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Abstract: Preclinical testing and validation of therapeutic strategies developed for patients with type
1 diabetes (T1D) require a cohort of virtual patients (VPs). However, current simulators provide
a limited number of VPs, lack real-life scenarios, and inadequately represent intra- and inter-day
variability in insulin sensitivity and blood glucose (BG) profile. The generation of a realistic scenario
was achieved by using the meal patterns, insulin profiles (basal and bolus), and exercise sessions
estimated as disturbances using clinical data from a cohort of 14 T1D patients using the Medtronic
640G insulin pump provided by the Hospital Clinic de Barcelona. The UVa/Padova’s cohort of
adult patients was used for the generation of a new cohort of VPs. Insulin model parameters were
optimized and adjusted in a day-by-day fashion to replicate the clinical data to create a cohort of 75
VPs. All primary and secondary outcomes reflecting the BG profile of a T1D patient were analyzed
and compared to the clinical data. The mean BG 166.3 versus 162.2 mg/dL (p = 0.19), coefficient of
variation 32% versus 33% (p = 0.54), and percent of time in range (70 to 180 mg/dL) 59.6% versus
66.8% (p = 0.35) were achieved. The proposed methodology for generating a cohort of VPs is capable
of mimicking the BG metrics of a real cohort of T1D patients from the Hospital Clinic de Barcelona. It
can adopt the inter-day variations in the BG profile, similar to the observed clinical data, and thus
provide a benchmark for preclinical testing of control techniques and therapy strategies for T1D
patients.

Keywords: type 1 diabetes; virtual patients; type 1 diabetes simulator; artificial pancreas

1. Introduction

Type 1 diabetes (T'1D) is a disorder characterized by the destruction of insulin pro-
ducing beta cells in the pancreas due to an autoimmune reaction [1]. A great amount of
research effort has been made in the past few decades to automate the insulin delivery for
the treatment of people with T1D, leading to a rapid increase in artificial pancreas (AP)
technology. A basic AP system integrates a closed-loop control algorithm, continuous glu-
cose monitoring (CGM), and subcutaneous continuous insulin infusion for optimum blood
glucose (BG) control [2]. For pre-clinical testing and validation of therapeutic strategies
used in AP technology, various simulators have been developed. The most well-known
simulators used in AP research are the University of Virginia/Padova (UVa/Padova) sim-
ulator [3], Oregon Health and Science University (OHSU) simulator [4], and Cambridge
Simulator [5]. The use of simulators is vital in the development of healthcare technologies,
which allows significant research to be performed at an accelerated rate while circum-
venting unnecessary risks to the patient and costs related to animal or clinical testing [6].
Simulators have played a prominent role in the development of many important areas
of biomedical research, such as anesthesia administration [7], HIV therapy [8], minimal
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invasive surgery techniques [9], acute ischemic stroke treatment [10], drugs’ cardiotoxicity
assessment [11], drugs’” metabolism prediction [12], vaccine target identification (COVID-
19) [13], etc. Due to its flexibility and relative low patient risk, in silico experimentation via
simulators is becoming increasingly used in healthcare research centers [14]. In addition,
in silico testing of therapeutic approaches for the management of T1D is considered a
prerequisite before proceeding to clinical trials [15]. However, it is important to note that
computer simulations provide a safe ground for testing the new therapeutic strategies but
cannot substitute clinical trials.

The main challenges for BG regulation in T1D are the disturbances in terms of meals,
exercise, stress, and variability (inter-patient and intra-patient). The UVa/Padova simulator
allows the incorporation of different meal scenarios for the virtual patient (VP) population,
allowing researchers to analyze the effectiveness of a control algorithm [16-22], validate
optimization and adaptation strategies for insulin delivery [23-26], develop disturbance
detection algorithms for meals [27-29] and exercise [30], develop methods for mitigating the
risks of hypoglycemia [31,32], and integrate machine learning algorithms into conventional
diabetes therapy and bolus calculator for the treatment of T1D patients [33-35]. In the
literature, the meal scenarios used for testing BG regulation effectiveness are based on
typical values considering three meals per day [36—47]. However, in real life, the amount
of carbohydrate intake and number of meals per day may vary patient to patient. Data
from a cohort of 14 T1D patients obtained from the Hospital Clinic de Barcelona shows
that daily carbohydrate (median) intake ranges from 36.79 to 186.43 g (SD = 46.85) with 3
to 7 (SD = 1.27) meals (median) per day. This difference in conventional and real scenarios
can lead to under- or over-performance of the tool or methodology developed for the
treatment of T1D patients. Therefore, real-life scenarios that include meals, exercise, inter-
day BG variability, and other variations for use in simulation are still lacking. These
types of scenarios for developing T1D management technology are vital in providing key
information about safety and limitations of proposed treatment strategies, while avoiding
unnecessary expenses.

Additionally, the virtual patients (VPs) available in the current T1D simulators exclude
certain sub-cohorts of patients, such as high variability, hypoglycemic-prone, hypoglycemia
unawareness, pregnant, menstruating, and additional comorbidities. Moreover, current
simulators only offer a limited number of VPs. An academic version of the UVa/Padova
simulator available for researchers consists of three groups of 10 VPs corresponding to
children, adolescent, and adult populations. The original Oregon Health and Science Uni-
versity (OHSU) (2004) [48] simulator is composed of 6 VPs, and Chassin et al. introduced a
cohort comprised of 18 virtual subjects [49].

To address current downfalls of VP populations in simulators, several methodologies
to generate larger cohorts of T1D VPs have been developed. Haider et al. [50] proposed
a probabilistic method for the generation of virtual subjects. Clinical data from 12 young
T1D patients was used to test the methodology. Resalat et al. [4] proposed a statistical
method to generate a population of T1D VPs mainly based on variants of the Hovorka
model. The selection criterion of VP was based on clinical data from 20 patients undergoing
artificial pancreas (AP) trials. The parameters used for comparison were percent of time
(PoT) in normoglycemia (BG in 70 to 180 mg/dL), hyperglycemia (BG > 180 mg/dL),
and hypoglycemia (BG < 70 mg/dL). Orozco-Lopez et al. [51] proposed a methodology
to generate a large cohort of VPs. An already available cohort in the OHSU simulator
was utilized to generate more VPs by establishing a relationship between the subject’s
parameters in terms of covariance illustrated in the Hovorka model.

The first UVa/Padova simulator was approved by the FDA in 2008 [3] for a single-
meal scenario only. The VPs were represented by a set of model parameters which were
extracted randomly from joint distributions of parameters. A new version was published
in 2014 [52], in which improved glucose kinetics in hypoglycemia and glucagon dynamics
were implemented. The virtual population was also improved in terms of clinical param-
eters such as carbohydrates ratio and correction factor. This version was also approved
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by the FDA for single-meal scenarios only. It was mentioned that including day-by-day
variations in parameters was under investigation. The latest version was published in
2018 [53]. The diurnal variations in glucose due to insulin sensitivity were added to extend
the scope of the simulator from single-meal to multiple meal and multiple day scenarios.

T1D simulators should offer cohorts of VPs capable of mimicking BG dynamics of real
patients. In real life, the BG curves vary from day to day due to significant nonlinearities
and time varying effects. In available simulators, the BG curves usually follow certain
patterns depending on the meals delivered per day. In order to analyze and validate
the treatment and therapeutic strategies developed for patients with T1D, VPs offering
more realist BG behavior are required. This study is focused on capturing the day-to-day
variations in BG and generating VPs to reflect the BG outcomes of specific real T1D cohorts.

In this work, a methodology to modify the cohort of UVa/Padova’s adult population
is proposed to represent a cohort of T1D patients from the Hospital Clinic de Barcelona.
This sub-cohort is not currently represented in the existing adult population. The novelty
of the proposed scheme lies in the day-to-day adjustment of key physiological parameters
that represent true phenomena in real T1D patients. Optimization of these parameters to
capture the glycemic outcomes of the real cohort is a primary contribution of the presented
study. This provides a benchmark for testing and validation of control algorithms and
treatment strategies developed for AP under realistic scenarios, targeting a specific real-life
cohort of T1D patients.

The paper is structured as follows: Section 2 explains the methodology used to extract
real-life scenarios from clinical data and describes the modification of the adult population.
Section 3 is devoted to the illustration of results, Section 4 presents a discussion of the
results, and Section 5 concludes the paper.

2. Methodology

The methodology used for generating the VPs is shown in the schematic presented in
Figure 1. It is composed of three steps, as explained below.
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Figure 1. Block diagram showing the steps involved in methodology.

2.1. Generating the Scenario

To generate the scenario, glucose, meal, and insulin data were extracted reviewing the
electronic medical records and databases of individuals with T1D followed at the Diabetes
Unit, Endocrinology and Nutrition Department at the Hospital Clinic of Barcelona. In
the current analysis, patients with T1D using SAP therapy with the 640G Medtronic-
Minimed system (Medtronic-Minimed, Northridge, CA, USA) linked to a glucometer
(Contour Next 2.4%®  Agcensia Diebetes Care, Parsippany, NJ, USA) and a glucose sensor
(Enlite®®, Medtronic-Minimed, Northridge, CA, USA) for at least 6 months were included.
Demographic and clinical data were recorded from computerized clinical records. Data
were collected from uploads from each patient including CGM data using CareLink Pro®®
software. The study has been reviewed by the local ethics committee (HCB/2015/0683)
and has therefore been performed in accordance with the ethical standards laid out in an
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appropriate version of the 1964 Declaration of Helsinki. All subjects gave informed consent.
The demographic data of the patients is provided in Table 1.

Table 1. Demographic data of the cohort.

Parameter Patients (n = 14)
Gender (Male/Female) 6/8
Mean (Standard Deviation) Maximum Minimum
Age (years) 41.57 (11.67) 74 30
Weight (kg) 70.07 (17.37) 116 50
Height (centimeters) 168.71 (9.38) 187 157
Time with Diabetes (years) 13.43 (7.31) 29 3

HbAlc 7.04 (0.82) 8.9 5.9

Data for 14 days is selected corresponding to each patient in a cohort with at least 70%
of CGM data available during this time period, which has been defined as the required
minimum amount of CGM data for the attainment of meaningful results [54]. The amount
of carbohydrates and time of ingestion from the clinical data is included as meals into the
simulator. Within a timeframe of 14 days, the days with less than 50% of CGM data are also
excluded from the scenario and simulations. Using a previously developed algorithm [30],
which requires BG and insulin profiles as inputs, disturbances that are not described by
other parameters in the UVa/Padova model are detected and included in the simulator
in the form of aerobic exercise. For the correct inclusion of the detected exercise sessions,
a reference table was generated using the UVa/Padova simulator for a range of intensity
values. The value of intensity that matched the BG profile from the clinical data was
selected for each detected exercise session. The exercise model [55] considered in this work
was previously fit by our group using clinical data [31]. The basal and bolus insulin values
from the pump are implemented in the simulator. A single immediate dose of bolus insulin
was used 99% of the time for insulin administration. Details of the scenarios extracted from

the clinical data of 14 T1D patients are presented in Table 2.

Table 2. Details of the realistic scenarios extracted from the clinical data.

Basal Bolus Total Estimated
. . . . Number of Amount of .
. Duration Insulin Insulin Insulin Exercise CGM
Scenario Meals per  Carbohydrates . PN
(Days) per Day per Day per Day Day per Day () Sessions Active (%)
((8)) (19)] ((9)] per Day
1 14 35.116 19.516 54.633 2.928 111.071 2 97.40
2 12 22.762 29.250 52.012 3.785 163.214 2 79.44
3 11 20.328 19.091 39.418 5.142 99.642 1 73.93
4 13 17.461 18.308 35.769 3.000 86.786 1 92.09
5 11 14.323 26.718 41.041 4.857 186.428 2 75.72
6 10 16.502 26.970 43.472 5.214 148.214 0 71.16
7 12 13.323 30.092 43.414 4.357 136.428 1 77.75
8 12 18.108 11.250 29.358 4.286 36.786 1 74.75
9 14 9.295 10.239 19.534 5.642 103.214 1 95.83
10 09 34.085 16.400 50.485 6.428 68.571 0 70.36
11 12 20.137 12.446 32.582 4.428 74.286 0 73.74
12 14 33.261 33.657 66.918 3.428 182.143 2 92.31
13 12 8.065 15.125 23.190 3.142 174.214 1 79.32
14 14 17.303 19.639 36.942 7.070 90.375 0 87.18

All values given are in median except percentage CGM was active.
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2.2. Parameter Optimization

A total of 14 scenarios (corresponding to 14 patients) were extracted from the clinical
data. Each scenario was simulated using the UVa/Padova’s 10 adult patients. The adult
population was modified to replicate the BG outcomes indicated by the clinical data.

The parameters that describe insulin sensitivity and baseline endogenous glucose
production were optimized. In the case of the UVa/Padova VPs, the parameters V,,;, and
kp1 are considered for the purpose of modification. The model equations containing the
parameters are provided below:

[Vino + Vinx- X (£)].Gt(t)

Wiat) = Ko + G (1) ’

M

EPG(t) = kp1 — kpp. Gp(t) — kp3. X5(1), )

where U, (t) represents the insulin-dependent utilization of glucose in the remote com-
partment, X(t) is the insulin action, and the parameter V,,x (mg/kg/min per pmol/L)
used for adjusting the BG profile is the sensitivity of insulin on glucose utilization. EPG(t)
describes endogenous glucose production and k1 (mg/kg/min) is proportional to the basal
endogenous glucose production. To replicate the BG values found in the clinical data of
real patients in which insulin action varies and appears different on different days, the
parameters were adjusted accordingly.

Firstly, the Vj;x and kj; parameters were optimized in a day-by-day fashion to mimic
the median BG value from clinical data subjected to the constraints of maximum and
minimum BG limits. Next, the adjusted day-by-day parameters were smoothed using a
transition period of 4 h applied at 10 pm. The p-values were calculated using the Wilcoxon
signed rank test.

The flow chart of the algorithm is presented in Figure 2, which is adopted for the
optimization of parameters corresponding to each day. The description of parameters used
in the flow chart can be seen in Table 3. The parameters are incremented or decremented in
order to minimize the error (see Table 3). The parameters are subjected to maximum and
minimum limits constraints. A threshold of 0.5 mg/dL is considered for the acceptable
error in median BG. Once this threshold is met, the values of the parameters are selected
for that particular day.

The flow chart in Figure 2 depicts the iterations involved in the numerical simulations
required for the optimization of the parameters. The chart reflects the process of optimizing
the parameters for a single particular day. The primary goal of the optimization is to find a
solution that will restrict the error below the threshold. These parameter changes result in
BG outcomes similar to the clinical data.

Table 3. Description of parameters used in flow chart.

Parameter Description
Error Reference Median CGM —
Current Median CGM
Th Threshold (0.5 mg/dL)
Upper Limit 480 mg/dL
Lower Limit 50 mg/dL
kp1_Max 15 mg/kg/min
kpl_Min 0.01 mg/kg/min
Vinx_Max 3 mg/kg/min per pmol/L

Vix_Min 0.001 mg/kg/min per pmol/L
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Figure 2. Optimization algorithm flow chart.

2.3. Discarding Unrealistic Patients

After optimizing the parameters, patients were discarded based on two criteria. Firstly,
VP with maximum BG value above 500 mg/dL and/or the minimum BG value below
30 mg/dL were discarded. Secondly, patients with two times the standard deviation of
saturation points as compared to the clinical data were discarded from the final cohort of
VPs. Saturation points represent the end range of a CGM and are defined as BG values
equal or greater than 400 mg/dL or equal or less than 40 mg/dL.

3. Results

Overall results are presented in Table 4. A cohort of 75 VPs (54%) was generated as
compared to the maximum possible number of 140 VPs. A total of 65 VPs were discarded
based on maximum and minimum BG limits (31%) and saturation points (15%), resulting
in a cumulative total of 46%.

3.1. Blood Glucose Outcomes

The results are provided in median and interquartile range (IQ). The performance
indicators of BG profile presented to draw a comparison between clinical data and simu-
lation results can be divided into four categories. Firstly, the absolute BG values, which
include the mean, median, maximum, and minimum values corresponding to the entire
duration (Table 2) of the scenario. Secondly, the CV (indicator of the glycemic variability)
and glucose management index (GMI), which is an indicator for average glycemic exposure.
Thirdly, the percentage of time BG values lie in various ranges. Finally, the percentage of
saturation points are reported.
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Table 4. A comparison of clinical data and simulation results.
Parameter Clinical Data ‘8;311:1 lggzl;f{ze;s;é;s p-Value
Mean CGM (mg/dL) 162.2 (145.6-169.3) 166.3 (155.3-175.3) 0.194
Median CGM (mg/dL) 156.5 (135-165) 162.2 (146.8-171.9) 0.104
Maximum CGM (mg/dL) 345 (282-400) 322 (303.9-361.9) 0.715
Minimum CGM (mg/dL) 48.5 (41-52) 45.4 (41.6-49.4) 0.463
CV (Percentage) 33 (28.8-38.1) 32 (26.8-35.5) 0.542
GMI (Percentage) 7.2 (6.8-7.4) 7.3 (7-7.5) 0.194
% of time CGM
Below 54 mg/dL 0.11 (0.031-0.636) 0.68 (0.221-1.116) 0.502
54 to 69 mg/dL 1.69 (0.779-3.39) 1.51 (0.521-3.212) 0.670
70 to 140 mg/dL 36.43 (30.682-48.742)  30.69 (23.512-39.323) 0.011
70 to 180 mg/dL 66.85 (57.402-71.563)  59.64 (56.313-70.362) 0.358
181 to 250 mg/dL 24.86 (20.649-30.788)  27.49 (22.960-31.250) 0.153
Above 250 mg/dL 4.27 (2.333-9.845) 5.44 (2.691-10.985) 0.426
Saturation Points 40 mg/dL (%) 0 (0-0) 0 (0-0.043) 0.688
Saturation Points 400 mg/dL (%) 0 (0-0.032) 0 (0-0) 0.438

300

250

200

g/dL —

o
=]

Blood Glucose m

o
=)

3.2. Inter-Subject Variability

The original inter-patient variability provided by the UVa/Padova cohort is retained
for the newly generated VPs. To demonstrate this, a scenario of three meals per day for a
duration of 14 days, which is the maximum length of simulation considered in this study,
was used to analyze the inter-subject variability. The breakfast (45 g), lunch (70 g), and
dinner (60 g) were delivered at 7:00, 13:00, and 20:00, respectively. Open loop insulin
therapy was used for simulations with adjusted basal rates for the generated VPs. The
results for real scenario 9 (see Table 2) are presented in Figure 3. The simulation results of
all real scenarios are provided as Supplementary Materials (Figures S1-S11). The results for

real scenarios 5 and 7 are not included because they were composed of only 1 acceptable VP.

Real Scenario 9

Adulti2
——— Adult#5

Adult#6
3 | —— Adults

—— Adult#9

Adult#10

8 9 10 " 12 13 14

Time (Days) —

Figure 3. Representative inter-patient variability simulation from 6 of the newly generated VPs. These VPs were based on

the real scenario 9 and their parameters were tuned based on the clinical data.

The overall BG curve corresponding to all 75 generated VPs is shown in Figure 4. The
BG curve is calculated as the mean =+ standard deviation BG value of all VPs. The duration
of the simulation study was 14 days, with three meals a day.
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= Mean

= === Mean+ 3D

Blood Glucose mg/dL—

---- Maan-SD

1 1
g Time (Days)—

Figure 4. A plot showing mean (red solid line), mean + standard deviation (upper red dashed line) and mean — standard
deviation (lower red dashed line) BG curve of all 75 generated VPs.

3.3. Optimized Parameters

The distinct realistic scenarios considered are reflected in a set of optimized parameters
which are significantly different. To illustrate this, box plots of the parameters (V},x and
kp1) are presented in Figures 5 and 6, respectively. The values of all parameters for 75 VPs
are provided in the Supplementary Materials.

0.2 | ! I T T T T T T T T T —i— T T ]
+
+
015 T j L I B
1 I A T
X : ; : | : | 5 | i
;§ 01F— M [ i o % -
- + '
0.05 [ - L B8 = : ! -

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14
Real Scenario—

Figure 5. Boxplot of the parameter V,,;, for all 14 real scenarios.
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Figure 6. Boxplot of the parameter k; for all 14 real scenarios.

3.4. Mapping Scenarios against VPs

The details of valid generated VPs and discarded VPs are presented in Table 5. The
real scenarios are corresponding to clinical data (see Table 2). The adult patients are the
modified VPs from the UVa/Padova’s adult cohort.

Table 5. Mapping of real scenarios into valid VPs.

SCI:;;LO Adult1 Adult2 Adult3 Adult4 Adult5 Adult6 Adult7 Adult8 Adult9 Adult10
1 v X v X v v X v X v
2 X v v X X v X X X v
3 v v X v X v X v X v
4 v v v v X X X X X X
5 X X X X X X X X X v
6 X v X v v v X v X v
7 X v X X X X X X X X
8 v v v v v v X v v v
9 X v X X v v X v v v
10 v v X v v v X v v v
11 X X X v v v X v X v
12 v v X v X v X v X v
13 v X X X v Y X % v p
14 X v X v v v X v v v

The symbols tick and cross represent a valid and discarded VP, respectively.

4. Discussion

Several methods have already been proposed in the literature for the generation of
VPs, mainly focused on generating large cohorts of patients with T1D. In this work, the
proposed methodology is focused on replicating a specific cohort of T1D patients. The
treatment strategies developed for existing cohorts of VPs are prone to over- or under-
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perform for such sub-cohorts of patients with T1D. Therefore, the proposed methodology
will provide a benchmark for in silico experimentation to develop T1D treatment strategies
for sub-cohorts, allowing tight BG control to be achieved in these patient populations. The
application of the proposed methodology can be extended to generate VPs replicating
various sub-cohorts of patients with T1D by optimizing the parameters according to the
clinical data of the targeted sub-cohort. Another contribution of this work is to provide
real-life scenarios (meals, exercise, and glycemic variability) for testing and validating the
treatment strategies developed for patients with T1D.

Utilizing the scenario attributes and insulin profiles from the clinical data, the adult
population of the UVa/Padova simulator shows significant deviation in results as compared
to the clinical data. This indicates that the adult population of the UVa/Padova simulator
does not represent the cohort considered in this study. The effectiveness of the proposed
methodology is demonstrated by achieving outcomes similar to the considered cohort of
patients with T1D. Therefore, in this work, a cohort comprised of 75 VPs was generated to
reflect the BG metrics of a cohort from the Hospital Clinic de Barcelona.

To demonstrate the contribution of meals in CV and BG outcomes, a comparison
of simulation results with real meal scenario (RMSc), typical meal scenario (TMSc), and
clinical data is presented in Table 6. RMSc is composed of the meals pattern extracted from
the clinical data, whereas TMSc is composed of four meal scenarios (three with 3 meals
per day and one with additional snacks per day) [38,39,56,57]. The results for TMSc are
presented as median of simulation results for all individual four-meal scenarios. Open
loop control and UVa/Padova’s adult cohort are used for simulations. The mean BG
(129.2 mg/dL, 131.8 mg/dL) versus 166.3 mg/dL, CV (19.6%, 25.2%) versus 33%, and PoT
in range 70 to 180 mg/dL (95.3%, 90.15%) versus 66.85% are reported for RMSc and TMSc,
respectively. The CV in case of TMSc is 5.6% greater compared to the RMSc. The clinical
data shows that meals consumed by real patients (considered in this study) are smaller
than those used in traditional in silico simulations. Therefore, meals only account for a
small portion of CV. The BG outcomes for RMSc and TMSc are somehow close to each other
but significantly different from the clinical data. It implies that including only meals in the
simulation scenario is not enough to achieve realistic BG outcomes. Therefore, in this study;,
insulin pump data was added to the simulator and a methodology was proposed to adjust
the model parameters to replicate clinical BG outcomes. The day-to-day optimization of
parameters and the smoothing of daily parameter transitions cumulatively allow for the
achievement of the glycemic variability of real patients.

The results presented in Table 4 reflect the BG profile of a cohort with T1D. The
primary goal was to generate a virtual cohort of patients with T1D to mimic real patients.
The performance indicators considered to compare the BG profile of the cohorts were
statistically similar (p > 0.05), except the PoT BG values lie in a range of 70 to 140 mg/dL.
The mean and median BG values reported were very close, but a rise of about 10 mg/dL
was observed in the IQ range in case of the simulation results. The maximum BG value
reported was 23 mg/dL lower in simulation results. However, the VPs generated showed
significantly close results as compared to the clinical data (p = 0.71). The minimum BG
value reported was 3 mg/dL lower as compared to the clinical data and the IQ range
reported was almost identical. CV reported was lower by 1% and the IQ range differed by
about 2%. The GMI reported was almost the same as indicated by the clinical data.
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Table 6. A comparison of clinical data and simulation results using UVa/Padova VPs in open loop
control. Typical meal scenario results are the ones obtained using typical three meal or three meal
plus snack scenarios as published in the literature. Real meal scenarios include the same meals as in
clinical data.

Parameter Clinical Data Typical Meal Real Meal Scenario
Scenario
Mean CGM (mg/dL) 162.2 (145.6-169.3) 131.8 (126.4-140.8) 129.2 (126.6-134.9)
Median CGM
156.5 (135-165 127.2 (120.8-134.3 125.1 (124.3-128.3
P (135-165) ( ) ( )
Maximum CGM
345 (282-400 249.6 (221.5-266.9 229.2 (205.6-273.9
L) (282-400) ( ) ( )
Minimum CGM
48.5 (41-52 57.0 (53.2-62.0 63.5 (60.1-66.2
e/dD) (41-52) ( ) ( )
CV (Percentage) 33 (28.8-38.1) 25.2 (22.6-27.0) 19.6 (17.3-25.8)
GMI (Percentage) 7.2 (6.8-7.4) 6.4 (6.3-6.7) 6.4 (6.3-6.5)
% of time CGM
Below 54 mg/dL 0.11 (0.031-0.636) 0 (0.00-0.05) 0 (0.00 - 0.00)
54 to 69 mg/dL 1.69 (0.779-3.39) 1.07 (0.35-1.41) 0.3 (0.10-0.48)
70 to 140 mg/dL 36.43 (30.682-48.742) 64.28 (54.82-70.61) 71.7 (62.68-77.12)
70 to 180 mg/dL 66.85 (57.402-71.563) 90.15 (82.60-94.15) 95.3 (88.75-98.35)
181 to 250 mg/dL 24.86 (20.649-30.788) 7.97 (4.41-13.36) 4.5 (1.22-8.58)
Above 250 mg/dL 4.27 (2.333-9.845) 0.025 (0.00-0.55) 0.0 (0.00-0.75)

The performance indicators related to PoT of the BG values in a specific range reflected
quite close behavior as compared to the clinical data, except in the range 70 to 140 mg/dL.
The PoT in the very low range (<54 mg/dL) observed was 0.58% greater. However, the PoT
in low range of 54 to 69 mg/dL appeared to replicate the clinical data. The PoT reported in
a range of 70 to 140 mg/dL showed a decline of about 6%. The PoT in normoglycemia (70
to 180 mg/dL), which is the target range to achieve, showed a decrease of 6% in simulation
results with an identical IQ range. The PoT reported in ranges 181 to 250 mg/dL and
>250 mg/dL almost replicated the clinical data.

Moreover, the saturation points were also considered for the selection of VPs to
prevent the use of the CGM limits (40—400 mg/dL) for parameter fitting. The results are
presented in terms of percent of saturation points in the entire duration of the scenario. The
durations for all considered scenarios are presented in Table 2. The percent of saturation
points (40 and 400 mg/dL) reported are similar as compared to the clinical data. The
saturation points correspond to PoT BG in very low range (<54 mg/dL) and very high
range (>250 mg/dL). Therefore, this criterion results in achieving the PoT BG in ranges
mentioned similar to the clinical data.

The detailed mapping of valid and discarded VPs is provided in Table 5.

As we expected, no original VP can be adjusted for all scenarios nor is any scenario
likely to be adjusted for all patients. In fact, UVa/Padova adult 7 cannot be properly
adjusted for any scenario and is discarded in all cases. Modification of the parameters
for this patient resulted in out-of-range glycaemia values (>500 mg/dL) in all 14 cases.
For scenario 5, only adult 10 resulted in a valid VP. Three of the ten VPs were discarded
because they violated the saturation point criteria. The remaining VPs were discarded
because blood glucose was out of range (>500 or <30 mg/dL). For scenario 7, only adult 2
is a valid VP. The other 9 VPs were discarded because BG values were out of range.

There may exist mismatches between real and detected exercise sessions, since proper
detection may require accepting a certain false positive rate to obtain a high true positive
rate. Despite this, the goal of this work is to demonstrate that the proposed algorithm
can be used to cope with all possible scenario elements existing in real life, which can be
integrated into the simulator. Clinical data that includes exercise details will allow that
information to be used directly without need for the detection of exercise sessions, resulting
in even more accurate scenario development.
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The parameter V), has been extensively used by the Padova group to explain intraday
variability of insulin sensitivity, and intra- and inter-patient variability [53,58], and is
therefore a parameter that can be varied both between patients and within the same patient,
as applied in this work. To account for inter-day variability in basal and postprandial
endogenous glucose production, the parameter k,; in UVa/Padova VPs is considered for
modification in the methodology presented in this study.

The main limitation of this study is in forcing the 10 adult UVa/Padova VPs to replicate
the BG metrics of the same real subject. This led to the rejection of about 46% generated
VPs. The VPs in the UVa/Padova simulator that cannot be forced to match the outcomes of
a real patient were discarded through the process explained in the methodology section.
However, inter-patient variability is still retained, as it is reflected by the distinct set of
parameters defining the VP in the UVa/Padova simulator. In case of the same UVa/Padova
VP corresponding to different real subjects, this variability is retained in the parameters
considered for modification in this study, which change day-by-day. The other limitation
is that it is not possible to exactly replicate the BG variability of real patients due to the
causes of variability (stress, illness, lifestyle, etc.), which are difficult to model because of
their unpredictable nature. However, the goal is to minimize the gap between simulation
environment and reality in terms of BG outcomes.

5. Conclusions

In this work, a novel algorithm to generate a virtual cohort of T1D patients was
presented. The novelty of the proposed scheme lies in the optimal daily adjustment of the
parameters to achieve the glycemic outcomes reflected by clinical data. The daily variation
of parameters represents realistic daily changes in real patients with T1D that influence
BG curves. The clinical data was exclusively taken into account to modify the parameters,
resulting in more realistic BG outcomes in terms of generated VPs.

The algorithm is based on optimizing the parameters of virtual adult patients from
the UVa/Padova simulator to replicate the BG profile of a targeted cohort of real patients.
The targeted BG profile is replicated in a day-by-day manner by optimizing the parameters
accordingly. A virtual cohort of 75 patients has been generated for a cohort of 14 patients
with T1D from the Hospital Clinic de Barcelona. The cohort of VPs generated potentially
represents the cohort from the Hospital Clinic de Barcelona in terms of BG performance
indicators. The statistical similarity index in terms of p-values (Wilcoxon signed rank test)
was presented to validate the effectiveness of the proposed algorithm.

This algorithm can be used to test the controllers and therapeutic strategies developed
for the treatment of T1D patients. It provides testing under the realistic scenarios based
on the clinical data and a challenging variable behavior of patients as the parameters are
changing day-by-day. Moreover, it is based on the FDA-approved UVa/Padova simulator
and can be utilized for the preclinical validation.

The presented study can be extended in two possible directions. Firstly, a greater
number of parameters for the purpose of modification and optimization can be explored.
This may better capture the inter-subject variability and is expected to increase the number
of VPs generated. Secondly, the parameters can be adjusted hourly instead of daily to
achieve the intraday variability in the BG curve, as shown by the real patients.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/math9111200/s1, Figure S1: Simulation results for real scenario 1, Figure S2: Simulation results
for real scenario 2, Figure S3: Simulation results for real scenario 3, Figure S4: Simulation results for
real scenario 4, Figure S5: Simulation results for real scenario 6, Figure S6: Simulation results for
real scenario 8, Figure S7: Simulation results for real scenario 10, Figure S8: Simulation results for
real scenario 11, Figure S9: Simulation results for real scenario 12, Figure S10: Simulation results for
real scenario 13, Figure S11: Simulation results for real scenario 14. Table S1: Values of optimized
parameters corresponding to real patient 1, Table S2: Values of optimized parameters corresponding
to real patient 2, Table S3: Values of optimized parameters corresponding to real patient 3, Table S4:
Values of optimized parameters corresponding to real patient 4, Table S5: Values of optimized
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Values of optimized parameters corresponding to real patient 8, Table S8B: Values of optimized
parameters corresponding to real patient 8, Table S9: Values of optimized parameters corresponding
to real patient 9, Table S10A: Values of optimized parameters corresponding to real patient 10,
Table S10B: Values of optimized parameters corresponding to real patient 10, Table S11: Values of
optimized parameters corresponding to real patient 11, Table S12: Values of optimized parameters
corresponding to real patient 12, Table S13: Values of optimized parameters corresponding to real
patient 13, Table S14: Values of optimized parameters corresponding to real patient 14.
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