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Background: Manual brain extraction from magnetic resonance (MR) images is time-consuming and prone to intra- and
inter-rater variability. Several automated approaches have been developed to alleviate these constraints, including deep
learning pipelines. However, these methods tend to reduce their performance in unseen magnetic resonance imaging
(MRI) scanner vendors and different imaging protocols.
Purpose: To present and evaluate for clinical use PARIETAL, a pre-trained deep learning brain extraction method. We
compare its reproducibility in a scan/rescan analysis and its robustness among scanners of different manufacturers.
Study Type: Retrospective.
Population: Twenty-one subjects (12 women) with age range 22–48 years acquired using three different MRI scanner
machines including scan/rescan in each of them.
Field Strength/Sequence: T1-weighted images acquired in a 3-T Siemens with magnetization prepared rapid gradient-echo
sequence and two 1.5 T scanners, Philips and GE, with spin-echo and spoiled gradient-recalled (SPGR) sequences, respectively.
Assessment: Analysis of the intracranial cavity volumes obtained for each subject on the three different scanners and the
scan/rescan acquisitions.
Statistical Tests: Parametric permutation tests of the differences in volumes to rank and statistically evaluate the perfor-
mance of PARIETAL compared to state-of-the-art methods.
Results: The mean absolute intracranial volume differences obtained by PARIETAL in the scan/rescan analysis were 1.88 mL,
3.91 mL, and 4.71 mL for Siemens, GE, and Philips scanners, respectively. PARIETAL was the best-ranked method on Siemens
and GE scanners, while decreasing to Rank 2 on the Philips images. Intracranial differences for the same subject between scanners
were 5.46 mL, 27.16 mL, and 30.44 mL for GE/Philips, Siemens/Philips, and Siemens/GE comparison, respectively. The permuta-
tion tests revealed that PARIETAL was always in Rank 1, obtaining the most similar volumetric results between scanners.
Data Conclusion: PARIETAL accurately segments the brain and it generalizes to images acquired at different sites without
the need of training or fine-tuning it again. PARIETAL is publicly available.
Level of Evidence: 2
Technical Efficacy Stage: 2
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Magnetic resonance imaging (MRI) is one of the most
widely used imaging techniques in neuroimaging pipe-

lines.1–7 In recent years, several automated methods have
been proposed to support the diagnosis, treatment, or

evaluation of diverse brain diseases such as Alzheimer’s,1 mul-
tiple sclerosis,2 or brain tumors.3 However, in most of the
studies, brain scans have to be pre-processed beforehand with
different tasks such as brain extraction,4 noise reduction,5
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inhomogeneity correction,6 and registration.7 Hence, it is
important to have a high accuracy and reliability of each of
these tasks, since pre-processing errors will be propagated to
subsequent methods, affecting the overall obtained accuracy.8

From the set of pre-processing tasks performed in com-
putational neuroimaging, brain extraction, also termed skull
stripping, consists of removing the skull, dura, and scalp from
the brain. Manual annotation of skull stripping is time-con-
suming, increases processing time per volume, and is prone to
intra and inter-rater variability.9 Consequently, several auto-
mated approaches have been developed to alleviate the man-
ual variability and to reduce time constraints.10 Automated
skull stripping techniques have to overcome several challenges
such as image domain shifts caused by the use of different
scanner vendors and image protocols,11 and the variation of
the brain structures that changes with individuals (i.e., vessels
and muscles),12 motion artifacts,13 or even pathological con-
ditions and treatment-related changes (i.e., cavities resection,
radiation effects, etc.) that may alter brain structure.14,15

Traditional state-of-the-art methods for automated
brain extraction can be classified into several categories16:
intensity-based techniques such as Brain Surface Extractor
(BSE)17; intensity and morphological methods such as
Marker Based Watershed Scalper (MBWSS)18 and Multispec-
tral Adaptive Region Growing Algorithm (MARGA)19; atlas-
based methods such as Brain extraction based on nonlocal
Segmentation Technique (BeaST),20 where an atlas template
is fitted to the MRI brain image in order to separate the brain
from the skull; deformable model-based methods such as
Brain Extraction Tool (BET),21 which uses a deformable
model that evolves to fit the brain’s surface by the application
of a set of locally adaptive model forces; and hybrid methods
such as RObust, learning-based Brain EXtraction system
(ROBEX),22 where several of the previous techniques are
combined.

In recent years, however, the introduction of supervised
deep learning strategies has provided an increase in the
methods’ performance compared to classical approaches for
many medical imaging applications.2,23,24 In particular, con-
volutional neural networks (CNN)25 and U-Net based archi-
tectures23 are considered the most efficient models for
biomedical image segmentation. In the case of skull stripping,
several approaches have previously been proposed. These
include voxelwise CNN models as those proposed in Kleesiek
et al,14 U-Net architectures such as Isensee et al26 and
CONSNet,16 or cascaded methods composed of both CNN
and U-Net architectures as the one proposed by Salehi
et al.27 In all these studies, deep learning methods showed a
superior performance not only in accuracy but also in com-
puting (testing) time in comparison with state-of-the-art
methods before the deep learning era. However, despite the
astonishing performance of deep learning methods, the accu-
racy of those models tends to decrease significantly when

evaluated on different image protocols than those included in
the training dataset,28 which may limit their usability and
applicability in clinical practice.

In order to validate the accuracy of these automated
methods, several datasets have been used such as the Open
Access Series of Imaging Studies (OASIS) dataset,29 com-
posed of non-demented and demented patient images; the
LONI Probabilistic Brain Atlas (LPBA40),30 composed of
healthy subject images; and the Calgary-Campinas (CC-359)
dataset,11 which has been proposed more recently and incor-
porates a set of multi-vendor and multi-field-strength brain
images along with silver masks (i.e., consensus brain extrac-
tion masks generated by the Simultaneous Truth And Perfor-
mance Level Estimation (STAPLE) algorithm31 using
different automated methods10).

The main aims of the present study are as follows. First,
to propose a novel deeP leARnIng brain ExTrAction tooL
(PARIETAL) trained on the publicly available CC-359
dataset11 that is suitable for automated skull-stripping of MRI
images. Second, to evaluate PARIETAL’s performance against
manual expert annotations, comparing it also to other
11 state-of-the-art methods including two recently proposed
deep learning architectures. Third, to study PARIETAL’s
robustness to other MRI sites of those used during training,
by analyzing the reproducibility across scan/rescan images and
also images from the same subject scanned on three different
unseen MRI sites. In order to increase the reproducibility of
our results, PARIETAL software and its source code are cur-
rently available for downloading at our research website as an
open-source toolbox (available at https://github.com/NIC-
VICOROB/PARIETAL).

Materials and Methods
Datasets
Two datasets were used to develop the proposed method and its
corresponding analysis, the Calgary-Campinas dataset and an in-
house clinical dataset. Each of them consists of a collection of three-
dimensional (3D) MR volumes or images, where each image corre-
sponds to a different subject. The dataset characteristics are described
as follows.

CALGARY-CAMPINAS DATASET. The Calgary-Campinas CC-
359 dataset11 contains 359 public available MR images of healthy
adults (29–80 years old, 183 female, and 176 male subjects). Images
were acquired on scanners from three different vendors (GE, Philips,
and Siemens) and at two magnetic field strengths (1.5 T and 3 T).
Detailed information about the brand, model, and magnetic field can
be found in Table 1. Data were obtained using T1-weighted 3D
imaging sequences: a 3D Magnetization Prepared RApid Gradient
Echo sequence (MP-RAGE; Philips, Siemens) and a comparable T1-
weighted spoiled gradient-echo sequence (General Electrics). In all
machines, image volumes had a spatial resolution of 1.0 mm �
1.0 mm � 1.0 mm.32
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From the set of released images, the dataset contains 12 gro-
und-truth cases (two for each site) that have been manually seg-
mented by three trained radiologists. For the rest of 347 scans, the
dataset includes a silver-mask annotated brain mask computed
using a supervised classification consensus31 from skull stripping
methods ANTS,33 BeaST,20 BET,21 BSE,17 HWA,4 MBWSS,18

OPTIBET,14 and ROBEX.22

IN-HOUSE CLINICAL DATASET. The protocol used to build
the in-house dataset was approved by the hospital research and ethics
committee, and informed consent was obtained from each partici-
pant before enrolment in the study. The dataset contains images of
21 subjects (12 women and 9 men, age range 22–48 years), all
of them scanned in three different hospital sites of the Catalan health
system: Hospital Vall d’Hebron (Barcelona), Hospital Santa
Caterina—IAS (Girona) and Hospital Dr. Josep Trueta (Girona).
Detailed information about the brand, model, and magnetic field
can be found in Table 2. Furthermore, every subject was scanned
twice in each scanner resulting in a dataset with 126 images.

Participants were asked to lie in a supine position, the center
of the head-coil was aligned with the line of the eyes, they were
instructed not to move, and the head was gently stabilized with
cushions. Sequences were repeated after patient repositioning for the
scan/rescan acquisition. The subjects moved among the three centers
in a period of 1 month. For each subject, T1-weighted images were
acquired at each hospital scanner along with scan-rescan acquisitions.
The image protocols were the ones used in the clinical practice in
each hospital. Scanner details for each hospital were:

• Hospital Vall d’Hebron: subjects were scanned on a 3-T
Siemens Trio A Tim System with a 12-channel phased-
array head coil, with acquired sagittal 3D T1 magnetization
prepared rapid gradient-echo (MPRAGE) (repetition time
[TR] = 2300 msec, echo time [TE] = 2 msec, inversion
time [TI] = 900 msec; voxel size = 1 mm �1
mm � 1.2 mm).

• Hospital Santa Caterina—IAS: subjects were scanned on
1.5 T Philips Intera (R12) head coil, with a 2D
T1-weighted spin-echo sequence (TR = 653 msec,
TE = 14 msec; voxel size = 1.0 mm � 1.0 mm � 1.0 mm).

• Hospital Dr. Josep Trueta: subjects were scanned on 1.5 T
General Electrics (GE) HDxt, with acquired 3D fast
T1-weighted spoiled gradient-recalled (SPGR) echo
sequence (TR = 30 msec, TE = 9 msec; voxel size =

1.0 mm � 1.094 mm � 1.094 mm).

Proposed Method

CONVOLUTIONAL NEURAL NETWORK ARCHITECTURE.
The proposed method is based on a modified U-Net convolutional
network architecture.23 First, two-dimensional layers were replaced
by 3D layers as shown in Çiçek et al,24 given the three-dimensional
nature of MRI images that permits to extract more context informa-
tion from voxels. Second, convolutional layers were replaced by
residual layers as described in He et al,34 in order to improve the
gradient back-propagation, improve optimization convergence speed,
and allow for deeper network training.35 Third, concatenation layers
were replaced by summation layers, as these have been previously
shown to reduce the model complexity without a significant decrease
in the performance.35 Finally, instead of using the entire 3D images
as input, images were split into 3D patches of 32 � 32 � 32 voxels,
in order to overcome the possible limitations in memory when trying
to fit the entire MRI scan and to mitigate the class imbalance with
respect to brain voxels.35

The final architecture was composed of three encoding and
decoding core layers, as shown in Fig. 1, with approximately 10.2
million parameters. Each core layer was based on residual con-
volutional 3D layers that produce 3 � 3 � 3 and 1 � 1 � 1 kernel
convolution layers, normalized using batch normalization32 and
afterwards added and passed through a rectified linear unit (RELU)
activation function.36 The encoder elements of the architecture were
composed of k kernels of 32, 64, and 128, respectively, each one
followed by a 2 � 2 � 2 downscale max pooling operation. After
the encoder layers, a single residual core module with k = 256 was
applied. For the decoder part, three successive 3D deconvolutions

TABLE 1. Brand, Model and Magnetic Field Strength
for Each of the Scanners Used in the Calgary-
Campinas CC-359 Dataset

Calgary-Campinas CC-359 Dataset

MR
Brand MR Model

Magnetic Field
Strength (T)

GE Signa HDxT 1.5

GE Discovery
MR750

3

Philips Achievaa 3

Siemens Avanto 1.5

Siemens Skyra 3

aTwo sites contributed with images from a Philips Achieva
scanner.

TABLE 2. Brand, Model and Magnetic Field Strength
for Each of the Scanners Used in the Clinical In-House
Dataset from Three Hospitals of the Catalan Public
Health System

In-House Dataset

MR
Brand MR Model

Magnetic Field
Strength (T)

Siemens Trio A Tim
System

3

Philips Intera 1.5

GE Signa HDxT 1.5
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(upscale 2 � 2 � 2) were added to the output of the correspondent
core layer (skip connections), followed by a core element with k
kernels of 128 and 64 and 32, respectively. Finally, the output was
passed through a 3D convolution layer followed by a softmax layer
with two outputs that provided the probability of each voxel to per-
tain to the brain or non-brain class.

TRAINING PROCEDURE. To mitigate class imbalance with
respect to brain voxels, we extracted the same number of patches for
each class as proposed in previous studies.35 We first created a head
mask using a histogram filtering technique, where we eliminate all
the voxels that were inside the first bin of the histogram
(corresponding to background air), remaining only the head voxels
depicting either brain or non-brain parts (bone, skin, fat, muscle,
neck, and eyeballs). The ground truth mask was then used to sample
all brain voxels (positive class) from the head mask with 3D patches
of size 32 � 32 � 32 voxels with a 16 � 16 � 16 voxels overlap
and centered around the brain voxel evaluated. All resulting head
voxels not considered as positive by the ground-truth mask (negative
class), were also sampled using 3D patches of size 32 � 32 � 32
voxels centered around the brain voxel evaluated. The final training
set was composed of all the sampled positive patches and the same
number of negative patches randomly selected from the whole set of
negative set of patches.

For all the experiments, we trained the model only once, using
the 347 T1-weighted images and their correspondent silver-masks
provided by the Calgary-Campinas-359.11 This resulted in a total
number of 150,000 training patches after sampling the images. We
trained the model for 200 epochs, with a fixed batch size of 32, cate-
gorical cross-entropy as loss cost, and the adaptive learning rate
method (ADADELTA)37 as the optimizer. Furthermore, we

followed an early stopping strategy to prevent over-fitting by stop-
ping training after an N = 50 epochs without a decrease in the vali-
dation error.

INFERENCE. Similar to training, new T1-weighted images used
for inference were also split into 3D patches of size 32 � 32 � 32
voxels with a 16 � 16 � 16 overlap. Each of these overlapping pat-
ches was then passed through the trained model and the resulting
output probabilities were averaged across patches to reconstruct the
final probability map for the brain. Finally, binary brain masks were
obtained by thresholding the probability map with P > 0.5.

IMPLEMENTATION. The proposed method was implemented in
Python,1 using the Pytorch library. We ran all the experiments on a
GNU/Linux machine box running Ubuntu 18.04, with 32 GB
RAM. For training the model, we used a single TITAN-X GPU
(NVIDIA Corp, USA) with 12 GB VRAM memory.

Analysis
For performing the analysis, we pre-trained PARIETAL on the
347 public available silver masks of the CC-359 dataset.

We compared the performance of PARIETAL in three differ-
ent experimental scenarios: 1) evaluating the accuracy of inferred
brain cavities against manual brain annotations; 2) analyzing the
robustness of the inferred intracranial cavity by minimizing differ-
ences between scan/rescan images of the same subject; and 3) evalu-
ating the reproducibility of the intracranial brain volume
measurements for the same subject scanned on different MRI scan-
ner vendors.

FIGURE 1: Proposed patch-wise 3D encoder/decoder architecture for brain skull stripping. Core elements modules are composed by
residual layers as described in He et al.34 Merged layers are implemented using summation instead of concatenation, using add
elements modules.

1https://www.python.org/
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QUANTITATIVE EVALUATION OF THE BASELINE MODEL
The first quantitative analysis to evaluate the baseline performance
of the model was done using the 12 images of the dataset that con-
tained ground-truth annotations. We compared the intracranial vol-
ume mask of our proposed method against manual annotations in
the CC359 dataset in terms of the sensitivity, specificity, and the
Dice coefficient. The Dice coefficient was calculated by:

DSC¼ 2 X \Yj j
Xj jþ Yj j ,

where X and Y represent the areas segmented manually and automat-
ically. Furthermore, we compared the obtained Dice coefficient of
PARIETAL with respect to several publicly available state-of-the-art
tools: ANTS,33 BEAST,20 BET,21 BSE,17 HWA,4 MBWSS,18

OPTIBET,14 ROBEX,22 and two other recent deep learning
methods such a CONSNet16 and HD-BET.26

REPRODUCIBILITY ANALYSIS. We computed the absolute dif-
ferences of the intracranial cavity volume between scan/rescan
images. Furthermore, we compared the performance of our method
with four other state-of-the-art methods, two well-known and widely
used conventional approaches: BET21 and ROBEX,22 and two
recent deep learning models such as CONSNet16 and HD-BET.26

BET was run with the default configuration proposed in Ref. 22
with the additional flag “-B” to reduce the residual neck voxels and
image bias. ROBEX was run under version 1.2 which did not con-
tain any tunable parameters. CONSNet was run using the pre-

trained model with a patch size of 128 voxels described in Lucena
et al.16 HD-BET was run in accurate mode with test time data aug-
mentation and enabled post-processing as proposed in Isensee
et al.26

VARIABILITY BETWEEN SCANNERS AND MRI DOMAINS.
We evaluated the robustness of the proposed method when analyz-
ing the same subject acquired in three different MRI domains in less
than 1-month period. The pre-trained version of PARIETAL on the
CC-359 dataset was used here to infer the intracranial cavity volume
for each of the 21 subjects acquired at the three MRI scanners of the
in-house clinical dataset. Since scan/rescan images were available, we
processed also each patient twice, therefore resulting in a testing set
of 42 subjects.

TABLE 3. Quantitative Evaluation of Skull Stripping Methods Using the 12 Testing Subjects With Manual Ground
Truth Masks from the CC-359 Dataset.

Method Dice (%) Sensitivity Specificity

ANTs 95.93 (0.009) 94.51 (0.016) 99.70 (0.001)

BEAST 95.77 (0.012) 93.84 (0.026) 99.76 (0.001)

BET 95.22 (0.009) 98.26 (0.016) 99.13 (0.002)

BSE 90.48 (0.070) 91.44 (0.050) 98.64 (0.020)

HWA 91.66 (0.011) 99.93 (0.001) 97.83 (0.008)

MBWSS 95.57 (0.015) 92.78 (0.027) 99.85 (0.004)

OPTIBET 95.43 (0.007) 96.13 (0.010) 99.37 (0.003)

ROBEX 95.61 (0.007) 98.42 (0.007) 99.13 (0.003)

STAPLE (previous) 96.80 (0.007) 98.98 (0.006) 99.38 (0.002)

Silver-masks 97.13 96.82 99.70

CONSNet 97.18 (0.005) 98.91 (0.005) 99.46 (0.002)

HD-BET 96.66 (0.005) 99.21 (0.003) 94.21 (0.002)

PARIETAL 97.20 (0.004) 96.80 (0.009) 97.80 (0.008)

Obtained values for all shown methods but PARIETAL and HD-BET were extracted from the Lucena et al16 study.
Highest values in each measure are marked in bold.

FIGURE 2: Differences in intracranial cavity volume (mL) for the
scan/rescan images of the in-house clinical dataset. Results are
shown for each of the skull stripping methods and magnetic
resonance imaging scanners evaluated.
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For each of the subjects, we computed its own differences in
the intracranial cavity volume between the Siemens/Phillips, Sie-
mens/GE, and Phillips/GE acquired images. As in the previous sec-
tion, we compared the performance of our method with the same
state-of-the-art methods BET,21 ROBEX,22 CONSNet,16 and HD-
BET.26

Statistical Analysis
Unpaired t-test using mean and SD were used to analyze statisti-
cally the performance of the methods. We considered P-value less
than 0.005 indicates a high statistical significance of a certain result
when compared to another. In addition, pairwise permutation tests
were used to statistically rank the methods.7,38 For all the tests, we
set the number of comparisons between each pair of methods to
S = 1000.

Execution Analysis
We compared the execution times of each of the methods evaluated
in the article. All deep learning methods were run on GPU and
CPU, while the classical methods were run in CPU only.

Results
Quantitative Evaluation Using CC-359
Table 3 summarizes the quantitative evaluation in terms of
Dice, sensitivity, and specificity when using the 12 testing
subjects with manual annotations of the CC-359 dataset.
PARIETAL is compared with different classical state-of-the-
art methods and deep learning methods CONSNet and HD-
BET. Obtained values for all reported methods except for
PARIETAL and HD-BET were extracted from the Lucena
et al16 study.

FIGURE 3: Graphical description of the average scan/rescan absolute error maps between all the subjects that composed the clinical
dataset. Results are shown for each of the skull stripping methods and magnetic resonance imaging scanners evaluated.

TABLE 4. Permutation Test Results for Each of the Evaluated Methods in the Reproducibility Analysis Performed on
the 21 Subjects of the In-House Clinical Dataset

GE μ (SD) Philips μ (SD) Siemens μ (SD)

Rank 1 PARIETAL 0.40 (0.55) CONSNet 0.60 (0.55) PARIETAL 0.39 (0.53)

CONSNet 0.40 (0.55) HD-BET 0.40 (0.55) ROBEX 0.20 (0.45)

HD-BET 0.40 (0.55) HD-BET 0.20 (0.45)

CONSNet 0.01 (0.68)

Rank 2 ROBEX �0.40 (0.89) PARIETAL 0.00 (0.71)

ROBEX �0.20 (0.83)

Rank 3 BET �0.80 (0.45) BET �0.80 (0.45) BET �0.80 (0.45)

Final ranks are based on the intracranial volume differences of the scan/rescan images for each MRI scanner.
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The performance of the deep learning methods was
superior to other state-of-the-art methods and very similar to
the consensus segmentation used as silver masks for training
PARIETAL. In terms of the Dice coefficient, PARIETAL
obtained a 97.20% agreement against manual annotations,
while the performance of the deep learning methods such as
CONSNet and HD-BET methods was 97.18% and 96.66%,
respectively. In comparison, the performance of the consensus
mask was 97.18%, while the rest of the methods were below
95.93%. The small SD obtained makes the performance of
PARIETAL significantly better than the other methods.

Reproducibility Analysis
Figure 2 shows the absolute differences in the intracranial
cavity volume for PARIETAL, BET, ROBEX, CONSNet,
and HD-BET on the 21 scan/rescan T1-weighted subject
images acquired at each of the MRI scanners of the in-house
clinical dataset. PARIETAL provided the highest reproduc-
ibility for the images of the Siemens and GE scanners, show-
ing a mean absolute intracranial volume difference of

1.88 � 1.48 mL and 3.91 � 3.33 mL, respectively. Differ-
ences with other methods in the Siemens images were signifi-
cant while in the GE ones differences were significant for
non-deep learning methods but not for CONSNet and HD-
BET). In contrast, the reproducibility of CONSNet was bet-
ter on the Philips scanner with a mean error of
3.92 � 3.93 mL in contrast to the 4.71 � 4.39 mL obtained
by PARIETAL (differences not significant, P = 0.54). In the
case of non-deep learning approaches, ROBEX provided
the best results, almost similar to the ones obtained with deep
learning approaches, while BET was not robust, providing a
much bigger intracranial volume difference.

Figure 3 shows the absolute mean error difference map
between each of the subjects and MR scanners after registering
all of the T1-weighted scan/rescan images to a T1-weighted
image template and resample the scan/rescan brain cavities ret-
urned by BET, ROBEX, and the deep learning models CON-
SNET, HD-BET, and PARIETAL. All methods showed a
similar trend with respect to regional differences between sub-
jects and virtually all differences were found in the external
borders of the brain cavity, where methods were more uncer-
tain in scan/rescan performance. As shown in the figure, all
deep learning methods reduced the differences in comparison
to classical methods, especially BET.

In terms of the permutation tests (see Table 4), PARIE-
TAL was the best-ranked method on Siemens and GE scan-
ners, while decreasing to Rank 2 on the Phillips images with
CONSNET and HD-BET both ranked first. Deep learning
methods were always ranked first, while both ROBEX and
BET methods were mostly ranked second and third.

Robustness Across Scanners
Figure 4 shows the variation of intracranial volume mea-
sured between pairs of T1-weighted images of the same
subject acquired with the different MRI scanners available

FIGURE 4: Differences in intracranial cavity volume (mL) for each
of the 42 subjects of the in-house clinical dataset. Results are
shown for each of the skull stripping methods and magnetic
resonance imaging scanner pairs available: GE/Philips,
GE/Siemens, and Siemens/Philips. Scan and re-scan images for
each patient and scanner pair are considered as individual items
(42 images).

TABLE 5. Permutation Test Results for the Evaluated Methods

GE/Philips μ (SD) GE/Siemens μ (SD) Siemens/Philips μ (SD)

Rank 1 HD-BET 0.80 (0.45) PARIETAL 0.40 (0.55) PARIETAL 0.80 (0.45)

PARIETAL 0.40 (0.89) HD-BET 0.40 (0.55)

ROBEX 0.40 (0.55)

Rank 2 ROBEX 0.00 (1.00) CONSNet �0.40 (0.89) CONSNet 0.20 (0.84)

HD-BET 0.20 (0.84)

Rank 3 CONSNet �0.40 (0.89) BET �0.80 (0.45) ROBEX �0.40 (0.89)

BET �0.80 (0.45) BET �0.80 (0.45)

Final ranks based on the intracranial volume differences between images of different MRI scanners. The analysis was done comparing
pairs of images from different scanners.
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in the in-house dataset. Obtained values are shown for
PARIETAL, BET, ROBEX, CONSNet, and HD-BET.
PARIETAL reported the lowest differences in volume

between Siemens/Philips (27.16 � 40.56 mL), while
ROBEX obtained the lowest errors between GE/Siemens
scanners (30.44 � 55.52 mL) and HD-BET between
GE/Philips scanners (5.46 � 5.47 mL). In all cases, differ-
ences were not significant due to the large SD obtained
among cases. However, permutation tests shown in
Table 5 revealed that PARIETAL was the best-ranked
method on GE/Philips and Siemens/Philips pair of scan-
ners, while HD-BET was the best method on GE/Philips
scanner pair. Among the classical skull stripping methods,
they were always ranked second and third except for
ROBEX that was ranked first for the GE/Siemens
scanner pair.

Figure 5 presents a qualitative example of the same sub-
ject scanned in the three MRI machines with the intracranial
cavities by each of the evaluated methods.

Execution Analysis
Table 6 shows the average running times in seconds for
each of the methods in the CC-359 and the clinical in-
house dataset. Overall, the fastest method was BET, while
ROBEX took around 1 minute in all the experiments per-
formed. From the deep learning methods, PARIETAL
reported the fastest running times in both datasets (17 and
13 seconds, respectively) when run using the GPU. In
contrast, running times were lower on HD-BET when
forced to use CPU in comparison with PARIETAL and
CONSNet.

Discussion
The present study highlighted in general the superior perfor-
mance of the deep learning methods, and in particular, the
proposed PARIETAL method, with respect to classical state-

FIGURE 5: Qualitative examples of the in-house dataset from the same patient scanned at three different magnetic resonance imaging
machines during a month period. For each scanner, intracranial cavities for BET, ROBEX, CONSNet, HD-BET and PARIETAL are shown.

TABLE 6. Average Running Times in Seconds for Each
of the Methods Evaluated in the Article

Method CC-359 In-House Dataset

ANTs 1378 -

BEAST 1128 -

BET 9 8

BSE 2 -

HWA 846 -

MBWSS 145 -

OPTIBET 773 -

ROBEX 60 59

CONSNet (GPU) 25 35

CONSNet (CPU) 351 301

HD-BET (GPU) 19 18

HD-BET (CPU) 72 77

PARIETAL (GPU) 17 13

PARIETAL (CPU) 129 138

In the CC-359 dataset, obtained values for all methods except
for PARIETAL and HD-BET were extracted from Lucena
et al.16 The rest of evaluated methods in the CC-359 and the
in-house clinical dataset were computed with the same hardware
described in subsection “Implementation.” Methods with GPU
support were run using CPU and GPU.
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of-the-art techniques in all the experiments performed.
Furthermore, our results showed that the performance of
PARIETAL was consistent even on different MRI sites
without the need of fine-tuning the network architecture.
PARIETAL yielded a superior reproducibility of the inferred
brain cavities in terms of both subject repositioning and multi-site
subjects analysis, outperforming other state-of-the-art methods.

Among the evaluated deep learning methods, there were
several remarkable differences in the training data and model.
In terms of the data used for training, HD-BET counted with
1568 MRI exams for training, coming from a private dataset
and containing a wide variety of MRI scanners and magnetic
fields. In contrast, PARIETAL (and CONSNet) stood on the
valuable work of the authors of the Campinas CC-359
dataset,11 which contained images from three different MRI
vendors and five scanner models, permitting us to define a
heterogeneous training dataset with manual annotations from
where our model learned to extract the brain cavity. The
results of this study suggest that at least with the available
data, the performance of PARIETAL was not affected by the
number of training subjects available for training, showing a
superior performance to HD-BET in the reproducibility
experiments.

Although all deep learning methods were patch-based,
the size and dimensions of patches also differed between
them. In the case of HD-BET, the authors justified the use
of 3D patches of size 128 voxels in order to enable the net-
work to correctly reconstruct the brain mask even when large
portions of the brain were missing due to a disease or a trau-
matic brain injury. In the case of CONSNet, the authors
stated the use of 2.5D patches (sagittal, coronal, and axial
planes centered on the voxel of interest) of size 128 voxels,
arguing that this configuration solved the problem of the dif-
ferences of matrix dimensions between each vendor. In con-
trast, given the limitations in the training data, PARIETAL
used remarkably smaller 3D patches of size 32 voxels with
the aim to solve the class imbalance problem and to provide
enough spatial contexts to the network. In all the experiments
performed, the use of smaller patches did not reflect a dimin-
ished performance of PARIETAL, and the proposed method
showed a higher overlap against manual expert annotations
and a superior or similar reproducibility in scan/rescan and
multi-site subject experiments.

In terms of method architectures, several differences were
also found across methods. While HD-BET and PARIETAL
used variants of 3D U-Nets, CONSNet used a different
approach where 2.5D planes were fed to three parallel 2D
CNNs. In all the experiments done, the results show a superior
performance of the 3D U-net networks against the 2.5D
approach. Existing differences in the performance of HD-BET
and PARIETAL may be explained by the design decision strate-
gies such as data imbalance mitigation or how training was opti-
mized by the use of residual and summation layers.

In comparison to state-of-the-art methods such as BET
or ROBEX, deep learning methods and especially HD-BET
and PARIETAL show a higher capability to learn a better
general representation of the brain tissues and scalp that could
help to reduce the intrinsic reproducibility errors that most of
past the state-of-the-art methods suffered. This can be crucial
for some post-processing steps such as the automated quanti-
fication of brain atrophy measurements or the automatic
lesion quantification that could be biased due to errors of the
skull stripping process.

Limitations
Despite the fact that the obtained reproducibility results sug-
gest that deep learning methods could be an interesting con-
tribution to reduce the errors of brain tissue volume
measurements, our study was limited only to understand the
role of skull-stripping, leaving its effect on tissue volume for
future work. Furthermore, our study shows that the perfor-
mance of deep learning methods is consistent on other MR
sites and image protocols than those used for training,
although the analysis was limited to the same scanner vendors
Siemens, Philips, and GE that were already present in the
training datasets. Although in all the cases MRI protocols and
scanner machines differed across hospitals between the pre-
training phase and the experiments performed in this article,
the lack of public data does not permit to evaluate the perfor-
mance of deep learning methods not only in different MRI
protocols but also in other MRI scanners.

Conclusion
This study proposed PARIETAL, an open-source available
toolbox for fast and efficient MRI brain extraction. Our
extensive analysis shows that PARIETAL provides good accu-
racy for segmenting the skull. The proposed deep learning
architecture generalizes well to unseen MR image protocols,
permitting to reduce the differences in intracavity volume
between hospitals without fine-tuning at each new MRI site.
Furthermore, the obtained reproducibility results suggest that
PARIETAL may be considered to improve brain volume
measurements or atrophy quantification in longitudinal
studies, where intracranial volume variations can have a big
influence in this quantification.
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