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Abstract: Feature extraction for high-dimensional time series has become a topic of great importance in recent years. In
the medical field, the information needed to predict emotions, stress, epileptic seizures, heart attacks, and other
diseases, can be provided by body sensors in the form of time series signals. This work intends to provide a
way for these devices to save the relevant information, using little storage memory, by defining a new feature
extraction method. The method proposed in this work relies on the relevant data associated with the “changes”
in the time series. These changes are identified according to the conditional probabilities of passing from one
state to another during the time series, as well as the “relevance” of each state. We show the results of this
method with an experiment based on accelerometers data recorded by the ©ActiGraph wGT3X-BT wristband
to recognize sedentary behavior. After applying this method, it was achieved to reduce time series frames of
dimension 360, to vectors of dimension 12; while the accuracy of their classification was 84%.

1 INTRODUCTION

In the medical field, the study of selecting relevant
data from the time series has become of fundamental
importance in the last years: the electrocardiogram,
the respiration, the skin temperature, the blood vol-
ume pulse, and the electrodermal activity are all rep-
resented by time series, and provide the information
needed to predict emotions, stress, epileptic seizures,
heart attacks, and other diseases (Montesinos et al.,
2019; Shoeb and Guttag, 2010; Wang et al., 2014;
Ravish et al., 2014). The usage of new technologies
for measuring these body signals, such as smart wrist-
bands, makes it necessary to reduce the cost of storage
without losing the relevant data.

This work intends to provide a way for these de-
vices to save the relevant information, using little
storage memory, by defining a new feature extrac-
tion method, called State Changes Representation for
Time Series (SCRTS). Different to other methods in
the literature, the SCRTS, relies on the relevant data
associated with the “changes”. These changes are
identified according to the conditional probabilities of
passing from one state to another during the time se-
ries, as well as the “relevance” of each state, which
provide the information needed to represent or char-
acterize a time series in several contexts.

To test our method, we conduct an experiment
with people in our lab, trying to determine when they
were in the office or when they were not, based on
their behaviors described through the time series pro-
vided by the usage of ©ActiGraph wGT3X-BT wrist-
bands accelerometers.

2 LITERATURE SURVEY

Time series feature extraction (TSFE) is essential for
machine learning effectiveness in time series prob-
lems, on the one hand because it reduces the dimen-
sion of the feature space, and on the other, because
it has a significant impact on the final results, since it
transforms the input data in vectors easier to interpret.

There exist many different TSFE methods. The
Fourier Transform (Bracewell and Bracewell, 1986)
and the Wavelet Transform (Shensa, 1992) could be
very useful applied to time series composed mostly
of periodic waves, like it happens with the ECG sig-
nals, or other signals related to the light, the electric-
ity, the image, or the sound, among others. But when
it comes to analyse time series that does not present a
periodic behavior, such as the data extracted from an
accelerometer, this methods may not work well.



There exist other classical statistical methods for
feature extraction like the Singular Value Decom-
position (SVD)(Cadzow et al., 1983), the Principal
Component Analysis (PCA) (Wold et al., 1987), or
the Linear Discriminant Analysis (LDA) (Izenman,
2013). These methods use Linear Algebra tools for
reducing the information of the input matrix. They
work well for static data, but when it comes to time
series, it may not work properly. We are interested in
selecting the features that contain information about
the changes, and we consider that this information is
in its conditional probabilities related to the states.

In (Zhou and Chan, 2015) a method called Multi-
variate Time Series Classifier (MTSC) is proposed,
using conditional probabilities to create a measure
that allows to discover some intra and inter-temporal
patterns. In this work we make use of the conditional
probabilities as well, but instead of seeking for these
intra and inter-temporal patterns, we seek for other
features that could give a description of how much
the signal has changed inside of each period, relat-
ing these changes with the activity made by the wrist-
band’s user.

In the particular case of feature extraction for clas-
sifying accelerometer signals, in (Preece et al., 2008)
is presented a comparison of 14 methods based on the
wavelet transform and other well-known time- and
frequency-domain signal characteristics. In (Long
et al., 2009) is compared a Bayesian classification
with that of a Decision Tree based approach. In
(Mathie et al., 2004) is presented a framework struc-
tured around a binary decision tree in which move-
ments were divided into classes and sub-classes at dif-
ferent hierarchical levels.

The method proposed in this work, the SCRTS,
divide the range of possible time series’ values into
different “states”, and extract the information of how
these states “change” (that is to say, which values take
the conditional probabilities), and how much impor-
tance, or “weight”, these states had in the frames that
we want to classify.

3 METHODOLOGY

Fig. 1 shows the different steps of the methodology,
detailed in this section.

3.1 Data Collection

A time series is a succession of data measured in time
and arranged chronologically. As we made use of ac-
celerometers to obtain the data, we refer to the values
of the time series as vector magnitudes, which is the

original name used, and we refer to a vector magni-
tude value as V M. We refer as τ to the time frequency
with which these vectors magnitudes are displayed by
the device.

3.2 Division Into Frames

Every time signal was divided in frames of T min-
utes. So far, every frame is represented by a vector
of dimension d equal to the number of samples in it.
Then, we denote each frame as a vector F such that:

F = (V Mi)i≤d . (1)

Therefore, in the experiment presented in this
work, as every value is given every ten seconds (i.e.,
τ = 10 seconds), if for example we choose our T = 60
minutes, we have that each frame has a dimension of
d = 360.

3.3 Discretization

There are many different methods for time series tem-
poral discretization (Moskovitch and Shahar, 2015;
Azulay et al., 2007), which involves to obtain a se-
quence of states from a numerical time series. These
states are domain dependent. This means that, if we
look at the time series, with axis y being the vector
magnitude values and axis x the time, then the y axis
is divided by several cut points into n intervals, each
of them representing a state.

Formally, given a set of cut points

CP = {cp0,cp1, . . . ,cpn}, (2)

we can generate a set Σ of n states, each state Si ∈
Σ representing an interval of the vector magnitudes
values made by the cut points, as follows:

S1 = [cp0,cp1),

S2 = [cp1,cp2), (3)
...

Sn = [cpn−1,cpn],

where cp0 and cpn are the time series’ minimum and
maximum values respectively.

We say that a vector magnitude V M is of state Si,
when V M ∈ Si, that is to say, when cpi−1≤V M≤ cpi.
Consistently, given a set of states Σ, we can represent
each frame F by a sequence of states

S(F) = {S1,S2, . . . ,Sd}, (4)

where St ∈ Σ, and the supra-index t indicates the
chronological position of the state in the frame.



Figure 1: SCRTS steps.

3.4 Conditional Probabilities

Given a frame F of our time-signal represented by
S(F) = {S1,S2, . . . ,Sd}, the conditional probability of
getting state St+1 = b after being in state St = a, with
a,b ∈ Σ, is defined as

Prob(St+1 = b | St = a) =
Frec(a,b)
Frec(a)

, (5)

such that 1 ≤ t ≤ d − 1, being Frec(a,b) the num-
ber of times that a is followed by b in S(F) =
{S1,S2, . . . ,Sd}, and Frec(a) the number of times that
a appears in {S1,S2, . . . ,Sd−1}.

Therefore, we calculate every conditional proba-
bility for each frame, which gives us a total of n2

features per frame in each case. Thus, we use these
features for making a new vector for representing the
information contained in frame F . We call C(F) to
refer to the vector of all the conditional probabilities
of F .

C(F) reflect the “jumps” from one state to another,
giving a description of the changes or the “stays”,
showing which jumps were more common in F , and
which states stay longer without changing.

3.5 States Relevance Features

But C(F) does not give any information about the
states “relevance” in the time series, or which of the
states have appear a greater number of times. Though,
if we want to create a vector that contains most of
the state’s changes relevant features, then we should
probably include relevant data regarding to the states
appearance in the frame. To that end, we make usage
of two features: the state probability, and the state
weight.

3.5.1 State Probability

For each Si ∈ Σ, the probability of state Si to come out
in frame F is:

P(Si) =
Frec(Si)

d
. (6)

Therefore, we refer to the set of all the state probabil-
ities of a frame F as P(F), that is to say

P(F) = {P(S1),P(S2), . . . ,P(Sn)}. (7)

3.5.2 State Weight

As we already said in (3), for every state Si ∈ Σ, we
have a cpi−1 and a cpi indicating the rang for a vector
magnitude V M to be labelled as state Si. Then, we
define the midpoint of each state Si ∈ Σ as

midi =
(cpi + cpi−1)

2
. (8)

The distance from the midpoint to the top of state Si is

disi = |midi− cpi|
(
= |midi− cpi−1|

)
. (9)

Now, for every V M belonging to a state Si we can
define the normalized inverted distance of V M to it’s
respective midpoint midi of Si, as

NIDi(V M) =
−|midi−V M|

disi
+1. (10)

For the reader familiar with statistics, the normalized
inverted distance is similar to the z-score function
(Kreyszig, 2009). The difference is that the normal-
ized inverted distance is like making 1− z-score, but
instead of dividing by the standard deviation, in the
normalized inverted distance we divide by the dis-
tance from the midpoint to the top of its respective
state interval.

The importance of the NIDi is that it gives and
idea of how “weighted” V M is for state Si. If V M lies
in the midpoint of the state Si, the NIDi is 1, which
is the maximum value possible; and the further it lies
from the midpoint, the lower the NIDi is, being 0 at
the lower and upper values of Si that is to say,

NIDi(midi) = 1; (11)



NIDi(cpi) = NIDi(cpi−1) = 0. (12)

Thus, if we sum all the NIDi’s of all the vector
magnitudes laying in a state Si ∈ Σ for a frame F , and
we normalize the result, then we have a notion of how
much “weight” or relevance has Si in F . Let’s say
that Q(Si) = {V M1,V M2, . . . ,V Mq} is the set of all
the vector magnitudes of the frame F laying in state
Si, then, we define the weight of state Si in F as

W (Si) =


∑

q
j=1 NIDi(V M j)

d
, if Q(Si) 6= /0;

0, if Q(Si) = /0;
(13)

where d is the amount of vector magnitudes in F =
(V M j) j≤d . We refer to all the state weights of a frame
F as W (F), that is to say

W (F) = {W (S1),W (S2), . . . ,W (Sn)}, (14)

with n being the number of states in Σ (as we already
said in (3)).

Though, the dimension of these vectors depend on
the number of states. Let’s call dim(V ) to the function
that returns the dimension of a vector V , then

dim(C(F)) = n2; (15)
dim(P(F)) = dim(W (F)) = n. (16)

Finally, we call as the representation vector R(F)
to the vector containing the features selected to repre-
sent F according to our method. These features are:
C(F), P(F) and W (F). Though, the dimension of
R(F) is

dim(R(F)) = n2 +2n. (17)

3.6 Empty Features Cleaning

The SCRTS is, as the name says it, a method for rep-
resenting time series. This is to say that our goal is to
extract all the relevant data of all the frames involved
so they can be used as a matrix for a machine learning
algorithm. This matrix has every R(F) of each frame
F as rows. So each column of the matrix represents
a different feature of the frames. Therefore, there is a
column for each conditional probability, one for every
weight, etc. If one of these columns has more than a
75% of zeros means that the features of the column
are not relevant for representing the time series and it
could bring some noise for the machine learning per-
formance, then we delete it. This process will reduce
the dimension of the training-test matrix even more.
As a result, the representation vector of each frame
will reduce its dimensionality.

4 EXPERIMENTAL SETUP

To test our method, we conduct an experiment with
people in our lab, trying to determine when they were
in the office or when they were not, based on their
behaviors described through the time series provided
by the usage of ©ActiGraph wGT3X-BT wristbands
accelerometers.

Eight PhD’s and master students working at the
same office in the University of Girona, wore these
wristbands on their skillfully wrist for a week, which
were programmed to record a measure every ten sec-
onds (i.e., τ = 10 seconds).

The subjects were asked to take note of their office
check-in and check-out times for each day using the
wristband. Next, when dividing the signal into frames
of T minutes duration, each frame was labeled with 1
if the subject was more than half of that time at the
office, or with 0 otherwise.

We chose Freedson Adult 1998 cut points pro-
vided by ActiLife (Freedson et al., 1998) for the dis-
cretization, which give us a total of 5 states (i.e.,
n = 5) 1.

4.1 Classification

The classification of frames between classes {0,1}
was made using sequential Artificial Neural Networks
(ANN) 2. It had 8 hidden layers of 12 nodes and the
Relu activation function in each layer. The output
layer was a dense layer with 2 nodes and the Sigmoid
activation function. The optimizer was Adam with a
learning rate of 0.001 units; the loss function was the
binary crossentropy and the number of epochs was 40.

All the data frames were randomly shuffle to-
gether and split into the training set (75%) and the test
set (25%). We applied random oversampling (Ling
and Li, 1998) to level the quantity of frames in the
training set labeled with 1 with the ones labeled with
0. The accuracy, the true positive rate (TPR) and the
true negative rate (TNR), were calculated using the
test set. This procedure was executed 20 times, and
the final results (presented in next section), were cal-
culated as the average of the results obtained in each
of the 20 performances.

1We also tried with the cut points provided by Actil-
ife called Freedson Adult VM3 2011, Trost Toddler 2011,
and Troiano 2008, but Freedson Adult 1998 were the ones
which gave us better results in this experiment.

2We also tested other architectures, as LSTM, with sim-
ilar results.



5 RESULTS

We applied the SCRTS to the data of all the wrist-
bands together. The results achieved have been com-
pared with the ones obtained from the same physio-
logical signals without any feature extraction method,
that is, using the raw data directly. Different frame
lengths were explored: T = 15, T = 30 and T = 60
minutes. The results with the final dimension of the
vectors representing the frames for the classification
(Dim.), the accuracy (Acc.), the true positive rate
(TPR) and the true negative rate (TNR) are provided
in Table 1.

The first aspect to notice is that working with the
SCRTS gave much better results than working with
the raw data, specially for long periods. One other
thing is that the dimensionality reduction with the
SCRTS is considerable compared to the raw data. In
the best case (T = 60), the dimension of each frame
was reduced from 360 to 12 with the SCRTS, while
the accuracy was 84%, the TPR 81%, and the TNR
84%.

In Table 2 it is shown the results obtained after
applying the SCRTS to the data of each wristband (W)
individually, with T = 60 minutes.

It could be seen that the SCRTS also works well
in the classification of the time series individually.

6 CONCLUSIONS AND FUTURE
WORK

In this work we proposed a new method for dimen-
sionality reduction, the SCRTS, based on representing
how the signal information changes according to dif-
ferent states. In particular, state changes are modeled
with conditional probabilities, state probabilities and
state weights. This method has been shown to work
very well in a long time series classification problem.
The classification for 60 minutes frames gave an accu-
racy of 84%, a TPR of 81%, and a TNR of 85%, while
showing a lot of effectiveness for storage, since it re-
duced the original data of dimension 360, to a vector
of dimension 12. The difference between doing the
classification with the row data and doing the classifi-
cation with the data after applying the SCRTS, shows
that this technique not only reduces the cost of stor-
age, but also works considerably better for classifying
long time periods.

This experiment was done with accelerometers
wristbands, which return one-channel time series per
user. In futures works we will try this technique with
the data collected by other wearable devices measur-
ing other body features, such as the electrocardio-

gram, the respiration, the skin temperature, the blood
volume pulse or the electrodermal activity. These
wearable devices return multi-channel time series for
each user, which add some complexity to our tech-
nique that require some new treatments.
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