
x1/x2 = (λx1)/(λx2) the scaling factor λ cancels out. However, the order of the ratios is relevant,
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that is x1/x2 6= x2/x1. Hence, the log transformation is adequate for the analysis, log x1/x2,
because the inversion of the order of the components causes only a change of the sign. This
implies a symmetry with regard to the order of the parts.

The permutation invariance principle states that the conclusions of the analysis of Compositional
Data do not depend on the order of the parts. The results obtained are the same if the order of
the parts are changed.

The subcompositional coherence principle states that the results obtained in the analysis of a
subcomposition do not change the results obtained from the analysis of the full composition.
Note that the ratio of two components remains unchanged when we move from full composition
to any subcomposition. Therefore, as Compositional Data analysis is based on log-ratios, it
accomplishes this principle of subcompositional coherence

3.1.3 Transformations of the simplex to the real space based on log-ratios

In this section we show two common transformations of the simplex that allow to work in the co-
ordinates of the real space. These transformations are the additive log-ratio (alr) transformation
and the centered log-ratio (clr) transformation (denoted w and z). By using these transforma-
tions, it is possible to work with the ordinary operations in the real space as if you were in the
simplex. This is known as the principle of working in coordinates (Mateu-Figueras et al., 2011),
as we will see in section 3.1.5 .

Alr transformation

Aitchison (1986) defines the additive log-ratio transformation as:

Definition 3.4 Let x be a D-part composition, the additive log-ratio transformation of x ∈ SD
to w ∈ RD−1 is defined as

w = alr(x) =

(
log

x1
xD

, log
x2
xD

, . . . , log
xD−1
xD

)
.

The alr transformation is bijective and the inverse transformation is alr−1 that is defined as

xi =
expwi∑D−1

j=1 expwj + 1
(i = 1, 2, . . . , D − 1),

xD = 1−
(
D−1∑

i=1

xi

)
=

1
∑D−1

j=1 expwj + 1
.

A limitation of the alr transformation is the lack of symmetry, because the component of the
denominator of the log-ratio acquires a special attention in comparison with the others compo-
nents. In fact, it is possible to choose another component as a common denominator.

Clr transformation

Aitchison (1986) defines the centered log-ratio transformation as:

Definition 3.5 x be a D-part composition, the additive log-ratio transformation of x ∈ SD to
z ∈ RD is defined as

z = clr(x) =

(
log

x1
g(x)

, log
x2
g(x)

, . . . , log
xD
g(x)

)

where g(x) = (x1 · x2 · · ·xD)1/D is the geometric mean of the D compononents of x.
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In this case, the transformation is symmetric. The transformed data is located at the hy-
perplane V of RD that intersect with the origin and is orthogonal to (1, 1, . . . , 1), that is,
V = clr(SD) = {z ∈ RD;

∑D
i=1 zi = 0}. It implies another limitation, the covariance of the

clr coordinates is singular, since the sum of the components of the transformed vector is equals
to zero.

The clr transformation satisfies the scale and permutation invariance principles. Furthermore,
this transformation is bijective between the simplex and the hyperplane V and the inverse (clr−1)
is defined as

x = clr−1(z) = C(ez1 , ez2 , . . . , ezD).

3.1.4 The geometric structure of the simplex

The methodology of Compositional Data based on the analysis of log-ratios is equivalent to
defining an Euclidean metric structure in the simplex (Egozcue and Pawlowsky-Glahn, 2006;
Barceló-Vidal and Mart́ın-Fernández, 2016). In the simplex, standard operations and metrics
are not the same as in the real space. However, it is possible to define two operations in order to
find a way of working that is completely analogous. These operations are the perturbation and
powering. The perturbation is analogous to addition in real space and powering is analogous to
multiplication by a scalar in real space. Both require in their definition the closure operation.

Definition 3.6 Let x,x∗ be two D-part compositions. Then, the perturbation operation is
defined as:

x⊕ x∗ = C (x1x
∗
1, x2x

∗
2, . . . , xDx

∗
D)

Definition 3.7 Let x be a D-part composition and let α be a scalar in R. Then, the powering
operation is defined as:

α⊗ x = C(xα1 , xα2 , . . . , xαD)

Figure 3.3 shows the results of these operations in a sample of compositions in S3.

A

B C

A

B C

Figure 3.3: Left: Perturbation of the initial compositions ∗ by p = (0.1, 0.1, 0.8) that leads to ◦.
Right: Powering of the initial compositions ∗ by α = 0.2 that leads to ◦.

The perturbation and powering operators satisfy the properties required to give a vector space
structure to the simplex SD. The clr transformation defined in the former section is a linear
map from the vector space SD to the real (D − 1) subspace V of RD, since it holds
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clr(x⊕ y) = clr(x) + clr(y) and clr(α⊗ x) = α · clr(x),

for any x ∈ SD and α ∈ R.

This property allows to define in the simplex an inner product, a norm and a distance in cor-
respondence with the same standard operations defined in the subspace V of RD−1. All these
operations confer to simplex an Euclidean vector space structure that allows to work with Com-
positional Data in the simplex in the same manner as in the real space. Further reading on the
geometric structure of the simplex can be found on the books Pawlowsky-Glahn and Buccianti
(2011) and Pawlowsky-Glahn et al. (2015).

3.1.5 Ilr transformation: working in coordinates

Egozcue et al. (2003) define an isometry between SD and RD−1 by using the Aitchison distance.
The main motivation of this transformation is to overcome the limitations of the two previous
defined transformations: the non permutation invariance of the alr and the singular covariance
structure of the clr coordinates.

The ilr transformation appears naturally from the clr transformation. The condition
∑
zk = 0

satisfied by the components of the subspace V = clr(SD), indicate that the clr coordinates are
located in the hyperplane with normal vector (1, 1, . . . , 1). Thus, it is possible to choose an
orthonormal basis to identify any clr coordinate in the subspace V of dimension D − 1 of RD.

This procedure, clr transformation followed by change to orthonormal basis and orthogonal
projection to the subspace V , leads to an isometry between SD and RD−1 by considering the
Aitchison distance defined from the clr transformation. Egozcue et al. (2003) define this trans-
formation as follows:

Definition 3.8 Given an orthonormal basis from the simplex SD, (e1, e2, . . . , eD−1), and the

matrix of dimension (D − 1×D) in RD−1, Ψ =




clr(e1)
clr(e2)
. . .

clr(eD−1)


, the isometric log-ratio transfor-

mation of a composition x ∈ SD to a vector y ∈ RD−1 is

y = ilr(x) = clr(x) ·Ψ′.

In the same way as the alr and clr transformations, the ilr transformation has an inverse trans-
formation (ilr−1) and satisfies the three principles of the analysis of Compositional Data.

The ilr transformation is not unique, given that the orthonormal basis of SD is not specified
in its definition of isometry and therefore it is possible to choose the basis freely. The coordi-
nates of the compositions with respect to the orthonormal basis are just the ilr coordinates. The
ilr coordinates allow to work with compositions as usual (principle of working in coordinates,
Mateu-Figueras et al. (2011)). That is, it is possible to use the ordinary operations of the real
space in order to work with the Euclidean distance and to apply the ordinary inner product to
the ilr transformed data. Egozcue et al. (2003) provide the relationships between the three alr,
clr and ilr transformations.
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Figure 3.4: Left: Compositional lines in the simplex S3. Right: Equivalence of the compositional
lines in the real space R2.
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     k=2
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Figure 3.5: Parallel lines in the simplex. Left: log x2 − log x3 = k for k = −2, 0, 2. Right:
log x1 − 2 log x2 + log x3 = k for k = −4,−2, 0, 2, 4.

3.1.6 Geometry in the simplex

In this section, we present some Figures with the aim to show graphically that the geometry in
the simplex is different to the usual Euclidean geometry of the real space.

Figure 3.4 shows compositional lines in the simplex S3 and equivalent lines in the space of or-
thonormal coordinates. It is shown that the perpendicular lines of the real space 12 and 89 are
deformed in the constrained space. This phenomenon also occurs with angles. The right angle
between the segments 50 and 07 of the real space (Figure 3.4 right) is deformed in the simplex
(Figure 3.4 left).

Figures 3.5 and 3.6 show examples of parallel and orthogonal lines in the simplex S3 respectively.
From these Figures, it can be shown that the visualization of line, parallelism and orthogonality
in the real space is not valid in the space of Compositional Data, despite the fact that both are
Euclidean metric spaces.

Finally, Figure 3.7 shows some circumferences in the S3. In the same manner that occurs with
lines, the profiles of these compositional circumferences are not similar with the standard profiles
of circumferences in the real space. From an Euclidean point of view, the closeness of the cir-
cumferences to the border of the simplex draws distortions in the profiles. This is due to the fact
that distance between two nearby points located close to the border of the simplex is much larger
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Figure 3.6: Orthogonal lines in S3. Left: r1 : x2 = x3 i r2 : 2 log x1 − log x2 − log x3 = 0. Right:
r1 : log x1 − 3 log x2 + 2 log x3 = 0 i r2 : 5 log x1 − log x2 − 4 log x3 = 0.
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Figure 3.7: Circumferences in S3 of radius r = 0.5, 1, 2. Left: Center (◦) at (1/3, 1/3, 1/3) which
is the barycenter of the triangle. Right: Center (◦) at (2/6, 1/6, 3/6).

than the distance between two points with the same closeness located at the center of the simplex.

3.1.7 Log-ratio principal component analysis

Aitchison (1983) proposed log-ratio principal component analysis (PCA) for the exploration of
Compositional Data. The log-ratio PCA is usually performed by applying the centered log-ratio
transformation to the Compositional Data. A detailed derivation of this approach can be found
in Aitchison and Greenacre (2002) and Pawlowsky-Glahn et al. (2015). We briefly summarize
log-ratio PCA and biplot construction.

Let X be a matrix with n compositions in its rows, and having D parts (columns). Let Xl be
the log transformed compositions, that is Xl = ln(X). The clr transformed data can be obtained
by just centering the rows of this matrix, using the centering matrix Hr = I − 1

D11′, where I is
the identity matrix and 1 is a vector of ones. Then

Xclr = XlHr.

The rows of Xclr are subject to a zero sum constraint because Hr1 = 0. Now we column-center
the clr transformed data, producing a double-centered data matrix that has zero column and
row means:

Xcclr = HcXclr = HcXlHr,
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where Hc is the centering matrix Hr = I − 1
n11′. Matrix Xcclr is used as the input for a classical

principal component analysis. We perform PCA by the singular value decomposition:

Xcclr = UDV ′ = FpG
′
s,

with Fp = UD and Gs = V . Matrix Fp contains the principal components, and its first two
columns contain the biplot coordinates of the compositions. The columns of Gs are the eigen-
vectors of the covariance matrix of Xcclr, its first two columns contain the biplot coordinates of
the parts of the compositions.

The projection of supplementary compositions onto a given biplot can be accomplished by re-
gression (Graffelman and Aluja-Banet, 2003). The biplot coordinates, F̃p, of a matrix of supple-
mentary compositions, Y , can be found as:

F̃p = (G′sGs)
−1G′sYcclr,

where Ycclr contains the clr-transformed supplementary compositions, but centered with respect
to the compositions in X, that is

Ycclr = Yclr −
1

n
11′Xclr.

3.2 Relatedness research

This section presents an overview of the statistical methods for relatedness research based on
the principle of allele sharing analysis. A pair of individuals can share 0, 1 or 2 alleles for any
autosomal genetic marker. This sharing can be assessed either by state or by descent (pages
195-196; Laird and Lange (2010)):

• Two alleles are identical by state (IBS) if they are identical in terms of their DNA compo-
sition and do not necessarily come from a common ancestor.

• Two alleles are identical by descent (IBD) if they are derived from a common ancestor.

Then, by ignoring if the alleles of any pair of individuals are derived from a common ancestor,
the match of a pair of alleles can be considered as identity by state. Table 3.1 shows all the
possible combinations of the IBS alleles shared for a pair of individuals at a biallelic variant.

AA AB BB

AA 2 1 0
AB 1 2 1
BB 0 1 2

Table 3.1: Number of IBS alleles for possible combinations of genotypes.

In terms of relatedness, the larger the number of IBS alleles shared between a pair of individuals,
the more likely they are to be close related. For instance, a pair with the proportion of sharing
2 IBS alleles equals to 1 implies they are monozygotic twins or duplicated individuals in the
dataset. Otherwise, a pair with the proportion of sharing 1 IBS allele larger or equal to 1 sug-
gests they may have a parent-offspring relationship. A detailed approach to detect graphically
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these types of relationships is shown in section 3.2.1.

Whereas identity by state alleles can be quantified directly from genotypes, identity by descent
alleles are unobservable, since genetic data disregards which allele is inherited from the father
and which from the mother. Furthermore, identity by state does not imply identity by descent.
For example, Figure 3.8 shows a family tree in a particular genotype site, where � is the nomen-
clature of a male and © represents a female. Imagine that the genotypes from the parents are
αβ and AB, where α = A and β = B are identical by state. If we observe the genotype of
their children, a daughter has received the allele B from the mother and the allele α from the
father, whereas the other daughter has received the allele A from the mother and the allele β
from the father, and so, the full-siblings share 0 IBD alleles but share 2 IBS alleles. At this
point, the challenge is to infer identity by descent from only the genotype status. For this pur-
pose, section 3.2.2 shows the most common statistical methods to infer identity by descent alleles.

Figure 3.8: A family tree where the sharing IBD alleles is not equal to the sharing IBS alleles.

3.2.1 Identical by state analysis

Scatterplot of means and standard deviations of IBS alleles

Let n, m be the number of individuals and the number of genetic markers of the population
under analysis respectively. Abecasis et al. (2001) propose to display the means and standard
deviations of the IBS alleles of all the pairs of individuals in a scatterplot. Figure 3.9 (left) shows
an example of this approach for 165 individuals from the CEU population of the 1000 Genomes
Project (1000 Genomes Project Consortium et al. (2015), Section 3.2.3). The related pairs are
colored according to the relationships reported elsewhere (Pemberton et al., 2010). It can be
shown that the related individuals have the larger means of the IBS alleles. In fact, full-siblings
and parent-offspring relationships are the most outlying pairs, followed by second degree rela-
tionships that are located between unrelated pairs and full-siblings.

Scatterplot of the proportion of sharing of IBS alleles

Rosenberg (2006) represents IBS allele sharing data of all the pairs of individuals in a scatterplot
of the proportion of sharing 0 IBS alleles (p0) against the proportion of sharing 2 IBS alleles
(p2). Figure 3.9 (right) shows this representation for all the pairs of individuals from the CEU
population. Note that parent-offspring pairs are located in the Y-axis of the plot with p0 values
close to zero and the full-sibling pair is the most outlying pair.
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Figure 3.9: Left: Scatterplot of means and standard deviations of the IBS alleles for 13,530 pairs
of individuals from the CEU population. Right: Scatterplot of the proportion of sharing 0 IBS
alleles (p0) against the proportion of sharing 2 IBS alleles (p2) for 13,530 pairs of individuals from
the CEU population. PO: parent-offspring, FS: full-siblings, 2nd: second degree relationships,
UN: unrelated.

3.2.2 Identical by descent analysis

The graphical tools presented in Figure 3.9 are useful to identify the most outlying pairs of indi-
viduals as candidate familial relationships. However, to infer these relationships, the estimation
of the probabilities of sharing 0, 1 and 2 IBD alleles (k0, k1, k2, also referred to as Cotterman co-
efficients Cotterman (1941)) are of great help since each family relationship has different known
theoretical values (Table 3.2). For example, parent-offspring pairs have (k0, k1, k2) = (0, 1, 0) and
full-siblings have (k0, k1, k2) = (0.25, 0.50, 0.25). From these probabilities, the kinship coefficient
(φ = k1/4 + k2/2) is also widely used for relatedness research.

Probability of IBD Sharing
Type of Relative R φ k0 k1 k2
Monozygotic twins (MZ) 0 1/2 0 0 1
Parent-offspring (PO) 1 1/4 0 1 0
Full-siblings (FS) 1 1/4 1/4 1/2 1/4
Three-quarter siblings (3/4S) - 3/16 3/8 1/2 1/8
Half-siblings/ grandchild-grandparent/ 2 1/8 1/2 1/2 0
niece/nephew-uncle/aunt (2nd)
First cousins (FC) 3 1/16 3/4 1/4 0
Unrelated (UN) ∞ 0 1 0 0

Table 3.2: Degree of relationship (R), kinship coefficient (φ), and probability of sharing zero, one
or two alleles identical by descent (k0, k1, k2).

The theoretical IBD probabilities for each relationship can be deduced by using the inheritance
patterns in a family tree. For instance, the IBD probabilities of the full-siblings relationship can
be deduced as follows. Suppose that we label the parental genotypes as a/b and c/d. Then,
there are 4 possible children (a/c, a/d, b/c and b/d). The possible combinations of the IBD
status for them are shown in Table 3.3. Since each of these 16 possible genotype pairs is equally
likely, it can be deduced that the probability of sharing 0, 1 and 2 IBD alleles for full-siblings is
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(k0, k1, k2) = (4/16, 8/16, 4/16) = (0.25, 0.50, 0.25), as aforementioned.

a/c a/d b/c b/d

a/c 2 1 1 0
a/d 1 2 0 1
b/c 1 0 2 1
b/d 0 1 1 2

Table 3.3: The possible combinations of the IBD status of a pair of full-siblings given that the
parental genotypes are a/b and c/d.

Maximum likelihood estimation of the identity by descent probabilities

A detailed derivation of the maximum likelihood estimation of the Cotterman coefficients (k0, k1, k2)
is given by Thompson (1975, 1991) and Milligan (2003). Briefly, consider bi-allelic genetic vari-
ants with alleles A and B having allele frequencies p and q respectively. Let G1/G2 be the
genotypes for a pair of individuals, let kt with t = 0, 1, 2 be their IBD probabilities (shown in
Table 3.2) and let R be their family relationship. Then, the probability of observing G1/G2,
given R is:

P (G1/G2|R) = P (G1/G2|t = 0)k0

+P (G1/G2|t = 1)k1

+P (G1/G2|t = 2)k2.

(3.1)

The terms P (G1/G2|t = 0), P (G1/G2|t = 1) and P (G1/G2|t = 2) are the probabilities of ob-
serving each pair of genotypes given the number of IBD alleles (Table 3.4).

G1/G2 t = 0 t = 1 t = 2

AA/AA p4 p3 p2

AA/AB 2p3q p2q 0
AA/BB p2q2 0 0
AB/AB 4p2q2 pq 2pq

Table 3.4: Possible pairs of biallelic genotypes and the probability of each pair given the number
of alleles identical by descent (t). We assume that the order of the genotypes is irrelevant, i.e.
the probabilities for G1/G2 and G2/G1 are the same.

Thus, regarding the Equation (3.1), the likelihood function of the Cotterman coefficients can be
defined as follows:

L(k0, k1, k2) =
∏

m

P (G1/G2|R)

where m is the total number of genetic markers in the dataset. The maximum likelihood estimate
is found by searching the maximum over the parameter space. This maximum is not trivial since
the parameter space have the following constraints: k0 +k1 +k2 = 1, 0 ≤ ki ≤ 1 and k21 ≥ 4k0k2.
The last inequality follows from the assumption of absence of inbreeding (Thompson, 1975). The
function solnp from the R-package Rsolnp (Ghalanos and Theussl, 2015) solves general nonlinear
programming problems and allows for inequalities and nonlinear equalities, and can handle the
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maximization problem. Otherwise, it is possible to simplify the problem by transforming the
likelihood function in log-ratio coordinates, since the parameter space is located in the simplex
(Graffelman and Galván-Femeńıa, 2016). In this way, the problem can be solved using R’s
general-purpose optimization routines such as optim and nlminb.

Other methods to estimate identity by descent probabilities

Purcell et al. (2007) use a method-of-moments approach to estimate the probabilities of sharing
0, 1 and 2 IBD alleles for all the pairs of individuals from the same homogeneous population.
The algorithm is implemented in the PLINK software. Alternatively, the approach of the KING
software (Manichaikul et al., 2010) is focused on modeling genetic distances between pairs of
individuals as a function of their allele frequencies and kinship coefficient. Another option is the
PC-relate algorithm (Conomos et al., 2016) based on residuals from linear regression models that
include the top principal components as predictors. Both KING and PC-relate algorithms are
robust estimators of the IBD probabilities in the presence of population structure (individuals
from different ethnicities). On the other hand, the RELPAIR program infers relationships based
on a Markov chain on underlying states of IBD status with the calculation of likelihood ratios
for putative and alternative relationship (Boehnke and Cox, 1997; Epstein et al., 2000).

Scatterplot of the estimated identity by descent probabilities

Once the identity by descent probabilities are estimated for each pair of individuals, the scatter-
plot of k̂0 and k̂1 reveals characteristic clusters for each family relationships. Figure 3.10 shows
the scatterplot of k̂0 and k̂1 for all the pairs of individuals from the CEU population. The IBD
probabilities are estimated with the PLINK software. Note that the related pairs of individuals
are located close to their theoretical values.
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Figure 3.10: Scatterplot of k̂0 and k̂1 for 13,530 pairs of individuals from the CEU population.
PO: parent-offspring, FS: full-siblings, 2nd: second degree relationships, UN: unrelated.

3.2.3 Genome wide databases

The following genetic databases are used in this doctoral thesis:
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• HGDP-CEPH diversity panel (Rosenberg et al., 2002). This dataset contains 377 mi-
crosatellites genotyped in 1056 individuals from 52 world-wide populations. The dataset is
available from https://rosenberglab.stanford.edu/diversity.html.

• 1000 Genomes Project (1000 Genomes Project Consortium et al., 2015). The Phase III of
this dataset contains 81.7 million genetic variants (mainly SNPs) in 2,504 individuals from
26 world-wide populations. The dataset is available from ftp://ftp.1000genomes.ebi.

ac.uk/vol1/ftp/release/20130502/.

• GCAT Genomes For Life cohort project (Obón-Santacana et al., 2018; Galván-Femeńıa
et al., 2018). This dataset contains almost 2 million SNPs in 5,000 individuals from Eu-
ropean ancestry. The dataset is available from the European Genome-Phenome archive
(EGA) https://ega-archive.org/studies/EGAS00001003018.

3.2.4 Simulations

Simulations of genetic markers and related individuals have formed an important part of this
doctoral thesis. The simulations have been useful in order to evaluate the developed statistical
methods for identifying family relationships.

To simulate related individuals from an empirical dataset, we identify a subset of approximately
unrelated individuals with kinship coefficient below 0.05. From these individuals, we construct
artificial pedigrees by sampling alleles across markers according to Mendelian laws. For example,
parent-offspring pairs are simulated by first drawing two parents at random from the unrelated
subset. Then, from each parent, we draw one allele at random from each genetic marker and
join the alleles to generate a child. The process is repeated in order to generate many random
parent-offspring pairs. To generate full-siblings or other pairs of relationships, the pedigree is
simulated in an analogous manner.

On the other hand, to simulate biallelic genetic markers with allele frequencies p and q, we
sample each marker from a multinomial distribution under the Hardy-Weinberg assumption
(p2 + 2pq + q2 = 1). We consider a minor allele frequency (MAF) of 0.5 for all markers in
order to obtain maximally polymorphic variants. In this way, the set of simulated variants are
all independent and contains only unrelated individuals. From these variants, we follow the
procedure of constructing artificial pedigrees as previously described to obtain individuals with
known relationships.

3.3 Software

The statistical methods, data mining, data visualization and estimation of IBS/IBD alleles based
on microsatellites were carried out with the R statistical software (R Core Team, 2019). The
genetic data manipulation, filtering and estimation of IBS/IBD alleles based on SNPs were carried
out with PLINK 1.90 (Chang et al., 2015). The source R and PLINK codes used in this doctoral
thesis are available from github: https://github.com/ivangalvan/.

https://rosenberglab.stanford.edu/diversity.html
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
https://ega-archive.org/studies/EGAS00001003018
 https://github.com/ivangalvan/


Chapter 4

Research articles

4.1 Molecular Ecology Resources

This first article accomplishes with the objectives Obj. 1 and Obj. 2 described in 2.1. In sum-
mary, the classical graphical methods for relatedness research based on identity by state/descent
are reviewed. Furthermore, ternary diagrams and scatterplots of isometric log-ratio transforma-
tions are proposed to identify family relationships.

This article has been published in Molecular Ecology Resources journal.
Volume: 17, Issue: 6, Pages: 1271-1282, Submitted: May 2016, Accepted: March 2017.
DOI: 10.1111/1755-0998.12674.
Impact factor: 7.332 (Q1). Journal Citation Reports Ranking: 30/298 (Biochemistry &
Molecular Ecology); 10/164 (Ecology); 7/50 (Evolutionary Biology).
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Abstract

Studies of relatedness have been crucial in molecular ecology over the last decades.

Good evidence of this is the fact that studies of population structure, evolution of social

behaviours, genetic diversity and quantitative genetics all involve relatedness research.

The main aim of this article was to review the most common graphical methods used in

allele sharing studies for detecting and identifying family relationships. Both IBS- and

IBD-based allele sharing studies are considered. Furthermore, we propose two additional

graphical methods from the field of compositional data analysis: the ternary diagram and

scatterplots of isometric log-ratios of IBS and IBD probabilities. We illustrate all graphical

tools with genetic data from the HGDP-CEPH diversity panel, using mainly 377

microsatellites genotyped for 25 individuals from the Maya population of this panel. We

enhance all graphics with convex hulls obtained by simulation and use these to confirm

the documented relationships. The proposed compositional graphics are shown to be

useful in relatedness research, as they also single out the most prominent related pairs.

The ternary diagram is advocated for its ability to display all three allele sharing probabili-

ties simultaneously. The log-ratio plots are advocated as an attempt to overcome the

problems with the Euclidean distance interpretation in the classical graphics.

K E YWORD S

compositional data analysis, identical by state/descent, isometric log-ratio, microsatellite,

relatedness, ternary diagram

1 | INTRODUCTION

Statistical methods for the analysis of the genetic relationships

between individuals of a population are of great relevance for

molecular ecology (Blouin, 2003). Studies of relatedness are crucial

for studying population structure, evolution of social behaviour,

genetic diversity, quantitative genetics, etc. It is known that the

estimation of quantitative genetic parameters in wild populations

is less biased and more precise if we dispose of pedigree informa-

tion (B�er�enos, Ellis, Pilkington, & Pemberton, 2014). The role of

relatedness for selective breeding is also recognized. Loughnan,

Smith-Keune, Jerry, Beheregaray, and Robinson (2016) recommend

low levels of relatedness and high levels of neutral genetic diver-

sity to form a base population for selective breeding. The

exclusion of duplicated individuals and close relatives is a previous

quality control filter used in studies of population structure

(Gonder et al., 2015). Relatedness estimation is also important for

conservation programmes, and the performance of several estima-

tors has been compared in that context (Oliehoek, Windig, van

Arendonk, & Bijma, 2006). It plays an important role in structuring

societies with fusion–fission dynamics (Croft et al., 2012;

Snyder-Mackler, Alberts, & Bergman, 2014; Spencer et al., 2015),

can bias estimates of allele frequencies (Hansen, Nielsen, & Mens-

berg, 1997) and violates the assumption of independent individuals

in trait-gene association studies (Foulkes, 2009). Thus, statistical

methods that can verify documented or uncover undocumented

family relationships in the database are important tools in

molecular ecology.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2017 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

Received: 27 May 2016 | Revised: 15 March 2017 | Accepted: 21 March 2017

DOI: 10.1111/1755-0998.12674

Mol Ecol Resour. 2017;17:1271–1282. wileyonlinelibrary.com/journal/men | 1271

Compositional methodology and statistical inference of family relationships 33



Relatedness investigations can be carried out in an entirely

numerical manner by inspecting estimated IBS (identity by state) and

IBD (identity by descent) probabilities, likelihood ratios or confusion

matrices (Boehnke & Cox, 1997; Epstein, Duren, & Boehnke, 2000).

Graphics greatly facilitate the interpretation of the results of related-

ness studies and are increasingly being used (Abecasis, Chemy,

Cookson, & Cardon, 2001; Pemberton, Wang, Li, & Rosenberg,

2010; Rosenberg, 2006). The main aim of this article was to summa-

rize the state of the art of the graphical methods used in relatedness

research. Relatedness investigations are based on allele sharing, and

we will consider techniques that use IBS alleles as well as those

using IBD alleles. A plot of the means against the standard devia-

tions of the IBS counts is a powerful tool to detect relatedness (Abe-

casis et al., 2001). We explore this tool in detail and establish the

domain of this graphic from a mathematical point of view. Plots of

the proportions of markers with 0, 1 or 2 IBS counts (p0, p1 or p2)

are often used to assess the existence of family relationships (Rosen-

berg, 2006). Nevertheless, if the researcher is interested in identify-

ing the degree of relatedness, plotting the probabilities of sharing 0,

1 or 2 IBD alleles (k0, k1 or k2) is the best strategy. The IBD probabil-

ities depend directly on relatedness and enable us to accurately infer

the type of relationship. In addition to the former graphical methods,

we propose to use graphics from compositional data analysis (CoDA)

for both IBS and IBD allele sharing studies. Due to the fact that the

proportions (p0, p1, p2) and the probabilities (k0, k1, k2) are con-

strained to sum to one, it is possible to apply all the graphical and

analytical CoDA techniques introduced by Aitchison (1986) and

developed posteriorly by Pawlowsky-Glahn and Buccianti (2011).

Two graphics, commonly used in CoDA, are of particular relevance

for relatedness studies: the ternary diagram (also known as a de

Finetti diagram in genetics) and a scatterplot of log-ratios. We show

the ternary diagram to be useful for plotting the proportions of the

IBS counts and for plotting the estimated Cotterman coefficients

(IBD probabilities). Moreover, the theoretical IBD sharing probabili-

ties for the standard family relationships can be used as reference

points in the ternary diagram (Thompson, 2000). Furthermore, the

CoDA techniques allow us to introduce the isometric log-ratio coor-

dinates (ilr-coordinates) of the vectors p = (p0, p1, p2) and

k = (k0, k1, k2), which we can represent in a scatterplot. These ilr-

coordinates allow us to measure the degree of similarity between

two vectors of IBS proportions or IBD probabilities. The graphics we

propose are of universal value and can be used in any relatedness

study that concerns diploid individuals.

The remainder of this article is organized as follows. Section 2

gives an overview of the IBS allele sharing analysis and the graphical

methods used to detect family relationships. Section 3 presents the

basic principles of IBD estimation and the most common graphics

used for relatedness estimation in the IBD context. The former sec-

tions also detail the graphical methods from the field of CoDA used

in IBS-IBD approaches: the ternary diagram and the scatterplot of

log-ratios. Section 4 presents a way to enhance IBS and IBD graph-

ics with convex hulls that express the degree of uncertainty about a

relationship. Section 5 presents a case study with individuals from

the Maya population. Finally, Section 6 summarizes the principal

conclusions of this article and the pros and cons of each graphical

method are discussed.

2 | IBS STUDIES

IBS studies disregard if the alleles for any diploid individual are

derived from a common ancestor. IBS allele sharing concerns the

number of matches between the alleles of the genotypes of two

individuals. Two diploid individuals can share 0 (e.g., A1/A1 and A2/

A2 or A1/A2 and A3/A3), 1 (e.g., A1/A1 and A1/A2 or A1/A2 and

A1/A3) or 2 (e.g., A1/A1 and A1/A1) IBS alleles for a specific genetic

marker, and we will refer to these as IBS counts. To detect family

relationships in a given population of n individuals and m genetic

markers, the number of matches between IBS alleles (the IBS counts)

is considered for each pair of individuals across genetic markers.

That is, we move from a data set of n individuals and m genetic

markers to a data set of
n
2

� �
pairs of individuals with the informa-

tion of the IBS counts for m genetic markers. There are different

ways to deal with this type of data as described below. First, we

focus on the plot of means and standard deviations of the IBS

counts (Abecasis et al., 2001). Second, we detail the plot of the pro-

portions of the IBS counts (Rosenberg, 2006). To conclude this sec-

tion, graphics from CoDA (Aitchison, 1986; Pawlowsky-Glahn &

Buccianti, 2011) are presented.

To illustrate the different IBS graphics that are introduced in this

Section, we use five pairs of individuals with the information of IBS

counts and IBS proportions for 377 microsatellites (see Table 1). The

individuals are from the Maya population which we will analyse in

Section 5. We consider a parent-offspring (PO) pair, a full-sib (FS)

pair, a half-sib (HS), avuncular (AV) or grandparent-grandchild (GG)

pair, a pair of first cousins (FC) and a pair of unrelated individuals

(UN). We discuss the different graphics in the sections below.

2.1 | ð�x; sÞ-plot
Let xijk be the number (0, 1 or 2) of shared IBS alleles between indi-

vidual i and j for the genetic marker k. Abecasis et al. (2001) pro-

posed to compute the mean (�xij) and variance (s2ij ) over K genetic

markers. The plot �xij versus sij reveals characteristic clusters that cor-

respond to the different family relationships for a given population.

The statistics �xij and s2ij are constrained due to the limited num-

ber of outcomes (0, 1 or 2), and we proceed to derive their range of

variation (Figure 1a). As an example, we consider a table with all

possible outcomes of the allele sharing counts (0, 1 or 2) for a set of

100 markers. The rows of this table represent possible pairs of indi-

viduals. There are 3100 combinations (rows), if the order of the out-

comes is considered relevant. However, in terms of means or

standard deviations, the order of the IBS counts (0, 1 or 2) over the

different markers is irrelevant but their multiplicity is important. For

example, a pair of individuals sharing 1 IBS allele for the first marker

and 0 for all other markers will have the same mean and variance as

1272 | GALV�AN-FEMEN�IA ET AL.

34 CHAPTER 4. RESEARCH ARTICLES



a pair of individuals sharing 1 IBS allele for the k-th marker and 0

for all others. Mathematically, the combinations of the IBS counts

for a pair of individuals form a multiset (Stanley, 1997, Section 1.2)

of cardinality m (the number of markers) made of a basic set of car-

dinality k = 3 (the outcomes 0, 1 and 2). The possible number of

(�x; s) pairs in the plot can be no larger than the number of multisets

of cardinality k, where the latter is given by the multiset coefficient

k
m

� �� �
¼ k þm� 1

k

� �
; (1)

Thus, for 100 genetic markers there will be at most

3
100

� �� �
¼ 3þ 100� 1

100

� �
¼ 102

100

� �
¼ 5151 different (�x; s)

pairs. Figure 1a shows the means and standard deviations of the

5151 combinations of IBS counts for 100 genetic markers. The fig-

ure has the shape of an umbrella and represent the domain of the

(�x; s)-plot. For empirical data, it will be impossible to observe a ð�x; sÞ
point outside the umbrella region. It is clear that the mean of the

IBS counts ranges from zero to two. The maximum variance equals

one and is reached when the array of IBS counts has fifty 0 IBS alle-

les and fifty 2 IBS alleles, whereas the minimum variance equals zero

and is reached when the array of IBS counts has either one hundred

0 IBS alleles, one hundred 1 IBS allele or one hundred 2 IBS alleles.

The red points on the right hand curve of the “umbrella” corre-

spond presumably to parent–offspring relationships for having a

mean larger than 1 and low variance. The first point of the curve

TABLE 1 Computations for five pairs of individuals from the Maya population. Mean and standard deviation of IBS counts, proportion of
sharing 0, 1 and 2 IBS alleles (p0, p1, p2) and estimated Cotterman coefficients (k̂0; k̂1; k̂2) are shown

Type of relative

IBS studies IBD studies

Mean
Standard
deviation p0 p1 p2 k̂0 k̂1 k̂2

PO 1.34 0.48 0.002 0.650 0.348 0.009 0.991 0.000

FS 1.32 0.60 0.073 0.532 0.395 0.214 0.617 0.169

HS, AV or GG 1.09 0.64 0.160 0.581 0.259 0.447 0.553 0.000

FC 1.00 0.67 0.225 0.546 0.229 0.657 0.343 0.000

UN 0.86 0.67 0.308 0.526 0.166 0.731 0.269 0.000
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(b) Family relationships
Parent−offspring (PO)

Full-sibs (FS)
Half-sibs (HS), Avuncular (AV)
or Grandparent−grandchild (GG)
First cousins (FC)

Unrelated (UN)F IGURE 1 a. Plot of means and
standard deviations of all possible

combinations of IBS counts for a table of
100 genetic markers. The red curve shows
the pairs of individuals that are parent-
offspring. The green point represents a
monozygotic twin pair or a pair of
duplicated individuals. b. Plot of means
versus standard deviations of the IBS
counts for five pairs from the Maya
population
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with mean equal to 1 IBS allele and standard deviation equal to 0

IBS alleles corresponds to an array of one hundred ones. The second

point of the curve corresponds to an array of 99 markers with 1 IBS

alleles and one marker with 2 IBS alleles, and so on. In other words,

this red curve represents the pairs of individuals who have a mean

larger than or equal to 1 and the smallest standard deviation of all

possible IBS counts. This can be related with the fact that the proba-

bility of sharing 1 IBD allele between a parent-offspring equals 1, as

we will see in the next Section (Table 2). For parent-offspring pairs,

we have that �xij �1 because children inherit at least 1 IBS allele from

their parents. And for monozygotic twins (MZ) or duplicated individ-

uals, we have �xij ¼ 2 and sij = 0 (green point in Figure 1a).

Figure 1b shows the (�x; s) plot for the five Maya pairs in Table 1.

The larger the mean of the IBS counts for any pair of individuals, the

more likely they are to be closely related. The PO pair (red point) is

located on the right hand curve of the umbrella, the FS pair (blue point)

with mean larger than 1 is separated from second- and third-degree

family relationships (violet and gold points respectively), whereas, the

unrelated individuals have the smallest mean (green point).

2.2 | (pi, pj)-plots

Let xij be the vector of the IBS counts between individual i and j as

large as the number of the genetic markers in the data set. Let p0,

p1 and p2 be the proportions of 0, 1 and 2 IBS alleles, respectively,

for each pair of individuals. Rosenberg (2006) proposed a graphical

method for relatedness research by plotting the proportion of shar-

ing 2 IBS alleles (p2) versus the proportion of sharing 0 IBS alleles

(p0) for all pairs of individuals from a given population. Similarly, Sun

(2012) uses IBS proportions for relatedness research by plotting p1

versus p0. In fact, any combination of the three proportions could be

plotted for relatedness research. We refer to these graphics as (pi,

pj)-plots (for i, j = 0, 1, 2 and i < j) were pi corresponds to the X-axis

of the plot and pj to the Y-axis.

Monozygotic twins (MZ) or duplicated individuals are easy to

identify in the (pi, pj)-plots because they have p2 close to 1. PO pairs

have low values of p0 and are also easy to detect visually because

they are on the p1 or p2-axis. FS usually have large values of p2 and

are separated from unrelated individuals. Second degree and third

degree are more difficult to detect because positions in the plot

depend on the allele frequencies of the population under study.

Figures 2a, b and c show the (p0, p2)-, (p0, p1)- and (p1, p2)-plots for

the five Maya pairs (Table 1). Notice that the distance between pairs

of individuals is not the same in the three plots. For instance, the FS

pair (blue point) is most close to the PO pair (red point) in the

(p0, p2)-plot, but closer to the HS pair (violet point) in the (p0, p1)-

plot. If the distances between pairs of individuals are different

depending on the plotted proportions, then it is not appropriate to

draw conclusions about the family relationship between individuals

from the (pi, pj)-plots.

2.3 | Ternary diagrams

Let p be the vector (p0, p1, p2) of proportions of the IBS counts.

Because the three components of p sum to one (p0 + p1 + p2 = 1),

we can plot the vector p in a ternary diagram. Mathematically, the

set of the vectors of proportions p = (p0, p1, p2) forms the simplex,

S3. Figure 3 shows the ternary diagram for the vectors of propor-

tions for the five Maya pairs (Table 1). The PO pair (red point) is

located on the opposite side of the vertex p0; the FS pair (blue point)

has the largest value for p2 and is the closest to the p2 vertex. The

UN pair (green point), FC pair (gold point) and the HS, AV or GG pair

TABLE 2 Cotterman coefficients for the different type of family
relationship and degree of relatedness

Type of relative Degree k0 k1 k2

Monozygotic twins (MZ) 0 0 0 1

Parent-offspring (PO) 1 0 1 0

Full-siblings (FS) 1 1/4 1/2 1/4

Half-siblings (HS)/avuncular

(AV)/grandchild-grandparent (GG)

2 1/2 1/2 0

First cousins (FC) 3 3/4 1/4 0

Unrelated (UN) ∞ 1 0 0
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p0
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p0
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p 2
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p 1
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p 2

Family relationships
Parent−offspring (PO)

Full-sibs (FS)
Half-sibs (HS), Avuncular (AV)
or Grandparent−grandchild (GG)
First cousins (FC)

Unrelated (UN)

F IGURE 2 (pi, pj)-plots for five individuals from the Maya population. a. Plot of the proportion of sharing 0 IBS alleles (p0) versus the
proportion of sharing 2 IBS alleles (p2): (p0, p2)-plot. b. Plot of the proportion of sharing 0 IBS alleles (p0) versus the proportion of sharing 1 IBS
allele (p1): (p0, p1)-plot. c. Plot of the proportion of sharing 1 IBS allele (p1) versus the proportion of sharing 2 IBS alleles (p2): (p1, p2)-plot.
[Colour figure can be viewed at wileyonlinelibrary.com]
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(violet point) have lower values of p2. The UN pair has the lowest

values for p2 and p1 and is closest to the p0 vertex. The main advan-

tage of this graphical tool is that it represents the three proportions

p0, p1 and p2 simultaneously in contrast to the (pi, pj)-plots that rep-

resent only two of them.

2.4 | ilr-plots

Aitchison (1986) stated that it is not meaningful to interpret the dis-

tances between two vectors of proportions in the ternary diagram

as if we were in an Euclidean space. Aitchison (1986) defines a new

distance based on the log-ratio of the components of the vectors of

proportions. This distance, jointly with the perturbation and power-

ing operators (analogous to translation and scalar multiplication in

the real space, respectively), forms the structure of the simplex in a

two-dimensional metric space (Aitchison, Barcel�o-Vidal, Mart�ın-

Fern�andez, & Pawlowsky-Glahn, 2000; Pawlowsky-Glahn & Buc-

cianti, 2011). Thereby, the vectors of proportions p = (p0, p1, p2) can

be expressed in coordinates using any orthonormal basis defined

in the simplex (Egozcue, Pawlowsky-Glahn, Mateu-Figueras, &

Barcel�o-Vidal, 2003). These coordinates are called isometric log-ratio

coordinates (ilr-coordinates). The distance between two vectors of

proportions is calculated as the Euclidean distance between their ilr-

coordinates. The ilr-coordinates of a vector of proportions depend

on the orthonormal basis used in the simplex. The most commonly

used ilr-coordinates z0, z1 and z2 of a vector of proportions

(p0, p1, p2) are given by

z0¼
z01¼ 1ffiffi

2
p ln p2

p1

� �
z02¼ 1ffiffi

6
p ln p1p2

p20

� �
8<
: z1¼

z11¼ 1ffiffi
2

p ln p2
p0

� �
z12¼ 1ffiffi

6
p ln p0p2

p21

� �
8<
: z2¼

z21¼ 1ffiffi
2

p ln p1
p0

� �
z22¼ 1ffiffi

6
p ln p0p1

p22

� �
8<
: ; (2)

Figures 4a, b and c plot the ilr-coordinates for the five Maya pairs

(Table 1). Notice that the distance between any pair of points is

exactly the same in the three graphics, irrespective of the ilr-

coordinates (z0, z1 and z2) that are plotted. The PO pair (red point)

in Figures 4a–c is an outlying pair. The FS pair (blue point) is also

isolated from pairs of second and third degree of relationships. The

degree of relationship decreases with the z02, z11 and z21 ilr-coordi-

nates (close relatives with a first-degree relationship (PO, FS) have

larger values for these coordinates than second-degree relationships

(HS, AV, GG)).

3 | IBD STUDIES

Studies of relatedness based on IBD alleles are based on the proba-

bilities that a pair of individuals shares 0, 1 or 2 IBD alleles. These

probabilities are commonly referred to as Cotterman’s coefficients

(Cotterman, 1941) and denoted by the vector of proportions k = (k0,

k1, k2). Table 2 shows the values of the Cotterman coefficients for

some standard relationships. Cotterman’s coefficients can be esti-

mated by the maximum-likelihood method (Milligan, 2003; Weir,

Anderson, & Hepler, 2006). The maximum-likelihood estimates reveal

the most likely relationship for a pair given the observed genotype

data. Let R represents a possible relationship between two individu-

als with genotypes G1 and G2, respectively. The likelihood of R is

defined by the probability of observing G1 and G2 given relationship

R. This probability depends on the allele frequencies of the popula-

tion under study and is conditioned by the Cotterman coefficients.

This likelihood is calculated across loci to obtain the most likely val-

ues (estimates) of the Cotterman coefficients. These estimates pro-

vide a first indication of the possible relationship between a pair of

individuals. A hypothesis test is recommended to confirm or refute

this relationship (Garc�ıa-Magari~nos, Egeland, L�opez-de-Ullibarri,

Hjort, & Salas, 2015). More details are explained by Wagner, Creel,

and Kalinowski (2006). Under the assumption of absence of inbreed-

ing, the inequality k21 �4k0k2 applies and constrains the Cotterman

coefficients (Thompson, 1991).
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or Grandparent−grandchild (GG)
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F IGURE 3 Ternary diagram of the IBS
proportions for five pairs from the Maya
population. [Colour figure can be viewed at
wileyonlinelibrary.com]
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Analogously to the vector of proportions p = (p0, p1, p2) of the

IBS counts, Cotterman’s coefficients also satisfy k0 + k1 + k2 = 1.

We can use the same graphical techniques described for p = (p0, p1,

p2) to identify relatedness from the estimated Cotterman coefficients

k̂. The Cotterman coefficients can be represented in a ðk̂i; k̂jÞ-plot, in
a ternary diagram or in an ilr-plot with the ilr-coordinates z0, z1 and

z2, defined in the Equation (2), substituting pi for k̂i. With the aim of

describing each graphical method used in IBD studies, we compute

maximum-likelihood estimates of the Cotterman coefficients for the

five Maya pairs (Table 1).

3.1 | ðk̂i; k̂jÞ-plots
In the literature, the estimated Cotterman coefficients are plotted in

different ways to identify relatedness. Nembot-Simo, Graham, and

McNeney (2013) use the ðk̂0; k̂1Þ-plot. Similarly, Moltke and

Albrechtsen (2014) use the ðk̂1; k̂2Þ-plot. The remaining possibility,

the ðk̂0; k̂2Þ-plot, could be also considered. Figure 5a shows the plot

for the five Maya pairs (Table 1). The grey curve in the ðk̂0; k̂1Þ-plot
corresponds to the equation k21 ¼ 4k0k2. This curve jointly with the

hypotenuse and the vertical axis delimits the feasible region

k21 �4k0k2. PO pairs are points located on the k1-axis with values

close to 1, FS pairs are located close to the centre of the grey curve

according to the theoretical IBD probabilities (Table 2) and second

and third degree pairs are located around the centre of the hypote-

nuse. UN pairs theoretically have k0 = 1 and are located between

the hypotenuse and the grey curve, near to the vertex k̂0 ¼ 1.

Finally, the origin of the ðk̂0; k̂1Þ-plot is the position for any MZ pair.

As previously shown for IBS studies with the (pi, pj)-plots, only two

of the three Cotterman coefficients are plotted and the relative posi-

tions and distances between points vary depending on the (k̂i; k̂j)-plot

used. For this reason, we propose graphics from CoDA.

3.2 | Ternary diagrams

The theoretical IBD probabilities for the standard family relationships

can be represented in a ternary diagram (Thompson, 2000). These

probabilities form reference points against which the empirical esti-

mates can be compared. Figure 5b shows the ternary diagram for

the estimated Cotterman coefficients for the five Maya pairs
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(Table 1). Most pairs in Table 1 are close to their theoretical IBD

probabilities given in Table 2. However, values of k1 are larger than

expected for the FS, HS, AV and notably, the UN pair (see the Dis-

cussion section). The domain has the shape of an arrowhead inside

the ternary diagram. The curve delimiting the arrowhead from below

corresponds to the inequality k21 �4k0k2.

3.3 | ilr-plots

It has been shown that the maximum-likelihood estimates of the

Cotterman coefficients in the simplex are the same as the estimates

obtained by maximizing the likelihood in ilr-coordinates (Graffelman

& Galv�an-Femen�ıa, 2016). With the aim of establishing reference

zones for the standard family relationships in the ilr space, we com-

pute the maximum-likelihood estimates of the Cotterman coeffi-

cients from the ilr-coordinates defined by the Equation (2) and we

plotted the z1 ¼ ðz11; z12Þ ilr-coordinates as is shown in Figure 6. All

the family relationships have values lower than � ffiffiffiffiffiffiffiffiffiffiffiffið2=3Þp
lnð2Þ for

z12 which corresponds to the grey line in the graph. This line corre-

sponds to the curve shown in the former graphs (Figure 5a and b).

Due to the fact that some Cotterman coefficients equals 0, some of

the (or both) ilr-coordinates tend to +/� infinity. Thus, given that it

is impossible to represent the point, we are limited to indicate the

direction of the infinity in the ilr-plot for each type of family rela-

tionship. Regarding Figure 6, PO pairs have a large variability of val-

ues, either positive or negative for z11; FS have values close to 0 for

z11 and � ffiffiffiffiffiffiffiffiffiffiffiffið2=3Þp
lnð2Þ for z12. HS, AV, GG and FC are located

between PO, FS and UN. UN pairs have negative values of z11 which

correspond to the green point of the left hand. If present, MZ pairs

are points with positive values of z11 located on the right hand side

of the plot.

4 | UNCERTAINTY IN IBS/IBD GRAPHICS

With the previously described graphics, one can try to infer the rela-

tionship of a pair for which the relationship is not documented, or

try to confirm the documented relationships. Such graphical infer-

ence is hampered by the fact that the statistics represented in the

graphs (means and standard deviations of the IBS counts, p0, p1, p2,

k0, k1, k2) are subject to uncertainty. For a given sample,

relationships are not represented by points, but by zones. Some

insight into this uncertainty and the corresponding zones can be

obtained by simulation. Ideally, this would require a large sample for

which a subset of unrelated individuals can be identified. From these

individuals, by sampling alleles across markers according to Men-

delian laws, the reproductive process can be simulated allowing us

to generate artificial children, leading to artificial PO pairs, FS pairs

and artificial pairs of any other desired relationship. For example to

simulate a PO pair we sample two UN individuals at random without

replacement from the database. From each UN individual, we sample

one allele at random from each marker and join the alleles to form a

child. The process of sampling UN pairs and child generation is

repeated many times, generating many artificial PO pairs. We can

calculate the IBS/IBD statistics of the artificial pairs, and add these

to the graphics of the previous sections by representing them indi-

vidually or with a convex hull. A convex hull for a given set of points

X is the unique convex polygon whose vertices are points from X

and that contains all points of X (de Berg, van Kreveld, Overmars, &

Schwarzkopf, 2000). By generating a large number of artificial pairs

and representing these in the IBS/IBD graphics of interest, the zones

corresponding to the different relationships can be approximated.

Such simulations are conditional on the observed allele frequencies

and can quantify the uncertainty in a graphical assessment of the

relationship to some extent. We illustrate this with examples in the

next section where all graphics are enhanced with hulls based on 80

PO, 48 FS, 120 second degree, 36 FC and 1256 UN artificially gen-

erated pairs.

5 | CASE STUDY

We applied all the graphical methods detailed in the previous

sections using empirical data extracted from a world-wide data set

from the Noah A. Rosenberg Research lab at Stanford University

(Rosenberg et al., 2002). This world-wide database is derived from

the Human Genome Diversity Cell Line Panel (HGDP, Cavalli-Sforza,

2005). The genetic information is given by 377 microsatellites geno-

typed for 52 human populations around the world. We used all 25

available individuals of the Maya sample to illustrate all graphical

methods for relatedness research. All the family relationships present

in this sample were reported by Rosenberg (2006). All the Figures

UN MZFS

PO

FC/HS

−10

−5

0

−10 0 10

z11 =
1
2

log
k2
^

k0
^

Family relationships

Parent−offspring (PO)

Full-sibs (FS)
Half-sibs (HS), Avuncular (AV)
or Grandparent−grandchild (GG) 
First cousins (FC)
Unrelated (UN)

z 12
 =

1 6
lo

g
k 2^

k 0^ k 1^2

F IGURE 6 Ilr-coordinates z1 ¼ ðz11; z12Þ
of the estimated Cotterman coefficients
(k̂0,k̂1,k̂2) for five pairs of individuals from
the Maya population. [Colour figure can be

viewed at wileyonlinelibrary.com]

GALV�AN-FEMEN�IA ET AL. | 1277

Compositional methodology and statistical inference of family relationships 39



presented throughout this article are made with the R software (R

Core Team, 2015) using the R packages ggplot2 (Wickham, 2009)

and ggtern (Hamilton, 2015).

5.1 | IBS graphics

Figure 7 shows all IBS graphics for all pairs of the Maya population.

In the ð�x; sÞ-plot (Figure 7a), the points with the smallest standard

deviation close to the grey curve are two PO pairs. The relationships

of first and second degree are the points with a mean above 1. Note

that some pairs of FC are mixed with UN pairs. Figure 7b (the

(p0, p2)-plot) clearly separates the family relationships of first and

second degree from the UN pairs. In the ternary diagram (Figure 7c),

PO pairs are points on the opposite side of the vertex p0, meaning

that the p0 is close to 0. The FS pair is the point closest to the ver-

tex p2, which has the largest p2; the violet points represent the fam-

ily relationships of second degree are separated from the green

points representing UN pairs. In Figure 7d, the first ilr-coordinate

(z11) clearly discriminates first-degree relatives from UN pairs. Pairs

with larger values for z11 are more likely to correspond to related

individuals. PO pairs are extreme outliers because they have p0 val-

ues close to 0 which increase the first coordinate of the correspond-

ing log-ratio. The scatterplot of the log-ratios is seen to produce a

larger degree of separation between FS and PO pairs, and between

first-degree relationship pairs and all other pairs. The convex hulls

for the simulated related pairs in Figure 7 are seen to enclose the

sample estimates of the PO, FS, HS and FC pairs and so confirm the

assigned relationships.

5.2 | IBD graphics

We estimated IBD probabilities for all pairs of the Maya population.

All IBD graphics are shown in Figure 8. The ðk̂0; k̂1Þ-plot (Figure 8a)

separates the first, second and some pairs of third degree of related-

ness. In the ternary diagram of k̂ (Figure 8b), it is easy to identify

PO pairs at the vertex of k̂1, a FS pair close to the barycenter of the

triangle and other family relationships of second degree on the

opposite side of the k̂2 vertex. UN pairs are on the k0 – k1 edge and

tend towards the k0 vertex. Third-degree pairs are mixed with unre-

lated individuals. In the ilr-plot (Figure 8c), the pairs with a close

family relationship tend to have larger values of z11. The family rela-

tionships of the first degree (FS and PO) are located according to

the directions indicated in Figure 6. The ilr-plot clearly separates out

these FS and PO relationships from all other pairs. Notice that Fig-

ure 8a and b show only one pair with a second degree relationship

(the violet point), whereas in Figure 8c, there are two visible violet

pairs. The IBD graphics were also amplified with convex hulls of arti-

ficially generated related pairs to show the approximate expected
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positions for the different relationships. These hulls mainly confirm

the assigned relationships. In ilr-coordinates, PO hulls do not capture

all observed PO pairs (see Discussion).

6 | DISCUSSION

The main aim of this article was to review all graphical methods used

in relatedness research. We have distinguished graphics based on

IBS and IBD allele sharing. Plotting means versus standard deviations

of the IBS counts allows us to detect monozygotic twins (MZ), par-

ent-offspring (PO) and full-sibs (FS) pairs. However, higher degree

relationships are more difficult to detect visually. The distances

between unrelated and related pairs depend on the allele frequency

distribution of the markers under study. The larger the heterozygos-

ity in a population, the larger the distances between related and

unrelated individuals are. A disadvantage of this mean-variance plot

is that there are no fixed reference points for the standard relation-

ships. Such reference points could eventually be found by calculating

expectations of the mean and the variance of the IBS counts. These

do depend on the allele frequency distribution and will therefore

depend on the population that has been sampled, and on the distri-

bution of the allele frequencies in that population. The (pi, pj)-plots

allow easy detection of MZ pairs (or duplicated individuals) because

they have p2 values close to 1, and PO pairs have low values of p0

and are also easy to detect. FS pairs are located between PO pairs

and the pairs with large values of p0. However, it remains hard to

detect relationships of the second and third degree. The (pi, pj)-plots

neither have a fixed reference position for the standard relation-

ships. Moreover, as has been noted in Section 2, the Euclidean dis-

tance between two pairs in a (pi, pj)-plot is not invariant with respect

to the chosen index (0, 1 or 2), for example, is not the same in a

(p0, p1) and a (p0, p2)-plot. ðk̂i; k̂jÞ-plots have, in comparison with

(pi, pj)-plots, the advantage that fixed reference positions for the

standard relationships exist, as given in Table 2. This is of great prac-

tical value when inferring relationships. Moreover, IBD plots are

more reliable for classifying relationships because they show a larger

degree of separation between the different relationships than their
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IBS counterparts. This is clearly visible when one compares Figures 2

with 5a, 3 with 5b, 7b with 8a and 7c with 8b. However, the IBD-

based ðk̂i; k̂jÞ-plots suffer from the same problem as their IBS coun-

terparts: the Euclidean distances between pairs (and reference

points) depend on the index (0, 1 or 2) that is used.

We comment on some peculiarities of the HGDP-CEPH database

analysed in the article. We found the high estimate of k1 (0.27) in

Table 1 for the reported UN pair to be not too unusual for Maya

UN pairs, being the median of k1 0.17 for UN pairs of this popula-

tion. The relatively high k1 estimates are probably to some extent

due to inbreeding, as the South American populations had the lar-

gest medians of k1 for UN pairs. However, for many other less

inbred populations k1 estimates of UN pairs had a large median too,

in the range 0.1–0.2. We suggest the database could be affected by

a certain degree of sample contamination, as this will increase the

number of heterozygote calls, leading to overestimated IBD (Andoh,

Sato, Sakamoto, Yoshida, & Ohtaki, 2010).

We continue with some remarks on the graphics from CoDA

proposed in this article. We advocate the ternary diagram as an

alternative for the (pi, pj)-plots because it clearly shows all three

proportions simultaneously. MZ twins are close to the vertex p2;

PO pairs are easy to identify on the opposite side of the vertex p0.

FS pairs usually have large values of p2 and are separated from

unrelated pairs which have lower values of p2. We also advocate

the ternary diagram for IBD studies for the same reasons: all three

estimated IBD probabilities are represented in one single graph with

all three k̂i axes. The theoretical IBD probabilities (Table 2) are

easily added for use as reference points. The ternary diagram

resolves the indeterminacy of the Euclidean distances between pairs

due to the choice of axes observed above in (pi, pj) and (ki, kj) scat-

terplots. However, the interpretation of Euclidean distances in the

ternary diagram remains a tricky issue, because the simplex is a

constrained space. We note that the Euclidean distance is regarded

inadequate for the comparison of compositions, and for this reason,

we have considered isometric log-ratio coordinates of IBS and IBD

probabilities. The Euclidean distances between the pairs in ilr-coor-

dinates correspond to Aitchison distances between (p0, p1, p2) (or

(k0, k1, k2)) compositions. The Aitchison distance is considered to be

an adequate metric for representing compositions (Pawlowsky-

Glahn, Egozcue, & Tolosana-Delgado, 2015, Chapter 3). Plotting the

ilr-coordinates of the IBS proportions is useful for detecting related

individuals because usually unrelated individuals are concentrated in

a cloud of points and most outlying individuals correspond to

related pairs. Plotting the ilr-coordinates of the estimated Cotter-

man coefficients gives reference zones over the ilr space for the

different relationships (Figure 6). Standard family relationships can

be inferred depending on the values of z11 and z12. UN pairs are

mainly represented in the scatterplot of the isometric log-ratios of

IBD probabilities by a central cloud of points around (�10, �5)

(Figure 8c) but also by points close to the upper limit of the second

ilr-coordinate (� ffiffiffiffiffiffiffiffiffiffiffiffið2=3Þp
lnð2Þ). A small change in the tolerance or

the initial point of the maximization algorithm can greatly influence

the final position of an UN pair. Both IBS- and IBD-based log-ratio

plots show a strong discrimination of PO and FS pairs which typi-

cally appear as outliers in these plots. We also note that all infer-

ence on relationships in all presented graphical methods relies on

the judgement of the analyst, who interprets distances between

points in a graph. Depending on the sample size of the study, the

number of markers used for the genotyping and the distributions of

their allele frequencies, those distances will be subject to some

degree of uncertainty which complicates graphical inference on

relationships. By simulating artificial related pairs using the geno-

types of unrelated pairs of the database, convex hulls for the

expectation of the standard relationships can be obtained, which

are conditional on the observed sample allele frequencies. These

convex hulls assess the degree of uncertainty that can be expected

for the different related pairs and are helpful for confirming puta-

tive relationships. In the present work, the convex hulls are limited

by the fact that they assumed independent markers. This may

explain why some related pairs are outlying with respect to their

corresponding convex hulls. The accuracy of the convex hulls

depends on the sample size, and in particular on the number of UN

individuals in the sample from which it is generated. More accurate

convex hulls may be obtained if linkage disequilibrium is taken into

account and artificial pairs are generated by sampling from haplo-

types instead of by sampling individual markers independently. Con-

vex hulls of PO pairs in ilr-coordinates often do not capture all

observed PO pairs (Figure 8). We suggest this might be due to a

small sample size combined with numerical instability. The position

of a PO pair in ilr-coordinates has a high variability and depends on

the tolerance and initial point used in the maximization of the likeli-

hood (Graffelman & Galv�an-Femen�ıa, 2016). If the sample size is

small, or the number of simulated pairs is small, the PO hull many

not cover the full area compatible with PO pairs. It is worth

remarking that PO and FS convex hulls do not intersect each other

and do not overlap with the rest of the hulls, having a valuable dis-

crimination power (Figures 7 and 8). We think the current simulated

convex hulls are helpful to assess uncertainty but of limited value

and see a clear need for methods of formal statistical inference on

relationships by means of hypothesis testing and confidence regions

(Garc�ıa-Magari~nos et al., 2015).

7 | SOFTWARE

R functions for making the graphics in this manuscript are available

from the Dryad Digital Repository: https://doi.org/10.5061/dryad.

2532d.
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4.2 Frontiers in Genetics

The second article accomplishes with the objectives Obj. 1 and Obj. 2 described in 2.1. In
summary, we propose a log-ratio biplot approach for identifying family relationships using only
identity by state alleles. We show that the allele sharing statistics can be considered as a 6-part
composition, and then, the proposed log-ratio biplots have a higher dimensionality than the
two-dimensional classical graphical methods. This points to new graphics that have been shown
useful for relatedness research.
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The detection of cryptic relatedness in large population-based cohorts is of great

importance in genome research. The usual approach for detecting closely related

individuals is to plot allele sharing statistics, based on identity-by-state or identity-by-

descent, in a two-dimensional scatterplot. This approach ignores that allele sharing

data across individuals has in reality a higher dimensionality, and neither regards the

compositional nature of the underlying counts of shared genotypes. In this paper

we develop biplot methodology based on log-ratio principal component analysis that

overcomes these restrictions. This leads to entirely new graphics that are essentially

useful for exploring relatedness in genetic databases from homogeneous populations.

The proposed method can be applied in an iterative manner, acting as a looking glass for

more remote relationships that are harder to classify. Datasets from the 1,000 Genomes

Project and the Genomes For Life-GCAT Project are used to illustrate the proposed

method. The discriminatory power of the log-ratio biplot approach is compared with

the classical plots in a simulation study. In a non-inbred homogeneous population

the classification rate of the log-ratio principal component approach outperforms the

classical graphics across the whole allele frequency spectrum, using only identity by

state. In these circumstances, simulations show that with 35,000 independent bi-allelic

variants, log-ratio principal component analysis, combined with discriminant analysis,

can correctly classify relationships up to and including the fourth degree.

Keywords: allele sharing, composition, identity by state, identity by descent, log-ratio transformation

1. INTRODUCTION

The detection of pairs of related individuals in genomic databases is important in many areas
of genetic research. In population-based gene-disease association studies, the assumption of
independent observations which is usually made in the statistical modeling of the data, may be
violated due to related individuals. Cryptic relatedness can lead to an increased false positive rate
in association studies, in particular if related individuals are oversampled (Voight and Pritchard,
2005). In conservation genetics, unrelated individuals are carefully selected in breeding programs
in order to maximize genetic diversity (Oliehoek et al., 2006). In quality control of genetic variants
produced by high-throughput techniques, accidental duplication of samples in genetic studies
can be detected by a relatedness analysis (Abecasis et al., 2001). In ecology, samples of species
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often contain an excess of close relatives. This can lead to biased
estimates of population-genetic parameters, lower the precision
of their estimates, and inflated type 1 error rates of tests for
genetic equilibria (Wang, 2018). In practice, most relatedness
investigations are based on allele-sharing statistics such as the
average number of identical-by-state (IBS) alleles shared by a pair
of individuals over a set of loci, or by estimating the probabilities
of sharing 0, 1, or 2 alleles identical-by-descent (IBD; Thompson,
1975, 1991), known as Cotterman’s coefficients (Cotterman,
1941). Plots of these sharing statistics typically show clusters that
correspond to unrelated pairs (UN), parent-offspring pairs (PO),
full sibs (FS), half sibs (HS), monozygotic twins (MZ), avuncular
pairs (AV), first cousins (FC), grandparent-grandchild (GG), or
more remote relationships (see Figures 1A–C).

All these methods collapse the data to two statistics, that can
summarize relatedness in two dimensions. Classical plots are
the mean vs. the standard deviation of the shared number of
alleles over loci [the (m, s) plot, see Figure 1A], the fractions
of loci for which a pair of individuals shares 0 or 2 IBS
alleles [the (p0, p2) plot, see Figure 1B], or the estimated

probabilities of sharing 0 or 1 allele IBD [the (k̂0, k̂1) plot, see
Figure 1C]. However, all allele sharing statistics are estimated
from the genotype data. For a pair of individuals with bi-allelic
variants, there exist six possible pairs of genotypes, and their
counts over the k variants determine the IBS allele sharing
statistics. From this perspective, the observed genotype sharing
data consists of vectors of six elements, that, when expressed
in percentage form, occupy a five dimensional space. This
suggests that the classical approaches of collapsing the data
into two dimensions by plotting the summary statistics may
not extract all information about relatedness that is present
in the data. In this paper we propose to explore the data in
five dimensions by using log-ratio principal component analysis
(PCA), which is specially designed for analyzing compositional
data (Aitchison, 1983). A log-ratio PCA allows us to construct
comprehensive biplots that uncover themain relatedness features
of the data.

Biplots are widely used in genetic research, in particular for
the graphical representation of quantitative traits of genotypes
in plant genetics (Anandan et al., 2016; Pandit et al., 2017;
Sharma et al., 2018). In relatedness research, a PCA of bi-allelic
genetic variants, coded in 0, 1, 2 format (for AA, AB, and
BB respectively) is often used to investigate the existence of
population substructure, that is, remote genetic relatedness.
The plots obtained by this kind of PCA are, in principle,
biplots, though often the genetic variants are omitted in such
plots because there are too many of them. Substructure is also
often investigated by multidimensional scaling (MDS) of allele
sharing distances between individuals. The resulting MDS maps
only represent individuals, and some authors prefer the term
monoplots for such graphics (Gower et al., 2011). If MDS is
based on the Euclidean distances, then a covariance-based
PCA and MDS are in fact equivalent (Mardia et al., 1979). The
MDS plots, PCA biplots without variable vectors for the genetic
variants, are particularly popular in substructure investigations
in human genetics (Jakobsson et al., 2008; Sabatti et al., 2009;
Pemberton et al., 2010, 2013; Wang et al., 2010).

The biplot approach proposed in this paper differs from
the classical applications described above in several ways. We
propose a biplot of the genetic data of pairs of individuals, that
represents artificially related pairs of a reference set of given
familial relationships, generated by a respampling of the genetic
data. The empirically observed pairs are used in a supplementary
way, and are projected onto the reference biplot. The data matrix
used in this biplot is not a (0, 1, 2) genetic data matrix, neither
a distance matrix of allele sharing distances, but consists of
vectors of counts of genotype patterns [(AA,AA), (AA,AB), etc.]
which we treat as compositions, and we therefore use a log-ratio
approach. More details are given in the section 2 below.

An important additional advantage of using log-ratio PCA in
this context is that it allows us to explore the data iteratively with
a peel and zoom procedure. A first log-ratio PCA may clearly
reveal a cluster of FS pairs. Once identified, the corresponding
pairs can be removed from the database, and log-ratio PCA can
be repeated on the remaining pairs. The second analysis will focus
more closely onmore remote relationships that may be present in
the database, and thereby act as a magnifying glass for the latter.
The aforementioned classical graphics do not have this property,
as they are invariant under removal of a relationship category.

The remainder of this paper is organized as follows. In the
section 2 we provide background on relatedness research and log-
ratio PCA, and show how to construct biplots that are useful for
relatedness research. In the section 3 we study the discriminative
power of log-ratio PCA and compare this with the classical
plots in a simulation study. We also describe two empirical
examples of ourmethod with data from two different population-
based datasets; a next generation sequencing dataset from the
1,000 Genomes Project (The 1000 Genomes Project Consortium,
2015) and a genome-wide SNP array technology dataset from
the GCAT Genomes For Life Cohort Study of the Genomes of
Catalonia (Galván-Femenía et al., 2018; Obón-Santacana et al.,
2018). A discussion finishes the paper.

2. METHODS

We first summarize some basic methods for relatedness research
(section 2.1), then give a brief account of log-ratio PCA
(section 2.2), and finally show how log-ratio PCA can be used
in relatedness research (section 2.2).

2.1. Relatedness Research
We briefly review some fairly standard procedures that are
currently used in relatedness research. Relatedness investigations
are focused on the extent to which alleles are shared between
individuals. Two individuals can share 0, 1, or 2 alleles for
any autosomal variant. Alleles can be identical by state (IBS)
or identical by descent (IBD). A pair of individuals share IBS
alleles if they match irrespective of their provenance; whereas
they share IBD alleles only if they come from a common ancestor.
Table 1 shows all the possible combinations of the IBS alleles
shared for a pair of individuals at a biallelic variant. Considering
k biallelic variants, each pair of individuals has a vector of 0,
1, and 2 IBS counts of length k. In IBS studies, the means (m)
and standard deviations (s) of the vector of the IBS allele counts

Frontiers in Genetics | www.frontiersin.org 2 April 2019 | Volume 10 | Article 341

48 CHAPTER 4. RESEARCH ARTICLES



Graffelman et al. Biplots for Relatedness Research

FIGURE 1 | Classical graphics for relatedness research and log-ratio PCA biplot. Plots show the CEU sample of the 1000G project. IBS/IBD statistics were calculated

over a set of 26,081 complete, LD-pruned autosomal SNPs with MAF above 0.4, and HWE exact test p-value above 0.05. (A) Scatterplot of the mean and standard

deviation of the number of IBS alleles. (B) Scatterplot of the fraction of variants sharing two (p2) against the fraction sharing zero (p0) IBS alleles. (C) Scatterplot of the

estimated probability of sharing one (k̂1) against the estimated probability of sharing zero (k̂0) IBD alleles. (D) log-ratio PCA biplot.

(Abecasis et al., 2001), or the proportions of variants sharing
0, 1, and 2 IBS alleles (denoted p0, p1, and p2 respectively,
Rosenberg, 2006) can be plotted (see Figures 1A,B). These plots
reveal characteristic clusters corresponding to MZ, PO, FS, UN,
and other pairs. Alternatively, in an IBD based approach, the
probability of sharing 0, 1, or 2 IBD alleles for a pair of individuals
(usually denoted by k0, k1, and k2 and referred to as Cotterman’s
coefficients) can be represented in a scatterplot (see Figure 1C,
Nembot-Simo et al., 2013). The Cotterman coefficients can be
estimated by the method of moments (Purcell et al., 2007),
maximum likelihood (Thompson, 1991; Milligan, 2003; Weir
et al., 2006), or robust estimation methods (the KING program,
Manichaikul et al., 2010). In IBD studies, reference values for
the standard relationships are available (see Table 2). Related
pairs can also be distinguished, albeit at lower resolution, by
using the co-ancestry coefficient defined as θ = k1/2 + k2 or
the kinship coefficient defined as φ = θ/2. Galván-Femenía
et al. (2017) give an overview of graphics used in relatedness
research. Figure 1 shows a panel plot of some standard graphics
used in IBS and IBD studies for all the pairs of individuals from
the CEU population of the 1.000 Genomes project. These plots
distinguish UN, PO, FS, and second degree pairs. Alternatively, a
Markov-chain approach with the calculation of likelihood ratios

TABLE 1 | Number of IBS alleles for possible combinations of genotypes.

AA AB BB

AA 2 1 0

AB 1 2 1

BB 0 1 2

for putative and alternative relationship has been developed by
Epstein et al. (2000; the Relpair program) and by McPeek and
Sun (2000; the Prest-plus program). Throughout this paper we
employ the classical notion of degree of relationship, shown in
the second column of Table 2, with PO and FS being considered
first degree, HS, GG and AV, second degree, FC third degree, first
cousins once removed fourth degree, second cousins fifth degree
and second cousins once removed sixth degree, and so on.

2.2. Log-Ratio Principal Component
Analysis
Aitchison (1983) proposed log-ratio principal component
analysis (PCA) for the exploration of compositional data. Many
successful applications of log-ratio PCA have been described in
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TABLE 2 | IBD probabilities for standard relationships.

IBD probabilities

Type of relative R φ k0 k1 k2

Monozygotic twins (MZ) 0 1/2 0 0 1

Full-siblings (FS) 1 1/4 1/4 1/2 1/4

Parent-offspring (PO) 1 1/4 0 1 0

Half-siblings |

grandchild-grandparent |

2 1/8 1/2 1/2 0

niece/nephew-uncle/aunt

(HS,GG,AV)

First cousins (FC) 3 1/16 3/4 1/4 0

Unrelated (UN) ∞ 0 1 0 0

Degree of relationship (R), kinship coefficient (φ), and probability of sharing zero, one, or

two alleles identical by descent (k0, k1, k2).

the literature, notably in geology. We briefly summarize log-
ratio PCA and biplot construction (see Pawlowsky-Glahn et al.,
2015 for a comprehensive account). Log-ratio PCA is usually
performed by applying the centered log-ratio transformation to
the compositional data, and we will follow that approach here.
Let X be a matrix with n compositions in its rows, and having
D parts (columns). Compositional data can be defined as strictly
positive vectors for which the information of interest is in the
ratios between the components (Aitchison, 1986). We consider
the centered log-ratio transformation (clr) of a composition x (a
row of X) given by

clr(x) =

[

ln

(

x1

gm(x)

)

, ln

(

x2

gm(x)

)

, · · · , ln

(

xD

gm(x)

)]

, (1)

where gm(x) is the geometric mean of the components of the
composition x. Let Xℓ be the log transformed compositions, that
is Xℓ = ln (X) with the natural logarithmic transformation
applied element-wise. The clr transformed data can be obtained
by just centering the rows of this matrix, using the centering
matrixHr = I− 1

D11
′. Then

Xclr = XℓHr , (2)

The rows of Xclr are subject to a zero sum constraint because
Hr1 = 0. If there are no additional linear constraints, then Xclr

will have rankD− 1. We now column-center the clr transformed
data, producing a double-centered data matrix that has zero
column and row means:

Xcclr = HcXclr = HcXℓHr , (3)

whereHc is the centering matrixHc = I− (1/n)11′. Matrix Xcclr

is used as the input for a classical principal component analysis.
We perform PCA by the singular value decomposition:

Xcclr = UDV′ = FpGs
′, (4)

with Fp = UD and Gs = V. Matrix Fp contains the
principal components, and its first two columns contain the
biplot coordinates of the compositions. The columns of Gs

are the eigenvectors of the covariance matrix of Xcclr, its first
two columns contain the biplot coordinates of the parts of
the compositions. We use sub-indexes p and s to distinguish
principal and standard biplot coordinates. We will need to
project supplementary compositions onto a given biplot (see
section 3). This can be accomplished by regression (Graffelman
and Aluja-Banet, 2003). The biplot coordinates, F̃p, of a matrix of
supplementary compositions, Y, can be found as

F̃p =
(

Gs
′Gs

)−1
Gs

′Ycclr, (5)

where Ycclr contains the clr-transformed supplementary
compositions, but centered with respect to the compositions in
X, that is

Ycclr = Yclr −
1

n
11′Xclr. (6)

Wewill construct a biplot of genotypic reference compositions by
using Equation (4), and project empirical genotype compositions
onto the biplot by using Equations (5) and (6).

2.3. Log-Ratio PCA of Genotype Sharing
Data
For bi-allelic variants with alleles A and B, there exist six possible
pairs of genotypes whose counts over k variants can be laid out
in a triangular array shown in Table 3, where kij refers to the
number of variants that have i B alleles for one individual, and
j B alleles for the other individual. Consequently, each pair can be
represented by a vector of six counts which can be expressed as a
composition by division by its total (closure):

x = (k00, k10, k20, k11, k21, k22)/k. (7)

The total number of variants is given by k =
∑

i≥j kij. For PO

pairs this vector has, in theory, a structural zero, k20 = 0, because
PO pairs share at least one IBS allele. However, for empirical
data k20 = 0 is, with large k, almost never observed due to
the existence of some mutations and genotyping error. Given n
individuals, we construct matrix X with q = 1

2n(n − 1) pairs in
its rows, and propose to study relatedness by a log-ratio PCA of
this q×6matrix of compositions. This will allow the construction
of a biplot, where each pair of individuals is represented by a
point, and each part of the clr transformed composition by a
vector. A drawback of the representation of pairs of individuals in
a log-ratio PCA biplot is that the type of relationship cannot be
inferred if it is undocumented. Without additional analysis one
does not know for sure whether observed clusters correspond
to FS, HS, or other pairs. We resolve this by first identifying a
subset of approximately unrelated individuals in the database,
having a co-ancestry coefficient with other individuals that is
below 0.05. We next simulate pairs of related individuals of
known relationships by constructing pedigrees from this subset,
applying the Mendelian inheritance rules. For example, PO pairs
are simulated by first drawing two parents at random from the
unrelated subset. A child is then simulated by drawing one allele
at random from both these parents. The process is repeated in
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TABLE 3 | Lower triangular matrix layout with counts for all possible genotype

pairs.

AA k00

1st indiv. AB k10 k11

BB k20 k21 k22

AA AB BB

2nd indiv.

All possible genotype pairs for a bi-allelic genetic variant. kij represents the number of

genetic variants with i and j B alleles for a pair of individuals.

order to generate many random PO pairs. FS, HS, and pairs of
other relationships are simulated in an analogous manner. This
process is based on a re-sampling the alleles of the observed
individuals. The artificially generated data set forms a reference
set or training set against which the empirically observed data can
be compared. This reference set is generated conditionally on the
allele frequencies of the observed sample. We now first apply log-
ratio PCA to the pairs of the reference set (X), and construct a
biplot of the reference set. The empirically observed pairs (Y) are
projected onto this PCA biplot and their relationship is inferred,
according to which simulated type of relationship is most close
to the empirical pair. This can be done in a quantitative way by
classifying all empirical pairs with linear discriminant analysis
(LDA) (Johnson and Wichern, 2002), using the simulated pairs
as a training set.

3. RESULTS

In this section we first validate the proposed methodology with
some simulations, comparing the log-ratio PCA approach with

the well-known aforementioned (m, s), (p0, p2), and (k̂0, k̂1) plots,
and then show two examples with empirical genetic data.

3.1. Simulations
We simulated 35,000 independent genetic bi-allelic variants by
sampling from a multinomial distribution under the Hardy-
Weinberg assumption, using a minor allele frequency (MAF)
of 0.5 for all variants. Using Mendelian inheritance rules, 100
independent pairs of each type of relationship were simulated.
We assume a homogeneous population without mutation and
genotyping error, generating simulated data sets that are free of
Mendelian inconsistencies. The classical plots and the log-ratio
PCA biplot of a simulation are shown in Figure 2. This figure
shows that first and second degree pairs are easily identified
by all methods. We will therefore focus on third and higher
degree relationships which are harder to distinguish as they tend
to blur in the plots. We investigated the effect of MAF and
number of SNPs on the classification rate of our procedure, using
different numbers of principal components for classification of
third through sixth degree pairs (100 of each). Figure 3 shows
the classification rates obtained as a function of the minor allele
frequency (MAF), the number of SNPs and the number of
principal components used. These figures show, as expected, that
the classification rate increases with the MAF and the number of

SNPs. The simulations show that all five components are needed
at low MAF, where more components increase the classification
rate. At high MAF (0.40–0.50) there is little or no benefit in using
more than two components. With 35,000 SNPs at 0.50 MAF the
classification rate is around 95% irrespective of the number of
components. With 35,000 SNPs at 0.10 MAF the classification
rate varies from below 50% with one component through 93%
using all five components. We report the false positive rates in
Table S1; No UN or 6th degree individuals were misclassified as
4th degree or lower, and only 1.8% of the 5th degree pairs are
misclassified as 4th degree. The simulations show that IBS based
log-ratio PCA can discriminate higher degree relationships if a
sufficient number of independent highly polymorphic variants is
available. In the light of the simulations, we decided to use three
principal components for classification with high MAF variants
for the empirical data sets described in section 3.3.

3.2. Method Comparison
We compare our method with aforementioned classical
procedures for identification of related pairs. Figure 4 shows
the classification rate as a function of the number variants with
MAF 0.50 for four methods: the two IBS-based methods, the
(m, s) plot and the (p0, p2) plot; one IBD-based method, the (k̂0,

k̂1) plot, using the KING estimator (Manichaikul et al., 2010);
and the log-ratio PCA approach proposed in this paper. These
classification rates were obtained by averaging over 25 replicates
of the simulations, for each value of the MAF and the number
of variants. It is clear that the log-ratio PCA approach (using
three principal components) gives the best classification rates for
all relationships. There is little difference in classification rate
for third degree relationships, which are relatively more easy to
classify. Interestingly, in terms of classification rate the (m, s)
and (p0, p2) plots are seen to be fully equivalent, as they have
exactly the same classification rate profile. Posteriorly, we found
these statistics to be related by the equations m = 1 − p0 + p2
and s =

√

p0(1− p0)+ p2(1− p2)+ 2p0p2. As expected,
classification rate increases with the number of variants. The
results suggest that for all four methods 25,000 variants with
MAF 0.50 are sufficient to almost perfectly classify PO, FS,
second, third, and fourth degree relationships. The difference
in classification rate between the log-ratio PCA approach
and the conventional methods is larger for the more remote
relationships. This simulation concerns a relatively ideal dataset
with independent variants and maximally polymorphic variants.
For empirical data sets, the independence of the variants can
be approximately achieved by LD pruning variants. In practice,
many variants have a low MAF. We therefore also investigated
the effect of theMAF on the discriminatory power of the different
methods, by simulating variants with different MAFs. Figure 5
shows how the classification rate varies as a function of the MAF,
using a fixed number of 5.000 bi-allelic polymorphisms. The
log-ratio PCA approach, using five principal components, is seen
to outperform the classical plots over the full MAF range.

3.3. Empirical Data Sets
In this section we use log-ratio PCA for a relatedness study
of two genomic data sets. We use the CEU population of
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FIGURE 2 | Classical graphics and log-ratio PCA biplot for simulated samples. 100 pairs of each type of relationship [UN, sixth, fifth, fourth, third (FC), second (HS),

FS, and PO] were generated using 35,000 independent bi-allelic variants with minor allele frequencies of 0.5, assuming Hardy-Weinberg equilibrium. (A) Scatterplot of

the mean and standard deviation of the number of IBS alleles. (B) Scatterplot of the fraction of variants sharing two (p2) against the fraction sharing zero (p0) IBS

alleles. (C) Scatterplot of the estimated probability of sharing one (k̂1) against the estimated probability of sharing zero (k̂0) IBD alleles. (D) log-ratio PCA biplot.

the 1,000 genomes project (www.internationalgenome.org, The
1000 Genomes Project Consortium, 2015), whose family
relationships have been analyzed in detail by Pemberton
et al. (2010), Kyriazopoulou-Panagiotopoulou et al. (2011), Huff
et al. (2011), and Stevens et al. (2011; 2012). We also present
a relatedness study of the population-based GCAT Genomes
for Life project (a cohort study of the genomes of Catalonia,
www.genomesforlife.com, Obón-Santacana et al., 2018). For both
projects, we used Plink 1.90 (Purcell et al., 2007) for data
manipulation, filtering and IBD estimation, and R (R Core Team,
2014) for log-ratio PCA and discriminant analysis.

3.3.1. The CEU Sample

First and second degree relationships for the CEU population
were documented by Pemberton et al. (2010) using IBS methods,
and confirmed by Kyriazopoulou-Panagiotopoulou et al. (2011),
who used hidden Markov models and suggested additional third
and fourth degree relationships. Stevens et al. (2012) used IBD
methods confirming the results of Pemberton et al. (2010).
We detail the analysis of the CEU panel using log-ratio PCA.
Variants were filtered according to missingness (only variants
genotyped for all individuals were used), MAF (> 0.40) and

Hardy-Weinberg equilibrium test result (exact test mid p-value>

0.05, Graffelman and Moreno, 2013). Variants were LD-pruned

with Plink using a sliding window of 50 SNPs with an overlap
of 5 SNPs between successive windows, and SNPs are removed

from the window until no variants remain that have a squared
correlation above 0.20 (Plink option indep-pairwise 50 5

0.2). The final data set contained 31,370 autosomal variants. The
CEU panel consists of 165 individuals, mainly PO trios, giving
13,530 possible pairs of individuals. The classical plots of the allele
sharing statistics were shown previously in Figure 1, including a
log-ratio PCA biplot of all pairs (Figure 1D). We now illustrate
the log-ratio PCA approach, using an iterative peel and zoom
procedure. Figure 1D showed PO pairs to be outlying in the first
dimension, for having a low k02/k00 ratio. Theoretically, this ratio
is zero for PO pairs, though with large numbers of variants it is
non-zero due to mutations and genotyping errors. In fact, the 96
reported PO pairs are easily identified and excluded from the data
by filtering with k02 < 0.005. Log-ratio PCA biplots, obtained
by simulation with unrelated individuals of the CEU sample, are
shown in Figure 6. The simulated pairs of given relationships
are represented by convex hulls, and the projected empirical
pairs by open dots that are colored according to their predicted
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FIGURE 3 | Classification rate of log-ratio PCA combined with LDA for simulated samples. Classification rate for a varying number of principal components (PCs).

Classification rates were obtained using 100 pairs of each type of relationships (UN, sixth, fifth, fourth, and third) using independent variants simulated assuming

Hardy-Weinberg equilibrium. (A,B) Classification rates are shown as a function of the MAF for 5,000 and 35,000 SNPs. (C,D) Classification rates are shown as a

function of the number of SNPs of a given MAF (0.10 and 0.50).

relationship, where the latter are inferred from the posterior
probabilities obtained in LDA. The convex hulls delimit the cloud
of the positions of the simulated UN, sixth, fifth, fourth, and third
degree pairs (using 100 pairs of each). The overall classification
rate of the simulated data was 91.4%, using three principal
components. Classification rates for third, fourth, fifth, sixth,
and UN were, respectively 100, 100, 90, 77, and 90%. Results in
Figures 1, 6 suggest the CEU sample has 96 PO pairs, one FS pair,
two second degree pairs, one third degree pair, five fourth degree
pairs, and many fifth and sixth degree pairs that merge with
UN pairs. The analysis without PO pairs in Figure 6A shows the
documented FS andAVpairs as outliers in the first dimension, for
having high k00/k02 and k22/k02 ratios. Re-analysis after removal
of the FS pair gives Figure 6B, showing the two AV pairs now as
strong outliers in the first dimension. Peeling these two pairs, we
obtain Figure 6C, with the single documented third degree pair
being now the most prominent outlier. Five additional pairs are
seen to separate from the UN cloud, and are classified as fourth
degree pairs. Re-analysis after peeling off the third degree pair
gives a plot with amore clear separation of the fourth degree pairs
(Figure 6D). Another set of pairs, presumably of fifth degree,

is seen to bud off from the UN cloud more clearly, once the
fourth degree pairs are removed from the analysis (Figure 6E),
and additional pairs, classified as sixth degree, separate out partly
in the third dimension of this analysis. An exploration of the
data up to the fifth dimension of the analysis, after peeling the
most obvious PO, FS, AV, third, and fourth degree outliers, is
shown in Figure S1. These graphs suggest there is information
on relatedness up to and including at least the third dimension of
the analysis.

The classification of the empirical pairs by k02 filtering
followed by linear discriminant analysis confirmed the 96 PO
and the single FS pair relationships described by Pemberton
et al. (2010) (results not shown), as well as the additional FC
pair reported by Kyriazopoulou-Panagiotopoulou et al. (2011).
First and second degree relationships in the CEU sample are
easily and almost certainly identified. Much more uncertainty
resides in relationships of the third and higher degrees, and
for these relationships conflicting inferences are reported in
the literature. We therefore carried out a linear discriminant
analysis with a simulated training sample containing pairs with
a third through sixth degree relationship, as well as UN pairs,
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FIGURE 4 | Classification rates for different methods vs. number of SNPs. Classification rates for the different degrees of relationship (third, fourth, fifth, sixth, UN, and

All) are shown for four methods, using five principal components. Classification rate profiles for the (m, s) plot and the (p0,p2) plot virtually coincide. The last panel All

refers to the classification rate for third through UN relationships jointly. Rates are shown as a function of the number of SNPs with MAF 0.50, and were obtained by

linear discriminant analysis. 100 pairs of each type of relationship (UN, fifth, fourth, third, second, FS, and PO) were generated assuming Hardy-Weinberg equilibrium.

and classified all empirical pairs which clearly had no first or
second degree relationship. Third and fourth degree relationships
uncovered by Kyriazopoulou-Panagiotopoulou et al. (2011) are
reported in Table 4, together with the posterior probabilities
obtained in our log-ratio PCA approach. We extended Table 4

with additional fifth degree pairs uncovered by log-ratio PCA,
for which LDA gave the highest posterior probability. In total,
18 pairs were classified as fifth degree relationship pairs, of
which 10 had a posterior probability above 0.95 (marked
in bold in Table 4). We tentatively suggest the CEU panel
to contain at least ten fifth degree pairs. We found 1,285
sixth degree pairs, but do not report all these pairs in the
light of the overlap with the UN cluster and the somewhat

poorer classification rate of the sixth degree observed in
the simulations.

Our results confirm a third degree pair (pair 1 in Table 4)
reported by Kyriazopoulou-Panagiotopoulou et al. (2011). We
also confirm four of the fourth degree pairs reported by
the latter authors (pairs 2–5 in Table 4). However, we also
observed considerably incongruence of our results with those
of the latter authors. We found an FC pair to be classified
as fourth degree (pair 6) by our method and 11 reported
fourth degree pairs were classified as fifth or sixth degree.
We also compared results with those published by Huff
et al. (2011), who estimate recent shared ancestry (ERSA)
by using IBD segments. Our work confirms three fourth
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FIGURE 5 | Classification rates for different methods vs. MAF. Classification rates for the different degrees of relationship (third, fourth, fifth, sixth, UN, and All) are

shown for four methods, using three principal components. Classification rate profiles for the (m, s) plot and the (p0,p2) plot virtually coincide. The last panel All refers

to the classification rate for third through UN relationships jointly. Rates are shown, using 5,000 SNPs, as a function of the MAF, and were obtained by linear

discriminant analysis. 100 pairs of each type of relationship (UN, sixth, fifth, fourth, and third) were generated assuming Hardy-Weinberg equilibrium.

degree pairs and one fifth degree pair reported by the latter
authors, though we found two additional fourth degree pairs,
and several fifth degree pairs, which are not confirmed by
Huff et al. (2011).

3.3.2. The GCAT Sample

We use samples from the GCAT Genomes for life project, a
cohort study of the genomes of Catalonia (www.genomesforlife.
com). GCAT is a prospective cohort study that includes 17,924
participants (40–65 years, release August 2017) recruited from
the general population of Catalonia, a Mediterranean region
in the northeast of Spain. Participants are mainly part of the

Blood and Tissue Bank (BST), a public agency of the Catalan
Department of Health. Detailed information regarding the
GCAT project is described in Obón-Santacana et al. (2018).
We study relatedness of 5,075 GCAT Spanish participants
from Caucasian origin using 736,223 SNPs that passed quality

control (Galván-Femenía et al., 2018). Inferred relatives of first

and second degree were confirmed by the BST public agency,
for pairs sharing one surname (PO, second degree pairs) or two

surnames (FS pairs), respecting the privacy of the participants.

According to the same filtering procedures used in the CEU
samples, 26,006 SNPs (MAF > 0.40, LD-pruned, HWE exact

mid p-value > 0.05, and missing call rate 0) were considered
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FIGURE 6 | Log-ratio PCA biplots for the CEU sample obtained by peeling and zooming. (A) log-ratio PCA biplot, PO pairs excluded. (B) PO and FS pairs excluded;

(C) PO, FS, and AV pairs excluded; (D) PO, FS, AV, and third degree pairs excluded; (E) PO, FS, AV, third and fourth degree pairs excluded (PC1 vs. PC2); (F) PO, FS,

AV, third and fourth degree pairs excluded (PC1 vs. PC3). Convex hulls delimit the region of the pairs obtained by simulation.

for relatedness analysis. PO and MZ pairs potentially having
structural zeros were filtered with k02 < 0.005. Log-ratio PCA
biplots representing over twelve million pairs, combined with the
classification of the individuals by LDA, and using the peel and
zoom procedure, are shown in Figure 7. This analysis shows the
different relationships have in general, a larger variability than
expected according to the simulated pairs. The FS cluster has a
particular high variability, with pairs apparently less related than
FS, and pairs stronger related than FS, in comparison with the FS

hull. One apparent FS pairs is actually classified as second degree
(Figure 7A). This fusion of FS and second degree pairs suggested
us that three-quarter siblings might exist in the database and we
therefore re-analyzed the data using a training set that included
three-quarter siblings. Three-quarter siblings (3/4S) share more
IBD alleles than second degree pairs but fewer than FS. 3/4S
have one common parent, while their unshared parents can
be FS or PO (see Figure S2). Three-quarter siblings have IBD
probabilities k0 = 3/8, k1 = 1/2, and k2 = 1/8, such that their
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TABLE 4 | Predicted relationships of third (3rd), fourth (4th), and fifth (5th) degree pairs of the CEU sample.

Posterior probabilities

Pair ID1 Sex ID2 Sex Pem. Kyr. Ste. Huf. Predicted 3rd 4th 5th 6th UN k̂0 k̂1 k̂2 φ̂

1 NA06997 F NA12801 M – FC FC – 3rd 1.000 0.000 0.000 0.000 0.000 0.724 0.276 0.000 0.069

2 NA06993 M NA07022 M – 4th – 4th 4th 0.000 1.000 0.000 0.000 0.000 0.870 0.127 0.003 0.033

3 NA06993 M NA07056 F – 4th – 4th 4th 0.000 1.000 0.000 0.000 0.000 0.870 0.130 0.000 0.033

4 NA07031 F NA12043 M – 4th – – 4th 0.000 1.000 0.000 0.000 0.000 0.845 0.155 0.000 0.039

5 NA12155 M NA12264 M – 4th – 4th 4th 0.000 1.000 0.000 0.000 0.000 0.867 0.133 0.000 0.033

6 NA12760 M NA12830 F – FC – – 4th 0.000 1.000 0.000 0.000 0.000 0.855 0.133 0.012 0.039

7 NA06989 F NA10831 F – – – – 5th 0.000 0.000 0.965 0.035 0.000 0.966 0.026 0.008 0.011

8 NA06989 F NA12155 M – 4th – – 5th 0.000 0.028 0.972 0.000 0.000 0.912 0.088 0.000 0.022

9 NA06991 F NA07022 M – 4th – – 5th 0.000 0.016 0.983 0.000 0.000 0.898 0.102 0.000 0.025

10 NA06994 M NA12878 F – – – – 5th 0.000 0.000 0.814 0.185 0.000 0.951 0.041 0.008 0.014

11 NA06994 M NA12892 F – 4th – 5th 5th 0.000 0.000 0.997 0.002 0.000 0.925 0.075 0.000 0.019

12 NA07014 F NA12043 M – 4th – – 5th 0.000 0.000 0.966 0.034 0.000 0.950 0.043 0.008 0.015

13 NA07029 M NA12892 F – – – – 5th 0.000 0.000 0.563 0.437 0.000 0.942 0.056 0.002 0.015

14 NA07031 F NA12752 M – – – – 5th 0.000 0.000 0.980 0.020 0.000 0.942 0.053 0.005 0.016

15 NA07031 F NA12761 F – 4th – – 5th 0.000 0.000 0.991 0.009 0.000 0.890 0.110 0.000 0.028

16 NA07055 F NA10852 F – – – – 5th 0.000 0.000 0.853 0.147 0.000 0.959 0.040 0.001 0.011

17 NA10830 M NA12842 M – – – – 5th 0.000 0.000 0.826 0.174 0.000 0.940 0.060 0.000 0.015

18 NA10852 F NA10853 M – – – – 5th 0.000 0.000 0.731 0.269 0.000 0.964 0.033 0.003 0.010

19 NA10852 F NA11843 M – – – – 5th 0.000 0.000 0.575 0.425 0.000 0.978 0.019 0.003 0.006

20 NA10863 F NA12155 M – 4th – – 5th 0.000 0.000 0.959 0.041 0.000 0.941 0.054 0.005 0.016

21 NA11843 M NA11994 M – – – – 5th 0.000 0.000 0.781 0.219 0.000 0.945 0.055 0.000 0.014

22 NA11992 M NA12778 F – – – – 5th 0.000 0.000 0.682 0.318 0.000 0.951 0.050 0.000 0.012

23 NA12752 M NA12830 F – 4th – – 5th 0.000 0.000 0.997 0.003 0.000 0.894 0.106 0.000 0.026

24 NA12760 M NA12818 F – 4th – – 5th 0.000 0.000 0.998 0.002 0.000 0.926 0.074 0.000 0.019

25 NA10831 F NA12264 M – 4th – – 6th 0.000 0.000 0.094 0.896 0.010 0.963 0.036 0.001 0.010

26 NA11931 F NA12748 M – 4th – – 6th 0.000 0.000 0.467 0.532 0.001 0.927 0.067 0.006 0.020

27 NA12752 M NA12818 F – 4th – – 6th 0.000 0.000 0.026 0.946 0.029 0.977 0.022 0.001 0.006

Third (3rd) and fourth (4th) degree pairs of the CEU sample of the 1000G project as reported by Kyriazopoulou-Panagiotopoulou et al. (2011) and additional detected fifth (5th) degree

pairs. Posterior probabilities according to log-ratio PCA combined with LDA. Coding and abbreviations used: sex M = male, F = female; a hyphen (–) indicates the corresponding pair

is not annotated or regarded unknown by the corresponding authors; FC, first cousin; Pem., Pemberton et al. (2010); Kyr., Kyriazopoulou-Panagiotopoulou et al. (2011); Ste., Stevens

et al. (2012); Huf., Huff et al. (2011).

kinship coefficient is φ = 3/16, below the value φ = 1/4 of full
siblings. In the re-analysis in Figure 7B, we found 63 FS pairs, 12
2nd pairs, and eight pairs were indeed classified as three-quarter
siblings with large posterior probability (see Table 5). Two of
these pairs (67, 71) had their kinship coefficient very close to
the expected value of φ = 3/16. Because Spanish people have
both paternal and maternal surnames, three-quarter siblings
share both surnames just as siblings do. The pairs classified
as 3/4 siblings shared indeed both surnames, confirming these
pairs are actually not second degree. Peeling siblings and
three-quarter siblings reveals apparent second degree pairs more
clearly (Figure 7C). Tentatively peeling second degree pairs
brings the third degree pairs in focus (Figure 7D), and in this
analysis we find 174 third, 66 fourth, 31 fifth, and 3,517 sixth
degree pairs. Further peeling is difficult as the different clusters
increasingly merge. In log-ratio PCA the clusters representing
the different relationships have more elliptical shapes that
separate better. Note that the number of pairs classified as sixth
degree decreases as the lower degree relationships are peeled in
the analysis.

For all simulated and empirical data sets studied above,
the first principal component in the log-ratio PCA’s is seen to
strongly correlate with the kinship coefficient. The corresponding
scatterplots and correlation coefficients are shown in Figure S3.
The first principal component is clearly interpretable as a
relatedness index. In Figures 6A, 7A (without PO), the biplot
vectors show that the first component separates homogeneous
homozygote pairs (AA & AA; BB & BB) from heterogeneous
homozygote pairs (AA & BB). The second principal component
separates double heterzygote pairs from single heterozygote pairs.
When FS pairs are removed, the second principal component
changes, and reflects a contrast between pairs with heterozygotes
and without heterozygotes.

4. DISCUSSION

We have developed a log-ratio PCA based procedure that can
be used for uncovering cryptic relatedness in homogeneous
populations. Simulations show the procedure has a better
classification rate than the classical IBS and IBD based

Frontiers in Genetics | www.frontiersin.org 11 April 2019 | Volume 10 | Article 341

Compositional methodology and statistical inference of family relationships 57



Graffelman et al. Biplots for Relatedness Research

FIGURE 7 | Log-ratio PCA biplot of GCAT sample obtained by peeling and zooming. (A) log-ratio PCA biplot, PO and 3/4S pairs excluded. (B) 3/4S pairs included;

(C) FS and 3/4S pairs excluded; (D) FS, 3/4S, and second degree pairs excluded. Convex hulls delimit the region of the pairs obtained by simulation.

approaches. The log-ratio PCA approach exploits the
compositional nature of genotype sharing counts over variants,
and can potentially use five dimensions for analysis, whereas
the classical approaches collapse the data in two dimensions.
The analysis of the CEU sample has led to the identification
of a set of hitherto unreported pairs for which a fifth degree
relationship is highly plausible (Table 4). Our conclusion is that
log-ratio PCA, combined with LDA, increases the resolution of
relationship discrimination. The classification rate for 6th degree
pairs can still be improved if more than 35,000 independent MAF
0.50 variants would be used (see Figure 4). The (p0, p2), (m, s),

and (k̂0, k̂1) scatterplots display estimates in a constrained
space (Galván-Femenía et al., 2017), where Euclidean distances
between points cannot be safely interpreted. This is particularly
true for the higher degree relationships that merge toward the
vertex of the triangular region inside the scatterplot. Log-ratio
PCA, besides using more dimensions, frees the data of the
unit sum constraint, and clearly enhances the discrimination
of the higher degree relationships. We have compared our
log-ratio based procedure with some basic procedures used in
relatedness research. Its performance could be further explored

in a more extensive comparison that includes IBD-segment
based methods, such as the comprehensive study reported by
Ramstetter et al. (2017).

The analysis of the GCAT samples shows, for almost all

relationship categories, larger variability in the relationship
clusters than would be expected under strict Mendelian

sampling of alleles from unrelated individuals. This excess
variability can, at least in part, be explained by the presence

of additional relatedness between (unobserved) close relatives
of the individuals in the database. This leads to increased
autozygosity, which is a characteristic of more endogamous
populations. The occurrence of three-quarter siblings is just
a particular instance of this phenomenon. Consequently, the
degree of relatedness of two individuals tends to become a
continuous variable, which is increasingly hard to discretize into
the standard relationship categories.

The simulated reference data sets were obtained by resampling
genetic variants independently, and this does not take linkage
disequilibrium (LD) and recombination into account (Hill and
Weir, 2011). If the genotype data is phased, a biologically
more realistic simulated data set can be obtained by sampling
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TABLE 5 | Predicted FS and 3/4S relationships of the GCAT sample.

Posterior probabilities

Pair ID1 Sex ID2 Sex Predicted FS 3/4S 2nd 3rd 4th 5th 6th UN k̂0 k̂1 k̂2 φ̂

1 REL_00339 F REL_02473 F FS 1 0 0 0 0 0 0 0 0.254 0.479 0.266 0.253

2 REL_04741 F REL_02513 F FS 1 0 0 0 0 0 0 0 0.187 0.518 0.295 0.277

3 REL_00601 M REL_02989 F FS 1 0 0 0 0 0 0 0 0.190 0.508 0.303 0.278

4 REL_02339 M REL_02391 M FS 1 0 0 0 0 0 0 0 0.267 0.442 0.290 0.256

5 REL_03977 M REL_01080 M FS 1 0 0 0 0 0 0 0 0.222 0.538 0.240 0.255

6 REL_03220 F REL_04615 F FS 1 0 0 0 0 0 0 0 0.311 0.460 0.229 0.230

7 REL_04475 F REL_04218 M FS 1 0 0 0 0 0 0 0 0.248 0.514 0.237 0.247

8 REL_01150 F REL_04384 F FS 1 0 0 0 0 0 0 0 0.258 0.490 0.253 0.249

9 REL_01285 M REL_03761 F FS 1 0 0 0 0 0 0 0 0.237 0.496 0.267 0.257

10 REL_04693 F REL_00797 F FS 1 0 0 0 0 0 0 0 0.310 0.471 0.220 0.228

11 REL_00383 F REL_03293 M FS 1 0 0 0 0 0 0 0 0.254 0.530 0.216 0.241

12 REL_03212 M REL_02516 F FS 1 0 0 0 0 0 0 0 0.275 0.526 0.199 0.231

13 REL_00282 F REL_04918 F FS 1 0 0 0 0 0 0 0 0.247 0.440 0.313 0.267

14 REL_04616 F REL_02777 F FS 1 0 0 0 0 0 0 0 0.279 0.471 0.250 0.243

15 REL_00792 F REL_00954 M FS 1 0 0 0 0 0 0 0 0.262 0.509 0.229 0.242

16 REL_03627 F REL_03315 F FS 1 0 0 0 0 0 0 0 0.148 0.549 0.302 0.288

17 REL_00872 F REL_01784 F FS 1 0 0 0 0 0 0 0 0.252 0.528 0.221 0.242

18 REL_03442 F REL_04510 F FS 1 0 0 0 0 0 0 0 0.216 0.512 0.272 0.264

19 REL_01924 F REL_00727 M FS 1 0 0 0 0 0 0 0 0.236 0.449 0.315 0.270

20 REL_04704 F REL_00804 M FS 1 0 0 0 0 0 0 0 0.168 0.523 0.308 0.285

21 REL_04494 M REL_00931 M FS 1 0 0 0 0 0 0 0 0.280 0.492 0.228 0.237

22 REL_04439 F REL_01640 F FS 1 0 0 0 0 0 0 0 0.264 0.430 0.306 0.260

23 REL_00504 M REL_04718 F FS 1 0 0 0 0 0 0 0 0.243 0.505 0.252 0.252

24 REL_01624 F REL_00750 F FS 1 0 0 0 0 0 0 0 0.191 0.508 0.301 0.278

25 REL_01524 F REL_03272 F FS 1 0 0 0 0 0 0 0 0.232 0.511 0.257 0.256

26 REL_00769 M REL_04746 F FS 1 0 0 0 0 0 0 0 0.225 0.566 0.208 0.246

27 REL_01654 M REL_03485 M FS 1 0 0 0 0 0 0 0 0.282 0.432 0.285 0.251

28 REL_01564 F REL_03827 F FS 1 0 0 0 0 0 0 0 0.316 0.427 0.258 0.236

29 REL_03944 M REL_03475 F FS 1 0 0 0 0 0 0 0 0.231 0.542 0.227 0.249

30 REL_01888 M REL_04360 M FS 1 0 0 0 0 0 0 0 0.247 0.543 0.210 0.241

31 REL_00824 F REL_00213 F FS 1 0 0 0 0 0 0 0 0.221 0.446 0.332 0.278

32 REL_03838 F REL_02496 F FS 1 0 0 0 0 0 0 0 0.310 0.446 0.245 0.234

33 REL_00122 M REL_01902 F FS 1 0 0 0 0 0 0 0 0.286 0.494 0.220 0.233

34 REL_04592 F REL_04600 F FS 1 0 0 0 0 0 0 0 0.305 0.485 0.211 0.227

35 REL_00284 M REL_02444 F FS 1 0 0 0 0 0 0 0 0.278 0.511 0.211 0.233

36 REL_03395 F REL_02694 F FS 1 0 0 0 0 0 0 0 0.224 0.522 0.254 0.257

37 REL_02718 M REL_02913 M FS 1 0 0 0 0 0 0 0 0.218 0.479 0.303 0.271

38 REL_00968 M REL_01577 F FS 1 0 0 0 0 0 0 0 0.257 0.451 0.292 0.259

39 REL_01502 M REL_03665 M FS 1 0 0 0 0 0 0 0 0.312 0.477 0.211 0.225

40 REL_03904 F REL_04994 F FS 1 0 0 0 0 0 0 0 0.250 0.502 0.248 0.249

41 REL_02208 F REL_03486 F FS 1 0 0 0 0 0 0 0 0.231 0.460 0.310 0.270

42 REL_02208 F REL_01630 F FS 1 0 0 0 0 0 0 0 0.177 0.516 0.307 0.283

43 REL_03486 F REL_01630 F FS 1 0 0 0 0 0 0 0 0.170 0.502 0.327 0.289

44 REL_00340 F REL_04294 F FS 1 0 0 0 0 0 0 0 0.210 0.525 0.265 0.264

45 REL_02899 M REL_01707 F FS 1 0 0 0 0 0 0 0 0.285 0.454 0.261 0.244

46 REL_03001 F REL_04111 F FS 1 0 0 0 0 0 0 0 0.230 0.481 0.289 0.265

47 REL_00634 M REL_03507 M FS 1 0 0 0 0 0 0 0 0.203 0.508 0.289 0.272

48 REL_02905 F REL_02575 F FS 1 0 0 0 0 0 0 0 0.252 0.517 0.231 0.245

49 REL_01016 M REL_00887 M FS 1 0 0 0 0 0 0 0 0.243 0.496 0.260 0.254

50 REL_03151 M REL_02204 F FS 1 0 0 0 0 0 0 0 0.235 0.503 0.263 0.257

(Continued)
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TABLE 5 | Continued

Posterior probabilities

Pair ID1 Sex ID2 Sex Predicted FS 3/4S 2nd 3rd 4th 5th 6th UN k̂0 k̂1 k̂2 φ̂

51 REL_04466 F REL_02680 F FS 1 0 0 0 0 0 0 0 0.313 0.427 0.260 0.237

52 REL_03607 M REL_00319 F FS 1 0 0 0 0 0 0 0 0.299 0.491 0.210 0.228

53 REL_01083 F REL_01704 F FS 1 0 0 0 0 0 0 0 0.182 0.567 0.251 0.267

54 REL_04427 F REL_02635 F FS 1 0 0 0 0 0 0 0 0.264 0.545 0.191 0.232

55 REL_01546 M REL_03566 F FS 1 0 0 0 0 0 0 0 0.212 0.525 0.263 0.263

56 REL_01450 M REL_01960 M FS 1 0 0 0 0 0 0 0 0.259 0.514 0.227 0.242

57 REL_03310 M REL_03659 F FS 1 0 0 0 0 0 0 0 0.259 0.559 0.182 0.231

58 REL_03880 M REL_04789 F FS 1 0 0 0 0 0 0 0 0.271 0.503 0.226 0.239

59 REL_01264 M REL_04751 F FS 1 0 0 0 0 0 0 0 0.183 0.518 0.299 0.279

60 REL_04529 F REL_04492 F FS 1 0 0 0 0 0 0 0 0.279 0.498 0.223 0.236

61 REL_03388 F REL_02608 F FS 1 0 0 0 0 0 0 0 0.216 0.497 0.287 0.268

62 REL_00009 F REL_02335 F FS 1 0 0 0 0 0 0 0 0.233 0.548 0.218 0.246

63 REL_04405 M REL_03949 M FS 1 0 0 0 0 0 0 0 0.262 0.523 0.215 0.238

64 REL_02752 F REL_04859 F 3/4S 0 1 0 0 0 0 0 0 0.342 0.457 0.201 0.215

65 REL_01344 M REL_02408 F 3/4S 0 1 0 0 0 0 0 0 0.361 0.439 0.200 0.210

66 REL_00083 M REL_02333 M 3/4S 0 1 0 0 0 0 0 0 0.326 0.520 0.154 0.207

67 REL_03803 F REL_02343 M 3/4S 0 1 0 0 0 0 0 0 0.349 0.510 0.140 0.198

68 REL_03924 M REL_03023 F 3/4S 0 1 0 0 0 0 0 0 0.366 0.464 0.170 0.201

69 REL_04189 M REL_00775 M 3/4S 0 1 0 0 0 0 0 0 0.367 0.427 0.206 0.210

70 REL_03150 F REL_01804 F 3/4S 0 1 0 0 0 0 0 0 0.323 0.505 0.172 0.212

71 REL_03969 M REL_00271 M 3/4S 0 1 0 0 0 0 0 0 0.342 0.560 0.098 0.189

FS and 3/4S pairs of the GCAT sample. Predicted relationships and posterior probabilities according to a log-ratio PCA combined with LDA. Coding and abbreviations used: sex M,

male; F, female; φ̂, estimated kinship coefficient.

haplotypes. We have avoided this issue by LD pruning the
data base prior to resampling, so removing tightly correlated
markers. The reference data set is therefore constructed on
the basis of a subset of variants that can expected to be
approximately independent. This subset is then used as the basis
for relationship estimation. This procedure has the advantage
that it avoids potential additional uncertainty generated by
using a phasing algorithm. However, the proposed procedure
may be improved in the future by accounting for haplotype
structure and recombination. The pruning threshold used in our
method (0.20) is a compromise between precision and satisfying
the independence assumption. A larger value will admit more
variants and can increase the resolution, but due to correlation
between variants it will invalidate the independence assumption
used to generate the reference set of related pairs.

The proposed method for classifying pairs combining log-
ratio PCA and discriminant analysis is seen to perform well with
both simulated and empirical data. The sampling of artificially
related pairs from the observed data requires a considerable
number of approximately unrelated individuals to be present
in the database. We therefore suggest the method to be used
for large samples with thousands of individuals, where such
a substantial subset of unrelated individuals can be identified.
This is probably not an obstacle for the use of our method,
as increasingly large samples are being used in epidemiological
genomics. The sampling of artificial pairs from the observed data
respects the allele frequency distribution of the original data, and
provide reference areas for the different relationships given the

allele frequencies of the observed data. Note that with only one
hundred simulated pairs of each relationship, we build a classifier
that can be used to classify millions of pairs. Our method is
computationally feasible for over 5,000 individuals and 26,000
variants like in the GCAT sample. Most of the computation time
is spent on the projection of the empirical pairs onto the reference
structure, and these computations could easily be parallelized.
Many public repositories of genomic data are currently available,
but without recruitment and relatedness information, and for
which the relatedness techniques discussed in this paper could
be usefully applied.

The log-ratio transformation in Equation (1) does not admit
zeros for the genotype sharing counts. In theory MZ pairs have
k10 = k20 = k21 = 0, and PO pairs have k20 = 0. In practice, due
to the summing over large numbers of variants, zeros are almost
never observed as a consequence of some genotyping error
and incidental mutations. If a few zero counts are observed, a
replacement by 1 or 0.5 can eventually be used in order to proceed
with the analysis. If there is a substantial amount of zeros,
a ratio-preserving multiplicative replacement (Fry et al., 2000;
Martín-Fernández et al., 2003) or a Bayesian procedure (Martin-
Fernandez et al., 2015) are recommended. The zero problem is
well-known in compositional data analysis, and a distinction is
usually drawn between structural and rounding zeros (Martín-
Fernández et al., 2003, 2011). In principle, MZ and PO pairs have
structural zeros. However, MZ and PO pairs are the most easily
detected relationships, and are easily dealt with separately, prior
to applying the log-ratio transformation to the data. Exclusion
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of the relationships up to the second or third degree is in fact
desirable if possible, as it will allow the study of the more remote
relationships at higher resolution.

We recommend the use of discriminant analysis in allele-
sharing studies as employed in this paper. The posterior
probabilities of the different relationships give a quantitative
criterion for deciding upon which relationship is most likely
for a given pair of individuals. In allele sharing studies this
decision is mostly made graphically by inspecting a (p0, p2) plot

in IBS studies, or a (k̂0, k̂1) plot in IBD studies. We note that
these posterior probabilities differ from those used in a standard
discriminant analysis, in the sense that they are affected by
additional uncertainty generated by using a training set obtained
by a resampling of the observed data.

Applications of IBD based methods typically employ three
Cotterman coefficients that are constrained to sum one,
and therefore represent relatedness in only two dimensions.
However, IBD based methods can estimate additional Jacquard
coefficients (Milligan, 2003) and thus potentially exploit more
dimensions than is usually done in practice.

The current paper is focused on homogeneous populations.
If population substructure exists, then log-ratio PCA
can be expected to separate the different populations
in its biplot. Methods that address substructure (distant
relatedness) and family relationships (recent relatedness)
jointly have been developed (Manichaikul et al., 2010;
Conomos et al., 2015). Population substructure can be
accounted for by using only variants with low weights
on the first components for a relatedness analysis, as is
done in the UK Biobank project (Bycroft et al., 2018),
as the first components mostly capture substructure. In
future work, the usefulness of the log-ratio PCA approach
for the joint study of remote and recent relatedness could
be further explored.
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4.3 Heredity

The third article (submitted) accomplish with the objectives Obj. 1 and Obj. 3 described in 2.1.
In summary, we propose a likelihood ratio approach to distinguish three-quarter siblings (3/4S)
from full-siblings and second degree relatives. We show that this approach is useful to infer 3/4S
instead of plotting the IBD probabilities.

This article has been submitted to Heredity journal.
Submitted: May 2020.
Impact factor: 3.179 (Q2). Journal Citation Reports Ranking: 46/171 (Genetics & Heredity);
15/49 (Evolutionary Biology); 31/158 (Ecology).



64 CHAPTER 4. RESEARCH ARTICLES



A likelihood ratio approach for identifying

three quarter siblings in genetic databases
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Abstract1

The detection of family relationships in genetic databases is of interest in var-2

ious scientific disciplines such as genetic epidemiology, population and conser-3

vation genetics and forensic science. Nowadays, screening genetic databases4

for related individuals forms an important aspect of standard quality con-5

trol procedures. Relatedness research is usually based on an allele sharing6

analysis of identity by state (IBS) or identity by descent (IBD) alleles. Ex-7

isting IBS/IBD methods mainly aim to identify first degree relationships8

(parent-offspring or full-siblings) and second degree (half-siblings, avuncular9

or grandparent-grandchild). Little attention has been paid to the detection of10

in-between first and second degree relationships such as three-quarter siblings11

(3/4S) who share fewer alleles than first degree relationships but more alleles12

than second degree relationships. With the progressively increasing sample13

sizes used in genetic research, it becomes more likely that such relationships14

are present in the database under study. In this paper we extend existing15

likelihood ratio methodology to accurately infer the existence of 3/4S, distin-16

guishing them from full-siblings and second degree relatives. Our proposal17

accounts for linkage disequilibrium (LD) by using marker pruning, and we18

validate our methodology with a pedigree-based simulation study accounting19

for both LD and recombination. A empirical genome-wide array dataset from20

the GCAT Genomes for Life cohort project is used to illustrate the method.21

22

2
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Keywords: SNP, identity by state/descent, family relationships, likelihood23

ratio, three quarter siblings.24

25

1 Introduction26

The detection of related individuals in genetic databases is of great interest in27

various areas of genetic research. Most obviously, it is of interest in forensic28

studies aiming at identifying relationships between individuals such as pater-29

nity tests (Evett and Weir, 1998). In conservation genetics, careful selection30

of unrelated individuals for breeding programs is needed (Oliehoek et al.,31

2006), requiring the estimation of pairwise genetic relationships. In genome32

wide association studies (GWAS) that have become popular during the past33

two decades (Visscher et al., 2017), standard quality control filters are ap-34

plied prior to genetic association analysis. The presence of cryptic relatedness35

violates the assumption of independent individuals in association modeling.36

For this reason, removing related individuals in the genetic database prior to37

the GWAS analysis is a common quality control step (Anderson et al., 2010).38

39

Many methods for relatedness research are described in the literature. Most40

of them are based on the principle of the allele sharing. Two individuals41

can share 0, 1 or 2 alleles for a diploid genetic marker. These alleles can42

be identical by state (IBS) or identical by descent (IBD). A scatterplot of43

3
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the mean (x̄IBS) and standard deviation (sIBS) of the number of IBS alleles44

over variants can be used to identify related pairs (Abecasis et al., 2001).45

Alternatively, a scatterplot of the proportions of sharing 0, 1 or 2 IBS alleles46

(p0, p1, p2) is also often used to detect related pairs (Rosenberg, 2006). In47

genetic studies, the probabilities of sharing 0, 1 and 2 IBD alleles (k0, k1, k2)48

can be estimated and used for relationship inference, since their theoreti-49

cally expected values are known for the standard relationships (see Table50

1). For example, parent-offspring pairs have (k0, k1, k2) = (0, 1, 0) and full-51

siblings have (k0, k1, k2) = (0.25, 0.50, 0.25). For a given pair of individuals,52

these probabilities can be estimated by maximum likelihood (Milligan, 2003;53

Thompson, 1975, 1991), by the method of moments (Purcell et al., 2007)54

or with robust estimators (Manichaikul et al., 2010). From these probabil-55

ities, the kinship coefficient, defined as φ = k1/4 + k2/2, can be obtained.56

The kinship coefficient can be used to remove individuals with first degree57

(parent-offspring (PO) or full-siblings (FS)) and second degree relationships58

(half-siblings, avuncular or grandparent-grandchild) by retaining only pairs59

with φ < 1/16. Additionally, third degree relationships (first cousins (FC))60

can be eliminated by retaining only pairs with φ < 1/32 (Anderson et al.,61

2010). All these methods have in common that the inference of the family62

relationships is based on the judgement of the analyst of the point esti-63

mates (k̂0, k̂1, k̂2, φ̂) or of a graphical representation ((x̄IBS,sIBS),(p0, p1, p2)64

or (k̂0, k̂1, k̂2)) (Galván-Femeńıa et al., 2017).65

66

4
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The sample size used in genetic studies, GWAS in particular, is progressively67

increasing due to large human sequencing projects that involve genetic data68

from hundreds of thousands of individuals such as UK Biobank (Bycroft69

et al., 2018), gnomAD (Karczewski et al., 2019), TOPMed (Taliun et al.,70

2019) and DiscovEHR (Staples et al., 2018) among others. With such large71

databases, it becomes increasingly likely that in-between 1st and 2nd degree,72

and in-between 2nd and 3rd degree relationships are found. Such in-between73

relationships are mostly ignored in a relatedness analysis, which typically74

mostly focus on 1st, 2nd and 3rd degree relationships. In this paper we75

therefore develop a likelihood ratio approach that will allow us to identify76

three-quarter siblings (3/4S), a family relationship whose individuals share77

fewer alleles than 1st degree relationships but more alleles than 2nd degree78

relatives (Table 1). A 3/4S pair has one common parent, while their un-79

shared parents have a first degree relationship (FS or PO; see Graffelman et80

al., 2019 Fig. S2). The IBD probabilities for 3/4S are (k0, k1, k2) = (3/8,81

1/2, 1/8) and their kinship coefficient is φ = 3/16. A detailed derivation of82

these probabilities is shown in Appendix A. A 3/4S relationship is not very83

common, but is more likely to be present in GWAS studies with ever increas-84

ing sample sizes. The 3/4S relationship has received very little attention in85

the literature, and the aim of this paper is to develop tools that distinguish86

3/4S from full-siblings and second degree relatives.87

88

The remainder of this paper is structured as follows. Section 2 develops89
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a likelihood ratio approach for identifying three quarter siblings. Section90

3 evaluates the likelihood ratio approach in a simulation study. Section 491

illustrates our approach with genome-wide SNP array data from the GCAT92

Genome for Life project cohort. Finally, we end the article with a discussion93

of the proposed methodology.94

2 Methods and materials95

2.1 Overview of the likelihood of a relationship96

A detailed derivation of the likelihood of having a given relationship is given97

by Wagner et al. (2006). Briefly, let n be the number of individuals in98

a non-inbred homogeneous population and assuming absence of population99

structure. We consider bi-allelic genetic variants with alleles A and B having100

allele frequencies p and q respectively. Let G1/G2 be the genotypes for a101

pair of individuals, let km with m = 0, 1, 2 be their IBD probabilities (shown102

in Table 1) and let R be their family relationship. Then, the probability of103

observing G1/G2, given R is:104

P (G1/G2|R) = P (G1/G2|m = 0)k0

+P (G1/G2|m = 1)k1

+P (G1/G2|m = 2)k2.

(1)

The terms P (G1/G2|m = 0), P (G1/G2|m = 1) and P (G1/G2|m = 2) are the105

6

70 CHAPTER 4. RESEARCH ARTICLES



probabilities of observing each pair of genotypes given the number of IBD106

alleles (Table 2).107

2.2 The likelihood ratio approach for identifying three108

quarter siblings109

The likelihood ratio (LR) approach has been widely used for relatedness110

research during the last decades (Boehnke and Cox, 1997; Heinrich et al.,111

2016; Katki et al., 2010; Kling and Tillmar, 2019; Thompson, 1986; Weir112

et al., 2006). Briefly, the LR approach is based on the contrast of two hy-113

potheses, one in the numerator, Hi; and the other one in the denominator,114

Hj. The larger the LR, the more plausible is Hi; whereas the smaller the115

LR, the more plausible is Hj. For relatedness research, we consider the ratio116

of the probabilities from Equation 1 according to the hypothesis of the Ri117

and Rj relationships. That is:118

LR(Ri, Rj|G1/G2) =
P (G1/G2|Ri)

P (G1/G2|Rj)
(2)

Here we consider the FS, 3/4S, 2nd and UN relationships and calculate three119

LR having FS, 3/4S or 2nd in the numerator and having the UN relation-120

ship in the denominator. The common denominator makes the LR values121

comparable in order to distinguish 3/4S from FS and 2nd degree. Inference122

of relatedness for each pair of individuals is based on the largest LR value in123

the FS∼UN, 3/4S∼UN and 2nd∼UN ratios. The LR are shown in Table 3,124
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depending on the observed genotypes of a pair of individuals. Most of these125

ratios are derived in Heinrich et al. (2016), and the new results for 3/4S are126

shown in Appendix B. The e parameter from the PO∼UN ratio in Table 3127

is a small number (i.e. 0.001) used to account for genotype errors and de128

novo mutations if the genotype combination does not occur. In this way,129

the LR cannot be zero. For S biallelic SNPs, the LR can be obtained by130

multiplying the LRs across markers and by dividing by the number of SNPs.131

It is convenient to work in a logarithmic scale such that:132

log10(LR) =
1

S
log10

(
S∏

s=1

LRs(Ri, Rj|G1/G2)

)
=

1

S

S∑

s=1

log10

(
LRs(Ri, Rj|G1/G2)

)
,

(3)

which corresponds to the logarithm of the geometric mean of the likelihood133

ratios.134

135

2.3 Materials136

We test our method for detecting 3/4S with data from the GCAT Genome137

for Life cohort project (Obón-Santacana et al., 2018). Briefly, the GCAT138

project is a prospective study that includes ∼20K participants recruited from139

the general population of Catalonia, a Western Mediterranean region in the140

Northeast of Spain. A subset of 5459 participants were genotyped using141

the Infinium Expanded Multi-Ethnic Genotyping Array (MEGAEx) (ILLU-142
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MINA, San Diego, California, USA). In the present work, we consider 5,075143

GCAT participants from Caucasian ancestry and 756,003 SNPs that passed144

strict quality control (Galván-Femeńıa et al., 2018). A previous relatedness145

research analysis of this dataset reported 63 FS, 8 3/4S and 12 2nd degree146

candidate pairs (Graffelman et al., 2019).147

3 Simulations148

In this section we evaluate the likelihood ratio approach to distinguish 3/4S149

from FS and 2nd relationships by using simulated data. Pedigrees were sim-150

ulated from the genetic data of the individuals of the GCAT project, using151

the ped-sim method of Caballero et al. (2019). We apply this method in or-152

der to account for recombination by using sex-specific genetic maps (Bhérer153

et al., 2017) and also a crossover interference model (Campbell et al., 2015).154

The simulations were carried out as follows. First, we identified 4,147 po-155

tentially unrelated individuals with kinship coefficient < 0.025. From these156

individuals, we retained 537,488 autosomal SNPs with minor allele frequency157

(MAF) > 0.01, Hardy-Weinberg exact mid p-value > 0.05 (Graffelman and158

Moreno, 2013) and missing call rate zero. Genotypes of the unrelated indi-159

viduals were phased with SHAPEIT4 (Delaneau et al., 2018) and were used160

as input for the ped-sim method. Then, we simulated 500 pedigrees contain-161

ing one FS pair and 500 pedigrees containing one 3/4S pair (Supplementary162

Figures S1 and S2). In total, we used 3000 random GCAT individuals as163
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founders to generate 3000 artificial individuals. The number of simulated164

related pairs were 4,000 PO, 500 FS, 500 3/4S and 3,500 2nd degree from165

a total of 17,997,000 of pairs. To estimate the IBD probabilities and the166

kinship coefficient for these simulated pairs we used 27,087 SNPs obtained167

by retaining variants with MAF > 0.40 and by linkage disequilibrium (LD)168

pruning, requiring markers to have low pair-wise correlation (r2 < 0.20).169

170

Figure 1 shows the (k̂0, k̂1)-plot for these simulated pairs of individuals. The171

IBD probabilities were estimated with the PLINK software (Purcell et al.,172

2007). As expected, the estimated IBD probabilities are close to the expected173

theoretical values from Table 1 for most pairs of individuals. In Figure 1, the174

3/4S relationships show good separation from 2nd degree relationships but175

mix to some extent with FS pairs. Estimated IBD probabilities appear to176

be centered on their expected values for FS, 3/4S and 2nd degree pairs, and177

have larger variance then PO and UN pairs. The discriminative power of our178

method crucially depends on the variance of these estimated probabilities179

(Hill and Weir, 2011).180

181

Boxplots of the kinship estimator recently proposed by Goudet & Weir (Fig-182

ure 2; Goudet et al. (2018); Weir and Goudet (2017)) show clearly a difference183

in median for 3/4S and 1st and 2nd degree relationships, though the distri-184

bution of the kinship coefficient of the 3/4S overlaps with those of 1st and185

2nd degree pairs. Also, kinship coefficients can be identical for different rela-186
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tionships, as is the case for PO and FS. Therefore, according to the Equation187

(3), we calculate the FS∼UN, 3/4S∼UN and 2nd∼UN likelihood ratios for188

500 2nd, 500 3/4S and 500 FS simulated pairs. Figure 3 shows that FS pairs189

mostly have the largest LR values in the FS∼UN ratio, 3/4S pairs mostly190

have the largest LR values in the 3/4S∼UN ratio and 2nd degree pairs mostly191

have largest LR in the 2nd∼UN. Note the plotted data profile shaped in a192

‘greater-than’ sign (“>”) pattern suggesting the inference of 3/4S for most193

3/4S pairs. In fact, the correct classification rate of the LR approach for the194

2nd, 3/4S and FS simulated pairs is 500
500

= 1, 479
500

= 0.958 and 475
500

= 0.95195

respectively. These simulations show the proposed LR approach to be useful196

for distinguishing 3/4S relationships from FS and 2nd degree relationships.197

198

4 Case study199

In this section we apply the likelihood ratio approach in a genome-wide SNP200

array data from the aforementioned GCAT project. Graffelman et al. (2019,201

Table 5 and Figure 7) suggested this database to contain eight 3/4S pairs202

using a log-ratio biplot approach combined with discriminant analysis (LR-203

kinbiplot). Figures 4 and 5 show the (k̂0, k̂1)-plot and boxplots of kinship204

estimates of the GCAT data. The IBD probabilities were estimated with the205

PLINK software, whereas the kinship coefficient was estimated by the esti-206

mator proposed by Weir and Goudet (2017). The colors for the FS, 3/4S and207
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2nd degree pairs in both Figures were assigned according to the relationship208

inferred by the LR approach. Figure 4 shows, like the simulations, a larger209

variance for FS pairs, and smaller variances for PO and UN pairs.210

211

Figure 6 shows the LR ratio values (FS∼UN, 3/4S∼UN and 2nd∼UN ra-212

tios) for the presumably FS, 3/4S and 2nd pairs from the GCAT project.213

The LR analysis reveals eight 3/4S pairs (black color) that have the ‘greater-214

than’ sign (“>”) shaped pattern. All inferred FS pairs (blue color) have the215

monotonously increasing “/” shaped pattern and all 2nd degree pairs have216

the monotonously decreasing “\” pattern. Table 4 shows the LR values for217

each pair which confirm that there are eight 3/4S pairs in concordance with218

the LR-kinbiplot approach.219

220

5 Discussion221

In this paper we show that the likelihood ratio approach is useful for distin-222

guishing three quarter siblings from FS and 2nd degree relationships. Figure223

4 shows that in a standard (k̂0, k̂1)-plot, 3/4S can easily go unnoticed as FS224

pairs. The LR approach can be of great help to detect such cases. The225

LR approach developed in this paper confirmed eight 3/4S pairs previously226

uncovered by a log-ratio biplot (LR-kinbiplot) approach (Graffelman et al.,227

2019) for genome wide SNP array data from the GCAT cohort.228
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229

The estimated relationships for the GCAT cohort were to some extent con-230

firmed by an analysis of the surnames of the participants, respecting their231

privacy. In Spain, people have a double surname, usually the first from the232

father and the second from the mother. This implies that FS and 3/4S pairs233

share two surnames, whereas 2nd degree relationships share only one. All234

identified 3/4S pairs were confirmed to share two surnames, supporting that235

these pairs are not 2nd degree.236

237

The proposed LR approach multiplies the likelihoods over loci, under the238

assumption of independence. The existence of linkage disequilibrium (LD)239

between variants violates this assumption. In order to approximately meet240

the requirement of independence, LD pruning of neighbouring variants in a241

window is therefore recommended (Kling and Tillmar, 2019). This pruning242

can be done in PLINK (Purcell et al., 2007) or with other software (Calus243

and Vandenplas, 2018). A future improvement of the LR approach could244

use Markov chain algorithms (Abecasis and Wigginton, 2005; Kling et al.,245

2015) that allow efficient likelihood computations on blocks of tightly linked246

markers.247

248

The LR approach developed in this paper assumes known allele frequencies249

and non-inbred individuals. The first assumption seems reasonable given the250

large sample size used in this study. Inbreeding could be accounted for by the251
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use of nine condensed Jacquard coefficients (Hanghøj et al., 2019; Jacquard,252

1974). The (k̂0, k̂1)-plot of the GCAT data in Figure 4 also shows some pairs253

in-between a 2nd a 3rd degree relationship. In future work, the likelihood254

ratio approach presented in this paper could be further refined to identify255

the relationship of these pairs more precisely. In-between relationships, like256

the 3/4S relationship studied in this paper, essentially stress that relatedness257

is a continuous rather than a discrete concept.258

259
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relatedness research. Molecular Ecology Resources, 17(6):1271–1282, 2017.321

doi: 10.1111/1755-0998.12674.322
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Tables and Figures410

411

Probability of IBD Sharing
Type of Relative R φ k0 k1 k2

Monozygothic twins (MZ) 0 1/2 0 0 1
Parent-offspring (PO) 1 1/4 0 1 0
Full-siblings (FS) 1 1/4 1/4 1/2 1/4
Three-quarter siblings (3/4S) - 3/16 3/8 1/2 1/8
Half-siblings/ grandchild-grandparent/ 2 1/8 1/2 1/2 0
niece/nephew-uncle/aunt (2nd)
First cousins (FC) 3 1/16 3/4 1/4 0
Unrelated (UN) ∞ 0 1 0 0

Table 1: Degree of relationship (R), kinship coefficient (φ), and probability
of sharing zero, one or two alleles identical by descent (k0, k1, k2).
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G1/G2 m = 0 m = 1 m = 2
AA/AA p4 p3 p2

AA/AB 2p3q p2q 0
AA/BB p2q2 0 0
AB/AB 4p2q2 pq 2pq

Table 2: Possible pairs of biallelic genotypes and the probability of each
pair given the number of alleles identical by descent (m). We assume that
the order of the genotypes is irrelevant, i.e. the probabilities for G1/G2 and
G2/G1 are the same.
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LR AA/AA AA/AB AB/AB AA/BB

PO∼UN 1
p

1
2p

1
4pq

e
p2q2

FS∼UN 1
4

+ 1
2p

+ 1
(2p)2

1
4

+ 1
4p

1
4

+ 1
4pq

1
4

3/4S∼UN 3
8

+ 1
2p

+ 1
8p2

3
8

+ 1
4p

3
8

+ 3
16pq

3
8

2nd∼UN 1
2

+ 1
2p

1
2

+ 1
4p

1
2

+ 1
8pq

1
2

FC∼UN 3
4

+ 1
2p

3
4

+ 1
4p

3
4

+ 1
16pq

3
4

Table 3: Likelihood ratio (LR) for relatedness research for biallelic SNPs. The
considered LR are PO, FS, 3/4S, 2nd or FC relationships in the numerator
and the UN relationship in the denominator. The LR values depend on the
observed genotypes of a pair of individuals and the allele frequencies p and
q of the population under study. The e parameter is used to account for
genotype errors and de novo mutations if the genotype combination does not
occur (Heinrich et al., 2016). We assume that the order of the genotypes is
irrelevant, i.e. the LR for G1/G2 and G2/G1 is the same.
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Table 4: Likelihood ratio inference (LR approach) for the presumably 2nd, 3/4S and FS
pairs from the GCAT cohort. FS ∼ UN, 3/4S ∼ UN and 2nd ∼ UN are the LR values

for each pair. LR-kinbiplot is the inferred relationship from Graffelman et al. (2019). φ̂:

estimated kinship coefficient. k̂0, k̂1 and k̂2: estimated IBD probabilities.

pair IID sex IID sex k̂0 k̂1 k̂2 φ̂ LR-kinbiplot FS ∼ UN 3/4S ∼ UN 2nd ∼ UN LR approach

1 REL 00178 F REL 01132 F 0.61 0.36 0.04 0.107 2nd -0.0165 0.0027 0.0092 2nd

2 REL 02227 F REL 00865 M 0.57 0.43 0.00 0.109 2nd -0.0164 0.0035 0.0109 2nd

3 REL 04137 F REL 03163 M 0.51 0.49 0.00 0.122 2nd -0.0103 0.0082 0.0142 2nd

4 REL 04126 F REL 02089 F 0.50 0.50 0.00 0.126 2nd -0.0106 0.0080 0.0143 2nd

5 REL 04141 F REL 02030 M 0.49 0.50 0.01 0.129 2nd -0.0072 0.0101 0.0152 2nd

6 REL 02092 M REL 00587 F 0.48 0.52 0.00 0.129 2nd -0.0073 0.0104 0.0158 2nd

7 REL 02212 M REL 04828 F 0.47 0.53 0.00 0.132 2nd -0.0061 0.0111 0.0161 2nd

8 REL 00603 F REL 00189 F 0.47 0.53 0.00 0.134 2nd -0.0076 0.0101 0.0156 2nd

9 REL 03666 M REL 02902 M 0.47 0.53 0.00 0.134 2nd -0.0057 0.0112 0.0160 2nd

10 REL 00132 F REL 00707 M 0.45 0.55 0.00 0.137 2nd -0.0059 0.0113 0.0164 2nd

11 REL 02058 F REL 03610 F 0.45 0.55 0.00 0.139 2nd -0.0041 0.0125 0.0170 2nd

12 REL 01692 F REL 00010 F 0.44 0.56 0.00 0.139 2nd -0.0041 0.0127 0.0173 2nd

13 REL 03969 M REL 00271 M 0.34 0.56 0.10 0.189 3/4S 0.0260 0.0328 0.0279 3/4S

14 REL 03803 F REL 02343 M 0.35 0.51 0.14 0.198 3/4S 0.0317 0.0361 0.0287 3/4S

15 REL 03924 M REL 03023 F 0.37 0.46 0.17 0.201 3/4S 0.0365 0.0393 0.0301 3/4S

16 REL 00083 M REL 02333 M 0.33 0.52 0.15 0.207 3/4S 0.0377 0.0403 0.0313 3/4S

17 REL 01344 M REL 02408 F 0.36 0.44 0.20 0.210 3/4S 0.0402 0.0412 0.0304 3/4S

18 REL 04189 M REL 00775 M 0.37 0.43 0.21 0.210 3/4S 0.0422 0.0428 0.0314 3/4S

19 REL 03150 F REL 01804 F 0.32 0.51 0.17 0.212 3/4S 0.0411 0.0426 0.0322 3/4S

20 REL 02752 F REL 04859 F 0.34 0.46 0.20 0.215 3/4S 0.0441 0.0443 0.0325 3/4S

21 REL 01502 M REL 03665 M 0.31 0.48 0.21 0.225 FS 0.0482 0.0469 0.0339 FS

22 REL 04592 F REL 04600 F 0.30 0.48 0.21 0.226 FS 0.0511 0.0493 0.0358 FS

23 REL 04693 F REL 00797 F 0.31 0.47 0.22 0.228 FS 0.0520 0.0498 0.0357 FS

24 REL 03607 M REL 00319 F 0.30 0.49 0.21 0.228 FS 0.0501 0.0484 0.0350 FS

25 REL 03220 F REL 04615 F 0.31 0.46 0.23 0.230 FS 0.0532 0.0505 0.0360 FS

26 REL 03212 M REL 02516 F 0.28 0.53 0.20 0.231 FS 0.0548 0.0526 0.0386 FS

27 REL 03310 M REL 03659 F 0.26 0.56 0.18 0.231 FS 0.0496 0.0484 0.0358 FS

28 REL 04427 F REL 02635 F 0.26 0.54 0.19 0.232 FS 0.0502 0.0487 0.0358 FS

29 REL 00122 M REL 01902 F 0.29 0.49 0.22 0.233 FS 0.0542 0.0513 0.0368 FS

30 REL 00284 M REL 02444 F 0.28 0.51 0.21 0.233 FS 0.0517 0.0494 0.0356 FS

31 REL 03838 F REL 02496 F 0.31 0.45 0.24 0.234 FS 0.0561 0.0523 0.0367 FS

32 REL 01564 F REL 03827 F 0.32 0.43 0.26 0.236 FS 0.0571 0.0528 0.0365 FS

33 REL 04529 F REL 04492 F 0.28 0.50 0.22 0.236 FS 0.0555 0.0522 0.0373 FS

34 REL 04494 M REL 00931 M 0.28 0.49 0.23 0.237 FS 0.0560 0.0525 0.0373 FS

35 REL 04466 F REL 02680 F 0.31 0.43 0.26 0.237 FS 0.0576 0.0531 0.0367 FS

36 REL 04405 M REL 03949 M 0.26 0.52 0.22 0.238 FS 0.0557 0.0525 0.0376 FS

37 REL 03880 M REL 04789 F 0.27 0.50 0.23 0.239 FS 0.0566 0.0529 0.0376 FS

38 REL 00383 F REL 03293 M 0.25 0.53 0.22 0.241 FS 0.0574 0.0538 0.0385 FS

39 REL 01888 M REL 04360 M 0.25 0.54 0.21 0.241 FS 0.0566 0.0532 0.0383 FS

40 REL 00792 F REL 00954 M 0.26 0.51 0.23 0.242 FS 0.0585 0.0543 0.0385 FS

41 REL 00872 F REL 01784 F 0.25 0.53 0.22 0.242 FS 0.0598 0.0556 0.0398 FS

42 REL 01450 M REL 01960 M 0.26 0.51 0.23 0.242 FS 0.0586 0.0544 0.0386 FS

43 REL 04616 F REL 02777 F 0.28 0.47 0.25 0.243 FS 0.0604 0.0553 0.0386 FS

44 REL 02899 M REL 01707 F 0.28 0.45 0.26 0.244 FS 0.0618 0.0562 0.0389 FS

45 REL 02905 F REL 02575 F 0.25 0.52 0.23 0.245 FS 0.0604 0.0557 0.0394 FS

46 REL 00769 M REL 04746 F 0.23 0.57 0.21 0.246 FS 0.0606 0.0564 0.0406 FS

47 REL 00009 F REL 02335 F 0.23 0.55 0.22 0.246 FS 0.0603 0.0558 0.0399 FS

48 REL 04475 F REL 04218 M 0.25 0.51 0.24 0.247 FS 0.0615 0.0564 0.0397 FS

49 REL 01150 F REL 04384 F 0.26 0.49 0.25 0.249 FS 0.0639 0.0580 0.0403 FS

50 REL 03944 M REL 03475 F 0.23 0.54 0.23 0.249 FS 0.0618 0.0568 0.0403 FS

51 REL 03904 F REL 04994 F 0.25 0.50 0.25 0.249 FS 0.0631 0.0573 0.0400 FS

52 REL 01654 M REL 03485 M 0.28 0.43 0.29 0.251 FS 0.0660 0.0588 0.0398 FS

53 REL 00504 M REL 04718 F 0.24 0.50 0.25 0.252 FS 0.0645 0.0582 0.0404 FS

54 REL 00339 F REL 02473 F 0.25 0.48 0.27 0.253 FS 0.0651 0.0584 0.0400 FS

55 REL 01016 M REL 00887 M 0.24 0.50 0.26 0.254 FS 0.0661 0.0594 0.0411 FS

56 REL 03977 M REL 01080 M 0.22 0.54 0.24 0.255 FS 0.0644 0.0583 0.0408 FS

57 REL 02339 M REL 02391 M 0.27 0.44 0.29 0.256 FS 0.0688 0.0608 0.0411 FS

58 REL 01524 F REL 03272 F 0.23 0.51 0.26 0.256 FS 0.0674 0.0604 0.0419 FS

59 REL 01285 M REL 03761 F 0.24 0.50 0.27 0.257 FS 0.0670 0.0597 0.0410 FS

26

90 CHAPTER 4. RESEARCH ARTICLES



60 REL 03395 F REL 02694 F 0.22 0.52 0.25 0.257 FS 0.0680 0.0609 0.0423 FS

61 REL 03151 M REL 02204 F 0.23 0.50 0.26 0.257 FS 0.0683 0.0610 0.0421 FS

62 REL 00968 M REL 01577 F 0.26 0.45 0.29 0.259 FS 0.0744 0.0654 0.0445 FS

63 REL 04439 F REL 01640 F 0.26 0.43 0.31 0.260 FS 0.0721 0.0630 0.0421 FS

64 REL 01546 M REL 03566 F 0.21 0.53 0.26 0.263 FS 0.0701 0.0621 0.0428 FS

65 REL 03442 F REL 04510 F 0.22 0.51 0.27 0.264 FS 0.0714 0.0630 0.0431 FS

66 REL 00340 F REL 04294 F 0.21 0.53 0.26 0.264 FS 0.0710 0.0628 0.0432 FS

67 REL 03001 F REL 04111 F 0.23 0.48 0.29 0.265 FS 0.0727 0.0636 0.0430 FS

68 REL 00282 F REL 04918 F 0.25 0.44 0.31 0.267 FS 0.0748 0.0648 0.0430 FS

69 REL 01083 F REL 01704 F 0.18 0.57 0.25 0.267 FS 0.0715 0.0634 0.0439 FS

70 REL 03388 F REL 02608 F 0.22 0.50 0.29 0.268 FS 0.0739 0.0645 0.0436 FS

71 REL 01924 F REL 00727 M 0.24 0.45 0.32 0.270 FS 0.0769 0.0663 0.0440 FS

72 REL 02208 F REL 03486 F 0.23 0.46 0.31 0.270 FS 0.0769 0.0665 0.0444 FS

73 REL 02718 M REL 02913 M 0.22 0.48 0.30 0.271 FS 0.0765 0.0662 0.0443 FS

74 REL 00634 M REL 03507 M 0.20 0.51 0.29 0.272 FS 0.0754 0.0656 0.0443 FS

75 REL 04741 F REL 02513 F 0.19 0.52 0.30 0.277 FS 0.0783 0.0676 0.0455 FS

76 REL 00601 M REL 02989 F 0.19 0.51 0.30 0.278 FS 0.0802 0.0689 0.0462 FS

77 REL 01624 F REL 00750 F 0.19 0.51 0.30 0.278 FS 0.0790 0.0680 0.0456 FS

78 REL 00824 F REL 00213 F 0.22 0.45 0.33 0.278 FS 0.0815 0.0693 0.0456 FS

79 REL 01264 M REL 04751 F 0.18 0.52 0.30 0.279 FS 0.0795 0.0684 0.0459 FS

80 REL 02208 F REL 01630 F 0.18 0.52 0.31 0.283 FS 0.0826 0.0706 0.0473 FS

81 REL 04704 F REL 00804 M 0.17 0.52 0.31 0.285 FS 0.0829 0.0707 0.0472 FS

82 REL 03627 F REL 03315 F 0.15 0.55 0.30 0.288 FS 0.0838 0.0714 0.0478 FS

83 REL 03486 F REL 01630 F 0.17 0.50 0.33 0.289 FS 0.0873 0.0738 0.0488 FS
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Figure 1: (k̂0, k̂1)-plot of ∼18 million pairs of simulated individuals using
27,087 SNPs. UN: unrelated; 2nd: second degree relationships; 3/4S three-
quarter siblings. FS: full-siblings; PO: parent-offspring. Brown open dots
represent theoretical IBD probabilities; brown + signs the average of the
corresponding group.
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Figure 2: Boxplot of kinship estimates of ∼18 million pairs of simulated
individuals using 27,087 SNPs.
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Figure 3: Log10 likelihood ratio approach of the simulated 2nd, 3/4S and
FS pairs (500 for each relationship) using 27,087 SNPs. Note the larger than
sign shaped (“>”) pattern (gray dashed lines) for most 3/4S pairs.
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Figure 4: (k̂0, k̂1)-plot of the GCAT cohort for 5,075 individuals and 26,006
SNPs (MAF > 0.40, LD-pruned, HWE exact mid p-value > 0.05, and missing
call rate 0). UN: unrelated; 5th, 4th, 3rd, 2nd: fifth, fourth, third, and
second degree relationships; 3/4S: three quarter siblings; FS: full siblings;
PO: parent-offspring.
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Figure 5: Boxplot of kinship estimates of the GCAT cohort for 5,075 indi-
viduals and 26,006 SNPs (MAF > 0.40, LD-pruned, HWE exact mid p-value
> 0.05, and missing call rate 0).
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Figure 6: Log10 likelihood ratio approach of the presumably 2nd, 3/4S and
FS pairs from the GCAT cohort using 26,006 SNPs (MAF> 0.40, LD-pruned,
HWE exact mid p-value > 0.05, and missing call rate 0).
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Supplementary Figures412

413

fs1_g1−b1−i1 fs1_g1−b1−s1

fs1_g2−b1−i1 fs1_g2−b1−i2

Figure S1: Pedigree simulated with ped-sim including one FS pair.

three1_g1−b1−s1 three1_g1−b1−i1 three1_g1−b2−i1 three1_g1−b2−s1

three1_g1−b2−i1 three1_g2−b1−i1 three1_g2−b2−i1

three1_g3−b2−i1 three1_g3−b1−i1

Figure S2: Pedigree simulated with ped-sim including one 3/4S pair.

34

98 CHAPTER 4. RESEARCH ARTICLES



Appendix A414

415

We derive the IBD probabilities for three-quarter siblings (3/4S) in the case416

that a pair of individuals have one parent in common while their unshared417

parents are full-siblings (FS) (Figure S3). In the case that the unshared418

parents have a parent-offspring relationship, the IBD probabilities can be419

derived analogously.420

421

Let δγ be the genotype of the common parent of a 3/4S pair, and αβ, αB,422

Aβ and AB the possible genotypes of a FS pair. Then, all the possible geno-423

types and the IBD alleles shared for a 3/4S pair are shown in Table S1.424

425

Figure S3: Pedigree of a 3/4S pair where their unshared parents are FS.
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αδ αγ Aδ Aγ βδ βγ Bδ Bγ
αδ 2 1 1 0 1 0 1 0
αγ 1 2 0 1 0 1 0 1
Aδ 1 0 2 1 1 0 1 0
Aγ 0 1 1 2 0 1 0 1
βδ 1 0 1 0 2 1 1 0
βγ 0 1 0 1 1 2 0 1
Bδ 1 0 1 0 1 0 2 1
Bγ 0 1 0 1 0 1 1 2

Table S1: Number of IBD alleles for all possible pairs of 3/4S where their
unshared parents are FS.

From Table S1, the IBD probabilities for 3/4S are:426

k0 = P (IBD = 0) = 24
64

= 3/8427

k1 = P (IBD = 1) = 32
64

= 1/2428

k2 = P (IBD = 2) = 8
64

= 1/8429

430

And their kinship coefficient is:431

φ = k1/4 + k2/2 = 1
2

1
4

+ 1
8

1
2

= 3/16432

433
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Appendix B434

435

Here we show the LR of 3/4S∼UN for a biallelic SNP whose alleles are A436

and B. Let p and q be the allele frequencies for A and B of the population437

under study. For a pair of individuals, we show the LR computation for four438

genotype pairs: AA/AA, AA/AB, AA/BB and AB/AB. The LR for the re-439

maining genotype pairs (AB/AA, AB/BB, BB/AA, BB/AB and BB/BB)440

are equivalent or can be obtained analogously.441

442

The IBD probabilities for 3/4S are (k0, k1, k2) = (3/8, 1/2, 1/8) and for UN443

pairs are (k0, k1, k2) = (1, 0, 0). Then, according to the Tables 1 and 2 and444

Equations 1 and 2, the LR for 3/4S∼UN is derived as follows:445

446

AA/AA case:447

LR =
3
8
p4 + 1

2
p3 + 1

8
p2

p4
=

3

8
+

1

2p
+

1

8p2

448

449

AA/AB case:450

LR =
3
8
2p3q + 1

2
p2q

2p3q
=

3

8
+

1

4p
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451

452

AA/BB case:453

LR =
3
8
p2q2

p2q2
=

3

8

454

455

AB/AB case:456

LR =
3
8
4p2q2 + 1

2
pq + 1

8
2pq

4p2q2
=

3

8
+

3

16pq

457

458
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Chapter 5

Results and discussion

In this chapter, we review and discuss the main results derived from this doctoral thesis. Mainly,
we show that the statistical methods from Compositional Data analysis (ternary diagram visual-
ization, isometric log-ratio transformation and log-ratio biplot) make a valuable contribution to
the field of relatedness research. Furthermore, we develop a likelihood ratio approach to detect
three quarter siblings in genetic databases.

5.1 Compositional graphics for relatedness research

To illustrate the compositional approach for relatedness research, we consider 377 microsatellite
markers genotyped for 25 individuals from the Maya population of the HGDP-CEPH diversity
panel described in Section 3.2.3. Using this genetic database, we study and review the usual
graphics in allele sharing studies based on identity by state/descent alleles.

Regarding IBS studies (section 3.2.1), Figures 5.1 (a) and (b) show the scatterplot of means (x̄)
and standard deviations (s) of the IBS alleles and the scatterplot of the proportion of sharing
0 and 2 IBS alleles (p0, p2, respectively). Regarding IBD studies (section 3.2.2), Figure 5.2 (a)
shows the scatterplot of the estimated probabilities of sharing 0 and 1 IBD alleles (k̂0, k̂1, re-
spectively). Hereafter, we refer to these graphics as (x̄, s), (p0, p2) and (k̂0, k̂1)-plots respectively.
The pairs of individuals are colored according to the family relationships that were reported by
Rosenberg (2006) and inferred using the RELPAIR program (Boehnke and Cox, 1997; Epstein
et al., 2000). To confirm these reported relationships, we plot convex hulls of simulated pairs
of individuals with known artificial pedigrees and therefore we evaluate if each relationship falls
into his expected simulated convex hull.

Instead of using the (p0, p2) and (k̂0, k̂1)-plots, Sun (2012) uses the (p0, p1)-plot and Moltke and
Albrechtsen (2014) use the (k̂1, k̂2)-plot. In fact, any combination of the three IBS/IBD prob-
abilities could be plotted for relatedness research. We refer to these combinations of IBS/IBD
graphics as (pi, pj) and (k̂i, k̂j)-plots (for i, j = 0, 1, 2 and i < j) where pi and k̂i correspond to

the X-axis of each plot and pj and k̂j to the Y-axis.

We propose the use of the ternary diagram (section 3.1.1) as an alternative of the (pi, pj) and

(k̂i, k̂j)-plots in order to represent the full set of IBS or IBD probabilities. In fact, the ternary
diagram takes into account the compositional nature of the allele sharing data and is able to
represent the three IBS/IBD probabilities simultaneously as is shown in Figures 5.1 (c) and 5.2
(b).

However, the main limitation of the (x̄, s), (pi, pj) and (k̂i, k̂j)-plots and the ternary diagram is
that they occupy a constrained space and the Euclidean distance interpretation in these graphics

103
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is not adequate as described in section 1.2. Specifically, the (x̄, s)-plot is constrained by the
“umbrella” shaped space as is shown in Figure 5.1 (a). This “umbrella” space is obtained by
simulating pairs of individuals and genetic markers containing all the possible combinations of
0, 1 and 2 IBS alleles. Otherwise, the (p0, p2) and (k̂0, k̂1)-plots are constrained by the unit sum
(p0 + p1 + p2 = 1, k0 + k1 + k2 = 1) which is represented by the line y = 1 − x as is shown
in Figures 5.1 (b) and 5.2 (a). Despite the (x̄, s)-plot does not have the unit sum constraint
characteristic of Compositional Data, we found that both (x̄, s) and (p0, p2) statistics are related
by the equations: x̄ = 1− p0 + p2 and s =

√
p0(1− p0) + p2(1− p2) + 2p0p2.

To overcome the limitation of the Euclidean distance interpretation in the constrained classical
graphics and the ternary diagram, we propose to use the isometric log-ratio transformation of
the IBS and IBD probabilities. In this way, Euclidean distances in the log-ratio transformed
space are the same as the Aitchison distances defined in the simplex (principle of working in
coordinates, (Mateu-Figueras et al. (2011), sections 1.2, 3.1.3 and 3.1.5). Figures 5.1 (d) and
5.2 (c) show the isometric log-ratio transformation of the IBS and IBD probabilities defined as:(
z11 = 1√

2
ln
(
p2
p0

)
, z12 = 1√

6
ln
(
p0p2
p21

))
and

(
z11 = 1√

2
ln
(
k̂2
k̂0

)
, z12 = 1√

6
ln
(
k̂0k̂2
k̂21

))
respectively.
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Figure 5.1: Identical by state (IBS) alleles for all the pairs of individuals from the Maya popula-
tion. (a) Plot of means versus standard deviations. (b) (p0, p2)-plot. (c) Ternary diagram. (d)
Ilr-coordinates: (z11, z12). The convex hulls are obtained by simulating artificial children from a
subset of unrelated individuals from the Maya population.

Regarding IBS graphics, the (x̄, s)-plot (Figure 5.1, a) shows two PO pairs located close to the
gray curve with the smallest standard deviations. First and second degree relationships have
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Figure 5.2: Identical by descent (IBD) alleles for all the pairs of individuals from the Maya
population. (a) (k̂0, k̂1)-plot. (b) Ternary diagram. (c) Ilr-coordinates: (z11, z12).

a mean above 1. The (p0, p2)-plot (Figure 5.1, b) shows the two PO pairs close to the p2-axis
and the FS pair have the larger p2 values. In the ternary diagram (Figure 5.1, c), PO pairs are
points on the opposite side of the vertex p0, meaning that the p0 is close to 0. The FS pair is the
point closest to the vertex p2, which has the largest p2. In Figure 5.1 (d), the first ilr-coordinate
(z11) clearly discriminates first-degree relatives from UN pairs. Pairs with larger values for z11
are more likely to correspond to related individuals. PO pairs are extreme outliers because they
have p0 values close to 0 which increase the first coordinate of the corresponding log-ratio. The
scatterplot of the log-ratios is seen to produce a larger degree of separation between FS and
PO pairs, and between first-degree pairs and all other pairs. The convex hulls for the simulated
related pairs in Figure 5.1 are seen to enclose the sample estimates of the PO, FS, HS and FC
pairs and so confirm the assigned relationships.

Regarding IBD graphics, the (k̂0, k̂1)-plot (Figure 5.2, a) separates the first, second and some
pairs of third degree of relationship. In the ternary diagram (Figure 5.2, b), it is easy to identify
PO pairs at the vertex of k̂1, a FS pair close to the barycenter of the triangle and other family
relationships of second degree on the opposite side of the k̂2 vertex. UN pairs are on the k̂0− k̂1
edge and tend towards the k̂0 vertex. Third-degree pairs are mixed with unrelated individuals.
In Figure 5.2 (c), the pairs with a close family relationship tend to have larger values of z11. The
ilr-coordinates clearly separates out FS and PO relationships from all other pairs. Notice that
Figures 5.2 (a) and (b) show only one pair with a second degree relationship (the violet point),
whereas in Figure 5.2 (c), there are two visible violet pairs.

The IBS and IBD graphics (Figures 5.1 and 5.2) were amplified with convex hulls of artificially
generated pedigrees to show the approximate expected positions for the different relationships.
These hulls mainly confirm the assigned relationships. However, in ilr-coordinates, PO hulls do
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not capture all observed PO pairs. The accuracy of the convex hulls depends on the sample size,
the number of genetic markers, and in particular on the number of UN individuals in the sample
from which it is generated. More accurate convex hulls may be obtained if linkage disequilibrium
is taken into account and artificial pairs are generated by sampling from haplotypes instead of
by sampling individual markers independently. Furthermore, the position of a PO pair in the
ilr-coordinates of the IBD probabilities has a high variability and depends on the tolerance and
initial point used in the maximization of the likelihood (Graffelman and Galván-Femeńıa, 2016).
If the sample size is small, or the number of simulated pairs is small, the PO hull many not cover
the full area compatible with PO pairs. It is worth remarking that PO and FS convex hulls do
not intersect each other and do not overlap with the rest of the hulls, having a valuable discrim-
inative power. We think the current simulated convex hulls are helpful to assess uncertainty but
of limited value and see a clear need for methods of formal statistical inference on relationships
by means of hypothesis testing and confidence regions (Garćıa-Magariños et al., 2015).

Everything discussed during this section represents the content of the article: Galván-Femeńıa,
I., Graffelman, J. & Barceló-i-Vidal, C. (2017). Graphics for relatedness research. Molecu-
lar Ecology Resources, 17(6), 1271-1282. doi:10.1111/1755-0998.12674.

Once we introduced the compositional approach of the classical IBS/IBD graphics for relatedness
research, we deepened our understanding of the nature of the allele sharing data. We are aware
that taking into account genotype sharing information instead of allele sharing information, we
can interpret data with higher dimensionality. Specifically, the genotype sharing data has six
counts instead of the allele sharing data that has only three counts. We explore the genotype
sharing data by using log-ratio principal component analysis (PCA) (section 3.1.7). Furthermore,
we introduce statistical inference of family relationships using linear discriminant analysis (LDA)
(Johnson et al., 2002) in the log-ratio biplot space. The training set used for linear discriminant
analysis is composed of artificial pedigrees generated from the population under study (section
3.2.4). This approach is presented in the following section and is part of the contents of the
article: Graffelman, J., Galván-Femeńıa, I., de Cid, R. & Barceló-i-Vidal, C. (2019). A log-
ratio biplot approach for exploring genetic relatedness based on identity by state.
Frontiers in Genetics, 10, 341. doi:10.3389/fgene.2019.00341.

5.2 Log-ratio biplot for relatedness research

To illustrate the log-ratio biplot approach for relatedness research, we consider simulated data
and individuals from the GCAT Genomes for Life Cohort study of the Genomes of Catalonia
(section 3.2.3).

In this approach, we consider genotype sharing data instead of classical allele sharing data (sec-
tion 3.2). Briefly, given bi-allelic variants with alleles A and B, we consider six possible pairs of
genotypes whose counts over k variants can be laid out in a triangular array shown in Table 5.1.
The counts kij refers to the number of variants that have i B alleles for one individual, and j B
alleles for the other individual.

Consequently, each pair can be represented by a vector of six counts which can be expressed as
a composition by division by its total (closure):

x = (k00, k10, k11, k20, k21, k22)/k.
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AA k00
1st indiv. AB k10 k11

BB k20 k21 k22
AA AB BB

2nd indiv.

Table 5.1: Lower triangular matrix layout with counts for all possible genotype pairs.

The total number of variants is given by k =
∑

i≥j kij . Given n individuals, we construct matrix

X with q = 1
2n(n − 1) pairs in its rows, and propose to study relatedness by a log-ratio PCA

of this q x 6 matrix of compositions (section 3.1.7). This will allow the construction of a biplot,
where each pair of individuals is represented by a point, and each part of the clr transformed
composition by a vector. A limitation of the representation of pairs of individuals in a log-ratio
PCA biplot is that the type of relationship cannot be inferred if it is undocumented. Without
additional analysis one does not know for sure whether observed clusters correspond to FS, PO,
or other pairs. We resolve this by first identifying a subset of approximately unrelated individuals
in the database, having a kinship coefficient with other individuals that is below 0.05. We next
simulate pairs of related individuals of known relationships by constructing artificial pedigrees
from this subset, applying Mendelian inheritance rules (section 3.2.4). The artificially generated
data set forms a reference set against which the empirically observed data can be compared.
This reference set is generated conditionally on the allele frequencies of the observed sample. We
now first apply log-ratio PCA to the pairs of the reference set (X), and construct a biplot of the
reference set. The empirically observed pairs (Y ) are projected onto this PCA biplot (section
3.1.7) and their relationship is inferred, according to which simulated type of relationship is most
close to the empirical pair. This can be done in a quantitative way by classifying all empirical
pairs with linear discriminant analysis (LDA) (Johnson et al., 2002), using the simulated pairs
as a training set.

Following the former approach, we simulated 35,000 independent genetic bi-allelic variants by
sampling from a multinomial distribution under the Hardy-Weinberg assumption, using a minor
allele frequency (MAF) of 0.5 for all variants. Considering Mendelian inheritance rules, 100 in-
dependent pairs of each type of relationship were simulated (section 3.2.4). Using this simulated
data, we apply the log-ratio PCA approach and depict the log-ratio biplot jointly with the classi-
cal (x̄, s), (p0, p2) and (k̂0, k̂1) plots in Figure 5.3. This Figure shows that first and second degree
pairs are easily identified by all methods and consequently, using linear discriminant analysis,
we obtain a classification rate of these groups equals to 1. For this reason, we focus on third
and higher degree relationships which are harder to distinguish as they tend to blur in the plots.
Therefore, we investigated the effect of the number of SNPs used for the classification rate of
the artificial simulated relationships of third through sixth degree pairs (100 of each). Figure 5.4
shows the classification rate as a function of the number variants with MAF 0.50 for the four
aforementioned methods. These classification rates were obtained by averaging over 25 replicates
of the simulations, for each number of variants. It is clear that the log-ratio PCA approach gives
the best classification rates for all relationships. There is little difference in classification rate for
third degree relationships, which are relatively more easy to classify. As expected, classification
rate increases with the number of variants. The results suggest that for all four methods 25,000
variants with MAF 0.50 are sufficient to almost perfectly classify PO, FS, second, third, and
fourth degree relationships. The difference in classification rate between the log-ratio PCA ap-
proach and the conventional methods is larger for the more remote relationships. This simulation
concerns a relatively ideal dataset with independent variants and maximally polymorphic vari-
ants. For empirical data sets, the independence of the variants can be approximately achieved
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by LD pruning variants.
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Figure 5.3: Classical graphics and log-ratio PCA biplot for simulated samples. 100 pairs of
each type of relationship (UN, sixth, fifth, fourth, third, second, FS and PO) were generated
using 35,000 biallelic variants with minor allele frequencies of 0.5, assuming Hardy Weinberg
equilibrium. (a) (x̄, s)-plot. (b) (p0, p2)-plot. (c) (k0, k1)-plot. (d) Log-ratio PCA biplot.
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Figure 5.4: Classification rates for different methods vs. number of SNPs. Classification rates for
the different degrees of relationship (third, fourth, fifth, sixth, UN, and All) are shown for four
methods. Classification rate profiles for the (x̄, s)-plot and the (p0, p2)-plot virtually coincide.
The last panel All refers to the classification rate for third through UN relationships jointly.
Rates are shown as a function of the number of SNPs with MAF 0.50, and were obtained by
linear discriminant analysis. 100 pairs of each type of relationship were generated assuming
Hardy-Weinberg equilibrium.
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We therefore show an application of the log-ratio biplot approach in the GCAT Genomes for
life project, a prospective cohort study of the genomes of Catalonia (www.genomesforlife.com/
en_index). GCAT includes 17,924 participants (40-65 years, release August 2017) recruited
from the general population of Catalonia, a Mediterranean region in the northeast of Spain.
Participants are mainly part of the Blood and Tissue Bank (BST), a public agency of the Catalan
Department of Health. Detailed information regarding the GCAT project is described in Obón-
Santacana et al. (2018). We study relatedness of 5,075 GCAT self-reported Spanish participants
from Caucasian origin using 736,223 SNPs that passed quality control (Galván-Femeńıa et al.,
2018). Inferred relatives of first and second degree were confirmed by the BST public agency,
for pairs sharing one surname (PO, second degree pairs) or two surnames (FS pairs), respecting
the privacy of the participants. Variants were filtered according to missingness (only variants
genotyped for all individuals were used), MAF (> 0.40) and Hardy-Weinberg equilibrium test
result (exact test mid p-value>0.05, Graffelman and Moreno (2013)). Variants were LD-pruned
with PLINK software using a sliding window of 50 SNPs with an overlap of 5 SNPs between
successive windows, and SNPs are removed from the window until no variants remain that have
a squared correlation above 0.20 (PLINK option indep-pairwise 50 5 0.2). After applying all
these filtering criteria, a total of 26,006 SNPs remained for relatedness analysis. Log-ratio PCA
biplots representing over twelve million pairs, combined with the classification of the individuals
by LDA are shown in Figure 5.6. This analysis shows the different relationships have in general, a
larger variability than expected according to the simulated pairs. The FS cluster has a particular
high variability, with pairs apparently less related than FS, and pairs stronger related than FS,
in comparison with the FS hull. One apparent FS pairs is actually classified as second degree
(Figure 5.6 (a)). This fusion of FS and second degree pairs suggested us that three-quarter
siblings might exist in the database and we therefore re-analyzed the data using a training set
that included three-quarter siblings. Three-quarter siblings (3/4S) share more IBD alleles than
second degree pairs but fewer than FS. 3/4S have one common parent, while their unshared
parents can be FS or PO (see Figure 5.5). Three-quarter siblings have IBD probabilities k0 =
3/8, k1 = 1/2, and k2 = 1/8, such that their kinship coefficient is φ = 3/16, below the value
φ = 1/4 of full siblings (Table 3.2). In the re-analysis in Figure 5.6 (b), we found 63 FS pairs,
12 2nd pairs, and eight pairs were indeed classified as three-quarter siblings with large posterior
probability. Two of these pairs had their kinship coefficient very close to the expected value of
φ = 3/16. Because Spanish people have both paternal and maternal surnames, three-quarter
siblings share both surnames just as siblings do. The pairs classified as 3/4 siblings shared indeed
both surnames, confirming these pairs are actually not second degree. Peeling siblings and three-
quarter siblings reveals apparent second degree pairs more clearly (Figure 5.6 (c)). Tentatively
peeling second degree pairs brings the third degree pairs in focus (Figure 5.6 (d)), and in this
analysis we find 174 third, 66 fourth, 31 fifth, and 3,517 sixth degree pairs. Further peeling is
difficult as the different clusters increasingly merge.

Figure 5.5: (a) Pedigree of a 3/4S where their unshared parents are FS. (b) Pedigree of a 3/4S
where their unshared parents are PO.

www.genomesforlife.com/en_index
www.genomesforlife.com/en_index
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Figure 5.6: Log-ratio PCA biplot of GCAT sample obtained by peeling and zooming. (a) log-
ratio PCA biplot, PO and 3/4S pairs excluded. (b) 3/4S pairs included; (c) FS and 3/4S pairs
excluded; (d) FS, 3/4S, and second degree pairs excluded. Convex hulls delimit the region of the
pairs obtained by simulation.
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The simulated reference data set used in the log-ratio PCA biplot (Figure 5.6) was obtained by
resampling genetic variants independently, and this does not take linkage disequilibrium (LD)
and recombination into account. If haplotype data is estimated, a biologically more realistic sim-
ulated data set can be obtained by sampling haplotypes instead of genotypes. We have avoided
this issue by LD pruning the data base prior to resampling, so removing tightly correlated mark-
ers. The reference data set is therefore constructed on the basis of a subset of variants that can
expected to be approximately independent. This subset is then used as the basis for relationship
estimation. This procedure has the advantage that it avoids potential additional uncertainty
generated by the haplotype estimation algorithm. However, the proposed procedure may be
improved in the future by accounting for haplotype structure and recombination. The pruning
threshold used in our method (0.20) is a compromise between precision and satisfying the inde-
pendence assumption. A larger value will admit more variants and can increase the resolution,
but due to correlation between variants it will invalidate the independence assumption used to
generate the reference set of related pairs.

The log-ratio PCA biplot approach is focused on homogeneous populations. If population sub-
structure exists, then log-ratio PCA can be expected to separate the different populations in its
biplot. Methods that address substructure and family relationships jointly have been developed
(Manichaikul et al., 2010; Conomos et al., 2016). Population substructure can be accounted for
by using only variants with low weights on the first components for a relatedness analysis, as is
done in the UK Biobank project (Bycroft et al., 2018), as the first components mostly capture
substructure. In future work, the usefulness of the log-ratio PCA approach for the joint study
of remote and recent relatedness could be further explored.

The analysis of the GCAT samples suggested that eight three-quarter siblings pairs exist in this
database. For this reason, we develop an additional statistical methodology such as the likeli-
hood ratio approach in order to confirm these eight three-quarter siblings pairs. This approach
is presented in the following section and is part of the content of the article: Galván-Femeńıa, I.,
Barceló-i-Vidal, C., Sumoy, L., Moreno, V., de Cid, R. & Graffelman, J. (2020). A likelihood
ratio approach for identifying three quarter siblings in genetic databases. Heredity.
Submitted.

5.3 Likelihood ratio approach for identifying three quarter sib-
lings

The likelihood ratio (LR) approach has been widely used for relatedness research during the
last decades (Thompson, 1986; Boehnke and Cox, 1997; Weir et al., 2006; Katki et al., 2010;
Heinrich et al., 2016). Briefly, the LR approach is based on the contrast of two hypotheses, one
in the numerator, Hi; and the other one in the denominator, Hj . The larger the LR, the more
plausible is Hi; whereas the smaller the LR, the more plausible is Hj . For relatedness research,
we consider the ratio of the probabilities from Equation 3.1 according to the hypothesis of the
Ri and Rj relationships. That is:

LR(Ri, Rj |G1/G2) =
P (G1/G2|Ri)
P (G1/G2|Rj)

. (5.1)

Here we focus on the FS, 3/4S, 2nd degree and UN relationship categories. We calculate three
LRs having FS, 3/4S or 2nd in the numerator and having the UN relationship in the denominator.
The common denominator makes the LR values comparable in order to distinguish 3/4S from FS
and 2nd degree. Inference of relatedness for each pair of individuals is based on the largest LR
value in the FS∼UN, 3/4S∼UN and 2nd∼UN ratios. The LR are shown in Table 5.2, depending
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on the observed genotypes of a pair of individuals. Most of these ratios are derived in Heinrich
et al. (2016). For S biallelic SNPs, the LR can be obtained by multiplying the LRs across
markers and by dividing by the number of SNPs. It is convenient to work in a logarithmic scale
such that:

log10(LR) =
1

S
log10

(
S∏

s=1

LRs(Ri, Rj |G1/G2)

)
=

1

S

S∑

s=1

log10
(
LRs(Ri, Rj |G1/G2)

)
.

(5.2)

LR AA/AA AA/AB AB/AB AA/BB

FS∼UN 1
4 + 1

2p + 1
(2p)2

1
4 + 1

4p
1
4 + 1

4pq
1
4

3/4S∼UN 3
8 + 1

2p + 1
8p2

3
8 + 1

4p
3
8 + 3

16pq
3
8

2nd∼UN 1
2 + 1

2p
1
2 + 1

4p
1
2 + 1

8pq
1
2

Table 5.2: Likelihood ratio (LR) for relatedness research for biallelic SNPs. The considered LR
are FS, 3/4S, 2nd relationships in the numerator and the UN relationship in the denominator.
The LR values depend on the observed genotypes of a pair of individuals and the allele frequencies
p and q of the population under study. We assume that the order of the genotypes is irrelevant,
i.e. the LR for G1/G2 and G2/G1 is the same.

Therefore, according to the Equation 5.2, we calculate the FS∼UN, 3/4S∼UN and 2nd∼UN ra-
tios for the FS, 3/4S and 2nd degree pairs detected in the GCAT cohort using the log-ratio biplot
PCA approach (Figure 5.6). Figure 5.7 shows the LR ratio values and reveals eight 3/4S pairs
(black color) that have the larger than sign shaped (“>”) pattern. All inferred FS pairs (blue
color) have the monotonously increasing “/” shaped pattern and all 2nd degree pairs have the
monotonously decreasing “\” pattern. All the relationships are colored and inferred according
to the relationship category of the numerator of the largest LR value. This inference coincide
with the log-ratio PCA biplot based on LDA and we confirm the existence of eight 3/4S pairs in
the GCAT database.

The main motivation of using the proposed LR approach instead of the classical (k̂0, k̂1)-plot is
that 3/4S can easily go unnoticed as FS pairs. Figure 5.8 shows the (k̂0, k̂1)-plot of the GCAT
cohort, the pairs of individuals are colored according to the LR inference approach. It can be
shown that 3/4S pairs are close to the FS pairs and can be misclassified as FS. Thus, the LR
approach can be of great help to identify such cases.

The proposed LR approach multiplies the likelihoods over loci (Equation 5.2), under the assump-
tion of independence. The existence of linkage disequilibrium (LD) between variants violates this
assumption. In order to approximately meet the requirement of independence, we LD pruned
neighbouring variants in a window using the PLINK software. However, independence is not
always satisfied for related individuals since variants are highly correlated due to the biological
inheritance patterns. Further improvement of the LR calculation can be achieved if LD and
genetic recombination maps are taken into account.
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Figure 5.7: Log10 likelihood ratio approach of the presumably 2nd, 3/4S and FS pairs from the
GCAT cohort using 26,006 SNPs (MAF > 0.40, LD-pruned, HWE exact mid p-value > 0.05,
and missing call rate 0).

Figure 5.8: (k̂0, k̂1)-plot of the GCAT cohort for 5,075 individuals and 26,006 SNPs (MAF >
0.40, LD-pruned, HWE exact mid p-value > 0.05, and missing call rate 0). UN: unrelated; 5th,
4th, 3rd, 2nd: fifth, fourth, third, and second degree relationships; 3/4S: three quarter siblings;
FS: full siblings; PO: parent-offspring.
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5.4 Conclusions

The statistical methods from the field of Compositional Data used in the first and second work
of this doctoral thesis have enriched the classical methods used for relatedness research.

The first article shows that the identity by state/descent probabilities can be formally defined in
the simplex. These probabilities can be considered as 3-part compositions and can be represented
in ilr-coordinates. This approach allows to interpret the distances between the different family
relationships properly.

The second article of this thesis shows that identity by state has higher dimensionality if the
analyst take into account genotype sharing data instead of allele sharing data. Therefore, geno-
type sharing data can be considered as 6-part compositions. For this reason, we explore these
data using log-ratio PCA biplots. This approach jointly with linear discriminant analysis shows
accurate inferences up to fourth degree relationships.

The log-ratio PCA biplot uncovered the detection of three-quarter siblings. Thus, this thesis
finishes with a third work where an additional statistical method based on likelihood ratios is
developed in order to identify three-quarter siblings relationships.

5.5 Further research

During the development of this thesis, new lines of research arose to improve the methodology
presented in this compendium of three research articles.

• All the three articles are supported with simulations of artificial pedigrees. However these
simulations do not take into account linkage disequilibrium (LD) and genetic recombina-
tion. This can explain the large variability of the empirical FS pairs in the simulated FS
convex hull of the log-ratio PCA biplots. Therefore, the simulations can be made more
realistic by accounting for both biological phenomena. Simulations taking into account
haplotype estimation algorithms such as SHAPEIT (Delaneau et al., 2012) can overcome
this limitation.

• Additional applications to other genetic databases, such as the UK Biobank (Bycroft et al.,
2018), the Qatari Genome (Fakhro et al., 2016) and the San Antonio Mexican American
Family Studies (SAMAFS) (Ramstetter et al., 2017), will enrich the statistical methodology
described in this doctoral thesis. The first database is considered for having almost half
million of individuals, the second for being an endogamous population and the third for
having confirmed family relationships and a benchmarking of 12 state-of-the-art pairwise
relatedness methods. We think that it is worth to apply the log-ratio biplot methodology
and to analyze the existence of three-quarter siblings in all three databases. Applications
of the log-ratio biplot methodology to these new datasets will likely give further insight in
its possibilities and limitations for relatedness research.

• All the three approaches presented in this thesis are illustrated in homogeneous populations.
In the presence of population substructure, statistical approaches such as removing non-
ancestry genetic markers prior to relatedness research can be considered to deal with this
phenomenon (Bycroft et al., 2018). This thesis has shown that the log-ratio approach is
able to detect related individuals in genetic databases. Most likely, it will also be useful to
detect population substructure (non-homogenous samples).
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• In the second article of this thesis, we represent the 6-part composition of the genotype
sharing data in the log-ratio biplot space. Consequently, the statistical inference of family
relationships is based on linear discriminant analysis in these log-ratio biplot space. Our
hypothesis is that the inference can be done directly in the linear discriminant space. That
is, it is not necessary to represent previously the data in the log-ratio biplot PCA. It could
lead a better separation of the simulated convex hulls of artificial pedigrees.

• In the third article, LD and genetic recombination can be also taken into account for the
calculation of likelihood ratios, since there is a strong assumption of independent genetic
markers. We LD-pruned genetic variants to approximately accomplish with this assump-
tion. However, the independence of genetic markers is not always satisfied by LD-pruning
in the presence of related individuals.

• The identity by descent probabilities considered in the likelihood ratio approach are based
on the assumption of non-inbreeding populations. The three IBD probabilities can be
extended to nine probabilities (Jacquard coefficients, Jacquard (1974)) and therefore ac-
counting also for inbreeding populations (Milligan, 2003).

• The analysis of the GCAT database reveals the existence of three-quarter siblings, a family
relationship of degree between first (full siblings) and second degree (half siblings). The
log-ratio biplot approach also detects some pairs in-between a second and third degree
relationship. The presence of a non discrete degree of relationships in human popula-
tions tentatively suggests that the kinship coefficient is a continuous rather than a discrete
concept.
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Femeńıa, I., Alonso, T., Puig, L., Sumoy, L., Duell, E., Perucho, M., Moreno, V.,
and de Cid, R. (2018). GCAT-Genomes for life: a prospective cohort study of the
genomes of Catalonia. BMJ Open, 8(3), e018324.

Pawlowsky-Glahn, V. and Buccianti, A. (2011). Compositional Data Analysis: The-
ory and Applications . John Wiley & Sons.

Pawlowsky-Glahn, V., Egozcue, J. J., and Tolosana-Delgado, R. (2011). Lecture
Notes on Compositional Data Analysis.

Pawlowsky-Glahn, V., Egozcue, J. J., and Tolosana-Delgado, R. (2015). Modeling
and Analysis of Compositional Data. John Wiley & Sons.



120 BIBLIOGRAPHY

Pearson, K. (1897). Mathematical contributions to the theory of evolution.—on a
form of spurious correlation which may arise when indices are used in the measure-
ment of organs. Proceedings of the Royal Society of London, 60(359-367), 489–498.

Pemberton, T. J., Wang, C., Li, J. Z., and Rosenberg, N. A. (2010). Inference
of unexpected genetic relatedness among individuals in HapMap Phase III. The
American Journal of Human Genetics , 87(4), 457–464.

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D.,
Maller, J., Sklar, P., De Bakker, P. I., Daly, M. J., et al. (2007). PLINK: a
tool set for whole-genome association and population-based linkage analyses. The
American Journal of Human Genetics , 81(3), 559–575.

R Core Team (2019). R: A Language and Environment for Statistical Computing . R
Foundation for Statistical Computing, Vienna, Austria.

Ramstetter, M. D., Dyer, T. D., Lehman, D. M., Curran, J. E., Duggirala, R.,
Blangero, J., Mezey, J. G., and Williams, A. L. (2017). Benchmarking relatedness
inference methods with genome-wide data from thousands of relatives. Genetics ,
207(1), 75–82.

Rosenberg, N. A. (2006). Standardized subsets of the HGDP-CEPH Human Genome
Diversity Cell Line Panel, accounting for atypical and duplicated samples and pairs
of close relatives. Annals of Human Genetics , 70(6), 841–847.

Rosenberg, N. A., Pritchard, J. K., Weber, J. L., Cann, H. M., Kidd, K. K., Zhivo-
tovsky, L. A., and Feldman, M. W. (2002). Genetic structure of human populations.
Science, 298(5602), 2381–2385.

Sun, L. (2012). Statistical Human Genetics: Methods and Protocols. Chapter 2.
pages 25–46.

Thompson, E. (1975). The estimation of pairwise relationships. Annals of Human
Genetics , 39(2), 173–188.

Thompson, E. (1986). Likelihood inference of paternity. American Journal of Human
Genetics , 39(2), 285.

Thompson, E. (1991). Estimation of relationships from genetic data. Handbook of
Statistics , 8, 255–269.

Vieira, M. L. C., Santini, L., Diniz, A. L., and Munhoz, C. d. F. (2016). Microsatellite
markers: what they mean and why they are so useful. Genetics and Molecular
Biology , 39(3), 312–328.

Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A.,
and Yang, J. (2017). 10 years of GWAS discovery: biology, function, and transla-
tion. The American Journal of Human Genetics , 101(1), 5–22.
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