
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3092180, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identi�er 10.1109/ACCESS.2017.DOI

Extrinsic visual�inertial calibration for
motion distortion correction of
underwater 3D scans
MIGUEL CASTILLÓN 1*, ROGER PI1*, NARC˝S PALOMERAS 1, AND PERE RIDAO1, (MEMBER,
IEEE).
* Both authors contributed equally to this work.
1Computer Vision and Robotics Research Institute (VICOROB), University of Girona, 17003 Girona, Spain

Corresponding author: Miguel Castillón (miguel.castillon@udg.edu).

This research was founded by the GIRONA1000 project (grant number DPI2017-86372-C3-2-R, by the Spanish Ministry of Science), the
EUMR project (grant number H2020-INFRAIA-2017-1-twostage-731103, by the European Commission), by the doctoral grant of the
University of Girona IFUdG2019 and by the Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la
Generalitat de Catalunya under grant 2019FI_B_00812.

ABSTRACT
Underwater 3D laser scanners are an essential type of sensor used by unmanned underwater vehicles (UUVs)
for operations such as navigation, inspection, and object recognition and manipulation. Scanners that acquire
3D data by sweeping a laser plane across the scene can provide very high lateral resolution. However, their
data may suffer from rolling shutter effect if the change of pose of the robot with respect to the scanned
target during the sweep is not negligible. In order to compensate for motion-related distortions without
the need for point cloud postprocessing, the 6-DoF pose at which the scanner acquires each line needs
to be accurately known. In the underwater domain, autonomous vehicles are often equipped with a high-
end inertial navigation system (INS) that provides reliable navigation data. Nonetheless, the relative pose
of the 3D scanner with respect to the inertial reference frame of the robot is not usually known a priori.
Therefore, this paper uses an ego-motion-based calibration algorithm to calibrate the extrinsic parameters
of the visual-inertial sensor pair. Simulations are performed to quantify how miscalibration affects motion-
related distortion. The method is also evaluated experimentally in laboratory conditions.

INDEX TERMS 3D sensing, underwater robotics, visual-inertial calibration, odometry-based mapping

I. INTRODUCTION
Unmanned underwater vehicles (UUVs) are being increas-
ingly used in industry out of safety and cost reasons. In par-
ticular, autonomous underwater vehicles (AUVs) are already
performing tasks like inspection [1], object recognition [2],
manipulation [3], or navigation [4]. Sensing their surround-
ings is essential for them to successfully carry out their tasks.
Therefore, they are usually equipped with some type of 3D
sensor, which are mainly based either on acoustic (SONAR)
or light signals. Optical sensors are further divided into
passive (stereo vision, structure from motion (SfM)) or active
(LiDAR). The main advantage of active optical sensors is that
their lateral resolution and refresh rate are much higher than
acoustic [5]. Actively projecting structured light makes them
suitable to work in featureless environments. Their relatively
short range is usually enough for intervention tasks, since the
robot needs to get close to the target.

Figure1: Relative motion between the scanner and the object
produces distortions in the resulting point cloud. An example
scanning a spherical object of radius 100 mm is shown
in the left image. This distortion can be compensated by
compounding each scanned line with the corresponding robot
pose. The result is shown in the right image.
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Figure 2: Geometrical scheme of the approach used for
motion distortion compensation. The goal of the approach
is referencing each scanned pointp with respect to a �xed
reference framefW g. Please note that the INS poseW x I
is time-dependant (it changes as the robot moves) but the
transformations between INS, camera and laser (I t C and
C t L , respectively) are �xed.p represents an arbitrary point
at the intersection between the laser plane� L and the target
surfaceS.

Some underwater 3D scanners illuminate the whole scene
at once with a certain spatial pattern [6�9] and retrieve 3D
information of the whole �eld of view (FoV) at the same
time. They can be considered global shutter because their ac-
quisition time for the whole scene is extremely short and are
therefore suitable to scan scenes in which high dynamics are
present. However, they can only provide limited resolution
[9].

Another popular approach are laser line scanners (LLSs)
[10�15]. These 3D scanners acquire the scene by sweeping
a laser plane. One of their main advantages is their high
point cloud density. However, it takes them a certain amount
of time to sweep the laser plane across their entire FoV.
During this time, the robot’s pose may have changed signi-
�cantly, which would introduce motion-related distortions in
the outcoming point cloud (rolling shutter effect [16], see
�gure 1). This problem is especially present in inspection
and intervention missions where high resolution is desired.
In these cases, the sensor needs to scan a higher number of
lines, resulting in a longer scanning time. If no compensation
for the motion distortion is performed, the accuracy of the
resulting point cloud is severely diminished even for low
speeds of the robot. Usually, these tasks only allow distortion
levels in the order of mm or a few cm.

The approach to compensate for motion distortion fol-
lowed in this paper is based on referencing each line scanned

by the LLS to its corresponding temporally unique frame.
This approach is shown in �gure 2. This way, rather than
considering only one frame for all the lines in one scan, there
are as many frames as scanned lines. In order to achieve a
highly accurate point cloud, the 6-DoF pose of the scanner’s
camerafC g at the time of acquiring each line needs to be
precisely known. This is done in this paper by composing
the corresponding pose of the INSW x I with the relative
transformation between the INS and the laser scannerI t C .

The LLS triangulates the position of the points that lie at
the intersection between the laser plane� L and the target
surfaceS. Each of these pointsp complies with:

p 2 � L \ S (1)

The LLS returns the 3D pose of each of these points with
respect to the camera frameC p. They can be then expressed
in the world reference frame using the following composition
(see appendix ):

W p = W x I � I t C � C p (2)

The transformationI t C is not usually known a priori, and
therefore an ego-motion-based extrinsic calibration is previ-
ously performed. It can be deduced that a �ne calibration is
paramount to achieving an accurate point cloud.

It should be pointed out that the proposed approach makes
a number of assumptions: (i) the accumulated drift of the
INS data in each scan is negligible, (ii) there is a good
synchronization between INS and laser data, and (iii) there
is a known marker in the scene such as a checkerboard or
an ArUco [17,18] for calibration. These assumptions are
realistic because of the high-end INS and LLS available at
the lab, as will be explained in sectionIII, and because
the calibration will be performed in controlled laboratory
conditions.

The goal of this paper is two-fold: First, a robust calibra-
tion algorithm is developed and fed it with suf�cient data to
achieve an accurate result. Second, this result is applied to
compensate for the motion distortion of each scan.

The remaining of the paper is structured as follows. First,
the relevant state of the art is reviewed in sectionII. Later,
the experimental set-up is described in sectionIII. Then, the
ego-motion-based calibration algorithm used in this paper is
explained in sectionIV. The simulated and experimental res-
ults are presented in sectionsV andVI, respectively. Finally,
the drawn conclusions are summarized in sectionVII.

II. RELATED WORK
This section reviews the relevant literature on topics related
to this paper. First, underwater 3D laser scanning is studied
in sectionII-A. Then, extrinsic calibration of a visual-inertial
sensor pair is analyzed in sectionII-B.

A. UNDERWATER 3D LASER LINE SCANNING
Underwater 3D scanners are an essential type of sensor used
to acquire the geometrical shape of obstacles or objects of
interest. Their different working principles were reviewed
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and compared in a previous work [19]. This section will focus
on LLSs.

In underwater metrology tasks, the scanner is usually
mounted on a static tripod with a rotational head [20]. In
this case, the scanner acquires different point clouds from
different viewpoints, which are then registered together with
dedicated software like Leica’s [21].

However, underwater LLSs are increasingly used by
UUVs when performing a wide variety of dynamic tasks,
including navigation [22, 23] or manipulation [24]. When
mounted on a moving platform, 3D laser scanners need to
account for the relative motion of the scanner with respect to
the target in order to achieve a consistent point cloud. Several
approaches can be found in the literature to deal with this
problem.

A direct approach is embedding an inertial sensor such
as an inertial measurement unit (IMU) [25,26] or an INS
[27�29] with the laser scanner. On the one hand, IMUs are
relatively small and cheap sensors but their measurements
are drift-prone. A possible solution to counteract this drift
is using GPS [25]. However, since GPS signal is rapidly
attenuated in water, it can only be used on surface. On
the other hand, INSs can accurately measure displacements
while accumulating a drift of down to 0.01% of the travelled
distance in optimal conditions [30]. However, their size is
typically a diameter of more than 20 cm and a weight in
water of 10 kg. This is not usually a problem when the
scanner is mounted (along with many other sensors) in a
work-class ROV. Nonetheless, it becomes problematic if the
scanning task is to be performed with a smaller AUV such as
Girona500 [31]. In our approach, we try to take advantage of
the high-end performance of the INS integrated in an AUV
so that the size of the scanner need not be increased.

A possible approach to integrate the measurements of the
scanner with the navigation system of the robot is placing
the scanner in a speci�c position and orientation that makes
it easier to measure using the CAD models of the vehicle.
For example, in [32] the scanner is set up at the front of
the remotely operated vehicle (ROV) and looking down.
Nonetheless, due to the errors between the measured and the
actual transformation from the scanner to the inertial frame
of the robot, the authors in [32] are aware that they should
further counteract �the short term vehicle motion that intro-
duces errors across sequential laser images". Therefore, in
our approach we aim at accurately calibrating this transform
in order to reduce these errors for any arbitrary camera set-
up.

Yet another approach to deal with motion distortion is min-
imizing the robot speed while making a scan. Following this
idea, the robot moves slowly around the inspected structure.
Because of its low speed, the displacement of the scanner
during each scan can be assumed as negligible and the scans
can be considered as rigid. Then, consecutive point clouds
can be registered using iterative closest point (ICP) and the
map is created [1]. In our approach, however, we would
like to enable the robot to move at its normal operational

speed while scanning and not fully rely on post-processing
algorithms.

In summary, the goal of our approach when compared
to the state of the art is correcting motion distortion while
(i) limiting the size of the scanner, (ii) allowing to mount
the scanner anywhere on the robot, (iii) allowing the robot
to move at normal operational speeds, and (iv) limiting the
need for post-processing software.

An essential step of our approach is achieving an accurate
calibration between the camera and the inertial sensor frames.
Different approaches used to calibrate visual-inertial sensor
pairs inside and outside water can be found in the literature.
The main ones are reviewed in sectionII-B.

B. EXTRINSIC CALIBRATION OF A VISUAL � INERTIAL
SENSOR PAIR
Extrinsic calibration between two reference frames refers
to recovering the 6-DoF transform that relates both frames.
Extrinsic calibration between two or more rigidly-mounted
sensors is a very relevant topic in autonomous robotics,
since it allows to accurately fuse measurements coming from
different sensors. In current robotic platforms above water,
the sensors to be calibrated are usually cameras, navigation
sensors and time of �ight (ToF) LiDARs. Typical sensor
pairs are camera vs. navigation or LiDAR vs. camera. The
different approaches to solve this calibration are typically
divided in two parts: (i) �rst, the front-end extracts incre-
mental or absolute displacements from sensor readings (see
sectionII-B1); and (ii) second, these displacements are fed to
the minimization algorithm in the back-end to compute the
rigid transformation (see sectionII-B2). This way, when the
sensor type changes, it is typically enough to use a different
front-end, whereas the back-end can remain the same.

1) Front-end
The front-end is in charge of calculating the sensor pose
based on its readings. It depends strongly on the type of
sensor used. In our case, we are mainly interested in cameras
and inertial sensors.

Inertial navigation sensors like INS usually fuse and in-
tegrate the information from different sensors (such as ac-
celerometers, gyroscopes, and doppler velocity log (DVL))
and directly provide the 6-DoF pose as an output. They can
also use absolute position sensors such as ultra-short baseline
(USBL) or GPS (outside water) to correct the drift.

Extracting the pose from camera images can be mainly
done in two fashions. If it is possible to place a known pattern
in the set-up, the camera pose can be extracted from 3D-2D
correspondences, using the Perspective-n-Point algorithm.
In this case, each camera pose is directly referred to the
pattern reference frame, so they are absolute poses and no
drift is accumulated. The particularities of the underwater
environment make it necessary to use an adaptation of this
algorithm (see sectionIII). If no pattern can be placed inside
the FoV of the camera, SfM can be used. SfM is used to
reconstruct the 6-DoF displacement between two camera
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frames by matching corresponding features. However, this
reconstruction is up to a scale. In order to compute this scale,
several approaches can be used. In the underwater domain, it
is typical to use the readings of the pressure sensor or laser
scalers [33]. Please note that this front-end can also be used
by camera-based (triangulation) laser scanners, which is the
case presented in this paper.

For ToF LiDARs, the displacement between two sub-
sequent sensor readings can be computed by �nding corres-
pondences between their point clouds in a SfM-like manner.
This is typically called LiDAR-based odometry. Examples
can be found in [34, 35].

2) Back-end
The goal of the back-end is computing the rigid 6-DoF
transformation between two or more sensors using their
respective egomotions. This boils down to a non-linear min-
imization problem that is typically tackled using either non-
linear least-squares estimation or a �lter-based approach.
Most of the methods found in the literature use the cor-
responding incremental displacement of each sensor. Please
note that each sensor has its own reference frame (and the
transform between them is unknown). Therefore, this is a
more complicated problem than bundle adjustment. In bundle
adjustment, used for example in the calibration of a camera
stereo pair, both cameras are referenced with respect to the
same, corresponding features (for instance, a checkerboard
appears in both images simultaneously).

Some approaches in the literature use least-squares es-
timation. In [36, 37], the authors propose a solution based
on previous approaches that solve hand-eye calibration. In
their minimization algorithm they do not only optimize the
rigid transformation between the sensor pair, but also the
trajectory of one of the sensors to make it more robust to
noise. They also study which conditions the trajectory of the
sensors need to comply with in order to make the problem
fully observable. They come to the conclusion that �so long
as the axis of rotation of the incremental poses remains �xed
[in 3D], any translations and any magnitude of rotation will
not avoid singularity". In [38], the authors propose a robust
algorithm to calibrate multi-sensor arrays. This method also
uses incremental motions but divides the problem in different
steps: �nding an initialization for each sensor pair, estimating
�rst the rotational components, removing outliers, estimating
the translation and �nally combining the readings from all
the sensors. They do not optimize the trajectory of any of the
sensors.

Other authors use �lter-based approaches, like [39�41]
among others. In many cases, the �lter is exploited for visual-
inertial navigation. In our case, the navigation data from
the robot’s INS is reliable, so these methods are not further
considered.

Compared to the already presented ones, other works
tackle the problem using slightly different approaches. In
[42], the authors include the time offset between sensors as a
parameter to estimate. In [43], the trajectory is parameterized

with B-splines and included in the optimization problem. In
[44], only the parts of the trajectory that contribute more
to the observability of the problem are considered, so that
the computational complexity is reduced. Other interesting
works can be found in [45�47].

In our work, both sensors provide with absolute measure-
ments. Therefore, the back-end approach followed in this
paper considers the trajectory of both sensors as absolute
poses and builds a pose graph that solves using non-linear
least squares. It is explained in detail in section IV.

III. HARDWARE DESCRIPTION
This section brie�y explains the performance characteristics
of the equipment used in this work. The robotic platform
used is Girona1000 (see �gure 3), which is a newer ver-
sion of the Girona500 [31], previously developed at the lab.
The Girona1000 is a lightweight, modular intervention AUV
(I-AUV) that can be easily recon�gured for different tasks
by changing its payload and thruster con�guration. In the
current con�guration, the AUV uses 5 thrusters to control the
yaw, surge, sway and heave, being passively stable in pitch
and roll. Its navigation system is based on an INS aided by a
DVL, a �ber optic gyroscope (FoG) , and a pressure sensor.
The payload integrates a forward-looking 3D laser scanner
[14] previously developed in the lab, which is capable of
scanning 200k points/s at a scan rate of around 0.5 Hz with
sub-millimetric accuracy.

The camera model used in this paper is the one intro-
duced in [14]. Basically, it consists on a standard in-air
camera model placed behind a �at refractive surface. The
in-air model used is the standard OpenCV pin-hole camera
model [48]. However, due to the refraction of light rays
at the interphase between air and water, this model does
not accurately represent distortions under water [49, 50].
Therefore, the double distortion process suffered by light
rays in their way to the camera is explicitly modelled. For a
more detailed explanation, the reader is referred to [14]. The
internal parameters of the scanner are estimated in a previous
calibration process.

Figure 3: The Girona1000 equipped with the laser scanner.
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