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the mechanism of the original example of a base-metal-catalyzed QN—: -co \3 N/

~
synthesis of amides from alcohols and amines. A preliminary //////]\\\\\\\ Ph,
proposal of the mechanism of this reaction was experimentally Sy

reported by Milstein and co-workers. Instead of the proposed § :

reaction mechanism with a hemilabile pincer amine arm, our DFT § t 0
calculations describe a facile protocol, where the catalyst only ~ ~ = == PN - A~ N R )J\N T
produces aldehydes from alcohols. Once formaldehyde is formed R OH t R O R NH; : ___H
from methanol, it reacts with the amine to form a second alcohol. ~ Ny

This new alcohol undergoes the same procedure as methanol and I§\ ’S\

creates the desired amide through a double-carrousel mechanism.
The rate-determining step in the catalytic aldehyde synthesis
corresponds to the H, formation. However, in the nonmetal-
catalyzed part of the mechanism, the interaction of formaldehyde with the amine is also quite kinetically demanding.

|
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B INTRODUCTION whereas the first example of amide formation by ADC of
alcohols and amines was reported 2 years later.'” Even though
obtaining hydrogen in ADC reactions might be considered as a
positive accident since the primary goal was to obtain an imine,
or if condensation is avoided, an amide, ADC reactions
represent a good example of a successful design of green
chemical processes. In the synthesis of these chemicals,
however, a metal complex is needed to facilitate them. This
role was first played by ruthenium complexes,'”’ followed by
other precious metals,”' and then during the last decade, it was
possible to use more abundant first-row transition metals,””
such as manganese”’m coordinating pincer ligands.24

Due to the important appearance of amides in medical
treatments (they are present in about a quarter of current
drugs,25 plastics, diverse materials, and even in the DNA as a
link between amino acids),” it is necessary to optimize the
amide bond formation to reduce chemical waste and increase
the production yield.”” This line of research was followed by
Milstein and co-workers who reported the first base-metal-
catalyzed synthesis of amides employing primary amines with
alcohols, using a pincer-based MnP™'"NNH catalyst (1), as

In the third decade of the third millennium, there is a fever to
develop efficient electric cars' with the aim to reduce pollution
in large cities, and, in general, to alleviate the greenhouse
effect,” apart from the ozone depletion.3 Among the main
culprits are carbon dioxide (CO,) and nitrous oxide (N,O)
generated by the burning of fossil fuels."”® We can use
experiments’ and theory” to generate ways to fix both CO, and
N,O,” but also pull toward hydrogen (H,) generation, to avoid
their undesired production.

It has been believed that the ideal source of hydrogen
production could be the environmentally friendly oxidation of
water, but such an approach is still far from eflicient; thus,
alternatives must be sought. The process called acceptorless
dehydrogenative coupling (ADC) of alcohols,'’ with organic
substrates, such as alkenes,'' amines,'”"? or nitriles,"*'* is one
of such alternatives. In these reactions, the involved hydrogen
atoms do not become part of any subsequent organic molecule
but are simply free as byproducts. These processes might
become a potential way to convert alcohol via molecular
hydrogen as the main fuel in the future,'’" and these alcohols
are obtained from a sustainable source such as biomass.'®
Surely, thinking of hydrogen as an energy source from this
reaction is very pretentious, in quantitative terms, but this
ADC process can be applied toward the development of liquid
organic hydrogen carriers.’” Returning to the origins of the
ADC developed by Milstein and co-workers, ADC was first
demonstrated by coupling of primary alcohols to form esters,'®
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shown in Figure 1. This synthetic methodology for amide
synthesis avoids dealing with either carboxylic acids or their
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Figure 1. Mn-based catalyst involved in the dehydrogenative amide
synthesis from alcohols and amines.

amine-activated derivatives in the presence of promoters,”®
with the corresponding undesired generation of stoichiometric
amounts of residues.”” This MnP'BuNNH-type of a catalyst
was shown before to catalyze the dehydrogenative coupling of
amines and diols to form cyclic imides in the presence of a
base.*

Catalyst 1 can convert up to 94% of alcohol into amide
without the need of a promoter molecule and forming
hydrogen gas as a byproduct. In the search for a plausible
mechanism for the catalytic conversion schematized in Figure
1, we envisaged density functional theory (DFT) calculations.
We were particularly interested in analyzing whether a
plausible Mn—N bond cleavage during the process could
reduce the potential of this catalyst due to possible
decomposition. This cleavage was suggested in the originally
proposed mechanism by Milstein et al.'** for the amide
synthesis reaction catalyzed by 1 (see step 4—II in the
preliminary mechanistic proposal of Figure 2).

B COMPUTATIONAL DETAILS

All DFT calculations were performed with the Gaussian 16 set
of programs.3'1 The electronic configuration of the molecular

systems was described with the BP86 functional of Becke and
Perdew,*? using the Ahlrichs basis set def2SVP.** Since
corrections due to dispersion are essential to study the
reactivity, we have included them through Grimme’s method
with Becke—Johnson damping (GD3BJ] keyword in Gaus-

).>%* The geometry optimizations were performed

sian
without symmetry constraints and the characterization of the
local stationary points was carried out by analytical frequency
calculations. These frequencies were used to calculate unscaled
zero-point energies (ZPEs) as well as thermal corrections and
entropy effects at 383.15 K and 1 atm. Solvent effects were
included with the polarizable continuous solvation model
(PCM)** using toluene as a solvent in single-point energy
calculations on the optimized geometries with the MO06
functional’’ and the cc-pVTZ basis set.”® The reported
Gibbs energies in this work include M06/cc-pVTZ//BP86-
D3BJ/Def2SVP electronic energies with solvent effects

13b,15,39 .
corrected with

obtained at the same level of theory,
zero-point energies, thermal corrections, and entropy effects
evaluated at 383.15 K with the BP86-D3BJ/Def2SVP method.
The resulting solvation Gibbs energies were added to the final
Gibbs energies in the gas phase to obtain Gibbs energies in
solution.”” Standard Gibbs energies in a solution refer to a 1 M
standard-state concentration for all species. The change of the
conventional 1 atm standard state for gas-phase calculations to
a standard state of 1 M concentration in a solution requires the
introduction of a correction in the Gibbs energy term of 2.62
keal/mol.*! Finally, according to Shaik and Kozuch,™ in most
catalytic cycles, only one transition state and one intermediate
determine the turnover frequency (TOF). They are called the
TOF-determining transition state (TDTS) and the TOF-
determining intermediate (TDI).
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Figure 2. Initial proposed mechanism for the amide synthesis reaction catalyzed by 1.
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Figure 3. Full mechanism of catalyst I. The top cycle shows the aldehyde formation from methanol (black) and hemiaminal [2] (magenta). The
bottom pathway shows the formation of hemiaminal [2] from aldehyde (relative Gibbs energies in kcal/mol).

B RESULTS AND DISCUSSION

The mechanism of the reaction of alcohols with amines to
form amides in the presence of catalyst 1 is shown in Figure 3.
The first step includes the formation of the adduct A between
the metal complex with an alcohol molecule, with a
destabilizing Gibbs energy of 6.1 kcal/mol. The next step is
a concerted double hydrogen transfer from methanol to the
catalyst. In detail, one hydrogen atom goes directly to the
metal and the other to the N'Bu group bonded to the metal
itself, leading to intermediate B. This last step, with methanol
as alcohol, allows at the same time the release of a molecule of
formaldehyde. This process is barrierless in the Gibbs energy
surface and has a thermodynamic cost 13.6 kcal/mol with
respect to the initial catalyst. Then, reductive elimination in B
leads to the formation of H, coordinated to manganese. This
reductive elimination involves the upper energy point of the
catalytic cycle, with a value of 29.6 kcal/mol from the TDI that
is the initial catalyst to the TDTS,* 16.0 kcal/mol from B,
forming a relatively unstable intermediate C. In the next step,
C overcomes an insignificant energy barrier of 0.3 kcal/mol to
release H, and regenerate the catalyst. Thermodynamically, the
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whole catalytic cycle releases 10.3 kcal/mol, whereas kineti-
cally, the formation of intermediate C defines the rate-
determining step (RDS) with the overall cost of 29.6 kcal/mol
(see Figure 4a). This is in agreement with the experimental
temperature of 383.15 K. In addition, even though the energy
difference is not that significant, the substitution in para of the
pyridyl group by NH, and CN groups modified this energy
barrier to 29.4 and 29.7 kcal/mol, respectively, showing that an
electron-donating group in this position of the ring slightly
facilitates overcoming the energy barrier of the RDS.

Once the first catalytic cycle finishes and formaldehyde
appears in the media, there is a combination of formaldehyde,
obtained in the first catalytic cycle, with amine, and thus the
nonmetal-catalyzed pathway starts. It is a simple reaction of
formaldehyde with the amine, which develops into hemiaminal
[2]. The corresponding energy barrier is high (35.6 kcal/mol),
but when assisted by an explicit molecule of methanol, the
energy barrier is lowered by 11.6—24.0 kcal/mol (see Figure
4b,c). Even though this barrier is relatively high, it does not
dispute the RDS through TS B-C of the initial catalytic cycle.**
Once [2] is formed, it enters the second catalytic cycle when

https://doi.org/10.1021/acscatal.1c00693
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Figure 4. Transition states (a) B — C, (b) [1] —

[2] (assisted by water), and (c) [1] -

[2] (assisted by methanol); selected distances given in A.
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Figure 5. Alternative mechanism of catalyst 1 incorporating the Mn—N bond cleavage (relative Gibbs energies in kcal/mol).

combined with catalyst I. The steps are mimetic of those found
in the first catalytic cycle. Despite the analogies, there are
certain differences. Specifically, TS A-B is 1.4 kcal/mol lower
for [2] than for methanol, and the following steps are
considerably less kinetically demanding. Actually, the RDS
previously described by TS B-C requires only 16.0 kcal/mol in
this second catalytic pathway, taking now B as the TD], instead
of the initial catalyst for the first catalytic pathway.

Overall, the above mechanism is comprised by (1) synthesis
of formaldehyde from methanol, (2) formation of hemiaminal
[2] from formaldehyde, and (3) synthesis of the product from

compound [2]. We call this mechanism a “double carrousel”

6158

because it first synthesizes an aldehyde from alcohol, and then,
it forms compound [2], a second alcohol that restarts the
initial catalytic cycle. Consequently, it repeats the catalytic
mechanism twice. Completing the double carrousel gives two
hydrogen molecules, which complies with the experimental
finding of 1.7 equiv compared to either the amine or the
alcohol.

To have absolute certainty of having recognized the correct
mechanism, we still need to compare it to the initial guess
(Figure 2) to find out why this mechanism was not plausible
even though the cleavage of a Mn—N bond does not require
the presence of a nonmetal-catalyzed step. DFT calculations of

https://doi.org/10.1021/acscatal.1c00693
ACS Catal. 2021, 11, 6155—6161
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the hypothesized mechanism in Figure S rule out the existence
of this alternative mechanism.

Starting from catalyst I, the methanol molecule attacks the
metal center via the oxygen atom, leading to intermediate 4,
once the hydroxyl transfers its hydrogen to the N'Bu moiety.
This step is easy to achieve since the energy barrier is only 6.9
kcal/mol. Next, there are two concerted transformations before
reaching compound II. First, we must open the Mn—N'Bu
bond, with a calculated energy barrier of 21.1 kcal/mol. Then,
there is a hydrogen transfer from the former alcohol leading to
the formation of a hydride. In complex II, there is an agostic
interaction of the closest methylenic hydrogen with the metal
that provides some additional stabilization of this complex.
This last hydrogen transfer facilitates the attack of the amine
on the newly dehydrated carbon (TS II-E), which involves the
formation of H, on the metal. It is defined as the RDS of this
alternative reaction pathway, with a kinetic cost of 52.6 kcal/
mol when assisted by a water molecule. The next release of a
hydrogen molecule again has a low cost as in the mechanism of
Figure 3, specifically 2.5 kcal/mol, and has a very favorable
thermodynamics of 17.8 kcal/mol, partly justified by the
coordination of the labile arm previously dissociated from the
metal. But this step precedes an expensive transfer of hydrogen
to the metal as a hydride (42.8 kcal/mol from initial catalyst I)
to release the amide product. Final reductive elimination in §
releases the second molecule of hydrogen and regenerates
initial catalyst I. Either way, the energy barrier for the RDS is
insurmountable under the reaction conditions. Thus, this
alternative pathway is not the optimal pathway for the catalyst,
not for the initial or final steps, but for the RDS that occurs
once the Mn—N bond is broken.” Thus, in consistency with
the past ruthenium-based catalyst, Mn catalysis involving a
hemilabile pincer amine arm is found to be not feasible.**

B CONCLUSIONS

The mechanism for the dehydrogenative amide synthesis from
alcohols and amines has been studied with DFT calculations.
The most plausible reaction mechanism found involves a
double-carrousel catalytic cycle to get aldehydes twice, first, the
reagent aldehyde in the metal-catalyzed cycle, and second, the
product aldehyde (the amide) from the hemiaminal generated
by the combination of formaldehyde and amine in a nonmetal-
catalyzed step. Thus, the reaction mechanism is divided into
aldehyde synthesis and hemiaminal formation, metal- and
nonmetal-catalyzed, respectively. The overall RDS appears at
the hydrogen formation (29.6 kcal/mol), thus in the metal-
catalyzed cycle, whereas the most energetically demanding
nonmetal-catalyzed step unveils a rather high kinetic cost (24.0
kcal/mol) as well. An alternative mechanism, in which all steps
are catalyzed by the metal and which involves the breaking of a
Mn—N bond, was found unrealistic under the experimental
conditions.
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