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Abstract: Poly (vinyl ethers) are compounds with great value in the coating industry due to exhibiting
properties such as high viscosity, soft adhesiveness, resistance to saponification and solubility in
water and organic solvents. However, the main challenge in this field is the synthesis of vinyl
ether monomers that can be synthetized by methodologies such as vinyl transfer, reduction of vinyl
phosphate ether, isomerization, hydrogenation of acetylenic ethers, elimination, addition of alcohols
to alkyne species etc. Nevertheless, the most successful strategy to access to vinyl ether derivatives is
the addition of alcohols to alkynes catalyzed by transition metals such as molybdenum, tungsten,
ruthenium, palladium, platinum, gold, silver, iridium and rhodium, where gold-NHC catalysts
have shown the best results in vinyl ether synthesis. Recently, the hydrophenoxylation reaction was
found to proceed through a digold-assisted process where the species that determine the rate of the
reaction are PhO-[Au(IPr)] and alkyne-[Au(IPr)]. Later, the improvement of the hydrophenoxylation
reaction by using a mixed combination of Cu-NHC and Au-NHC catalysts was also reported. DFT
studies confirmed a cost-effective method for the hydrophenoxylation reaction and located the
rate-determining step, which turned out to be quite sensitive to the sterical hindrance due to the
NHC ligands.

Keywords: hydrophenoxylation; gold; copper; dual catalysis; C-O bond formation

1. Introduction

Over time, alchemists and chemists have directed their efforts to control chemical
processes through “species capable of accelerating the rate of reaction.” However, since the
18th century, they have made significant advances in the catalysis field. Some contributions,
such as sulfuric acid production, the conversion of starch to sugar proposed by Kirchoff,
the first safety lamp for coal miners and the catalyst definition by Berzelius, marked
the beginning of this field [1]. Sometime after, in the early 19th century, Paul Sabatier
reported the hydrogenation of unsaturated organic compounds catalyzed by nickel [2],
which marked the birth of modern catalysis. At the same time, the oil industry began to
exploit the goodness of catalysis in processes such as the catalytic cracking by the pioneer
Eugene Houndry in 1922 [3] and hydrocracking [4]. The evolution of the petrochemical
industry during the first half of the 19th century led to the birth of the polymer field.

The new business of the chemical industry had been born with the catalytic synthesis
of building blocks of polymers such as acrylonitrile [5] and vinyl chloride monomer [6].
Moreover, since the 1920s, the Du Pont company has positioned itself at the top of the
polymer market with its polymeric films and synthetic fibers such as cellophane, rayon,
nylon and polyester [7]. Due to properties such as high viscosity, soft adhesiveness,
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resistance to saponification and solubility in water and organic solvents, poly(vinyl ethers)
have been the focus of the polymer industry [8].

2. Synthesis of Vinyl Ethers
2.1. Alcohols to Get Vinyl Ethers

Chemists around the world have focused their efforts to improve the synthetic strate-
gies for obtaining vinyl ether monomers. Nevertheless, vinyl ethers can be synthesized by
vinyl trans-etherification catalyzed by compounds such as [Ir(cod)Cl]2 (Equation (1)) [9],
Pd(OAc)2 (Equation (2)) [10] and AuClPPh3 (Equation (3)) [11], where gold catalysis has
shown the best effectivity for the vinylation of carboxylic acids.
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tion of allyl ether substrates. Catalysts such as (PPh)3RhCl (Equation (5)) [14] and Fe(CO)5
(Equation (6)) have shown good catalytic activity [15].
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Ethers containing α or β leaving groups, such as halogens [17], hydroxyl [18], alkox-
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2.6. Olefination of Carbonyl Compounds

Another way to access vinyl ether is through carbonyl compounds. In these com-
pounds, the carbon-oxygen double bond, i.e., a carbonyl group, can be shifted into a
carbon-carbon double bond by the Wittig reaction [21] or Julia olefination [22]. Carbonyl
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compounds, such as lactones (Equation (8)) [23] and ketones (Equation (9)) [24], can be
converted into vinyl ethers in the presence of phosphoranes.
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Hydroalkoxylation of alkynes is a synthetic tool by which vinyl ethers can be synthe-
sized (Equation (13)). These are of great importance in the chemical industry due to their
applications as building blocks of polymers that are used in the production of adhesives,
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paints, plasticizers, thickeners and inks [8]. Normally, this reaction should be catalyzed
using molybdenum, tungsten, ruthenium or palladium. On the other hand, platinum, gold,
silver, iridium and rhodium-based catalysts have also been able to catalyze the alkoxylation
reaction [31].
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Gold catalysts bearing N-heterocyclic carbene (NHC) ligands are currently being
studied due to their high catalytic activity in the alkyne hydroalkoxylation field [32].
However, gold catalysts containing NHC ligands in the presence of alkyne compounds
can form π-complexes with an electrophilic character [33] and are capable to carry out a
nucleophilic attack by nucleophiles such as alcohols or amines to obtain vinyl amines or
ethers [34]. In addition, current reports have revealed that the steric demand from NHC
ligands and the solvent effect play a significant role in gold-mediated catalysis. Nolan et al.
have reported the lower efficiency of large NHC-gold complexes in the intramolecular
hydroalkoxylation of propargylic alcohols [35]. On the other hand, the counterion has
been described as an important species in catalysis. In fact, the counterion may help to
achieve the nucleophilic attack (Figure 1) due to its coordinating ability, basicity and its
morphology [36]. Species with lower basicity, greater coordinating capacity and spherical
form tend to decrease the catalytic activity [37,38]. The most successful counterions that
can efficiently achieve nucleophilic activation are NTf2

−, OTf−, OTs− and OMs− [39].
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With the help of known information on the hydroalkoxylation reaction, numerous
research groups have focused their efforts on the intermolecular hydrophenoxylation of
internal alkynes as this transformation turns out to be entropically unfavorable. Efforts
to make it work have led to great advances in this field. Kuram et al. have reported the
hydrophenoxylation of symmetrical and unsymmetrical alkynes assisted by a gold catalyst
in the presence of a mild or strong base (Table 1) [40].
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Table 1. Hydrophenoxylation of symmetrical alkenes catalyzed by AuCl3.
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The use of gold catalysts containing sterically rich ligands has become a good method-
ology to achieve the addition of alcohols to unsaturated bonds. However, the steric
hindrance of these ligands can affect the rate determining step (rds) [35]. Nonetheless, the
rate of the reaction can be improved by the counterion [36] or polar and protic species [41].
In 2010, Ujaque and coworkers reported the mechanism for the addition of phenols to
alkene compounds catalyzed by phosphine-gold catalysts [41]. In their computational
mechanistic studies, they proposed a process assisted by phenol and water.

Mechanistically, they proposed the formation of the π-complex followed by the con-
certed addition and proton transfer. However, they investigated four possible cases for
the rds; (1) direct proton transfer, (2) proton transfer assisted by the counterion (less
coordinating ones improve the catalytic performance), (3) proton transfer assisted by phe-
nol and (4) proton transfer assisted by water. They found that the pathway promoted
by phenol and water goes through a concerted process. On the other hand, unassisted
and anion-assisted processes are unfeasible due to their higher energy barriers (61.1 and
49.6 kcal/mol, respectively) [41].

2.8.1. Dual Catalysis: An Efficient and Versatile Synthetic Tool

Dual catalysis has been expanding the catalysis field since the last century. Due to this
catalytic strategy, it has been used in processes such as hydroaminomethylation of olefins
to obtain amines. However, this reaction was achieved with synthesis gas and ammonia in
presence of Rh/Ir catalyst under formylation conditions in organic/aqueous phases. In
addition, exploring the solvent effect, MTBE was found to be the best organic solvent to
obtain selectively primary amines (Scheme 2) [42]. Another catalytic strategy that involves
syngas usage is the generation of green fuels such as methanol through the assistance of
Cu/ZnO and 2-propanol under low temperature conditions [43].

In the synergistic dual transition metal catalysis [44,45], water oxidation catalysis
(WOC) was one of the first cases where two metal-oxo units were required to form the
O-O bond at the rate determining step (rds) of the I2M mechanism [46–48]. However,
competition with water nucleophilic attack (WNA) with the interaction of a metal-oxo
unit with an H2O molecule to form the O-O bond has never ceased [49], with the potential
role of the non-innocent role of the cerium ammonium nitrate (CAN) [50]. Currently,
there is controversy not only related to the kinetic requirements, but to the difficulty of
colliding two metal units in low catalyst loading conditions. The latter is a problem in the
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formation of alkanes [51], where two palladium atoms are needed in phosphinesulfonato
polymerization catalysis.
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Another process influenced by dual catalysis has been C-C cross-coupling. In 2010,
Bera et al. published the Suzuki and Heck cross-coupling catalyzed by a dipalladium(I)
catalyst [52]. Two years later, Schoenebeck and coworkers reported the catalytic activity
of dipalladium(I) complexes bridged by halide ligands. Nevertheless, in their report, the
C-C cross-coupling catalyzed by palladium(I) dimer was described as a homodual-assisted
process [53,54]. However, C-C cross-coupling can even be achieved by using heterodual
metal catalysis. A clear example of this process is the cross-coupling assisted by [Pd(dmpe)
or (PMe3)2] and vinyl-gold species (Figure 2) [55].
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Regarding polymers, dual catalytic systems have provided interesting results. One of
the published reports that has been highlighted is the ring-opening polymerization of ω-
pentadecatlone catalyzed by DMAP Brønsted base and magnesium halides (Figure 3) [56].
Another achievement in the field has been the polymerization of methacrylate catalyzed by
[Et3SiH]/[Et3Si(L)]+[B(C6F5)4]− couple, which was described as a good methodology to
produce linear polymethacrylates [57].
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Figure 3. Ring-opening polymerization of lactones [56].

Some fields in chemistry have been positively impacted by the dual-assisted processes,
such as asymmetric synthesis. In 2004, Jacobsen et al. achieved the addition of hydrogen
cyanide to unsaturated imides assisted by aluminum and lanthanide chiral complexes.
In this study, the enantioselectivity was improved by the lanthanide species [58]. Three
years after, the field of dual-assisted catalysis was amplified with the enantioselective
alkynylation of α-amino esters catalyzed by a chiral Brønsted acid and a silver acetate [59].
More interesting studies were then added to this field, such as the enantioselective [2+2]
photocycloaddition between two unsaturated ketones. The cycloaddition reaction was
promoted with visible light in the presence of ruthenium catalyst and a chiral Lewis acid
(Figure 4) [60].
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Figure 4. Enantioselective [2+2] cycloaddition [60].

As we have seen, Brønsted acids, together with Lewis acids, are able to catalyze
enantioselective reactions, but Lewis acids in combination with a Schiff base have carried
out a wide variety of homodual- and heterodual-assisted processes, providing a wide range
of asymmetric transformations. For instance, asymmetric reactions, such as an amination,
Mannich and aziridine opening, were achieved using bimetallic complexes bearing Schiff
bases obtaining products with a higher percentage of enantiomeric excess (Figure 5) [61].
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Catalysis involving a Lewis acid-Lewis base couple has promoted a wide variety of
processes due to its characteristic interaction with the substrate by which it is activated
(Figure 6). Some examples are the enantioselective reduction of ketones catalyzed by
borane/oxazaborolidines [62], alkylation of aldehydes [63] and ketones [64] assisted by a
Zn-salen catalyst, enantioselective allylation of aldehydes directed by a silver-(R)-BINAP
complex [65] and even the diastereoselective condensation reaction, such as aldol [66] and
Mannich [67].
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Cooperative catalysis has been applied to carry out processes such as asymmet-
ric hydrogenation of ketones, where the ligand and the metal assist the reaction syner-
gistically. The most known reported catalysts are Ru-(phosphine)2-amine [68] and Fe-
amine(imine)diphosphine [69,70]. This type of catalyst can achieve the hydrogen transfer
through a dual-assisted metal-nitrogen process (Figure 7).
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On the other hand, dual cooperative catalysis has been exploited in the field of
biomimetic chemistry. In this field, an enzyme together with a metal carry out a wide
variety synergistic processes, such as regeneration of nicotinamide [71], biotransforma-
tions; enantioselective hydrolysis of esters [72], acylation [73], asymmetric polymeriza-
tion [74], epoxidation of fatty acids [75] and conversion of N-acetyl amino acrylates to
amino acids [76]. Already related to the catalysis of Au(I), the central subject of this article,
the dual metal solution to mechanisms previously thought with a single metallic unit
allowed, for example, to understand the Au(I) catalyzed hydroarylation of alkenes with N,
N-dialkylanilines (see the article by Abdellah et al. [77]).

2.8.2. Dual-Assisted Hydroalkoxylation Process

In recent years, dual or cooperative catalysis has been described as a powerful tool
that improves the selectivity and reactivity in organic reactions [78–80]. In 2008, Toste
et al. published the dual-gold-catalyzed cycloisomerization of 1,5-allenynes [81]. In 2010,
these results caught the attention of Nolan and coworkers and inspired them to achieve
the synthesis of gem-digold [{Au(PPh3)}2(µ-OH)] [BF4] that provided a new overview of
gold catalysis (eq 14) [82]. Later, Widenhoefer et al. reported on the σ,π-alkyne activation
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(Equation (15)) [83]. Di-gold σ,π-acetylide complexes in absence of base were synthesized.
Due to their easy access and properties, they are considered as intermediates in digold
catalysis involving terminal alkynes.
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Promising progress in dual-gold-assisted catalysis attracted the attention of Roithová
and coworkers, who focused their efforts on exploring the hydroalkoxylation mechanism
using ESI-MS and DFT calculations. They observed a competitive mono- and di-gold
mechanism for hydromethoxylation of 1-phenyl-propyne, due to the success of the method-
ology. In 2015, they reported on a new computational-experimental strategy to analyze the
intermediates in gold catalysis (Figure 8) [84–87].

Another interesting computational mechanistic study on dual-gold catalysis was pub-
lished by Hashmi et al. in 2015 [88]. It discussed the improvement of the rate determining
step via mono- or di-gold catalyst transfer from C-[M]2 compounds to nonactivated ter-
minal alkyne species. Focusing on the proton transfer, they found a higher energy barrier
for single gold catalyst transfer pathway (46.9 kcal/mol), being favored the dual-assisted
process (29.5 kcal/mol).

In 2013, the synthesis of a gem-digold compound by Nolan et al. allowed alkyne
hydrophenoxylation (Equation (16)), catalyzed by this di-gold hydroxide species, under
relatively mild conditions [89]. The passion for vinyl ethers synthesis inspired Nolan’s
group to achieve intermolecular hydroalkoxylation (Equation (17)), with a selectivity of
90%, and hydrocarboxylation (Equation (18)) of internal alkynes [90,91].
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Taking as a starting point the equilibrium between the gem-digold compound and
the alkyne-gold complex, Poater et al. proposed a mechanism that involves the active
species included in Figure 9. On the reaction pathway, the reactive species alkyne-[Au]
and PhO-[Au] are formed in the initiation part and regenerated during the catalytic cycle.
Overall, the process is described as a nucleophilic attack followed by displacement and
protonation reactions. Moreover, the nucleophilic attack that involves the C-O bond
formation was found to be the rate determining step [91]. On the other hand, Reek et al.
confirmed that the hydrophenoxylation of alkynes enhanced when encapsulating the gold
catalyst in encapsulated in self-assembled resorcinarene cage [92,93]. Thus, this is a clear
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confirmation that the dual gold catalysis takes place for the hydrophenoxylation of alkynes.
Moreover, predictive catalytic results by DFT calculations proposed a new generation of
digold complexes [94], where both metal moieties are linked by an alkylic bridge.
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Recently, Cazin et al. have reported the hydrophenoxylation of diphenylacetylene
catalyzed by a combined Cu(NHC)/Au(NHC) catalytic system [95]. Nevertheless, they
performed experimental studies to determine the solvent and temperature effect in the
hydrophenoxylation reaction and they found a higher conversion to the desired product
under solvent-free conditions. Once the optimal conditions were found, they tested the
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addition of substituted phenols to diphenylacetylene observing conversions of up to 90%
of the desired vinyl ether (Equation (19)).
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On the other hand, Cazin and coworkers performed some mechanistic studies to elu-
cidate the mechanism by which the reaction proceeds (Figure 10). All in all, the performed
stoichiometric reactions reveal the generation of the activated species [Cu(OPh)(IPr)] and
[Au(PhCCPh)(IPr)] and their importance in the catalytic process [95]. Subsequent DFT cal-
culations confirmed that the mixed dual metal system was better than the di-gold one [96].
Specifically, gold is associated with the alkyne, while phenoxide with copper, although
with silver, the mixed system would be even more favorable [97].
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Nevertheless, for alkyl alcohols, the dual mechanism has not been tested so far, and at
a computational DFT level, it is understood that it is the anion interaction that facilitates the
hydroalkoxylation promoted by gold (I) catalysts with such substrates [37]. The boundary
between mono and dual metal catalysis is very fine [98,99], and thus, simple modifications
of the nature of the substrates and simple modifications in the metal ligands can completely
exclude dual catalysis [100,101].
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3. Conclusions

The functionalization of alkynes assisted by the catalytic role of Au(NHC) complexes
includes, among others, the hydrophenoxylation reaction. This reaction is paradigmatic
since its mono/dual gold character has not been confirmed yet because of somewhat
unclear experimental kinetics. However, Reek and Nolan confirmed the dual catalysis char-
acter for such a reaction with the encapsulation of the catalyst, apart from DFT calculations
by Houk and Poater. Although it may seem like a confusing reaction, the synergy of metal
centers does not only assist the hydrophenoxylation of alkynes—it also paves the way for
possible solutions in other reactions.
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