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Simple Summary: In this manuscript, we report the results of our 3D geometric morphometric anal-

yses of the distal radial epiphysis in wild and captive gorillas, chimpanzees, and orangutans. We 

have identified significant differences in the insertion sites of the palmar radiocarpal ligaments be-

tween the wild and captive specimens of each species that are likely related to the locomotor behav-

iors developed in captivity. We believe that our study deals with a subject of great social impact in 

today’s world: the well-being of animals living in captivity, especially hominoid primates. Our find-

ings provide novel information on the effect of captivity on the anatomy and locomotor behavior of 

hominoid primates. We trust that this information can be a basis for improving the artificial spaces 

where these captive primates live by increasing their available space and providing structures that 

more closely simulate their natural environment. 

Abstract: The environmental conditions of captive hominoid primates can lead to modifications in 

several aspects of their behavior, including locomotion, which can then alter the morphological 

characteristics of certain anatomical regions, such as the knee or wrist. We have performed tridi-

mensional geometric morphometrics (3D GM) analyses of the distal radial epiphysis in wild and 

captive gorillas, chimpanzees, and orangutans. Our objective was to study the morphology of the 

insertion sites of the palmar radiocarpal ligaments, since the anatomical characteristics of these in-

sertion sites are closely related to the different types of locomotion of these hominoid primates. We 

have identified significant differences between the wild and captive specimens that are likely re-

lated to their different types of locomotion. Our results indicate that the habitat conditions of captive 

hominoid primates may cause them to modify their locomotor behavior, leading to a greater use of 

certain movements in captivity than in the wild and resulting in the anatomical changes we have 

observed. We suggest that creating more natural environments in zoological facilities could reduce 

the impact of these differences and also increase the well-being of primates raised in captive envi-

ronments. 
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1. Introduction 

Osteological studies of animals are generally carried out with specimens from refer-

ence collections, such as research centers and museums. Many of these specimens come 

from zoos, which provide animals that have died from different causes. However, some 

investigators believe that osteological studies are more reliable when conducted using 

specimens of wild animals, since there may be differences in the anatomical characteristics 

of bones from wild and captive animals [1,2]. Some groups of animals, such as hominoid 

primates, are highly susceptible to the development of physical or behavioral alterations 

under captive conditions [3]. The musculoskeletal system is directly related to locomotion, 

which is one of the physiological activities with greater differences between wild and cap-

tive animals, as can be observed in different species of primates and carnivores [4–7], mak-

ing it an especially interesting area of study. 

In the field of primatology, several studies have explored the differences between 

some parameters related to the habitats of wild and captive primates [8–10]. For example, 

the natural habitats of wild hominoid primates are characterized by the presence of trees 

or geological elements with a great variation in height, inclination, hardness, and, espe-

cially, space [11]. In contrast, the habitats of captive hominoid primates are characterized 

by small enclosures that have virtually non-existent or highly limited substrate complex-

ity compared to the substrate of their natural habitat [12]. Moreover, in captivity the size 

of the space is less important than its complexity [13–18], which can be increased by 

providing structures that simulate the natural environment of the primates so that they 

can use them as they would under natural conditions [12]. However, some studies show 

naturalistic environments are important but not essential to generate adequate living con-

ditions for their inhabitants [19]. Other authors stressed the importance of developing 

species-typical and natural behaviors [20], also called ethnological needs [21,22]. To 

achieve these behaviors, animals require complex environments and stimuli [23]. Physi-

cal, social, sensory, and cognitive stimulation through environmental enrichment may in-

crease behavioral opportunities and enhance welfare, becoming a key element in captive 

animal care and management [24,25]. 

Studies quantifying the time spent by captive hominoid primates in occupying cer-

tain spaces have found that, in naturalized environments with trees and elevated struc-

tures, orangutans prefer to spend most of their time in elevated structures [16], while go-

rillas prefer to stay near enclosure buildings or on their upper floors, on large trees, and 

on rocks [12,17,26] and chimpanzees generally prefer small spaces that are elevated and 

away from the public [12,15]. Captive gorillas also tend to use vertical structures more 

frequently than wild gorillas since the structures in captivity are generally made of artifi-

cial material that is less likely to break than the structures found in the wild [27]. For the 

same reason, the suspensory locomotion of captive orangutans is generally faster and less 

cautious than that of wild orangutans [7]. In addition to the behavioral changes that can 

occur in captive primates due to the physical characteristics and complexity of their hab-

itats, other modifications of their routines such as changes in the composition of their 

groups or modifications in their home can also significantly alter their development [12]. 

Several investigators have argued that the habitats of captive primates generate atypical 

cognitive [28] and locomotor behaviors [2,7,29] as well as nutrition problems that can lead 

to obesity [30,31], ultimately impacting their growth, physiology, and behavior [32,33]. 

In recent years, a number of studies have explored the anatomical differences be-

tween wild and captive animals of different species. Many have focused on differences in 

the cranial region [10,34], while others have examined specific regions of postcranial anat-

omy [2,35,36]. Although studies on the effects of captivity on the postcranial skeleton are 

scarce [2,4–6,35,36], most indicate that different regions of the postcranial skeleton re-

spond in different ways to habitat conditions [2,9]; some bone structures show a greater 

tendency to present anatomical differences between wild and captive primates, while oth-

ers remain morphologically stable [35,36]. For example, no significant differences in scap-

ula morphology have been identified between wild and captive hominoid primates [35], 
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nor have differences in the length of different anatomical regions (total body, upper arm, 

lower arm, hand, upper leg, lower leg, tail, foot, head, and canine) been identified in ver-

vet monkeys [36]. However, different species of primates have been shown to respond 

differently to captivity [12]. Significant morphological differences have been reported in 

some long bones between wild and captive gorillas [9] and in the wrist and knee between 

wild and captive chimpanzees [2]. 

In the wrist of chimpanzees, for example, the articular surfaces of the distal radius 

and distal ulna are larger in captive than in wild chimpanzees [2], likely because captive 

chimpanzees use knuckle-walking more than wild chimpanzees during their youth [2]. 

This may be due to differences between captive and wild environments, as captive envi-

ronments generally have less three-dimensional complexity, less variation in heights and 

slopes, and more hard elements like artificial rocks and cement floors [2]. The palmar ra-

diocarpal ligaments are the main stabilizing elements of the radiocarpal joint [37], and 

their insertion sites are located in the distal radial epiphysis [38] (Figure 1). The common 

insertion site of the radioscaphocapitate ligament (RSC) and the long radiolunate ligament 

(LRL), as well as that of the short radiolunate ligament (SRL), have previously been stud-

ied by our group in three species of hominoid primates (Gorilla gorilla, Pan troglodytes and 

Pongo pygmaeus). We found that the morphology of these two insertion sites was related 

to the type of locomotion used by each of the species. The insertion sites in the more ar-

boreal species, like Pongo pygmaeus, are larger, with a palmar orientation of the SRL liga-

ment insertion site, while those of the knuckle-walkers (Gorilla gorilla) are smaller, with an 

ulnopalmar orientation of the SRL ligament insertion site, presenting Pan troglodytes an 

intermediate position [38]. This relationship between the morphology of a ligament inser-

tion site and type of locomotion has also been observed in other anatomical regions of 

hominoid primates, such as the insertion sites of the ligaments holding the flexor digi-

torum profundus and superficialis muscles in proximal phalanges [39]. In addition to this 

association between morphological characteristics and type of locomotion, a further rea-

son to analyze the RSC + LRL and the SRL insertion sites is that the landmarks are easily 

placed, which helps eliminate the possibility of intra- or inter-observer error. Finally, the 

role of the palmar ligaments as the main stabilizing elements of the wrist [37] makes them 

crucial to understanding the function of the wrist in primates. 

 

Figure 1. Distal radial epiphyses of (a) Gorilla gorilla, (b) Pan troglodytes, and (c) Pongo pygmaeus. In 

each of the distal radial epiphyses, the insertion sites of the palmar radiocarpal ligaments are shown 

with the locations of the landmarks. 

In the present study, we have analyzed by tridimensional geometric morphometrics 

(3D GM) the morphology of the insertion site of the palmar radiocarpal ligaments in these 
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three species of hominoid primates (Gorilla gorilla, Pan troglodytes, and Pongo pygmaeus), 

comparing wild and captive individuals. Our main objectives were to quantify the distal 

radius of hominoid primates to see if morphological differences could be observed be-

tween wild and captive subjects. Since the anatomy of the insertion sites of the RSC, LRL, 

and SRL is related to type of locomotion, we hypothesized that quantifiable morphologi-

cal differences would exist in the ligament insertion sites of the distal radial epiphysis 

between wild and captive individuals of the three species as a result of their different 

types of locomotion [2,7,16]. Specifically, we expected that the morphology of the ligament 

insertion sites in captive chimpanzees, which tend to use terrestrial locomotion [2], would 

be more similar to that of gorillas than that of wild chimpanzees. In contrast, the morphol-

ogy of the ligament insertion sites in captive orangutans and gorillas, which prefer to stay 

on elevated structures [12,16,17,26], will translate the greater load in the wrist region. Our 

findings would increase current knowledge of how captive conditions can influence the 

locomotor pattern of hominoid primates and modify the anatomical characteristics of up-

per-limb joint complexes like the wrist. We also believe that follow-up studies are war-

ranted to determine how our results may be applied to improve the enclosures and envi-

ronments of primates in captivity and make them as similar as possible to the environ-

ments found in the wild. 

2. Materials and Methods 

2.1. Osteological Samples 

A total of 118 left radii were included in the study: 51 from Pan troglodytes (25 wild 

and 26 captive); 43 from Gorilla gorilla (31 wild and 12 captive); and 24 from Pongo pyg-

maeus (15 wild and 9 captive) (Table 1). All the radii used in the present analysis belong 

to primates that died from causes unrelated to the present study. The primates raised in 

the wild were provided by the Anthropologisches Institut und Museum (University of 

Zurich, Zürich, Switzerland), and the primates bred in captivity, by the Museu de Ciències 

Naturals de Barcelona (Barcelona, Spain) and the Museo Anatómico de la Universidad de 

Valladolid (Valladolid, Spain). All specimens were from adult primates, as defined by the 

presence of fused epiphyses and the third molar. The captive primates used in this study 

came from various Spanish zoological parks (Madrid Zoo, Barcelona Zoo, Loro Parque de 

Tenerife, Bioparc de Valencia, Zoo de Fuengirola, Zoo Valwo de Valladolid, and Zoo de 

Santillana del Mar). The wild chimpanzees and gorillas analyzed came from Equatorial 

Guinea, Gabon, Liberia, and Cameroon, while the orangutans came from Borneo and Su-

matra. 

Table 1. Radius specimens used for the 3D GM analysis. M = Male, F = Female, I = Indeterminate. 

Species n Sex Origin 

Gorilla gorilla (Wild) 31 M = 17/F = 14 Equatorial Guinea, Cameroon, Gabon, French Cameroon 

Gorilla gorilla (Captive) 12 M = 6/F = 6 
Madrid Zoo, Loro Parque de Tenerife, Fuengirola Zoo, Bioparc de 

Valencia, Barcelona Zoo 

Pan troglodytes (Wild) 25 M = 11/F = 13/I = 1 Equatorial Guinea, Liberia, French Cameroon 

Pan troglodytes (Cap-

tive) 
26 M = 15/F = 11 Valladolid Valwo Zoo, Fuengirola Zoo, Madrid Zoo, Barcelona Zoo 

Pongo pygmaeus (Wild) 15 M = 8/F = 7 Sumatra, Borneo 

Pongo pygmaeus (Cap-

tive) 
9 M = 2/F = 7 Santillana del Mar Zoo, Fuengirola Zoo, Madrid Zoo, Barcelona Zoo 

TOTAL 118  
Wild = 71 

Captive= 47 

2.2. 3D GM Analysis 

The distal radial epiphyses were scanned with a 3D Next Engine Ultra HD laser sur-

face scanner at a resolution of 0.1 mm space-point separation, with a density of 40 k (2×) 
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points. The different sections of the scans were merged with the Volume Merge option of 

Next Engine HD software at a resolution of 0.5 mm and saved as a PLY file. The resulting 

triangle mesh was edited with the open-source MeshLab software [40], and the models 

were imported into Landmark Editor software (v. 3.6) [41] for placing the landmarks. 

The landmarks previously proposed by Casado et al. [38] were used to represent the 

morphology of the two insertion sites of the palmar radiocarpal ligaments in the distal 

radial epiphysis. Nine Type II and one Type III landmarks were used: the L1–L4 land-

marks for the SRL insertion site and the L5–L10 landmarks for the common insertion site 

of the RSC and LRL (Figure 1). The raw data obtained with Landmark Editor software 

based on the landmark coordinates were exported into the MorphoJ statistical package 

[42]. 

In order to confirm the reliability of the landmarks, we established two protocols to 

calculate intra-observer error and inter-observer error before beginning the analyses. For 

intra-observer error, each observer placed all the landmarks in the sample on three sepa-

rate days, with a 48 h interval between the days. Inter-observer error was calculated at the 

same time as intra-observer error. Two additional experienced observers placed all the 

landmarks in the sample on three separate days, with a 48 h interval between the days. 

The 48 h interval was to rule out the possibility of an observer placing the landmarks 

through a mechanical repetition of previous placements. Differences were analyzed with 

a pairwise Mann–Whitney analysis in order to detect any lack of reliability in the land-

marks or the data. 

A generalized Procrustes analysis (GPA) was used to reduce variability due to dif-

ferences of size, placement, or orientation and to minimize the sum of square distances 

between equivalent landmarks [42–45]. This procedure allows the resulting data, termed 

Procrustes coordinates, to be used in a multivariate analysis [44]. A principal components 

analysis (PCA) was then performed in order to reduce complex multidimensional data to 

fewer components, or eigenvectors, which could be used to explain the main differences 

between the groups [42–45]. 

After the PCA, sample normality was tested in PAST software using the Shapiro–

Wilk and Anderson–Darling tests. Variation in species was tested with a Procrustes 

ANOVA with permutation, including status (wild–captive). In order to determine the po-

tential effect of sex on the morphological characteristics of the ligament insertion sites, we 

performed a discriminant function analysis (DFA) for all groups and other DFA for each 

of the species, controlling for sex and status. The groups were classified using a DFA with 

Fisher’s classification rule and leave-one-out cross-validation. Subsequently, we per-

formed a MANCOVA with species as group and centroid size as covariate [44] for each 

of the species, using log-transformed centroid size to increase the accuracy of the model. 

In order to determine the influence of size on variation in shape (allometric scaling), 

a multivariate regression analysis (MRA) with a permutation test with 1000 randomiza-

tions was performed. Procrustes coordinates, indicative of shape, was the dependent var-

iable, and the centroid size (CS), indicative of size, was the independent variable [42–45]. 

After corroborating the allometric influence of the sample, a second PCA was performed 

with the regression residuals. 

3. Results 

The analysis of intra-observer error and inter-observer error revealed no significant 

differences (Supplementary Table S1). 

The PCA yielded 23 PCs, the first three of which accounted for 72.4% of the variation 

in the shape of the two insertion sites of the palmar radiocarpal ligaments (PC1, 52.5%; 

PC2, 12.7%; PC3, 7.2%). The remaining PCs accounted for ≤5% each of the variation in 

shape. The scatterplot of PC1 vs. PC2 (Figure 2) shows differences among the six groups 

of primates, although there is a clear degree of overlap. The wild and captive Pongo pyg-

maeus and the wild Pan troglodytes were mainly located in the negative PC1 values, while 

the wild and captive Gorilla gorilla were mainly located in the positive values, and the 
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captive Pan troglodytes were mainly located in an intermediate position between the posi-

tive and negative values. More positive PC1 values could be seen in wild than in captive 

Gorilla gorilla and Pongo pygmaeus, while more positive PC1 values were seen in captive 

than in wild Pan troglodytes. Specimens with positive PC1 values were characterized by 

relatively small insertion sites of the palmar radiocarpal ligaments and by an ulnopalmar 

orientation of the SRL insertion site in relation to the RSC + LRL insertion site. In contrast, 

in specimens with negative PC1 values, the two insertion sites were relatively large, and 

the SRL insertion site had a palmar orientation in relation to the RSC + LRL insertion site. 

 

Figure 2. Convex Hull of PC1 vs. PC2 derived from the PCA of the 3D GM analysis. Dark blue 

wireframes show the extreme shape of each PC in a palmar view (upper panel) and a proximal view 

(lower panel). Light blue wireframes show the mean shape (coordinates 0.0). 

In contrast, more positive PC2 values were seen in captive Pongo pygmaeus, while 

more negative values were seen in wild Pongo pygmaeus. Specimens with positive PC2 

values had a relatively large and palmarly oriented insertion site of the SRL in relation to 

the RSC + LRL insertion site, while specimens with negative PC2 values had a relatively 

small and ulnopalmarly oriented insertion site of the SRL in relation to the RSC + LRL 

insertion site (Figure 2). 

Procrustes ANOVA showed significant differences between wild and captive speci-

mens in centroid size (SS = 5601.35, MS = 2800.67, df = 2, F = 45.56, p = 0.005) and in shape 

(SS = 0.74, MS = 0.02, df = 46, F = 4.8, p < 0.001). The DFA of the effect of sex showed no 

significant differences between males and females in the morphology of the ligament in-

sertion sites, either in Procrustes distances (Pd = 0.02, p = 0.26) or in Mahalanobis distances 

(Md = 0.94, p = 0.56). However, when status was included in the analysis, significant dif-

ferences were observed among captive gorillas in Procrustes distances (Pd = 0.08, p = 0.03) 

but not in Mahalanobis distances (Md = 3.58, p = 0.88). There were no significant differ-

ences according to sex among wild gorillas, (Pd = 0.02, p = 0.71; Md = 3.83, p = 0.55), captive 

chimpanzees (Pd = 0.03, p = 0.48; Md = 10.51, p = 0.31), wild chimpanzees (Pd = 0.03, p = 

0.91; Md = 2.91, p = 0.96), captive orangutans (Pd = 0.10, p = 0.40; Md = 1.44, p = 0.40), or 

wild orangutans (Pd = 0.04, p = 0.84; Md = 3.35, p = 0.25). The DFA showed significant 

differences in Procrustes distances between wild and captive specimens of all three spe-

cies. It also showed significant differences in Mahalanobis distances for wild vs. captive 

gorillas and chimpanzees but not for orangutans (Table 2). Leave-one-out cross valida-

tions showed that the post hoc probabilities of correct classification decreased in all the 

comparisons (Table 3). 
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Table 2. Procrustes and Mahalanobis distances between wild and captive specimens. 

Species Procrustes Distances Mahalanobis Distances 

Wild vs. Captive Gorilla gorilla 0.09 (p < 0.0001) 4.03 (p = 0.01) 

Wild vs. Captive Pan troglodytes 0.08 (p < 0.0001) 2.70 (p = 0.01) 

Wild vs. Captive Pongo pygmaeus 0.08 (p = 0.006) 33.93 (p = 0.07) 

Table 3. Percentages of correct post hoc classification from the discriminant functions and after leave-one-out cross-vali-

dation, with the percentage of decrease in correct classification. 

 Discriminant Functions After Cross-Validation Decrease in Correct Classification 

Wild vs. Captive Gorilla gorilla 96.66% 63.58% 33.08% 

Wild vs. Captive Pan troglodytes 94.16% 64.69% 29.47% 

Wild vs. Captive Pongo pygmaeus 100% 69.99% 30.01% 

The MANCOVA showed a predictive value of 16.49% (Tot SS = 0.13, Pred SS = 0.02, 

Res SS = 0.10, p = 0.04) for captive gorillas, 11.68% (Tot SS = 0.20, Pred SS =0.02, Res SS = 

0.18, p = 0.002) for wild gorillas, 4.82% (Tot SS = 0.27, Pred SS = 0.01, Res SS = 0.26, p = 0.258) 

for captive chimpanzees, 4.56% (Tot SS = 0.31, Pred SS =0.01, Res SS = 0.30, p = 0.33) for 

wild chimpanzees, 7.56% (Tot SS = 0.13, Pred SS =0.01, Res SS = 0.12, p = 0.776) for captive 

orangutans, and 15.75% (Tot SS = 0.17, Pred SS =0.03, Res SS = 0.14, p = 0.009) for wild 

orangutans. Both wild and captive gorillas with allometric effect showed an axial rotation 

of the RSC + LRL and SRL insertion sites associated with a displacement of the palmar 

margin of the lunate fossa (Figure 3). Wild orangutans with significant MANCOVA val-

ues had a larger depression in the RSC + LRL insertion site. 

 

Figure 3. Distal view of the carpal articular surface of radius in (a) a gorilla with low allometric effect 

and (b) a gorilla with great allometric effect. A marked displacement of the palmar margin of the 

lunate fossa can be observed in (b). 

The MRA of shape over CS found that 27.12% of the variation in the shape of the 

insertion sites of the palmar radiocarpal ligaments was attributable to size (p < 0.001). The 

second PCA, performed with the MRA residuals, yielded 23 PCs, the first 6 of which ac-

counted for 76% of the total variation in the shape of the insertion sites of the palmar 

radiocarpal ligaments (PC1, 27.5%; PC2, 19.5%; PC3, 8.9%; PC4, 7.6%; PC5, 6.6%; PC6, 

5.9%). The remaining PCs accounted for <5% each of the variation in shape. The scatterplot 

of PC1 vs. PC2 (Figure 4) shows that wild Gorilla gorilla and captive Pan troglodytes are 

mainly located in the positive PC1 values, while the other four types of specimens are 

mainly located in the negative PC1 values. More positive PC1 values could be seen in wild 

than in captive Gorilla gorilla and Pongo pygmaeus, while more positive PC1 values were 

seen in captive than in wild Pan troglodytes. The shape changes observed in PC1 in the 
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second PCA were similar to those observed with the first PCA using the Procrustes coor-

dinates. More positive PC2 values were seen in captive Pongo pygmaeus, while more neg-

ative values were seen in wild Pongo pygmaeus. Among specimens with positive PC2 val-

ues, the SRL insertion site was relatively large with a palmar orientation in relation to the 

RSC + LRL insertion site, while the RSC + LRL insertion site was relatively small. Further-

more, in specimens with negative PC2 values, the SRL insertion site was relatively small, 

with an ulnopalmar orientation in relation to the RSC + LRL insertion site, while the RSC 

+ LRL insertion site was relatively large (Figure 4). 

 

Figure 4. Convex Hull of PC1 vs. PC2 derived from the PCA post regression of the 3D GM analysis. 

Dark blue wireframes show the extreme shape of each PC in a palmar view (upper panel) and a 

proximal view (lower panel). Light blue wireframes represent the mean shape (coordinates 0.0). 

4. Discussion 

We have analyzed by 3D GM the insertion sites of the palmar radiocarpal ligaments 

in specimens from Gorilla gorilla, Pan troglodytes, and Pongo pygmaeus. Our findings indi-

cate that there are morphological differences both between species and between wild and 

captive individuals of the same species that may be a result of differences in locomotor 

behavior. Moreover, these differences were not affected by the sex of the specimen, except 

in captive gorillas, where there were differences between males and females in Procrustes 

but not in Mahalanobis distances. In the first PCA (Figure 2), the distribution of the three 

species in PC1 was similar to that previously described by our team [38]: positive PC1 

values for gorillas, negative values for orangutans, and intermediate values for chimpan-

zees. Gorillas are the least arboreal of the three species and use knuckle-walking more 

frequently than the other two [27,45], which can explain their relatively small ligament 

insertion sites. The increased stability of the scaphoid and lunate bones, an adaptation to 

knuckle-walking [46], reduces the need for large ligaments to stabilize the radiocarpal 

joint. In contrast, orangutans are the most arboreal of the three species [47] and have rela-

tively large ligament insertion sites. Their palmar radiocarpal ligaments are more highly 

developed to compensate for the large traction forces affecting the wrist during vertical 

climbing [48,49]. Orangutans are also characterized by a relative palmar orientation of the 

SRL insertion site, which is likely a result of the larger size of the radiolunate joint [50], 

which allows for the greater loading of the joint that occurs during vertical climbing 

[48,51]. Finally, chimpanzees, in an intermediate position between gorillas and 

orangutans, use a more varied locomotion, combining knuckle-walking with arboreal lo-

comotion [52–54]. When the effect of size on shape variation (allometric scaling) (Figure 

4) was eliminated, the most significant change was the displacement of captive gorillas 

toward negative PC1 values and of captive chimpanzees toward positive PC1 values. 
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Nonetheless, there were still significant differences between wild and captive specimens 

of each of the three species, indicating that conditions of captivity can lead to changes in 

the development of locomotor behavior of hominoid primates that can modify the ana-

tomical characteristics of large joint complexes like the wrist [2]. 

Both PCAs showed that wild gorillas had more positive PC1 values than captive go-

rillas, indicating that the insertion sites of the palmar radiocarpal ligaments are relatively 

larger in captive than in wild gorillas (Figures 2 and 4). Since a small size of these insertion 

sites is related to knuckle-walking and a larger size to suspensory behavior or vertical 

climbing [38], we can infer that captive gorillas climb from the ground to the elevated 

places of their habitat more frequently than do wild gorillas. Although few studies have 

been conducted comparing the locomotion of wild vs. captive gorillas, some have shown 

that captive gorillas have a greater preference for elevated places in their habitats, such as 

rocks or trees, than for the flat places of the substrate [26,27]. Furthermore, the locomotor 

behavior of captive gorillas is more often limited to vertical substrates, because the artifi-

cial material of these substrates is less prone to breakage than the branches of natural trees, 

making them easily usable by large gorillas [27]. Although gorillas are the least arboreal 

of all hominoid primates [46], they are capable of using different types of arboreal loco-

motion, especially vertical climbing, to seek food or to build nests [55], and captive gorillas 

tend to build their nests in elevated places more often than their wild counterparts [56]. 

Interestingly, the analysis of the cross-section of the humerus diaphysis by Canington et 

al. [9] revealed significant differences between wild and captive gorillas. In fact, the adult 

specimens of wild Gorilla gorilla were more like adult specimens of Gorilla beringei, which 

is more terrestrial than Gorilla gorilla. This is in line with our findings that the morphology 

of the insertion sites of the palmar radiocarpal ligaments is more typical of knuckle-walk-

ers in wild than in captive gorillas (Figures 2 and 4). 

Unlike gorillas, the captive chimpanzees had more positive PC1 values than their 

wild counterparts (Figures 2 and 4). The relatively small size of the insertion sites of the 

palmar radiocarpal ligaments in captive chimpanzees could indicate that they rely on 

knuckle-walking more often than wild chimpanzees. Chimpanzees are known to be less 

terrestrial than gorillas [46] and are estimated to spend 33.68% of their time in trees when 

living in the wild [12]. This arboreal behavior is more evident in infantile and juvenile 

individuals, whose behavior is generally suspensory, dominated by the upper extremity, 

while adults exhibit more terrestrial locomotion, especially knuckle-walking [53,57,58]. 

Captive chimpanzees also have a preference for elevated sites in their habitats [13,15,27] 

and are estimated to spend up to 40% of their time in structures above ground level [59]. 

Despite this preference of wild and captive chimpanzees for elevated substrates, captive 

juvenile chimpanzees use knuckle-walking more frequently than do wild chimpanzees 

[2,60]. The higher frequency of knuckle-walking in captive juvenile chimpanzees could 

explain the differences in the morphology of the insertion sites of palmar radiocarpal lig-

aments between our wild and captive chimpanzees. Osteoarticular structures in develop-

ing individuals are more susceptible to differences in loading [61], and the captive juve-

niles use knuckle-walking more frequently, while wild juveniles use arboreal locomotion 

more than adult specimens [58]. The greater amount of time that captive juveniles spend 

on the ground, in many cases knuckle-walking on relatively rigid surfaces, also explains 

other anatomical differences that have been observed in the wrist region between wild 

and captive chimpanzees, such as the larger relative size of the surface of the distal radial 

epiphysis in captive specimens [2]. An additional factor may explain the reduced use of 

arboreal locomotion in captive chimpanzees: wild chimpanzees spend up to 50% of their 

time searching for food in trees [62], while captive chimpanzees spend less time on this 

activity [63], even in large naturalistic enclosures [64]. 

Wild orangutans had more positive PC1 values than captive orangutans, indicating 

that the insertion sites of the palmar radiocarpal ligaments are relatively large in captive 

specimens (Figures 2 and 4). The few studies that have analyzed differences in locomotion 

between wild and captive orangutans have found that both wild and captive individuals 
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prefer elevated places. They avoid moving along the ground and spend up to two-thirds 

of their time in trees or on elevated platforms [16]. Still, the differences we have observed 

in the ligament insertion sites can be explained by the mechanical differences in vertical 

climbing between wild and captive orangutans. Vertical climbing accounts for 22–26% of 

the total locomotion time of orangutans—in adults and juveniles and in males and females 

[7,65]. Wild orangutans use a more cautious, slow, short-step vertical climbing because of 

their complex habitat ecology [66], while captive orangutans are less cautious and faster 

with longer steps, possibly because, in captivity, the individuals are more familiar with 

the fixed and stable structures used for climbing their artificial habitat [7]. This faster ver-

tical climbing with longer steps can put extra load on the wrist, which would explain the 

larger size of the palmar radiocarpal ligaments in the captive orangutans, necessary to 

ensure the stability of the radiocarpal joint [38,49,50]. Wild orangutans prefer to climb 

using vines or narrow tree trunks with flexed-elbow vertical climbing [67], while captive 

orangutans more frequently use extended-elbow vertical climbing, which involves a 

longer support phase and is, hence, more mechanically demanding [7]. This increased 

mechanical requirement entails a greater development of the palmar radiocarpal liga-

ments, resulting in relatively large insertion sites (Figures 2 and 4), particularly for the 

SRL, as evidenced by the PC2 values in our study. The SRL is an important stabilizer of 

the radiolunate joint during vertical climbing [49,52], and the large size and palmar orien-

tation of its insertion site in captive orangutans compared to their wild counterparts helps 

to compensate for the increased mechanical demands required by extended-elbow verti-

cal climbing. 

In addition to these morphological differences between wild and captive individuals, 

our MANCOVA identified allometric scaling effects in wild and captive gorillas and in 

wild orangutans. Both the wild and captive gorillas with a greater allometric effect had an 

axial rotation that affected both the RSC + LRL and the SRL insertion sites. This axial ro-

tation was associated with expansion and concavation of the carpal articular surface of 

radius, which could be due to the palmar–distal displacement of the palmar margin of the 

lunate fossa, as shown in the 3D models (Figure 3). The wild orangutans with a greater 

allometric effect had a depressed RSC + LRL insertion site, which was also seen in the 3D 

models. 

5. Conclusions 

In conclusion, our 3D GM analysis has identified morphological differences in the 

insertion sites of the palmar radiocarpal ligaments between wild and captive orangutans, 

chimpanzees, and gorillas. These differences suggest that conditions of captivity can lead 

to changes in the locomotor behavior of hominoid primates that can modify the anatomy 

of some regions of the postcranial skeleton, such as the wrist. Our results support the idea 

advocated by some authors that bones from captive primates should be used cautiously 

in osteological studies, as the functional implications of these studies may be highly con-

ditioned by the conditions of captivity [1,3]. This is particularly evident in the distal radial 

epiphysis, where other anatomical differences between wild and captive hominoid pri-

mates [2] have also been identified. We hope that our results can help to improve the hab-

itats of captive hominoid primates by enriching the spaces and creating similar dynamics 

to their natural wild environment [64,68]. In this way, captive specimens could recreate 

as closely as possible the locomotor behaviors that they would develop in natural envi-

ronments. In addition, our findings can be useful in studies of comparative anatomy. For 

example, the fact that captive conditions can modify the morphology of muscle and liga-

ment insertion sites leads us to suggest that future studies reconstructing the locomotor 

behavior patterns of fossil primates based on a comparison with bone specimens of pre-

sent-day primates should, whenever possible, use bones of individuals born and raised in 

the wild. 
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6. Limitations and Future Directions 

The main limitation of our study is the relatively limited number of specimens ana-

lyzed, especially Pongo pygmaeus. For this reason, we believe that future studies should 

include more specimens to further explore the morphological differences observed in the 

present study and determine if they are truly representative. In addition, since we ana-

lyzed only one specific anatomical region, in order to determine more precisely how dif-

ferent locomotor behaviors can modify bone morphology in captive primates, we suggest 

including other regions, such as the elbow, the shoulder, the knee, and the hip. The meth-

ods used in the present study could also be used to see if these differences occur equally 

in the right and left side of these primates. Furthermore, we consider that, in future stud-

ies, it would be interesting to study the body mass of captive primates in situ to corrobo-

rate if their body mass is directly related to bone dysmorphologies. Finally, our group is 

currently exploring the specific locomotor behaviors developed by captive primates with 

the aim of identifying common patterns related to the morphological changes we have 

observed in this study. 
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