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Marc Cañigueral, Joaquim Meléndez 
University of Girona, Catalonia, Spain   

A R T I C L E  I N F O   

Keywords: 
Electric vehicles 
Flexibility 
User profile 
Smart charging 
Clustering 
Optimization 

A B S T R A C T   

The ever-increasing global adoption of electric vehicles has created both challenges and opportunities for 
electrical grids and power systems as well as the market itself. Smart charging is broadly presented as a relevant 
opportunity to provide demand-side flexibility, benefiting both the user and the power system through flexibility 
aggregators. However, coordinating all sessions for the same optimization objective could be inefficient when the 
flexibility potential mismatches the flexibility demand. Instead, this paper proposes the user profile concept as a 
tool to group sessions into similar flexibility levels and then schedule the charging sessions of each user profile 
according to its most convenient optimization objective. Therefore, a clustering methodology based on a 
bivariate Gaussian Mixture Models is presented and validated with a real-world data set, resulting in seven 
different user profiles. The simulation of two smart charging scenarios, first coordinating all flexible sessions and 
second coordinating two selected user profiles, resulted in a more efficient scheduling in the latter case, obtaining 
similar results with a 35% fewer sessions shifted and the corresponding reduction in exploitation costs.   

1. Introduction 

The irreversible electrification of the mobility sector will open up an 
opportunity for a more efficient management of electricity grids thanks 
to the flexibility electric vehicles can provide. In this upcoming scenario, 
user participation and engagement are crucial (i.e. the concept of the 
energy citizen), and the management of EV charging sessions (smart 
charging) is seen as one of the key enabling technologies since it is 
technically easy to be incorporated into the energy value chain by in
termediate agents such as aggregators or flexibility providers. Smart 
charging, as an optimization problem, can be addressed from different 
perspectives (e.g. demand response, energy community management, 
ancillary services) and objectives (e.g. peak shaving, local use of 
renewable generation, technical constraint from distribution grid, etc.) 
that result in different approaches to the problem, but all these use cases 
require an aggregator, an intermediate stakeholder that creates products 
capable of engaging the user and schedule flexible demand to satisfy the 
needs of the grid. 

However, two main challenges arise when dealing with day-ahead 
(or intra-day) scheduling: accurate forecasting of participating 
charging sessions and reliable performance of smart charging algorithms 
capable of offering robust (reduced uncertainty) flexibility schedules 
with low computational costs. To date, the focus of research in this field 

has been on scheduling all charging sessions for a specific objective. In 
contrast, the methodology proposed in this paper decomposes the 
scheduling problem, optimizing each user profile according to its suit
able flexibility objective, since the classification of EV sessions among 
generic user profiles (each with its own characteristic flexibility poten
tial) can be used by aggregators as a tool to deliver smart charging in a 
more efficient and robust manner. 

The first main contribution of this work aims to facilitate the task of 
aggregators with a clustering method to discover generic user profiles 
based on two simple attributes of the charging sessions: the start time 
and the duration of the connection. The objective is to aggregate users 
among similar daily connection patterns and, therefore, similar flexi
bility potential. Gaussian Mixture Models clustering is used to identify 
these rational clusters. The second contribution exploits this knowledge 
about user behaviour to create a selective smart charging strategy 
capable of satisfying multiple flexibility objectives through a targeted 
participation of sessions according to user profile membership. This 
reduces the uncertainty of the aggregated flexibility potential and the 
complexity of the optimization problem, reducing at the same time the 
number of sessions to exploit. 

The work is structured as follows. Section 2 gives a short overview of 
the research into the fields of contribution undertaken in this paper. 
Section 3 details the methodology and methods used for the clustering 
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process, while Section 4 describes the clusters obtained from a real data 
set and the subsequent characterization of these clusters into user pro
files. Finally, Section 5 presents the smart charging algorithm and shows 
the value of introducing EV user profiles into a smart charging appli
cation. In this validation step, actual charging sessions data has been 
used in order to assess the results separately from quality of forecasting. 

2. Related work 

This section describes the current state of the art in the areas this 
paper contributes to the most: 1) clustering EV sessions among generic 
user profiles and 2) scheduling charging sessions to optimize the 
aggregated EV load. 

2.1. User profile clustering 

The main interest of this work is characterising user profiles with 
potential participation in flexibility programs. Thus, this work uses the 
terms ‘user profile’ or ‘user behaviour’ to refer to a daily connection 
pattern, defined by the beginning and end times of the EV session, or in 
other words, the connection start time and the connection duration. This 
approach gives a different perspective to the meaning of EV profile or EV 
user behaviour studied in other works that focus on the electrical de
mand of electric vehicles, which are based on charging profiles and 
power curves. There, the EV charging load is modelled using probabi
listic density functions (PDFs), considering the initial and final State-of- 
Charge (SoC) per connection in [1], and the sessions start time, end time 
and distance driven in [2]. Users’ demographics information such as the 
gender, the age and the education level is used in [3] to model different 
probabilistic models for charging load profiles simulation. The user 
behaviour is also referred in [4] to show the impact in the revenue of a 
charging infrastructure, defining the user behaviour with the arrival 
time, the dwell time and the energy demand. Other works have studied 
user behaviour in terms of charging frequency and the probability to 
charge at the end of the day. The probability of performing a domestic 
charge is modelled in [5] based on the final SoC of the daily distance 
driven. Similarly, the charging decision is modelled in [6,7] through the 
daily vehicle use, applying K-means clustering with the daily average 
speed as the feature vector, and using the clusters that the vehicle be
longs to for simulating the charging load. The decision of the EV user 
about whether to participate or not in a demand-response program is 
also defined as user behaviour in [8,9], where users can choose among 
three different charging powers according to their time flexibility. 

The focus of this work, however, is on the flexibility management of 
EV sessions; therefore we have explored the potential of connection 
profiles rather than analysing charging profiles. The methodology pro
posed in this work has the aim to discover generic connection profiles (i. 
e. user profiles) to increase knowledge on the potential flexibility of 
electric vehicles charging demand. Many studies aim to identify 
connection profiles according to the daily habits of car owners with 
different classifications or labelling: charging at workplace, at home or 
park-to-charge in [10,11]; office chargers, home chargers and visitors/ 
taxis/car-sharing in [12]; full-time/part-time worker, unemployed 
people or professional driver in [13]; regular and random users in [14]; 
visitors and local users in [15]; stop&charge, park&charge, work
&charge, home&charge and long sessions in [16]; or a deeper analysis in 
[17] with three types of office hours users, three types of overnight users 
and three types of non-typical users. 

Despite data-driven methods are used in all these works to discrim
inate between these different EV user profiles, the complexity of the 
classification method and the variables used vary among them. Kim 
et al. [14] developed a hazard-based duration model of charging regu
larity (i.e. inter-charging times). A threshold value of the energy charged 
to differentiate between locals and visitors was used in [15]. K-means 
clustering combined with multilayer perceptron to improve classifica
tion was used in [18]. In [16], a multinomial logistic regression 

technique over a single variable (i.e. connection duration) was used, 
while a multivariate Gaussian mixture model with four variables (i.e. 
session start time, connection duration, hours between sessions and 
distance between sessions) was performed in [17]. In [10–12], a two- 
variable density-based clustering method is addressed with DBSCAN 
clustering. Session start time and session end time are used for that 
purpose in [10] [11], and sessions start time and connection duration in 
[12]. 

In this paper, the user profiles are not defined a priori, Mixture 
Models (MM) are used to discover them. MM have been chosen as the 
clustering method for three main reasons. First, [19] exposes that 
density-based clustering like DBSCAN results in a complex clustering 
process when different regions of the data space have considerably 
different densities. In terms of EV charging sessions, this is highly 
probable since each study case will have some principal user profiles. 
Second, research carried out into profiling electrical consumption pat
terns in residential loads shows that MM are better in smoothing out 
random effects because clustering itself considers the correlation and 
trends of the variables [20]. In terms of the charging sessions, human 
behaviour contains an important random component resulting from the 
different elements that can interfere with our timetables (e.g. traffic 
lights, traffic, longer-than-scheduled meetings, etc.). And third, another 
advantage of using MM over K-Means or DBSCAN methods is that the 
output directly gives both the clusters and the associated models, so 
modelling each cluster afterwards as done in [11,18] or [1] is not 
necessary. On the other hand, the decision as to how many variables to 
include in your data-driven method depends on the availability of the 
data. The data sets used in [16,17], for example, have an ID variable 
showing the unique RFID codes of the vehicles. This variable allows a 
tracking study of the vehicle to be carried out and adds value to the 
models in terms of travel distance and charging frequency. However, the 
available data sets may not contain this information, so this work has 
considered only common variables for any charging infrastructure to 
undertake a study which is as general as possible. Therefore, the 
contribution of this paper to the field of user profiles is a methodology 
reproducible for any charging sessions’ data set, using a robust clus
tering method scarcely exploited in this field (i.e. Gaussian Mixture 
Models with Expectation–Maximization) based on two basic variables (i. 
e. connection start time and connection duration). 

2.2. Smart charging algorithm 

The classification of sessions into generic user profiles paves the way 
for the second contribution of this work, a smart charging algorithm 
based on these profiles. The past decade has seen prolific research into 
smart charging methods for multiple objectives (e.g. increasing self- 
consumption of local solar energy, balancing load, reducing energy 
cost, increasing users profit, etc.), with different configurations (e.g. 
centralized control, distributed charging, public charging stations, res
idential buildings, etc.) and diverse optimization methods (linear pro
gramming, quadratic programming, meta-heuristics, etc.) [21]. 

This work presents a smart charging algorithm from the aggregator 
perspective, with a centralized control in the aggregator figure to 
schedule and coordinate charging sessions according to a defined 
objective. A centralized scheduling control is more likely to reach an 
optimal charging strategy on the system level, since it considers the 
aggregation of renewable generation and electrical demand in the whole 
system [21]. Important research has emerged in this field, showing a 
wide variety of optimization methods and objectives. A two-step Linear 
Programming (LP) optimization is presented in [22] to reduce the en
ergy demand peak and charging cost shifting sessions from high cost 
periods to lower cost periods. A LP optimization is also applied in [23] to 
reduce the power peak demand in a parking lot using valley-filling 
strategy, and in [24] to reduce the light flicker due to PV fluctuations. 
A Quadratic Programming (QP) optimization is carried out in [10] for 
two different scenarios, load balancing and load flattening, to increase 
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the consumption of renewable energy through EV charge. The PV energy 
self-consumption is also increased with EV optimization in [25], using 
Particle Swarm Optimization (PSO). The generation costs of supplying 
the EV load are minimized in [26] with a Mixed-Integer Linear Pro
gramming (MILP) optimization. The maximization of the EV aggregator 
revenue, or minimization of the energy cost, is one of the most used 
objectives, as seen in [27] [28] using MILP optimization, in [8] with LP, 
in [29] with non-linear programming or in [30] [31] with QP. 

However, most of these works consider all the sessions in the 
scheduling problem individually, therefore requiring complex mathe
matical models to solve the optimization problem and define a specific 
charging power for every EV and time slot. For a large number of ses
sions in a day-ahead smart charging scenario, obtaining all sessions’ 
schedule from the same optimization problem implies a high computa
tional cost and time. To cope with this complexity of the EV scheduling 
problem, the Alternating Direction Method of Multipliers (ADMM) is 
presented in some works as an emerging technique for large-scale op
timizations, since it decomposes the original objective function into 
multiple problems to solve in parallel [31] [24]. 

On the other hand, the cornerstone of aggregators when partici
pating in demand response programs is the a priori quantification of the 
flexibility capacity. That is, the aggregated power that can be allocated 
at a specific time to satisfy a certain flexibility demand, directly related 
with the size and behaviour of the aggregated EV users. The knowledge 
of generic user profiles among sessions and their characteristic flexibility 
potential could help the aggregator to define a more feasible objective in 
the optimization problem suited to each user profile separately. There
fore, in contrast to the complex scheduling optimization models raised 
in other works, this paper decomposes the smart charging method in the 
following steps to reduce the flexibility uncertainty and the complexity 
of the optimization problem: (i) the suitable user profiles to accomplish 
the aggregator’s optimization objectives (e.g. peak shaving, solar use, 
etc.) are selected according to their flexibility potential; (ii) a quadratic 
optimization is performed to find the optimal aggregated power demand 
curve (i.e. setpoint) for each user profile according to their optimization 
objective; (iii) a postpone algorithm is applied to the charging sessions 
that have agreed to participate in the demand-response program, until 
the aggregated power demand matches the setpoint. 

The division of the method between a time-series optimization and a 
scheduling algorithm results in a fast computation, at the same time that 
separates the objective of the demand-response program and the smart 
charging deploying strategy (e.g. postpone, power modulation, etc). All 
references above mentioned optimize the charging power of the vehicles 
for every time slot. This is an optimistic approach since achieving the 
optimal charge depends on the charging infrastructure (if the charging 
point has a power modulation feature) and the vehicle (if the vehicle 
accepts charging with the desired power). Therefore, this work proposes 
the Postpone method as smart charging strategy since it is more widely 
applicable. 

Finally, the algorithm proposed considers the option for EV users to 
not participate in the demand-response program. In a real imple
mentation of a demand-response program, not all users are willing to 
participate even though they could provide flexibility, and this response 
factor must be contemplated by the aggregator [9]. Therefore, we have 
introduced a responsive ratio parameter in our algorithm to randomly 
select a percentage of sessions that take part in the smart charging 
program and simulate a more realistic demand-response scenario. 

3. Charging sessions clustering methodology 

This section describes the proposed methodology for clustering ses
sions among representative user profiles. In this work we understand the 
user profile as a generic daily connection pattern rather than the 
charging (i.e. demand) profile since we do not focus on the EV demand 
but rather on the EV flexibility. For example, people who arrive at their 
workplace every working day around 9:00 and go back home around 

18:00. Thus, the clustering process has been carried out considering the 
connection start time and the connection duration as clustering vari
ables. We have assumed that the energy required in one session is not an 
inherited variable of users’ connection pattern and it can vary from day 
to day and from user to user and consequently this has not been used as a 
discriminant variable for clustering. Since the methodology proposed 
considers only these two connection variables, it can be reproduced to 
any other charging sessions data set, even with anonymous charging 
sessions without a vehicle or user identifier like the data set used in this 
case study. The method proposed for discovering and modelling EV user 
profiles, follows four steps:  

1. Division of the data set into sub-sets.  
2. Logarithmic transformation of variables. 
3. Clustering with Gaussian Mixture Models (GMM) and Expect

ation–Maximization (EM) algorithm.  
4. Characterization of clusters into user profiles. 

3.1. Data division 

To perform an accurate distribution-based clustering and obtain 
precise and generic stochastic models for user profiles, the original data 
set has been divided into several sub-sets according to time cycle and 
disconnection day. 

3.1.1. Time period 
The daily habits of citizens change according to the day of the week, 

the season, holidays, etc., therefore so too does the charging behaviour 
of the EV users. This is particularly evident for working days (weekdays 
hereinafter) and weekends, but there are some other cases that could be 
of interest depending on the community under study. For example, in
bound and/or outbound tourism activity during a day or the impact of 
school holidays. As a result, the distribution of sessions over the day (and 
the corresponding user profiles) may not always remain the same. Pre
vious studies [10] [11] [1] have analysed the user profiles for weekdays 
and weekends separately. The method raised in this study does not 
predefine any time period or duration for the profiles, thus allowing it to 
discover and model arbitrary user profiles. That said, however, for this 
study case we have also divided the data set between weekdays and 
weekends. 

3.1.2. Disconnection day 
A scatter plot of charging sessions represented according to the 

connection start time and the connection duration in hours is shown in 
Fig. 1. Note the visible aggregations of sessions separated by blank 
ribbons; this is a first sign of different user profiles. Since the addition of 

Fig. 1. Charging sessions from the data set of this work.  
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the connection duration to the connection start time corresponds to the 
disconnection time, these blank ribbons represent that vehicles dis
connecting at dawn, concretely from 2 to 6 a.m, is not usual. Thus, the 
different “clouds” in the figure represent the EV sessions that disconnect 
on the same day of the connection, the day after, two, three, or four days 
after. As said, this work focuses on daily behaviours, daily connection 
patterns, so the most relevant groups of sessions are those that discon
nect on the same day - labelled city sessions - and those that disconnect 
the following day - labelled home sessions. 

These different groups of sessions have different density and, since 
Mixture Models are based on the density distribution of the samples, it is 
convenient to divide the data into smaller sets in order to obtain better 
defined distributions shapes to be translated into Gaussian Mixture 
Models (i.e. clusters). 

3.2. Logarithmic transformation 

A common practice before applying Mixture Models clustering 
techniques is to transform the objective variables with the aim of 
obtaining better distribution shapes to model. Similarly to [17], we 
apply a logarithmic transformation to our objective variables (i.e. 
connection start hour and number of connection hours) to reduce 
sparsity between sessions and increase the density of sessions, so a 
model-based clustering method such as GMM performs better. More
over, these variables are defined as only positive, so they present 
asymmetric distributions. Since Gaussian distribution is by nature 
symmetric and unbounded, the logarithmic transformation improves 
normality of time data resulting in better and significant results when 
applying GMM. 

3.3. Clustering 

The clustering method used for clustering charging sessions is a 
bivariate Gaussian Mixture Models (GMM) with Expect
ation–Maximization (EM) algorithm. On one hand, the strong relation
ship that Fig. 1 shows between the start time and the duration of EV 
connections (the later the vehicle connects, the lower the connection 
duration is), is a sign of a not null covariance between these two variables 
and justifies the use of bivariate Mixture Models, which model the 
covariance between the two components. Moreover, the Expect
ation–Maximization (EM) algorithm allows cluster membership to be 
considered a probability instead of a hard assignment, which makes 
possible the pertinence to several clusters. This probabilistic classifica
tion is convenient due to the random nature of charging sessions and the 
daily human behaviour. On the other hand, the Gaussian distribution 
has been selected as the parametric model since the charging sessions 
are independent and the number of occurrences added at every instant 
of time is large enough to guarantee a normal distribution, independent 
of their individual distribution (i.e. the Central Limit Theorem). Thus, 
considering a user profile as the population and the corresponding data 
set charging sessions as the sample, and assuming that the sample size is 
large enough, the density distribution of each cluster can be defined by a 
bivariate Gaussian distribution. 

The use of GMM-EM clustering method requires defining a specific 
number of clusters. A widely-used strategy to choose the proper number 
of clusters is to apply the clustering with all desired options of number of 
clusters and compare their performance using the Bayesan Information 
Criterion (BIC). The BIC indicator is the value of the maximized log- 
likelihood with a penalty on the number of parameters in the model. 
This allows a comparison of models with different parameters or 
different numbers of clusters. In general the larger the value of the BIC, 
the stronger the evidence for the model and number of clusters [32]. 
Once the number of components to explore is defined, then the EM al
gorithm initializes their parameters, concretely the mixture weight (π), 
the means vector (μ) and a covariance matrix (Σ) in the case of GMM. 
After initialization, EM iterates between Expectation–Maximization 

steps until the log-likelihood function of our model converges with the 
predefined tolerance. In the following, the main equations of the 
Expectation–Maximization process are detailed, and the corresponding 
nomenclature described in Table 1. 

The log-likelihood is computed with Eq. (1), refering to each data 
point as xi, with i being from 1 to M, and the parameters of each cluster 
or Gaussian Model, being c being from 1 to K. N(xi|μc,Σc) represents the 
multivariate Gaussian Mixture Model, defined in Eq. (2). The log- 
likelihood is the logarithmic expression of the weighted description of 
Gaussian mixture models among all data points. If the Gaussian equation 
fits the data well, the likelihood increases. The initialization is important 
in EM iteration, so the log-likelihood is used to select the optimal result 
of several iterations. 

log p(X|π, μ,Σ) =
∑M

i=1
log(

∑K

c=1
πcN(xi|μc,Σc)) (1)  

N(xi, μc,Σc) =
1

(2π)
n
2|Σc|

1
2
exp( −

1
2
(xi − μc)

T Σ− 1
c (xi − μc)) (2)  

3.3.1. Expectation step 
In the Expectation step, the probability of each data point being 

generated by each of the Gaussian models is computed. In contrast to the 
K-Means’ hard assignments, the Expectation assignments are called soft 
assignments since we are using these probabilities known as re
sponsibilities. Each probability or responsibility is calculated with Eq. (3). 

ric =
πcN(xi|μc,Σc)

∑K

k=1
πkN(xi|μk,Σk)

(3)  

Therefore if xi is very close to one Gaussian distribution c, it will obtain a 
high ric value for this Gaussian and relatively low values otherwise. 

3.3.2. Maximization step 
In the Maximization step, the mixture weights (Eq. (5)), the mean 

(Eq. (6)) and the covariance (Eq. (7)) are updated for each Gaussian 
mixture model or cluster according to the total responsibility mc allo
cated to each cluster (Eq. (4)): 

mc =
∑

i
ric (4)  

πc =
mc

M
(5)  

μc =
1

mc

∑

i
ricxi (6)  

Σc =
1

mc

∑

i
ric(xi − μc)

T
(xi − μc) (7)  

Table 1 
Nomenclature of Expectation–Maximization algorithm.  

Parameter Description 

X Sample 
M Size of the sample 
x Data point from the sample 
i Index of the data point 
K Number of clusters (Gaussian models) 
c Index of the cluster 
π  Weight of the model over the mixture 
μ  Means vector of the Gaussian model 
Σ  Covariance matrix of the Gaussian model 
n Number of dimensions of the Gaussian model (2 in this case)  
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4. Case study: The Arnhem public charging infrastructure 

In this section, the methodology presented in Section 3 has been 
validated with a large data set of EV charging sessions from the middle- 
sized city of Arnhem, The Netherlands. The data set is composed of 
259,419 charging sessions from 2015–08-31 to 2020–06-01 (more than 
300 sessions per day in 2020) collected in the Arnhem’s public charging 
infrastructure, which contains 270 different charging poles, each with 2 
charging slots with a maximum charging power of 11 or 22 kW 
(depending on the pole). In fact, analysing just public charging infra
structure data is not a limitation since the 75% of the households in the 
Netherlands are dependent on public charging facilities and DC charging 
is not widely used [17]. 

From the original data set, we discarded 10.3% of sessions consid
ered errors, resulting in a clean data set of 232,583. The sessions with 
the following characteristics were discarded: energy equal to 0, 
connection duration less than 15 min, charging duration higher than 
connection duration, or charging power higher than the maximum 
power that the public charging infrastructure of the study case can 
supply (i.e. 22 kW for Arnhem). 

Besides, as pointed out in Section 3.1.2, sessions that finished two or 
more days after the connection, as seen in Fig. 1, have not been 
considered since they represent only 3% of the clean data set and 
therefore they are not a generic user profile object of this study. Prob
ably in future research, these long-connection sessions could provide 
interest on V2G technology due to the potential of being charged and 
discharged as a battery connected to the public grid. It the end, the final 
Arnhem’s data set consists of 225,040 sessions. 

4.1. Preparation of data before clustering 

Following the methodology outlined in Section 3, the first step is to 
explore different density distributions on the data according to time 
cycles. Even though a large difference in session distributions between 
years or months is not observed, a relevant difference between weekdays 
does stand out. In Fig. 2, we can see a similar distribution pattern from 

Monday to Friday, and different density shapes for Saturdays and Sun
days. During weekdays most EVs charge during the evening - probably 
after working hours - with long connection durations. In contrast, during 
weekends most sessions have short connections and throughout the day, 
probably due to brief visits to the city. We have considered two main 
different time cycles according to the distribution homogeneity in the 
sessions’ distribution, i.e. two different models: weekdays and weekends. 

Besides this, as pointed out in Section 3.1.2, for each time cycle we 
can distinguish two different groups of sessions, labelled as city and 
home sessions, according to the disconnection day. In total, four 
different subsets of sessions will be submitted independently to the 
GMM clustering process: weekdays city, weekdays home, weekends city 
and weekends home. Another step before clustering is the logarithmic 
transformation, explained and justified in Section 3.2. Fig. 3 shows the 
distribution shapes of the four subsets in the logarithmic scale. This 
figure justifies the need to divide the data before applying GMM clus
tering. Each subset contains a clearly different distribution and, more
over, the existence of different peaks of density is an indicator of a 
mixture of different models (i.e. clusters). Additionally, the big differ
ence between density values in some of these subsets justifies the choice 
of distribution-based clustering over density-based clustering (e.g. 
DBSCAN), considering the complexity to find different clusters with a 
single configuration of parameters when the density differences are so 
relevant [19]. 

4.2. Clustering and characterization of user profiles 

Arnhem’s charging sessions data set has been divided into four sub- 
sets (weekdays/weekends city/home sessions), with a transformation of 
the clustering variables to a logarithmic scale. In this section, a GMM-EM 
clustering process has been applied to each one of the sub-sets in 
concordance with the methodology presented in Section 3. The mclust R 
package [33] has been used for the clustering process. First, the BIC 
approach has been applied to each sub-set, considering from 1 to 15 
clusters (see Figures A.1 - A.4 in Appendix A.1). Considering the number 
of components from which the BIC indicator stops decreasing, the 

Fig. 2. 2D density plots of sessions by weekday (starting on Monday).  

Fig. 3. 3D density distribution plots.  
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following number of components have been selected for each subset: 7 
clusters for Weekdays city sessions; 8 clusters for Weekdays home ses
sions; 7 clusters for Weekends city sessions; and 7 clusters for Weekends 
home sessions. 

In all cases, the convergence in the fitting process came from VVV 
models (i.e. ellipsoidal distribution, varying volume, varying shape and 
varying orientation). The corresponding ellipses of every component 
and every subset are shown in Figures A.5 - A.8. Each ellipse defines a 
bivariate Gaussian distribution and its centre represents the average 
start time and average duration of sessions belonging to that group. 

Behind the numbers we can interpret a user behaviour in terms of 
timetable. For a better readability, an exponential transformation has 
been applied to the centroids of each cluster to translate the logarithmic 
values into time in hours. 

At this point, it is appropriate to add a second-step classification, or 
profiling step. Each cluster has been labelled with a generic user profile 
according to their respective interpretations. Thus, each user profile can 
be assigned multiple Gaussian Mixture Models with the corresponding 
weights or probabilities. The authors’ interpretations of each cluster and 
the user profiles assigned to them are shown in Tables A.1 - A.4 of Ap
pendix A.2. Our interpretations have not only been based on the values 
of connection start time and duration of the centroid of each cluster, but 
as well on the shape of the corresponding ellipses (see Figures A.5 - A.8), 
which represent the covariance matrix of each cluster. A wider ellipse 
means a less concrete definition of the user profile. In this way, we have 
defined very specific user profiles like Worktime (starting around 09:00 
for 8-9 h), Dinner (starting around 19:00 for 3-4 h), Commuter (starting 
after work at 18:00–19:00 for 12–14 h) and Shortstay (duration for less 
than 1 h), and more general user profiles like Visit (dispersed around the 
day and varying duration), Home (starting during daytime and con
nected until the next day) and Pillow (starting during evening-night and 
connected until the next day). Worktime and Commuter profiles are 
present only on working days since these are behaviours resulting from 
work timetables. 

Fig. 4 summarizes the clustering process and the user profiling step, 
showing the different categories found and the corresponding weights of 
each model. The number of the cluster corresponds to the numbers of 
Figures A.5 - A.8 of Appendix A.2. 

Table 2 shows the average values for the features that define every 
user profile. Observe that all user profiles, apart from the Shortstay, 
remain connected longer than charging, and therefore have flexibility 
hours (i.e. difference between connection and charging times). In fact, 
for this data set 49.9 % of sessions have more than 5 h of flexibility, and a 
56.3% more than 2 h. In the case of the Worktime, Commuter, Home and 
Pillow profiles, the number of flexibility hours is highly considerable. It 
can be observed that the charging time is similar for all profiles, with the 
exception of Shortstay users whose charging time is limited by the 
connection time. This is a consequence of a similar energy being 
required for most sessions, concretely between 9 and 16 kWh, inde
pendent of their user profile. 

Another way to validate the clustering process and the corresponding 
characterization of each cluster, is to visualize the demand power profile 
for all EV user profiles. Fig. 5, for instance, shows the demand curves of 
each user profile for a week in January 2020 The demand curves have 
been calculated with time intervals of 15 min, using the connection start 
time, the energy charged and the charging power of each real session. 
The demand of each profile can be seen to correspond to a specific time- 

Fig. 4. Classification of sessions into user profiles with proportions.  

Table 2 
Average features or user profiles.  

Profile Average 
start time 

Average 
connection 
duration (h) 

Average 
charging 
duration 
(h) 

Average 
charging 
power 
(kW) 

Average 
energy 
(kWh) 

Worktime 09:34 8.66 3.07 3.99 12.93 
Visit 13:24 4.26 2.62 4.51 12.23 
Shortstay 14:35 1.28 1.16 4.73 5.54 
Dinner 19:00 3.74 2.67 4.64 12.81 
Commuter 19:14 13.65 3.52 3.73 13.77 
Home 18:12 17.89 3.64 3.96 15.32 
Pillow 22:13 11.78 3.63 4.18 15.97  

Fig. 5. Arnhem’s EV real demand by user profile.  
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range according to the sessions’ start time. At the same time, morning 
and evening peaks and a big valley during midday stand out from the 
total demand curve on weekdays (i.e. 13th – 17th January), while 
during weekends (i.e. 18th and 19th January) there is a wider and 
irregular demand profile. This validates employing different models for 
weekdays and weekends. 

5. Flexibility management based on user profiles 

In this work, we pursue a smart charging strategy capable of 
adapting charging sessions to cope with a flexibility demand as a result 
of participating in a specific program through an aggregator. The pur
pose of activating such flexibility can accomplish many different goals, 
from solving technical constraints at DSO level, to peak shaving or 
simply efficient use of local RES. EV owners are interested in partici
pating in such programs because it implies a monetary benefit, or similar 
incentive, without affecting their daily habits and thus resulting in a 
win–win scenario. 

However a common drawback is that flexibility potential usually 
mismatches flexibility demand, so it is extremely important for the 
aggregator to have information about the typology of EV users and their 
connection patterns, in order to offer a feasible flexibility demand to the 
suitable EV users. From here on, instead of rescheduling all sessions 
according to the same optimization objective, this paper extends the 
existing EV coordination methodologies by associating each user profile 
to a particular optimization objective. 

Another important point of smart charging is the way that the session 
is modulated. Traditionally, the charging profile of an EV can be 
modelled as a power step lasting a certain time and starting as soon as 
the vehicle is connected. In that sense, a charging session could provide 
flexibility in terms of time (i.e. the charge is postponed or divided into 
several shorter sessions), power (i.e. the charging rate is modified) or 
energy (i.e. the user agrees to finish the session without reaching 100%, 
or transferring energy to the grid, in the case of V2G). This work only 
considers flexibility potential in terms of time, i.e. the smart charging 
postpone method depicted in Fig. 6 showing the exploitation of the 
difference between connection and charging times to postpone the 
session. 

In this section, first the flexibility potential of every user profile is 
quantified to offer an overview of the difference between the available 
flexibility levels (in terms of power and time) among user profiles. Next, 
a smart charging algorithm is proposed to emulate the individual 
response and estimate the impact of this flexibility when activated in 
different scenarios. The nomenclature used in this section is described in 
Table 3. 

5.1. Quantification of flexibility potential 

Quantifying the flexibility potential of a power demand curve offers 
a valuable tool for measuring the impact of shifting a specific amount of 
power from one time slot to another. Inspired by the definition of de
mand response potential from Develder et al. [11], we define the po
tential flexibility of a session lasting a time interval [t,t + Δt], within the 
connection interval [TCHSs, TCONEs], as its charging power Ps, if the 
following statements are true: 

Fig. 6. Smart charging with Postpone method.  

Table 3 
Nomenclature.  

Parameter Description 

T Number of time intervals within the optimization window 
Δt  Time interval, in hours 
TCONSs  Connection start time of a session 
TCONEs  Connection end time of a session 
TCHSs  Charging start time of a session 
TCHEs  Charging end time of a session 
Ps  Charging power of a session 
Fs  Flexible hours (i.e. connection hours – charging hours) of a session 
SFLEX  Sessions with flexibility potential 
PFLEX  Flexibility potential, in power units 
w1  Weight for grid balance optimization strategy 
w2  Weight for peak shaving optimization strategy 
St  Solar generation time series 
Lt  Static EV load (BAU) time series 
Vt  Flexible EV load (BAU) time series 
Ot  Optimal flexible EV load time series 
E Total energy demand from flexible EV within the optimization window 
δflex  Percentage of users responsive to the flexibility program 
TSHIFT  Timeslots where power demand is higher than the setpoint 
PSHIFT  Power to shift from one time slot to the following, considering the 

setpoint  

Fig. 7. Flexible power potential by user profile.  
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1. The vehicle starts charging during this time slot 

t = TCHSs (8)    

2. The vehicle remains charging during the entire time interval 

[t, t+Δt]⊂[TCHSs, TCHEs] (9)    

3. The charging session can be shifted an interval Δ within the 
connection interval 

TCONEs − TCHEs⩾Δt (10)   

When considering all sessions under these statements as SFLEX(t,t+Δt), 
then the aggregated flexible power within the time interval [t, t+Δt] is: 

PFLEX(t,t+Δt) =
∑

s∈SFLEX(t,t+Δt)

Ps (11)  

Eq. (8) has been added to the Develder et al. [11] definition because the 
only smart charging strategy we consider here is the Postpone method. 
To postpone the charging start time of a session from time t to time t +
Δt, the session must start charging at time t (i.e. t = TCHSs). Without 
this constraint, the smart charging method would consider dividing a 
session into shorter sessions as well, shifting only part of the session 
instead of the full session. 

We have approximated all start times on a 15-min basis since this is a 
realistic time-base for charging sessions and offers sufficient granularity 
to participate in different markets and services (e.g. balancing, conges
tion management). No distribution grid capacity or power system con
strains have been considered in this case. Fig. 7 shows the flexibility 
potential (power vs time) for every existing user profile during two 
representative days in January 2020, Monday 13th and Tuesday 14th, 
and considering different time granularity (Δt) of 15, 30, 60 and 120 
min. The curves have been obtained by applying the definition of Eq. 
(11) to the profiles obtained in the analysis from Section 3. 

First, it can be observed that the longer the time granularity, the 
lower the flexibility potential. This is because the probability of having 
sessions that accomplish the three conditions: Eqs. (8)–(10) decreases 
with longer time intervals. Note that considering the Postpone strategy 
is a constraint and for other Smart charging strategies the equations 
should be modified accordingly. For this study case, there would not be a 
significant difference if it were to participate in a flexibility market, or 
demand-response services, with scheduling intervals of 15 or 30 min; 
but a flexibility management with 120-min time intervals would not be 
feasible. 

Fig. 7 also shows a considerable difference for the potential flexi
bility between user profiles. As seen in Table 2, most of the user profiles 
have similar charging duration, while the connection duration varies 
considerably. This results in higher flexibility potential for user profiles 
with longer connections. In that sense, Commuter profile has the highest 
flexibility peak in the evening, followed by Home profile, while Pillow 
profile has the flexibility peak at night. At the same time, Worktime 
profile has its flexibility peak at early-morning, while the flexibility 
potential of Visit profile is more irregular throughout the morning. 
Finally, Shortstay and Dinner profiles have too short connections in 
order to deliver a relevant flexibility potential. Note that despite the big 
difference between the number of sessions of Visit and Worktime pro
files (36% for Visit profile and 10% for Worktime profile for Weekdays, 
see Fig. 4), the level of flexibility is similar. The same happens with 
Commuter and Home profiles and, therefore, this shows the importance 
of grouping sessions among user profiles when the objective is to 
manage their flexibility. 

5.2. Smart charging algorithm 

The novelty of the smart charging strategy proposed in this section 
consists in using the previously-identified EV user profiles to address the 
flexibility management process, specifying a particular objective to a 
particular user profile. This strategy allows a priori estimation of flexi
bility based on the user profiles and reducing the uncertainty during 
both the scheduling and activation stages. Thus, the output of the smart 
charging algorithm modulates the charging start time (postpone sce
nario) and assumes that the same energy is delivered. The smart 
charging methodology proposed follows the sequence depicted in Fig. 8 
and it is composed by the following three steps:  

1. Get aggregated time series demand: given a datetime sequence and a 
charging sessions data set, the demand profile of every user profile is 
obtained as a time series format.  

2. Obtain the setpoint (Optimization): according to user profiles’ demand, 
renewable PV generation and optimization objective (e.g. peak 
shaving, grid balancing or both), a convex optimization is performed 
to obtain the best-case optimal demand profile for each user profile 
(i.e. user profiles’ setpoints).  

3. Postpone sessions (rescheduling): original sessions of each profile are 
shifted from time slot to time slot in order to match, if possible, the 
corresponding setpoint. 

5.2.1. Aggregated demand 
Considering SCHARGE(t,t+Δt), all sessions that remain charging within 

the time interval [t,t + Δt], and therefore satisfy Eqs. (12) and (13), then 
the aggregated power demand within the time interval [t, t+Δt] is 
calculated with Eq. (14) where Ps is the charging power of a charging 
session. The aggregated time series demand is calculated then for each 
time slot considering a time resolution?t and a window of time T. 

t⩾TCHSs (12)  

[t, t+Δt]⩽TCHEs (13) 

Fig. 8. Smart Charging diagram.  
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D(t,t+Δt) =
∑

s∈SCHARGE(t,t+Δt)

Ps (14)  

5.2.2. Optimization 
A quadratic optimization has been developed to obtain the optimal 

time series demand of each user profile. Though the procedure is general 
enough to deal with other objectives, the following two objectives are 
approached in this smart charging simulation:  

1. Minimize peaks of demand, shifting demand from peak hours to 
valley periods.  

2. Minimize grid balance, moving demand to hours with local solar 
generation. 

The optimization is constrained to only the Postpone flexibility 
strategy (see Fig. 6) and and no grid parameters have been used as a 
constraint in this case. Future work will address other levels of flexibility 
such as energy or power modulation and the consideration of grid 
congestion and other constraints linked to geolocation of delivered 
flexibility, resulting in different aggregations. The objective function of 
this problem is presented in Eq. (15). See Table 3 for nomenclature 
definitions. The first term corresponds to the grid balance strategy, 
while the second term refers to peak shaving. 

min
∑T

t=1
w1(St − Lt − Ot)

2
+w2(Lt + Ot)

2 (15)  

Constrained to Eqs. (16) and (17):  

1. Total EV demand must remain the same: 

∑T

t=1
OtΔt = E (16)    

2. Demand can only be shifted forwards, not backwards (Postpone 
strategy): 

∑U

t=1
OtΔt⩽

∑U

t=1
VtΔt U = 1, 2,…,T (17)   

The formulation results in a quadratic problem with linear con
straints. Thus, a convex optimization has been applied to the objective 
function using the CVXOPT Python package [34]. 

5.2.3. Postpone sessions 
In a smart charging application, each charging point would have to 

decide whether to charge or not when a vehicle starts a new connection. 
Thus, some in-place computation will be required and in the case of 
postponing the vehicle’s charging, a new schedule proposed by the 
charging system. Thus, as a more practical approach, rather than opti
mizing the aggregated user profile demand, the smart charging algo
rithm presents a new schedule for each charging session. In that sense, 
Algorithm 1 presented in this section takes an optimal aggregated de
mand (i.e. setpoint obtained from Eq. (15)) as a reference and postpones 
each required session to satisfy it, resulting in a modified sessions data 
set basically with shifted charging start times. Moreover, we have 
considered a parameter δflex to represent the percentage of people 
participating in the flexibility program (i.e. responsive users), since 
probably not all users will be enthusiasts about this charging system or 
they simply will be unable to participate on specific days. 

Algorithm 1. Postpone charging sessions according to power time 
series setpoint, for a single user profile   
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All these points of the algorithm are inside a while(True) loop 
structure that aims to iterate over all potentially flexible sessions (SFLEX) 
in every time slot where flexibility is required, and leave the loop (i.e. 
break statement) when (1) there is no required flexibility (i.e. the de
mand setpoint is not surpassed in any time slot), or (2) there is no 
available flexibility (i.e. sessions have fully exploited their flexibility). 
Note that this algorithm considers only a Postpone smart charging 
strategy (see Fig. 6), and further development must take place if other 
strategies such as power modulation or dividing the session in shorter 
sessions are to be considered. 

5.3. Smart charging simulation 

This section proposes a scenario where the municipality of Arnhem 
aims to supply as much as possible the EV fleet with energy from a local 
PV field of 500 kWp (i.e. grid balancing minimization), maintaining the 
aggregated demand curve as flat as possible (i.e. peak shaving minimi
zation). In this scenario, the EV aggregator should optimize the aggre
gated EV demand by rescheduling charging sessions for a specific time 
window. For this simulation, real EV sessions are used to decouple re
sults from quality of forecasting. However, in both forecasting and 
scheduling problems, the knowledge about the existing EV user profiles 
would reduce the uncertainty since the problem is decomposed and 
analyzed separately. Thus, the objective of the methodology proposed 

here is to simplify the decision-making process of the aggregator in the 
optimization stage, where adjusting the parameters of individual ses
sions through a single tariff without differentiating the connection 
profile could be inefficient. 

The performance of optimizing a set of EV sessions with and without 
user profiles is compared by considering two different optimization 
objectives: evening peak shaving and grid balancing. According to these 
optimization objectives, and the flexibility potential of each user profile 
seen in Fig. 7, the profiles used for each optimization objective and their 
corresponding weights are described in Table 4. 

Postponing all potentially flexible sessions without user profiles is a 
scenario constructed to show the best-case performance. Fig. 9 shows 
the result of combining the peak shaving and grid balancing optimiza
tion objectives (i.e. w1 = 0.5 and w2 = 0.5) and applying the post
pone strategy. Postponing 56% of the total number of sessions, we can 
see a reduction in the peak demand of 155 kW, while the energy im
ported from the grid has been reduced by 218 kWh. On the other hand, 
Fig. 10 shows the result of addressing the peak shaving optimization 
with the Commuter profile (i.e. w1 = 0 and w2 = 1) and the grid 
balancing optimization with the Worktime profile (i.e. w1 = 1 and 
w2 = 0). In this case, only 21% of the sessions have been postponed, 
while the reduction in the peak demand has been 118 kW and the energy 

Fig. 9. Scenario 1: optimization without user profiles.  

Fig. 10. Scenario 2: optimization with user profiles.  

Fig. 11. Original EV power demand by user profile.  

Fig. 12. EV power demand by user profile in Scenario 2.  

Table 4 
Weights of optimization objectives.  

Scenario Profile w1 w2 

Without user profiles - 0.5 0.5 
With user profiles Worktime 1 0  

Commuter 0 1  

Table 5 
Optimization results.  

Optimization Sessions 
shifted (%) 

Reduction of peak 
demand (%) 

Reduction of grid 
energy (%) 

Without user 
profiles 

56 34 6 

With user 
profiles 

21 26 5  
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imported from the grid has been reduced by 182 kWh. To compare both 
scenarios, Table 5 provides a summary of the results. 

Obviously the best-case results are obtained shifting all potentially 
flexible sessions, independently of user profiles (i.e. business-as-usual 
case), since more sessions are available to postpone. However, the 
flexibility management based on user profiles resulted in a relevant 
improvement on the system efficiency, obtaining similar results than the 
best-case with practically a third part of the sessions. The optimization 
with user profiles has obtained 1% more imported energy, 8% higher 
peak demand and 35% fewer exploited sessions, which implies a rele
vant lower cost by the aggregator considering a compensation for each 
postponed session. 

For a more in-depth analysis in the optimization with user profiles, 
Figs. 11 and 12 show the demand curves for each user profile before and 
after smart charging simulation, respectively. It is visible that early 
morning Worktime sessions have been shifted in order to charge as much 
as possible from solar generation, moving the peak to 11:00–12:00. At 
the same time, the pointed evening peak of Commuter sessions at 
18:00–19:00 has evolved to a flatter curve shifting the demand to the 
night valley. 

6. Conclusions 

The first contribution this study makes is a methodology for char
acterizing EV charging sessions among generic user profiles, which has 
been validated with a real data set from the Dutch city of Arnhem. A first 
analysis of the relationship between the connection start time and 
connection duration of the sessions showed relevant covariance and 
multiple density peaks. These characteristics validated the use of 
bivariate Gaussian Mixture Models as a suitable clustering method. A 
posterior interpretation of each cluster resulted in seven different user 
profiles, some of them very specific (Worktime, Diner, Shortstay and 
Commuter) and other more general (Visit, Home and Pillow). Two main 
conclusions can be drawn from the flexibility potential quantification: 
(1) each user profile has its own flexibility potential peak and (2) 
considering a Postpone smart charging strategy, the time-resolution of 
the demand response program should not be lower than 30 min. 
Therefore, the second contribution this paper makes is a Postpone al
gorithm based on user profiles, with the possibility of configuring the 
appropriate optimization objective (i.e. grid balancing and peak 
shaving) to a particular user profile according to its flexibility potential. 
This approach has resulted more efficient in terms of flexibility man
agement than the best-case scenario where all sessions are considered 
for the demand-response program. Even though the best-case optimi
zation obtained better grid performance indicators (1% less imported 
energy and 8% lower demand peak), their differences in comparison 
with the optimization based on the Worktime and Commuter user pro
files are not as relevant as the difference in the flexibility exploitation 
(35% fewer postponed sessions). Future research should consider 
designing different policies or market tariffs for each user profile in 
order to optimize the aggregator profit and the EV user compensation in 
a win–win scenario. Moreover, other smart charging strategies that 
differ from postpone should be considered in order to modulate the 
charging power or energy of sessions, and improve the flexibility man
agement results. 

Glossary  

Acronym Description 

ADMM Alternating Direction Method of Multipliers. 
BIC Bayesan Information Criterion. 
DBSCAN Density-based spatial clustering of applications with noise. 
DSO Distribution system operator. 
EC European Commission. 
EM Expectation–Maximization 
EU European Union. 
EV Electric vehicle. 
GMM Gaussian Mixture Models. 
ID Identificator 
LP Linear Programming. 
MILP Mixed-Integer Linear Programming. 
MM Mixture Models. 
PSO Particle Swarm Optimization. 
QP Quadratic Programming. 
RES Renewable energy sources. 
RFID Radio-frequency identification. 
V2G Vehicle-to-grid  
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Appendix A. Clustering resources 

This appendix was included to show in detail some development 
steps of the methodology exposed is Section 3. 
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A.1. BIC analysis  

Fig. A.1. BIC analysis for weekdays city sessions.  

Fig. A.2. BIC analysis for weekdays home sessions.  
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Fig. A.3. BIC analysis for weekends city sessions.  

Fig. A.4. BIC analysis for weekends home sessions.  
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A.2. User profiles from clustering components 

A.2.1. Weekdays city sessions  

A.2.2. Weekdays home sessions  

Fig. A.5. GMM clusters of weekdays city sessions.  

Table A.1 
Weekdays city clusters interpretation.  

Cluster Average start time Average duration (h) Interpretation Profile 

1 09:27 8.60 Full-day workers or visitors Worktime 
2 09:58 4.78 Visit the city during the morning Visit 
3 13:17 1.32 Short visits during the day Shortstay 
4 14:40 0.39 Super short connections during the day Shortstay 
5 18:55 1.45 Short visits during the evening Shortstay 
6 14:31 3.46 Visit the city during the afternoon Visit 
7 19:00 3.31 Go out for a dinner Dinner  

Fig. A.6. GMM clusters of weekdays home sessions.  
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A.2.3. Weekends city sessions  

Table A.2 
Weekdays home clusters interpretation.  

Cluster Average start time Average duration (h) Interpretation Profile 

1 19:07 16.70 Go home during the afternoon, not necessarily leaving the next morning Home 
2 19:30 13.75 Always go home after work, always leaving the next morning Commuter 
3 23:04 12.33 Go home at night, not necessarily leaving the next morning Pillow 
4 23:25 9.55 Go home at late night, leaving the next morning Pillow 
5 21:33 11.29 Go home at night, leaving the next morning Pillow 
6 19:10 13.55 Always go home after work, always leaving the next morning Commuter 
7 15:23 21.97 Can go home anytime, not necessarily leaving the next morning Home 
8 18:11 15.57 Go home during the afternoon, leaving the next morning Home  

Fig. A.7. GMM clusters of weekends city sessions.  

Table A.3 
Weekends city clusters interpretation.  

Cluster Average start time Average duration (h) Interpretation Profile 

1 14:32 1.44 Short visits during the afternoon Shortstay 
2 13:53 6.34 Visit the city during the day Visit 
3 15:10 2.79 Visit the city during morning or afternoon Visit 
4 18:36 3.68 Go out during afternoon and probably dinner Dinner 
5 14:29 0.51 Super-short connections during the day Shortstay 
6 11:11 1.75 Short visits during the morning Shortstay 
7 14:25 0.30 Super-short connections during the day Shortstay  
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A.2.4. Weekends home sessions  
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