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A B S T R A C T

Inertial force effects complicate the determination of the mode I interlaminar fracture toughness
under high loading rates in composites. Although using a quasi-static analysis is a common
approach, it is not always valid. A time-based threshold criterion is proposed to determine when
dynamic effects might be neglected during the analysis of a high loading rate Double Cantilever
Beam test. The criterion compares a transition time, time after which inertia effects can be
neglected, versus the time for the initiation of fracture propagation. Three different methods
are considered for the transition time. Good agreement is found when comparing the expressions
with numerical simulations. It is also demonstrated that the transition time is affected by the
velocity profile. The proposed criterion and approach to determine the transition time are useful
tools to define when a quasi-static data-reduction scheme can be used.

. Introduction

Fibre reinforced composite materials are increasingly used in automotive and aircraft industries because of their high specific
erformance [1]. When used in crash safety structures, a thorough assessment of the failure is required not only at quasi-static
ut also at high loading rates. In these cases, one of the most important material properties is the interlaminar fracture toughness
or delamination. In the quasi-static regime, the measurement of the mode I fracture toughness is well established by the Double
antilever Beam (DCB) test and described in several standards, such as the ISO 15024:2001 [2]. At high loading rates, different
est configurations and data reduction methods have been proposed [3–6]. Even so, there is no agreement on the trend of fracture
oughness nor the most appropriate testing method. This is due, in part, to the complexity in this analysis of the inertial forces and
eflected stress waves involved, and their contribution to the kinetic energy of the system [7–9].

The kinetic contribution in dynamic events may be analysed in different scenarios. In the case of rapid loading events, reflecting
tress waves influence the local crack-tip stress and strain fields, affecting the initiation or propagation of fracture [10]. In situations
here stress waves reflect back to the crack tip, the stress intensity must be determined for each particular case. Kalthoff et al. [11]

tudied the effect stress waves have on the stress intensity factor at the crack arrest, using internal wedge-loaded DCB specimens.
he geometry design of the common DCB specimen is such that stress waves can reach the specimen boundaries and return back
o the crack tip in a very short time. Thus, if the fracture event takes place after the elastic waves have made several reflections
ithin the specimen length, the stress wave effect might be ignored and static equilibrium can be assumed.

When the structure is loaded in short-time, but the stress wave effect can be ignored, inertia effects can be relevant due to
ccelerations in the system. The load tends to increase with time, but oscillates at a particular frequency, which depends on the
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Nomenclature

𝑎 DCB and SENB crack length
𝑎o DCB initial crack length
𝑏 DCB specimen width
𝐵 SENB specimen thickness
𝐶 DCB specimen compliance
𝑐o Sound propagation velocity in the material
𝐶s SENB specimen compliance
𝐷 Dimensionless displacement coefficient
𝐸 Young’s moduli of the material
𝐸1, 𝐸2, 𝐸3 Young’s moduli of the material
𝐺Ic, 𝐺IIc Interface fracture toughness
𝐺12, 𝐺13, 𝐺23 Shear moduli of the material
ℎ DCB specimen thickness of one arm
𝐻 SENB specimen width
𝑘dyn(𝑡) Böhme dynamic correction function
𝐾dyn

I (𝑡) Dynamic stress intensity factor
𝐾qs

I (𝑡) Quasi-static stress intensity factor
𝑙 DCB specimen length
𝐿 Half of the spean between SENB specimen supports
𝑡 Time
𝑡c Threshold time
𝑡f Time to fracture
𝑡𝜏 Transition time
𝑡𝜏B Böhme transition time
𝑡𝜏I Ireland transition time
𝑡𝜏N Nakamura et al. transition time
𝑢(𝑥) DCB opening displacement
�̇�(𝑥) DCB displacement rate
𝑈e Elastic energy
𝑈k Kinetic energy
𝛼 Coefficient for the ratio of threshold time and transition time
𝛽 Coefficient of a power law
𝛿 DCB opening displacement at the loading point
�̇� DCB opening rate at the load-line
𝜂 Mixed-mode fit parameter
𝛾 Power coefficient of a power law
𝜆𝑛 Coefficients of the function 𝜉
𝜈12, 𝜈13, 𝜈23 Poisson’s ratios of the material
𝜓 Polynomial function for the effects of 𝐷
𝜌 Density of the material
𝜏I, 𝜏II Interface strength of the material
𝜉 Correlation function for the general expression of energy ratio

Acronyms

3PB Three-Point Bend
C3D8I Solid element with incompatible modes
CFRP Carbon Fibre Reinforced Polymer
COH3D8 Zero-thickness cohesive element
DCB Double Cantilever Beam
FE Finite Element
FPZ Fracture Process Zone
QS Quasi-static
SENB Single Edge Notched Bend
2
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specimen material and geometry. The amplitude of these oscillations decreases with time, as kinetic energy is damped by the
specimen material. In the cases where a dynamic analysis is required, different approaches may be used such as the one proposed
by Chen et al. [12,13] that performs a mode I DCB analysis using a dynamics and vibration analysis of Euler–Bernoulli beams.

For sufficiently long-time loading events, where the behaviour is essentially quasi-static, the inertia effects are minimal [10].
herefore, in these cases the quasi-static approach is valid. To assess the inertia effects in a dynamic test, Nakamura et al. [14,15]
efined a time criterion that provides an estimate when inertia effects can be neglected in a Three-Point Bend (3PB) metallic
pecimen. The criterion uses a transition time, defined as the time when the kinetic energy equals the internal energy, which
epresents the period where inertia effects are still present in the system. This time is compared against the time for the initiation
f fracture propagation (or time to fracture), ensuring that the fracture event takes place at a longer time than the transition time.
n that way, a quasi-static analysis can be used to calculate the fracture toughness at a given high loading rate.

The transition time concept was firstly introduced in bending and impact tests for metals (Three-Point Bend test [16], Four-
oint Bend test [17] and Charpy V-Notch test [18]). Ireland [19] and Böhme [20] proposed an experimental approach to determine
he transition time, whereas Nakamura et al. [14,15] defined it based on numerical studies. To the authors’ best knowledge, the
ransition time has only been used for composite materials by McCarroll [21], and it was taken into account to justify the use of
uasi-static models for the determination of the translaminar mode I fracture toughness in a compact tension specimen. Blackman
t al. [8] proposed a criterion to define when a quasi-static or a dynamic approach might be used for the analysis of a pure mode
DCB test carried out under high loading rates.

The present work reformulates the transition time defined by Nakamura et al. [14,15] and defines a time-based threshold criterion
o characterise the pure mode I interlaminar fracture toughness under high loading rates in composite materials using the DCB test.
sing a geometrical scalability analysis with three different materials, this study assesses the different methods proposed to obtain

he transition time. In addition, the influence of the velocity profile and its maximum value over the transition time are analysed.
he approach is validated through a numerical analysis implemented as a three-dimensional dynamic Finite Element (FE) model.

. Theoretical background of the transition time

In this section three different models available in the literature for the determination of the transition time (𝑡𝜏 ) are summarised.
or all three cases, the aim is to determine a characteristic time after which inertia effects can be neglected and a dynamic event
an be accurately described by means of a quasi-static model.

Nakamura et al. [14] defined a transition time (𝑡𝜏N ) as the time at which the kinetic energy and the internal energy are equal in
high loading rate test. However, measuring kinetic and internal energies separately during a fracture mechanics test is a difficult

ask. For this reason, Nakamura et al. proposed to estimate the kinetic energy and the elastic energy through an analytical model
ased on the Euler–Bernoulli beam theory. In order to use this approach, it is necessary to measure the opening displacement and
ts rate at the loading point. The resulting equation to determine the transition time (𝑡𝜏N ) for a Single Edge Notched Bend (SENB)
teel specimen in a 3PB impact test is:

𝑡𝜏N = 𝐷𝑆𝐻
𝑐o

(1)

𝑆 =
(

𝐿𝐵𝐸𝐶s
𝐻

)1∕2
(2)

where 𝑐o is the sound speed in the material, 𝐸 is the material Young’s modulus, 𝐶s is the specimen compliance that accounts for
he crack length, 𝐻 is the specimen width, 𝐵 is the thickness and 𝐿 is half of the span between supports. 𝐷 is a dimensionless
oefficient that depends on the velocity profile during the test (see Section 4).

Ireland [19] analysed the transition time for a 3PB Charpy impact test on metallic specimens for a wide range of cases: from
rapid loading response (dominated by stress waves) to a long-time loading response (dominated by the fundamental structural

lastic deformation mode). Ireland introduced the transition time (𝑡𝜏I ) as an effective specimen inertial oscillation period and cited
umerous experimental data to show that inertial effects are dominant for loading times smaller than 2𝑡𝜏I . The empirical expression
an be expressed in the form:

𝑡𝜏I =
(

1.68
√

2
)

𝑆𝐻
𝑐o

(3)

Despite being an empirical model, the criterion proposed by Ireland has been widely accepted for the analysis of the
ynamic response of 3PB fracture toughness tests using Charpy and drop-weight impact [22,23], and Hopkinson pressure bar
pparatus [24]. Jiang and Vecchio [6] explained how Eq. (3) can be derived based on the inertial modelling of a classic Charpy
mpact test in terms of the natural frequency of the testing system (Charpy impact machine + bending specimen system), obtaining

similar results.
Böhme [20] proposed a transition time 𝑡𝜏B to quantify the dynamic effects in impact tests with SENB specimens. The transition

time was obtained based on the definition of a time-dependent function, identified as dynamic correction function 𝑘dyn(𝑡). This
unction is defined as the ratio between the dynamic stress intensity factor 𝐾dyn

I (𝑡) (Böhme measured it experimentally using the
ptical method of caustics) and the quasi-static stress intensity factor 𝐾qs

I (𝑡) (analytically calculated). The transition time was defined
s the time from which the variation of the dynamic correction function 𝑘dyn(𝑡) differs from 1 (the quasi-static value) by less than
0%. The expression for a 3PB specimen in an impact test can be expressed as follows:

𝑡𝜏 = 𝑘dyn(𝑡)𝐻 for 0.9 ⩽ 𝑘dyn(𝑡) ⩽ 1.1 (4)
3
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Sunny et al. [25], Shazly et al. [26], Martins et al. [27], and Jones and Davies [28] applied the expression in Eq. (1) from
akamura’s approach to determine the transition time in standard ASTM E23-18 [29] SENB specimens, obtaining that 𝑡𝜏N = 23.3𝐻∕𝑐o

when the ratio between the crack length and the specimen width is 𝑎∕𝐻 = 0.5.
On the other hand, other authors such as Henschel and Krüger [30], used similar approaches to obtain the transition time

n a four-point split Hopkinson bending test. However, Eq. (1) depends on geometric parameters that are not always clearly
pecified or that cannot be directly translated from a ASTM E23-18 specimen to another type of test, leading to incorrect results.
esides, Koppenhoefer and Dodds [31], and Takashima and Minami [32] reported a dependency of the transition time on the loading
elocity for Charpy specimens that was not considered by Nakamura et al. [14,15]. Consequently, further analysis is required to
eneralise the determination of the transition time for different types of tests, including DCB, and test conditions.

. Definition of the time-based threshold criterion

The models reviewed in the previous section aim at establishing a criterion to determine when a quasi-static-based data reduction
ethod can be used to calculate the fracture toughness under high loading rates. In order to neglect the inertia effects, the criterion
efines a limit between a rapid loading (dominated by discrete elastic waves and inertia effects), and a long-time loading (dominated
y the elastic energy). Basically, it needs to be ensured that the time when the fracture starts to propagate, referred as time to fracture

f, is well after the transition time so the response of the system is dominated by the fundamental structural elastic deformation. The
riteria proposed by the previously mentioned authors can be summarised as (see Nakamura et al. [14], Ireland [19] and Böhme
20]):

𝑡f > 2𝑡𝜏N

𝑡f > 3𝑡𝜏I

𝑡f > 𝑡𝜏B

(5)

Böhme [20] compared the transition time of the three different methods for the same particular case. From this, it can be
considered that the transition time proposed by Böhme is about two times the one considered by Nakamura et al. Thus, these two
criteria can be taken as equivalent. On the other hand, as the transition time suggested by Ireland is almost coincident to that
proposed by Nakamura et al. the time to fracture according to Ireland’s criterion should be 1.5 times higher. Additionally, Ireland’s
criterion is the most conservative because it quantifies the hammerload oscillations (dynamic effects at the impacting hammer),
instead of the dynamic effects at the crack tip as Nakamura et al. and Bömhe. Following Ireland’s approach, Dutton and Mines [33]
modified the criterion to be used in a Hopkinson bar loaded fracture test as 𝑡f > 1.1𝑡𝜏I .

Based on the analysis done by Nakamura et al. [14] and Böhme [20], in the present work a time-based threshold criterion is
efined to calculate the mode I fracture toughness under high loading rates for a DCB test [2]. As in the previous analyses, the
ontribution of the kinetic energy can be considered as minimal when 𝑡f is certain times larger than 𝑡𝜏 . In this work, it is considered
hat the dynamic effects on the initiation of fracture propagation can be neglected once the ratio of kinetic energy to elastic energy
𝑈k∕𝑈e) is below 20%. Thus, for times to fracture 𝑡f larger than a threshold time 𝑡c at which the ratio between energies is below
0%, it can be considered that the dynamic event is close to a quasi-static event and a quasi-static data reduction method can be
sed. This energy threshold is less conservative than other from literature [34], but giving sufficient margin to neglect the dynamic
ffects. Even so, the user may define a different percentage of energy ratio lower than the 20% to have more conservative analysis.
he criterion proposed is formulated in Eq. (6), where the threshold time 𝑡c is expressed in function of the transition time.

𝑡f > 𝑡c = 𝛼𝑡𝜏 (6)

The objective of the present work is not only to assess the value of the coefficient 𝛼 and the threshold time, but also to clearly
etermine the time to fracture for different configurations of the DCB test and different loading velocity conditions, ensuring that
he dynamic effects on the fracture event are minimal. The time to fracture is obtained through FE simulations. Regarding the
ransition time, three different approaches are considered to determine it, allowing sound determination of the coefficient 𝛼 and the
hreshold time. The three approaches are based on the assumption of the transition time as the time when 𝑈k∕𝑈e = 1, as assumed
y Nakamura et al. [14]. The first approach consists on an analytical analysis of the energies. The second approach is based on
he deduction of a numerically-based expression using the Buckingham Pi theorem [35] and FE simulations. In the third approach,
he transition time is determined analysing the evolution of the energy ratio versus a dimensionless time parameter based on FE
imulations.

. Analytical determination of the transition time 𝒕𝝉

Considering the DCB specimen shown in Fig. 1, the kinetic energy generated during the test can be obtained by integrating one
alf of the product of the mass by the displacement rate �̇�(𝑥) over the initial crack length 𝑎o. Assuming a symmetric opening of the
rms, the kinetic energy for the whole specimen is:

𝑈k = 2
(

1
2
𝜌𝑏ℎ∫

𝑎

0
[�̇� (𝑥)]2 𝑑𝑥

)

(7)

where the mass is defined in terms of the density 𝜌, the specimen width 𝑏 and the thickness ℎ of one specimen arm, and 𝑎 is the
crack length, which is equal to 𝑎 before the crack starts to propagate.
4
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Fig. 1. DCB analysis parameters.

According to the Euler–Bernoulli beam theory and considering no crack propagation, the opening displacement 𝑢(𝑥) can be
btained as a function of the opening displacement at the loading point of a single arm (𝛿∕2):

𝑢 (𝑥) = 𝛿
2

(

1 − 3𝑥
2𝑎o

+ 𝑥3

2𝑎o
3

)

(8)

Deriving Eq. (8) and replacing in Eq. (7), the kinetic energy in a DCB test can be expressed as:

𝑈k = 33
560

𝜌𝑏ℎ𝑎o�̇�
2 (9)

where �̇� is the applied load-line opening rate. This result coincides with the kinetic energy proposed by Hug et al. [36].
On the other hand, the elastic energy of the specimen under bending can be defined in terms of the opening displacement 𝛿 and

he specimen compliance 𝐶 as:

𝑈e = 1
2
𝛿2

𝐶
(10)

Using the Euler–Bernoulli beam theory, the previous equation can be rewritten as:

𝑈e = 𝐸𝑏ℎ3𝛿2

16𝑎o3
(11)

Eqs. (7) to (11) are equivalent to the ones proposed by Blackman et al. [37]. Then, using the longitudinal wave propagation
elocity in the specimen 𝑐o = (𝐸∕𝜌)1∕2, the energy ratio from Eqs. (9) and (11) can be expressed as:

𝑈k
𝑈e

= 33
35

𝑎o
4�̇� 2

𝑐2oℎ2𝛿2
(12)

In order to obtain an explicit expression for the transition time 𝑡𝜏 , it is convenient to introduce the dimensionless displacement
oefficient 𝐷 defined by Nakamura et al. [14] as:

𝐷 = 𝑡�̇�
𝛿
|

|

|

|𝑡𝜏
(13)

�̇�
𝛿
= 𝐷
𝑡𝜏

(14)

Combining Eqs. (12) and (14), the transition time can be expressed as:

𝑡𝜏 =
(

33𝐷2

35
𝑎o

4

𝑐o2ℎ2

)0.5

=
(

33𝐷2

35

)0.5 𝑎o
2

𝑐oℎ
(15)

If the displacement is expressed as a power law such as 𝛿 = 𝛽𝑡𝛾 , the value of the parameter 𝐷 is equal to the power 𝛾. When
applying a constant velocity, i.e., step acceleration, 𝐷 is equal to one. For a linear increment of velocity respect to time, i.e., linear
acceleration, 𝐷 is equal to two.

5. FE analysis of the DCB

In this section two different methods are presented to determine the transition time in a DCB test, a numerically-based method
nd a graphical method. The FE model used in the simulations to numerically determine and validate the transition time is presented
ext. At an initial stage, the model is used for the determination of a numerically-based expression of the transition time 𝑡𝜏 using

the Buckingham Pi theorem in a dimensional analysis. Then, a geometrical scalability analysis using different materials is performed
5

for the validation of the graphical method.
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Fig. 2. Geometry, mesh and boundary conditions considered for the numerical analysis of the DCB test.

.1. FE model description

A three-dimensional model of the DCB specimen is defined using the commercial software Abaqus/Explicit [34]. Solid elements
ith incompatible modes (C3D8I) are used to capture the bending response due to large displacements, avoiding the shear-locking
nd hourglass phenomena. Since the studies focus on the global bending behaviour and not on the stress distribution in the material,
nly two elements in the through-the-thickness direction are used for each of the arms of the specimen. As only the initial stage of
oading is considered and the crack propagation is ruled out (constant 𝑎o), the initial pre-crack is modelled merging nodes of the

two arms ahead of the crack tip.
One of the main problems of using the classical DCB test under high loading rates is that the specimen deforms unsymmetrically

when the load is applied to one of the arms while the other one is fixed to the test rig [7,9]. In order to simulate the ideal situation
with symmetrical opening, a prescribed velocity is applied to each of the specimen arms while all the displacements at the other
end are constrained. To reduce the computational time of the simulations, the specimen is meshed with regular hexahedral elements
using different mesh densities along its length. Near the crack tip a refined mesh is used with an element size of 1 mm, while away
from the crack tip, a coarse mesh with an element size of 3 mm is employed. A progressive mesh is defined in between. The width
of the elements is set to 1 mm in all areas. The boundary conditions and meshing of the model are shown in Fig. 2.

5.2. Numerically-based determination of the transition time 𝑡𝜏

A dimensionless framework based on the Buckingham Pi theorem [35] combined with an inverse analysis is used for the
numerical determination of the transition time. The use of FE simulations allows to obtain an accurate transition time that accounts
for the effects neglected in the approach reported in Section 4. Moreover, the dimensionless framework allows studying the scalability
of results between different geometries and/or materials in DCB specimens.

The dimensional analysis relies on the proper selection of the variables that influence the problem. For the determination of the
transition time, the ratio between the kinetic and elastic energies can be expressed as a function of all the involved variables as:

𝑈k
𝑈e

= 𝑓
(

𝑡, 𝛿, �̇�, 𝑐o, 𝑎o, ℎ, 𝑏, 𝑙
)

(16)

where the energy ratio 𝑈k∕𝑈e is the dependent variable. The variable 𝑡 is the time of the test, 𝛿 is the displacement and �̇� is the
maximum applied velocity (applied loading rate). The variable 𝑐o is the sound propagation velocity. The geometrical parameters of
the specimen are the initial crack length 𝑎o, the thickness of one arm ℎ, the width 𝑏 and the length 𝑙.

Taking into account that not all the variables affect the problem in the same way, a preliminary analysis is carried out to assess
he effect of the overall variables over the problem, and reduce these variables using the Buckingham Pi theorem (see Appendix A).
fter the results of the preliminary analysis, the length and the width have no effect on the energy ratio. Therefore, these variables
an be removed for the dimensional analysis. Another change with respect to the preliminary dimensional analysis is that as indicated
n Appendix A, it is better to use 𝑎o as a repeating variable instead of 𝛿. Therefore, the repeating variables for this analysis are 𝑡

and 𝑎o. With the change of the repeating variables, the dimensionless displacement coefficient 𝐷 defined by Nakamura et al. [14]
is not longer obtained. However, it is possible to introduce it as a combination of two 𝜋-parameters: 𝑡�̇�∕𝑎o and 𝑎o∕𝛿. This allows
to simplify the analysis in one 𝜋-parameter less and consider the coefficient 𝐷 in order to analyse the effect of the applied velocity
(see Sections 7.2 and 7.3). Thus, according to the Buckingham Pi theorem [35], the energy ratio can be defined as a function of
three 𝜋-parameters:

𝑈k
𝑈e

= 𝑓
(

𝜋1 =
𝑡𝑐o
𝑎o
, 𝜋2 = 𝐷 = 𝑡�̇�

𝛿
, 𝜋3 =

ℎ
𝑎o

)

(17)

To obtain the function that describes the relation from Eq. (17), a parametric study using FE simulations is carried out. In this
6

tudy, the effect of each 𝜋-parameter over the energy ratio is assessed in such a way that while one 𝜋-parameter is varied, the
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Table 1
Values for the dimensionless 𝜋-parameters for the scalability analysis.
𝑈k
𝑈e

𝑡𝑐o
𝑎o

𝐷 = 𝑡�̇�
𝛿

ℎ
𝑎o

𝑏
𝑎o

𝑙
𝑎o

Response Response 1 and 2 0.05 0.5 3variable variable

other 𝜋-parameters remain constant. A curve for each 𝜋 parameter versus the energy ratio is obtained. In order to obtain these
urves, the same approach from the simulations done in Appendix A is used, only changing the repeating variable (𝑎o). From each
-parameter curve, a fitting expression is obtained by means of a non-linear regression analysis, as summarised in Appendix B. With
his procedure, a general expression, Eq. (B.2), describing the variation of the energy ratio in function of the different variables
s obtained. However, this expression is too complex and results unpractical. Taking into account that the analysis is focused on
he time solution at which the energy ratio is one, the initial evolution of the energy ratio curve may be avoided. Then, a simpler
aster expression that combines all the 𝜋-parameters can be defined to obtain the decreasing part of the energy ratio curve for a
CB specimen as:

𝑈k
𝑈e

= 𝜓
𝑎4.402o

𝑐2.269o ℎ2.133 𝑡2.269
(18)

where 𝜓 is a polynomial function that accounts for the effects of the dimensionless parameter 𝐷 and it is described in Eq. (19).

𝜓 = −0.3876𝐷3 + 3.0778𝐷2 − 4.0069𝐷 + 1.8696 (19)

Equalling 𝑈k∕𝑈e = 1, a new expression for the transition time can be obtained:

𝑡𝜏 =

(

𝜓
𝑎4.402o

𝑐2.269o ℎ2.133

)0.44

= 𝜓0.44 𝑎1.937o

𝑐0.998o ℎ0.938
(20)

Comparing Eq. (15), analytical approach, and Eq. (20), numerically-based approach, it can be observed that both equations
follow the same pattern but with certain differences in the coefficients affecting 𝐷 and the exponents affecting 𝑎o, 𝑐o and ℎ. For
the case of a step acceleration, 𝐷 = 1, the coefficients for the analytical (taken in front of 𝑎2o∕𝑐oℎ) and the numerically-based
expressions (taken in front of 𝑎1.937o ∕𝑐0.998o ℎ0.938) are 0.971 and 0.770, respectively. For the case of a linear acceleration, 𝐷 = 2, these
coefficients for the analytical and the numerically-based expressions are 1.942 and 1.637, respectively. The indexes of the power
for the analytical expression for 𝑎o, 𝑐o and ℎ are 2, 1 and 1, respectively. While for the numerically-based expression are 1.937,
0.998 and 0.938, respectively. Therefore, despite the similitude of the expressions, relatively different predictions of the transition
time may be expected with both methods and a further analysis is required to elucidate which of the two is more accurate (see
Section 6).

5.3. Graphical determination of the transition time 𝑡𝜏

A third approach is based on the graphical representation of the evolution of the energy ratio obtained through FE simulation
versus time or the dimensionless time parameter 𝑡𝑐o∕𝑎o (for each FE simulation, 𝑎o and 𝑐o remain constant and only 𝑡 varies).
Following the same concept of Nakamura et al. [14], the values of the transition time 𝑡𝜏 or the dimensionless time parameter
𝑡𝜏𝑐o∕𝑎o are obtained when the energy ratio is equal to one (𝑈k∕𝑈e = 1).

This graphical method, as a dimensionless approach using 𝑡𝑐o∕𝑎o, can be used not only for the particular simulation, but also
for scalable similar problems. This signifies that the results obtained with this method are not only valid for the case considered
but also for any DCB specimen, where the combination of parameters result in the same values of 𝜋2 and 𝜋3, independently of the
material or initial crack length. The use of this method is shown in the following section for a geometrical scalability analysis.

5.4. Geometrical scalability analysis for different materials

A parametric FE analysis is carried out to validate the capabilities of the Buckingham Pi theorem approach and the expression
for the determination of the transition time proposed in Eq. (20) in terms of geometrical scalability and dynamic similarity.

The parametric study considers a wide range of scenarios, varying the geometrical and material variables while keeping the other
𝜋-parameters introduced in Eq. (17) constant, as indicated in Table 1. The resulting energy ratio versus time and the dimensionless
time parameter (𝜋1-parameter) curves allow to illustrate the graphical method proposed in Section 5.3. Although as shown in
Section 4 and Appendix A, the length and the width of the specimen do not affect the results, they are defined accordingly to
the size of the crack length to maintain the value of the corresponding 𝜋-parameters as constant.

All the simulations are carried out considering a maximum velocity of 2 m/s for the applied load. However, two different
scenarios are taken into account: (i) step acceleration (𝐷 = 1) and (ii) linear acceleration (𝐷 = 2). Three different materials are
considered: steel and two different Carbon Fibre Reinforced Polymers (CFRPs), Hexply AS4/8552 and TeXtreme®, whose properties
are summarised in Table 2. For each material, three different cases are considered based on the different values of the geometrical
7
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Table 2
Material properties for the scalability analysis.

𝜌 [kg/m3] 𝐸1 [GPa] 𝜈12 𝑐o= (𝐸∕𝜌)1∕2 [m/s]

Steel 7850 210.0 0.3 5421.9
AS4/8552 [38] 1590 128.0 0.35 9578.2
TeXtreme® [39] 1500 61.4 0.042 6405.3

Table 3
Values of the geometrical variables for each material configura-
tion in the geometrical scalability analysis.

Geom. variables Case 1 Case 2 Case 3

𝑎o [mm] 50 25 70
ℎ [mm] 2.5 1.25 3.5
𝑏 [mm] 25 12.5 35
𝑙 [mm] 150 75 210

variables. These three cases are reported in Table 3. For each case, the values of the dimensionless 𝜋-parameters listed in Table 1
are respected.

During the parametric analysis, the geometry and mesh of the FE model reported in Section 5.1 are adapted to the corresponding
configuration. The mesh for Case 1 has 1 mm elements in the refined mesh zone (near the crack tip), while 3 mm mesh size is used
in the region away from the crack tip (the opposite ends). The mesh size is scaled up proportionally for Case 2 and Case 3. The
kinetic energy 𝑈k and the elastic energy 𝑈e of the specimens are directly obtained from the simulation.

Fig. 3 presents the results of the scalability analysis. The scalability is assessed for each of the three different materials by means
of the evolution of the energy ratio. The charts in the left column of Fig. 3 show the energy ratio versus time curves for the three
different materials (steel, AS4/8552 and TeXtreme®), the three geometrical cases and the two velocity profiles considered. As it
can be observed for each velocity condition, the energy ratio evolution is equal for the three geometrical cases but with a certain
time delay or offset. As seen in the figures, the energy ratio increases from zero in an unsteady manner until a maximum value is
reached. Further, the energy ratio decreases rapidly below 1, which corresponds to the transition time defined by Nakamura et al.
[14,15], and with a global tendency towards 0. It can also be seen that for the same geometrical case, the evolution of the energy
ratio is steadier when 𝐷 = 2 but the maximum energy ratio and the transition time occur later.

On the other hand, the charts in the right column of Fig. 3 show the curves of the variation of the energy ratio versus the
dimensionless time parameter. It can be observed that for each material and for each velocity condition, the energy ratio profile is
the same for the three geometrical cases. Accordingly, one value of 𝑡𝜏𝑐o∕𝑎o determines the transition time for the three different
scalable cases. In addition, thanks to the scalability analysis carried out, the obtained transition time is valid for any DCB test,
independently of the corresponding material and initial crack length, provided that the values of 𝜋2 and 𝜋3 are the same.

6. Assessment of the proposed methods to determine the transition time

The different methods to determine the transition time can be assessed using the FE simulations of the scalability analysis.
First, the evolution of the energy ratio versus time obtained from the FE simulations is plotted versus time, as shown in Fig. 4a
for 𝐷 = 1 and Fig. 4b for 𝐷 = 2, which corresponds to the graphical method. It is worth remarking that the results for the three
onfigurations or cases considered in Section 5.4 are very similar. Thus, for conciseness, only the results for Case 1 are represented
n Fig. 4. In addition, for the sake of clarity, the figure only presents the time range after which the maximum value of the energy
atio is achieved. Then, the variations of the energy ratio predicted using the analytical (Eq. (12)) and the numerically-based
Eq. (18)) methods are included for comparison. In this way, it is not only possible to assess the accuracy of the analytical and
he numerically-based methods in predicting the transition time but also the good approximation in capturing the evolution of the
nergy ratio.

From Fig. 4, a general agreement is seen between the different methods, particularly around the transition time region
𝑈k∕𝑈e = 1). However, after the transition time, the analytical and numerically-based expressions show a different tendency than
he graphical method from the FE simulation, especially for the case with 𝐷 = 1. This might be due to the effect of the infinite

acceleration profile at 𝑡 = 0 which cause vibrations in the arms of the specimen adding kinetic energy from the wave propagation
and other effects that are not taken into account in Eqs. (12) and (18).

Focusing on the transition time, an assessment of the analytical and numerical expressions, Eq. (15) and (20) respectively, can
be done. The obtained transition time values are compared with respect to the values from the graphical method, which can be
considered as the reference values, as shown in Table 4.

Analysing the results summarised in Table 4, it can be concluded that there is a good global agreement between the three
approaches. The numerically-based approach shows a slightly better accuracy (the maximum difference is of 14.8%), than the
analytical method (the maximum difference is of 19.2%). Only in one case (steel and linear acceleration (𝐷 = 2)) the difference
is lower for the analytical approach. On the other hand, the differences are lower for linear acceleration than for step acceleration
8

(𝐷 = 1), except for the numerically-based approach and steel. The global tendency observed can be explained by the fact that the
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Fig. 3. Variation of the energy ratio versus time (a, c, e) and the dimensionless time parameter (b, d, f). Curves (a) and (b) for steel, curves (c) and (d) for
AS4/8552, and curves (e) and (f) for TeXtreme®.

Table 4
Results of the transition time for Case 1 using the graphical approach, the analytical expression and the
numerically-based expression, showing the percentage of difference (%DIFR) versus the graphical method. All
values of 𝜏 are in [ms].

Material 𝐷 Graphic 𝑡𝜏 Analytical 𝑡𝜏 % Numerically-based %
(FE Sim.) (Eq. (15)) DIFR 𝑡𝜏 (Eq. (20)) DIFR

Steel 1 0.196 0.179 8.7 0.195 0.4
2 0.362 0.358 1.1 0.415 14.8

AS4/8552 1 0.125 0.101 19.2 0.113 9.9
2 0.239 0.203 15.1 0.239 0.2

TeXtreme® 1 0.174 0.152 12.6 0.158 9.3
2 0.330 0.303 8.2 0.336 1.8

analytical method is based on the assumptions of the Euler–Bernoulli beam theory, and the numerically based equation is obtained
using non-linear FE simulations. Also a linear acceleration is less abrupt than a step acceleration case, which cannot be so accurately
predicted by general approximations. Finally, the numerically-based approach comes from a global fitting of different configurations,
losing accuracy in some of the cases but minimising the difference in a global response.
9
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Fig. 4. Comparison of curves of energy ratio for Case 1 from the graphical method, the analytical method and the numerically-based method for (a) step
acceleration (𝐷 = 1) and (b) linear acceleration (𝐷 = 2).

From the assessment of the different approaches, it is recommended to use the numerically-based method to obtain the transition
time. Even so, performing FE simulations to use the graphical method will allow to get not only the transition time but also the
general behaviour of the energy ratio.

7. Loading rate effect on the time to fracture

In order to develop the time-based threshold criterion of Eq. (6) for a DCB specimen, in addition to the analysis of the transition
time carried out in the previous section, it is also necessary to take into account how the time to fracture behaves. Therefore,
in this section, a numerical investigation is carried out to study the effects of the velocity profile and its maximum value on the
transition time behaviour in presence of a fracture event, i.e., when the initiation of the crack propagation is considered. The FE
model presented in Section 5.1 is used here with some modifications.

7.1. FE model for crack propagation

Since the simulations in this section consider the time for the initiation of crack propagation, 𝑡f, a new numerical model based
n the FE model of Section 5.1 is defined. The mesh is refined and zero-thickness cohesive elements COH3D8 are added to capture
he onset of delamination. The modelling strategy is described in Fig. 5. The cohesive constitutive behaviour considered is from
baqus’ library, where the onset of delamination is defined by a quadratic stress-based criterion, whereas delamination propagation

s characterised by the mixed mode energy-based propagation criterion proposed by Benzeggagh and Kenane [40].
A refined mesh of the model is used to account for the interface delamination with biased transition from coarse mesh to fine

esh (see Fig. 2). The Fracture Process Zone (FPZ) and the element size in the direction of crack propagation are defined based on
he approach proposed by Soto et al. [41]. The corresponding length of the FPZ is 1.21 mm and the element size selected around
he crack tip is 0.3 mm, thus, ensuring a minimum of three cohesive elements to model the interlaminar FPZ. A maximum size of
.6 mm is used at the ends of the specimen. An element size of 0.625 mm is defined in the width direction of the whole specimen.

The DCB specimen modelled has an initial crack length of 50 mm, an arm thickness of 1.5 mm, a length of 150 mm, and a width
f 25 mm. The material used is Hexply AS4/8552 CFRP composite, with the following elastic properties [38]: 𝐸1 = 128000 MPa;
𝐸2 = 𝐸3 = 7630 MPa; 𝐺12 = 𝐺13 = 4358 MPa; 𝐺23 = 2631 MPa; 𝜈12 = 𝜈13 = 0.35 and 𝜈23 = 0.45. The interface material properties used
are [38]: 𝐺Ic = 0.28 N/mm; 𝐺IIc = 0.79 N/mm; 𝜏I = 26 MPa; 𝜏II = 78.4 MPa and 𝜂 = 1.45.

Fig. 5. Sketch of modelling strategy using solid elements with incompatible modes (C3D8I) linked with zero-thickness cohesive elements (COH3D8) to capture
the initiation of fracture propagation.
10
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Table 5
Profiles of acceleration for the velocity profile analysis.

Profile Acceleration Time to constant
value [m/s2] velocity [ms]

P1 ∞ 0 (𝐷 = 1)
P2 60 × 103 0.1
P3 40 × 103 0.15
P4 20 × 103 0.3
P5 12 × 103 0.5
P6 6 × 103 1
P7 0.33 × 103 1.8 (𝐷 = 2)

Fig. 6. Velocity profiles of the loading rates response analysis.

7.2. Analysis of the velocity profile

A study of the effect of the velocity profile over the transition time is performed considering different profiles of acceleration,
from step acceleration (𝐷 = 1) to linear acceleration (𝐷 = 2) for a maximum value of velocity of 6 m/s. The intermediate profiles
have a ramp acceleration behaviour, presenting an initial stage of linear acceleration until reaching a state of constant velocity until
a final time of 1.8 ms. The description of the different velocity profiles is shown in Table 5 and illustrated in Fig. 6.

Fig. 7 shows the numerical results from the velocity profile analysis. For simplicity and better understanding of the global
behaviour around the transition time zone, the initial part of the curves is omitted and, log–log axes are used to represent the
evolution of the energy ratio versus the dimensionless time parameter. In the figure, the vertical dashed lines indicate the time when
the first row of cohesive elements located at the pre-crack are fully degraded, which can be considered as the 𝑡f. The horizontal lines
corresponding to an energy ratio equal to 1 (transition time 𝑡𝜏 ) and to 0.2 (threshold criterion 𝑡c) are also included in the figure for

Fig. 7. Variation of the energy ratio versus the dimensionless time parameter for the AS4/8552 composite material with a maximum velocity of 6 m/s and
ifferent velocity profiles. The 𝑡f is indicated in each case with vertical dashed lines.
11
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reference. If the 20% energy ratio limit is crossed in several times for a particular case, in general, the threshold time 𝑡c should be
taken as the last time when the energy ratio overpasses the defined limit value.

The curves in Fig. 7 show a different response depending on the velocity profile. There is a gradual change in the behaviour of
the maximum energy ratio, as well as the waviness of the curves, from profile P1 to profile P7. When decreasing the acceleration,
both the transition time and the time to fracture increase. This could be reasoned as when the acceleration decreases, a shorter
displacement is achieved in a longer time. On the contrary, as 𝐷 gets closer to one the acceleration is higher, reaching an infinite
acceleration when 𝐷 = 1. Additionally, it can be noticed that there is no virtual change in the energy ratio behaviour when moving
rom profile P5 to P7. This means that there is a critical value of acceleration in the velocity profiles below which the energy ratio
ehaves equal to the case of linear acceleration 𝐷 = 2. Even so, it is worth noting that the relative difference in fracture time from

case to case is different to the relative difference in transition time. Still, in all the cases, the fracture time is sufficiently larger
than the transition time to consider that for this value of maximum velocity, the effect of the velocity profile can be neglected.
This is important for the analysis of the effect of the maximum value of the applied velocity, Section 7.3, and the analysis of the
proportionality of the threshold criterion, Section 8. In fact, after the results shown in Fig. 7, it can be considered that the case of
linear acceleration, 𝐷 = 2, is representative for a wide range of practical cases and it is only necessary to consider the situations
where 𝐷 is equal to 1 or 2.

7.3. Analysis of the maximum value of velocity

A study of the effect of the maximum value of applied velocity on the transition time is carried out considering a step acceleration
𝐷 = 1) and a linear acceleration (𝐷 = 2). Seven maximum velocities (1, 2, 4, 6, 10, 16 and 20 m/s) are considered to get a wide
ange of loading rates and to determine the limits of using the transition time for a quasi-static analysis in DCB tests. The simulation
ime is adjusted to reach the initiation of fracture propagation in each case without extending them unnecessarily. The resulting
volutions of the energy ratio for all the considered velocity values when 𝐷 = 1 and 𝐷 = 2 are reported in Fig. 8. Similar to what is

observed in Fig. 3, Fig. 8 presents a different pattern in the variation of the energy ratio when 𝐷 is equal to 1 (Fig. 8a) or when it is
equal to 2 (Fig. 8b). In both cases, the energy ratio shows a high amount of kinetic energy at the beginning, in the early load stage.
For the step acceleration case, 𝐷 = 1, the curves have a wavy behaviour independent of the velocity applied, even for low energy
ratios (below 0.1). If an infinite acceleration is applied to reach the constant velocity, stress waves are generated and propagated
through the specimen. Even so, there is a similar tendency in the global behaviour of the curves.

It can be observed in Fig. 8a that the value of the transition time is the same for all the cases except for 16 and 20 m/s, where
the propagation of the crack starts before the transition time. For these cases, the variation in the evolution of the energy ratio
due to the increase of the internal energy during the crack propagation event, affects the determination of the transition time.

As it can be seen in Fig. 8b, the evolution of the energy ratio is practically the same for all the considered velocities when a
linear acceleration is used, 𝐷 = 2. The wavy behaviour is not as prominent as in Fig. 8a since the kinetic energy is becoming less
relevant with the evolution of time during the test. The transition time remains practically the same for all the cases since the linear
acceleration allows to reach the maximum value of velocity incrementally, and in turn, increasing the kinetic energy progressively.

Although Takashima and Minami [32] demonstrated that for impact velocities higher than 1 m/s (step acceleration assumed),
the transition time decreases when increasing the velocity in a Charpy test configuration. However, the current study exhibits that
the transition time is practically independent of the maximum value of the applied velocity for a DCB test, as seen in Fig. 8. In fact,
the transition time is exactly the same for all the considered values of the maximum velocity when 𝐷 = 2 and it is only different
for the two highest values of velocity when 𝐷 = 1, where it may have been affected by the starting of crack propagation.

8. Assessment of the time-based threshold criterion

The transition times obtained in the previous analysis are compared with the time to fracture to determine the proportionality of
the time-based threshold criterion of Eq. (6). In all the cases considered in the study of the velocity profile carried out in Section 7.2
for a maximum velocity of 6 m/s (see Fig. 7), the initiation of the fracture propagation takes place when the energy ratio is below
1. In all the profiles the fracture propagation takes place in a time larger than twice the corresponding transition time, fulfilling
the time criterion proposed by Nakamura et al. [14,15]. It can be also observed that for all the cases the initiation of the fracture
propagation is predicted when the energy ratio is below 20%, in agreement with the limit established in Section 3. However,
although the transition time is the same for profiles P5 to P7 and almost the same for P4, the time to fracture in these four cases
varies considerably. Even so, imposing that the initiation of fracture propagation must take place once the energy ratio is below
20% ensures that the dynamic effects can be neglected. This is why it is important to carefully assess the transition time and the
threshold criterion for each combination of parameters.

Analysing the results of the maximum value of the velocity carried out in Section 7.3, for the case of step acceleration, 𝐷 = 1
(Fig. 8a), it is observed that for values of the maximum velocity equal to 16 and 20 m/s, the time to fracture is lower than the
transition time. For the case of a maximum velocity of 10 m/s, the fracture event takes place shortly after the transition time.
Therefore, in all these three cases, the time criterion of the fracture time being at least twice the transition time is not fulfilled nor
the criterion of an energy ratio below 20%. This implies that for the considered conditions, a quasi-static approach can be used only
for velocities below 6 m/s. For a linear acceleration, 𝐷 = 2 (Fig. 8b), the fracture event is reached in all the cases after the transition
time, which results to be the same for all. In fact, in all the cases except for a velocity of 20 m/s, the time-based threshold criterion
12

of an energy ratio lower than 20% is assessed. The case of a maximum velocity of 20 m/s is in the limit of the threshold criterion,
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Fig. 8. Variation of the energy ratio versus the dimensionless time parameter with different maximum values of the applied velocity for (a) step acceleration
(𝐷 = 1) and (b) linear acceleration (𝐷 = 2). The 𝑡f is indicated in each case with vertical dashed lines.

so it is not clear if a quasi-static analysis can be safely used. However, taking into account that the fracture event is predicted for
an energy ratio of about 30%, thus above the limit established, dynamic effects cannot be neglected and a dynamic analysis must
be considered.

After the analysis of the evolution of the energy ratio for all the cases considered in the previous sections and taking into
account the effect of the different parameters on the time to fracture, it can be concluded that to rule out any dynamic effect on
the initiation of fracture propagation, the contribution of the kinetic energy should be less than 20%. Additionally, a criterion only
based on the proportionality between the time to fracture with respect to the transition time might not be always enough to neglect
the contribution of this kinetic energy. Nevertheless, a criterion based on the comparison between the level of energy ratio may be
impractical and difficult to implement and assess because of the need of FE simulations to obtain the energy ratio. For this reason,
a time-based criterion based on the assumption of an energy ratio below 20% is derived. From Eq. (18) and imposing 𝑈k∕𝑈e = 0.2,
t is possible to obtain a value for the threshold time 𝑡c through the coefficient 𝛼 as in Eq. (6). The threshold criterion for the
umerically-based approach can be now defined as:

𝑡f > 𝑡c = 2.03𝑡𝜏 (21)

After applying and comparing the threshold time criterion proposed by Nakamura et al. [14,15] and the criterion based on the
evel of the energy ratio proposed in this work on the results of the evolution of the energy ratio of the previous sections (Eq. (21)),
t can be concluded that both criteria are almost equivalent. However, the criterion proposed in this work is based on an energies
nalysis which has a direct relation with the test rather than imposing an arbitrary proportionality of time (in fact, the criterion
roposed by Nakamura et al. considers a coefficient between 2 and 3, without further clarification on how to select these values).

In order to summarise the previous discussion, Fig. 9 represents the variation of the transition time and the time to fracture
ith respect the value of maximum velocity. Fig. 9a corresponds to the case of a step acceleration, while a linear acceleration is

onsidered in Fig. 9b. In both cases, the threshold criterion with 𝛼 = 2.03 in Eq. (21), is included for better visualisation.
It is worth noting that the results in Fig. 9 correspond to the case of a DCB specimen made of unidirectional AS4/8552 carbon

poxy composite with 𝑎o = 50 mm, ℎ = 1.5 mm, 𝑙 = 150 mm and 𝑏 = 25 mm. Thanks to the scalability analysis carried out, these
13

urves are valid for any DCB specimen made of any possible material provided that ℎ∕𝑎o is equal to 0.03. This makes these results
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Fig. 9. Dimensionless time parameter for transition time and the time to fracture in a DCB specimen of AS4/8552 composite material versus the maximum
value of velocity applied using (a) step acceleration (𝐷 = 1) and (b) linear acceleration (𝐷 = 2). The vertical line represents the velocity until which a quasi-static
analysis can be performed. The green section represents the cases that fulfil the threshold criterion proposed.

very useful for composite materials because the ASTM D5528-13 [42] standard considers an initial crack length of 50 mm and 3 mm
thick specimens.

There are currently few experimental data on dynamic delamination tests available in the literature [5,7,37] that can be used to
validate the proposed method. Using the data from the work of Blackman et al. [7,37] for the case of epoxy/carbon-fibre composite
at test rates from 0.65 m/s up to 20.50 m/s, applying the numerically-based approach to fulfil the threshold criterion a quasi-static
scheme analysis can be safely used for all the test rates. Although in their work Blackman et al. applied the dynamic analysis
approach they proposed, they verified that at 8 m/s the contribution of the kinetic energy is negligible.

9. Conclusions

The transition time concept has been introduced for DCB specimens of different materials, proposing a time-based threshold
criterion to define when the inertia effects can be neglected and a quasi-static data reduction method can be used. Three different
methods to determine the transition time for the DCB test have been proposed: an analytical approach, a numerically-based approach
and a graphical method. A dimensional analysis has been carried out using the Buckingham Pi theorem to obtain the numerically-
based expression. Additionally, a geometrical scalability study has been performed to validate the use of the graphical method and
the numerically-based approach. The numerically-based expression has proved to be a powerful tool to determine the transition
time, resulting in smaller differences with respect to the FE simulation in comparison to the analytical expression.

The effect of the velocity profile and its maximum value on the dynamical response of the system has been also analysed, showing
the importance of the dimensionless parameter 𝐷. The transition time has been proved to be independent of the maximum velocity
14
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applied when 𝐷 = 2 and up to a certain value when 𝐷 = 1. However, the velocity profile will limit the use of the quasi-static analysis
for higher maximum velocity values, especially when a step acceleration or close similar loading is applied (𝐷 = 1).

Thanks to the scalability analysis and the results of the velocity profile and its maximum value, the graphical method has proved
o be useful to define an energy ratio curve for a particular DCB specimen. The obtained curve can be extrapolated to different DCB
pecimen configurations, geometries and materials, provided that the 𝜋-parameters 𝜋2 and 𝜋3 are kept constant.

The proportionality of the time-based threshold criterion has been defined based on the limit of energy ratio of 20% as 𝑡f at least
2.03 times larger than 𝑡𝜏 . The results show that the proposed approach to determine the transition time and the use of the time-based
threshold criterion might be useful tools to define when a quasi-static data-reduction scheme can be applied to calculate the mode I
fracture toughness in symmetrical opening DCB tests under high loading rates. It is worth mentioning that the analysis is restricted
to bending profiles assumed by quasi-static beam theory for the analytical approach. However, when using the numerically-based
approach, the non-linear simulations already account for the bending profiles affected by the loading rates.
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Appendix A. Preliminary dimensional analysis

In order to select the variables that affect the problem of the transition time in a DCB test under high loading rates, a preliminary
dimensional study is carried out. Here, all the possible variables involved in the problem are considered, studying their effects and
thereby choosing the critical ones for the reduced analysis of Section 5.2. The initial 𝜋-variables selected can be described as:

𝑈k
𝑈e

= 𝑓
(

𝛿, 𝑡, �̇�, 𝑐o, 𝑎o, ℎ, 𝑏, 𝑙
)

(A.1)

where 𝑈k∕𝑈e is the dependent variable, while 𝛿 and 𝑡 are selected as the repeatable variables in order to obtain a 𝜋-parameter
equivalent to the dimensionless displacement coefficient 𝐷 introduced by Nakamura et al. [14] (see Eq. (13)).

According to the Buckingham Pi theorem, the relation can be described as follows:

𝑈k
𝑈e

= 𝑓
(

𝜋1p =
𝑡𝑐o
𝛿
, 𝜋2p = 𝑡�̇�

𝛿
, 𝜋3p =

𝑎o
𝛿
, 𝜋4p = ℎ

𝛿
, 𝜋5p = 𝑏

𝛿
, 𝜋6p = 𝑙

𝛿

)

(A.2)

To analyse the effect of each preliminary 𝜋-parameter, different FE simulations are carried out using the FE model described in
ection 5.1. For the parametric study, the geometrical reference values for the models are: 𝑙 = 200 mm, 𝑏 = 20 mm, ℎ = 1.5 mm
nd 𝑎o = 50 mm. The material used in the study is Hexply AS4/8552 CFRP, whose properties are listed in Table 2. Besides, a linear
cceleration (𝐷 = 2) is considered with a maximum velocity of 2 m/s for a time of 0.5 ms.

The parametric study is carried out by varying the variables that define the 𝜋-parameters according to the ranges and increments
efined in Table A.1. It is worth noting that while one of the 𝜋-parameters is varied, the rest of the 𝜋-parameters remain constant.
he variable 𝑐o accounts for the change of the material properties, while the dimensionless parameter 𝐷 takes the effect of the
elocity.

Fig. A.1 shows the results of the preliminary parametric study. As it can be observed, there is no effect of the 𝜋6p-parameter, that
ccounts for the length of the specimen (see Fig. A.1f). Besides, the effect of the 𝜋5p-parameter, that accounts for the specimen width,
s negligible, as it can be seen in Fig. A.1e. Accordingly, it is possible to discard these variables from the reduced dimensional analysis
eported in Section 5.2. On the other hand, the rest of variables have an effect on the energy ratio and hence they are retained for
he reduced dimensional analysis.

An additional remark is that when using the displacement 𝛿 as a repeating variable, it is not possible to vary the 𝜋1p-parameter
for a given material without varying 𝑡 and 𝛿 and, thus, also vary parameter 𝜋2p, which also depends on 𝑡 and 𝛿. This would require
several simulations to obtain the curve of energy ratio. However, when using the crack length as repeating variable, it is possible
to obtain the energy ratio curve with the information of only one FE simulation through the change of 𝑡 but keeping constant 𝑎o
and the ratio 𝑡∕𝛿. This is why, for the reduced dimensional analysis reported in Section 5.2, the crack length is used as repeating
15

variable instead of the displacement.



Engineering Fracture Mechanics 249 (2021) 107754S.A. Medina et al.
Table A.1
Range of variation of the variables for the different preliminary 𝜋-parameters.
𝜋-parameter Variable to modify Min. value Max. value Increment

𝜋1p 𝑐o [m/s] 2000 14000 250
𝜋2p �̇� [m/s] 0.1 3 0.1
𝜋3p 𝑎o [mm] 20 110 3
𝜋4p ℎ [mm] 0.4 3 0.1
𝜋5p 𝑏 [mm] 10 40 1
𝜋6p 𝑙 [mm] 80 200 5

Fig. A.1. Curves of the energy ratio in terms of the preliminary 𝜋-parameters for (a) 𝜋1p, (b) 𝜋2p, (c) 𝜋3p, (d) 𝜋4p, (e) 𝜋5p and (f) 𝜋6p.

Appendix B. Fitting curves to obtain the numerically-based expression

This appendix shows the process to obtain a set of fitting expressions for the variation of the energy ratio versus each 𝜋-parameter
16

considered in the reduced dimensional analysis of Section 5.2. For this parametric analysis, the results of the FE simulations for the
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Fig. B.1. Fitting of the energy ratio curves in terms of the 𝜋-parameters for the reduced analysis (a) 𝜋1, (b) 𝜋2 and (c) 𝜋3.

variables 𝑐o, 𝐷 and ℎ from Appendix A are used. In order to obtain the energy ratio curves, the variables are set to the dimensionless
form of the particular 𝜋-parameter associated, knowing that 𝑎o and 𝑡 are the repeating variables.

First, an expression that defines the complete variation of the energy ratio is adjusted using the least squares regression method
for each 𝜋-parameter according to the curves of Fig. B.1. The fitting analysis describes the full behaviour of the 𝜋-parameters
curves, which means including the initial stage of growth of the energy ratio where the kinetic energy is increasing in the system.
The expressions obtained for each 𝜋-parameter can be expressed as:

for 𝜋1 ∶
𝑈k
𝑈e

=
𝜋1

(42.9244 − 2.362𝜋1 + 0.0395𝜋12)

for 𝜋2 ∶
𝑈k
𝑈e

= 0.253792 − 0.543916𝜋2 + 0.417791𝜋22 − 0.052619𝜋23

for 𝜋3 ∶
𝑈k
𝑈e

= 1
(0.8867 − 145.8592𝜋3 + 8345.633𝜋32)

(B.1)

With these expressions, the equation that describes the behaviour of the energy ratio is obtained as the product of the expressions
of Eq. (B.1) for the 𝜋-parameters. The resulting expression for the energy ratio is:

𝑈k
𝑈e

= 0.0525
(

𝜓
𝜉

)

𝑎o
3𝑐o𝑡 (B.2)

where 𝜓 is a polynomial function that accounts for the effects of the dimensionless parameter 𝐷 and it is described as follows:

𝜓 = −0.3876𝐷3 + 3.0778𝐷2 − 4.0069𝐷 + 1.8696 (B.3)

On the other hand, 𝜉 is a function that accounts for the interaction of 𝑎o, ℎ, 𝑐o and 𝑡. The function can be expressed as follows:

𝜉 =
(

𝜆1𝑎o
2 + 𝜆2𝑎oℎ + 𝜆3ℎ2

) (

𝜆4𝑎o
2 + 𝜆5𝑎o𝑐o𝑡 + 𝜆6𝑐o2𝑡2

)

(B.4)

where 𝜆1 = 0.076; 𝜆2 = −12.529; 𝜆3 = 716.884; 𝜆4 = 193.314; 𝜆5 = −10.638 and 𝜆6 = 0.178.
The use of Eq. (B.2) to obtain the transition time derives in a complex solution, being impractical to use. For this reason, a new
17

fitting analysis is carried out only taking into account the part of the curves relevant for the determination of the transition time,
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i.e. once the energy ratio starts to decrease, as shown in Fig. B.1. Following the same procedure as for the full behaviour of the
energy ratio, the fitting expressions adjusted using the least squares regression method are:

for 𝜋1 ∶
𝑈k
𝑈e

= 1.5237 × 104𝜋1−2.269

for 𝜋2 ∶
𝑈k
𝑈e

= −0.0526𝜋23 + 0.4178𝜋22 − 0.5439𝜋2 + 0.2538

for 𝜋3 ∶
𝑈k
𝑈e

= 2.1632 × 10−4𝜋3−2.133

(B.5)

The equation that describes the behaviour of the energy ratio is obtained once again as the product of the 𝜋-parameters. From
this analysis, a new expression that involves the DCB test parameters can be obtained as:

𝑈k
𝑈e

= 𝜓
𝑎4.402o

𝑐2.269o ℎ2.133 𝑡2.269
(B.6)
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