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Abstract: In this paper, we present order invariance theoretical results for weighted quasi-arithmetic
means of a monotonic series of numbers. The quasi-arithmetic mean, or Kolmogorov–Nagumo
mean, generalizes the classical mean and appears in many disciplines, from information theory to
physics, from economics to traffic flow. Stochastic orders are defined on weights (or equivalently,
discrete probability distributions). They were introduced to study risk in economics and decision
theory, and recently have found utility in Monte Carlo techniques and in image processing. We
show in this paper that, if two distributions of weights are ordered under first stochastic order,
then for any monotonic series of numbers their weighted quasi-arithmetic means share the same
order. This means for instance that arithmetic and harmonic mean for two different distributions of
weights always have to be aligned if the weights are stochastically ordered, this is, either both means
increase or both decrease. We explore the invariance properties when convex (concave) functions
define both the quasi-arithmetic mean and the series of numbers, we show its relationship with
increasing concave order and increasing convex order, and we observe the important role played by
a new defined mirror property of stochastic orders. We also give some applications to entropy and
cross-entropy and present an example of multiple importance sampling Monte Carlo technique that
illustrates the usefulness and transversality of our approach. Invariance theorems are useful when a
system is represented by a set of quasi-arithmetic means and we want to change the distribution of
weights so that all means evolve in the same direction.

Keywords: stochastic order; weighted mean; arithmetic mean; harmonic mean; Kolmogorov mean;
quasi-arithmetic mean; cross-entropy; Shannon entropy; Rényi entropy; Tsallis entropy; multiple
importance sampling

1. Introduction and Motivation

Stochastic orders [1,2], are orders defined in probability theory and statistics, to quan-
tify the concept of one random variable being bigger or smaller than another one. Discrete
probability distributions, also called probability mass functions (pmf), are sequences of
n-tuples of non-negative values that add up to 1, and can be thus interpreted in several
ways, for instance, as weights in computation of moments of the discrete random variable
described by the pmf, or as equivalence classes of compositional data [3]. Stochastic orders
have found application in decision and risk theory [4], and in economics in general, among
many other fields [2]. Some stochastic orders have been defined based on order invariance:
two pmf’s are ordered when the arithmetic means of any increasing sequence of real
numbers weighted with the corresponding pmf’s are ordered in the same direction. This
raises the question whether this invariance might also hold for other kind of means beyond
the arithmetic mean.

The quasi-arithmetic means, also called Kolmogorov or Kolmogorov–Nagumo means,
are ubiquitous in many branches of science [5]. They have the expression g−1(∑M

k=1 αkg(bk)
)
,

where g(x) is a real-valued strictly monotonous function, {bk}M
k=1 a sequence of reals, and
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{αk}M
k=1 a set of weights with ∑M

k=1 αk = 1. This family of means comprises the usual

means: arithmetic g(x) = x, ∑M
k=1 αkbk, harmonic g(x) = 1/x,

(
∑M

k=1
αk
bk

)−1, power mean

g(x) = xp, (∑M
k=1 αkbp

k )
1
p . For a long time, economists have discussed the best mean for a

problem [6]. Harmonic mean is used for the price earning ratio, and power means are used
to represent the aggregate labor demand and its corresponding wage [7], and the constant
elasticity of substitution (CES) [8]. Yoshida [9,10] has studied the invariance under quasi-
arithmetic means with function g(x) increasing and for utility functions. In information
theory, Alfred Rényi [11] defined axiomatically the entropy of a probability distribution
as a Kolmogorov mean of the information 1/ log pk conveyed by result k with probability
pk, and recently, Americo et al. [12] defined conditional entropy based on quasi-arithmetic
means. In physics, the equivalent spring constant of springs combined in series is obtained
as the harmonic mean of the individual spring constants, and in parallel, as their arithmetic
mean [13], while the equivalent resistance of resistors combined in parallel is obtained by
the harmonic mean of the individual resistances, and in series by their arithmetic mean [14].
In traffic flow [15], arithmetic and harmonic mean of speed distribution are used. In [16]
both geometric and harmonic mean are used in addition to arithmetic mean to improve
noise source maps.

In our recent work on inequalities for generalized, quasi-arithmetic weighted means [17],
we found some invariance properties, that depended on the particular relationship con-
sidered between the sequences of weights. These relationships between weights define
first stochastic order, and likelihood ratio order. Their application to multiple importance
sampling (MIS), a Monte Carlo technique, has been presented in [18], its application to
cross entropy in [19], and in [20] applications to image processing, traffic flow and income
distribution have been shown. In [21], the invariance results on products of distributions of
independent scalar r.v.’s [22] was generalized to any joint distribution of a 2-dimensional r.v.

In this paper, we show that the order invariance is a necessary and sufficient condition
for first stochastic order, and that it holds under any quasi-arithmetic mean. We also study
invariance under the second stochastic order, likelihood ratio, hazard-rate, and increasing
convex stochastic orders. The fact that the invariance results hold for both increasing and
decreasing monotonic functions allows us to use both utilities and liabilities, represented
by efficiencies and expected error, respectively, to look for an optimal solution, where in
liabilities we look for minimum expected error, while in utilities for maximum efficiency.

The rest of the paper is organized as follows. In Section 2, we introduce the stochastic
order; in Section 3, the arithmetic mean and its relationship with stochastic order. In
Section 4, we present the invariance theorems; in Section 5, we discuss the invariance for
concave (convex) functions; in Section 6, its application to stochastic orders; in Section 7,
we present an example based on the linear combination of Monte Carlo estimators. Finally,
conclusions and future work are given in Section 8.

2. Stochastic Orders

Stochastic orders are pre-orders (i.e, binary relationships holding symmetric and
transitive properties) defined on probability distributions with finite support. Note that
equivalently, one can think of sequences (i.e., ordered sets) of non-negative weights/values
that sum up to one. Observe that any sequence {αk} of M positive numbers such that
∑M

k=1 αk = 1 can be considered a probability distribution. It can be seen too as an element
of the (M-1)-Simplex, i.e., {αk} ∈ ∆M−1. While several interpretations hold and hence
increase the range of applicability, in the remaining of this paper, we will talk of sequence
without any loss of generality.

Notation. We use the symbols≺,� to represent orders between two sequences {αk} and {α′k} of
size M, e.g., and we write {αk} � {α′k} or equivalently {α′k} ≺ {αk}. We will denote the elements
of the sequences without the curly brackets, e.g., the first element of the sequence {αk} is denoted as
α1, while the last one is αM. Moreover, the first and last elements of the sequence receive special
attention, since when α1 ≤ α′1, we can write this order as {αk} �F {α′k} (where �F stands for
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first) and whenever αM ≥ α′M, we can write {αk} �L {α′k} (where �L stands for last). The case
with both α1 ≤ α′1 and αM ≥ α′M, we can denote as {αk} �FL {α′k}. The orders �F,�L,�FL are
superorders of first stochastic dominance order, {αk} �FSD {α′k}, that will be studied in Section 6.
We denote as {αM−k+1} the sequence with the same elements of {αk} but in reversed order.

Example 1 (Toy example). Given sequences {αk} = {0.5, 0.1, 0.2, 0.2}, and {α′k} =
{0.4, 0.1, 0.2, 0.3}, we have both {αk} ≺F {α′k}, {αk} ≺L {α′k}, and thus {αk} ≺FL {α′k}.
On the other hand for sequences {αk} and {α′′k } = {0.4, 0.3, 0.2, 0.1}, we have {αk} ≺F {α′′k },
{αk} 6≺L {α′′k }, and thus {αk} 6≺FL {α′′k }.

Property 1 (Mirror property). One desirable property of stochastic orders is such that when
reversing the ordering of the sequence elements, the stochastic order should be reversed as well, i.e.,
if {αk} � {α′k}, then {α′M−k+1} � {αM−k+1}. This is similar to the invariance of physical laws
to the right and left hand. We call this property the mirror property.

Definition 1 (Mirror property). We say that a stochastic order has the mirror property if

{α′k} ≺ {αk} ⇒ {αM−k+1} ≺ {α′M−k+1}. (1)

Observe that the simple orders defined before, �F, �L, do not hold this property,
but �FL holds it. We will see in Section 6 that usual stochastic orders do hold the mirror
property. However, an order that is insensitive to the permutation of the elements of a
sequence, like majorization or Lorentz order, does not hold the mirror property.

3. Quasi-Arithmetic Mean

Stochastic orders are usually defined by invariance to arithmetic mean [1,2] (see
Section 6), and we want to investigate in this paper invariance to more general means. We
define here the kind of means we are interested in.

Definition 2 (Quasi-arithmetic or Kolmogorov or Kolmogorov–Nagumo mean). A quasi-
arithmetic weighted mean (or Kolmogorov mean)M({bk}, {αk}) of a sequence of real numbers

{bk}M
k=1, is of the form g−1

(
∑M

k=1 αkg(bk))
)

, where g(x) is a real valued, invertible strictly

monotonic function, with inverse function g−1(x) and {αk}M
k=1 are positive weights such that

∑M
k=1 αk = 1.

Examples of such mean are arithmetic weighted mean (g(x) = x), harmonic weighted
mean (g(x) = 1/x), geometric weighted mean (g(x) = log x) and in general, the weighted
power means (g(x) = xr).

Given a distribution {pk}, Shannon entropy, H({pk}) = −∑k pk log pk, and Rényi
entropy, Rβ({pk}) = 1

1−β log ∑k pβ
k , can be considered as quasi-arithmetic means of the

sequence { 1
log pk

} with weights {pk}: Shannon entropy with g(x) = x (arithmetic mean or

expected value), and Rényi entropy with g(x) = 2(β−1)x [11]. Tsallis entropy, Sq({pk}) =
1−∑M

i=1 pq
i

q−1 , can be considered the weighted arithmetic mean of the sequence { 1
lnq pk
} with

weights {pk}, where lnq x = x1−q−1
1−q is the q-logarithm function [23]. Without loss of

generality, we consider from now on that {bk = f (k)} where f (x) is a real valued function.

Lemma 1. Consider the sequences of M positive weights {αk}M
k=1 and {α′k}

M
k=1, ∑M

k=1 αk =

1, ∑M
k=1 α′k = 1, g(x) a strictly monotonic function. The following conditions (a), (b), (a’), (b’), (c)
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and (d) are equivalent.
(a) for g(x) increasing, for any increasing function f (x) the following inequality holds:

M

∑
k=1

α′kg( f (k)) ≤
M

∑
k=1

αkg( f (k)) (2)

(b) for g(x) increasing, for any increasing function f (x) the following inequality holds:

M

∑
k=1

αM−k+1g( f (k)) ≤
M

∑
k=1

α′M−k+1g( f (k)) (3)

(a’) for g(x) decreasing, for any increasing function f (x) the following inequality holds:

M

∑
k=1

αkg( f (k)) ≤
M

∑
k=1

α′kg( f (k)) (4)

(b’) for g(x) decreasing, for any increasing function f (x) the following inequality holds:

M

∑
k=1

α′M−k+1g( f (k)) ≤
M

∑
k=1

αM−k+1g( f (k)) (5)

(c) the following inequalities hold:

α′1 ≥ α1

α′1 + α′2 ≥ α1 + α2

...

α′1 + . . . + α′M−1 ≥ α1 + . . . + αM−1

α′1 + . . . + α′M−1 + α′M = α1 + . . . + αM−1 + αM (6)

(d) the following inequalities hold:

α′M ≤ αM

α′M + α′M−1 ≤ αM + αM−1

...

α′M + . . . + α′2 ≤ αM + . . . + α2

α′M + α′M−1 + . . . + α′1 = αM + αM−1 + . . . + α1 (7)

If f (x) is decreasing, the inequalities in a) through b’) are reversed.

Proof. Indirect or partial proofs can be found in [17,20]. We provide a complete proof in
the Appendix A.

Note. Observe that in Lemma 1, it is sufficient to consider the monotonicity of the sequences
{ f (k)}M

k=1. Furthermore, Lemma 1 can be extended to any real sequences {yk} and {xk}, such that
∑M

k=1 yk = ∑M
k=1 xk. It is enough to observe that the order of all the inequalities are unchanged by

adding a positive constant, so that {yk} and {xk} can be made positive, and also are unchanged
by the multiplication of a positive constant, so that the resulting {yk} and {xk} sequences can
be normalized.
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Theorem 1. Given a mean M with strictly monotonic function g(x) and two distributions
{α′k}, {αk}, the following propositions are equivalent:
(a) for all increasing functions f (x)

M({ f (k)}, {α′k}) ≤M({ f (k)}, {αk}) (8)

(b) for all increasing functions f (x)

M({ f (k)}, {αM−k+1}) ≤M({ f (k)}, {α′M−k+1}) (9)

(a’) for all decreasing functions f (x)

M({ f (k)}, {α′k}) ≥M({ f (k)}, {αk}) (10)

(b’) for all decreasing functions f (x)

M({ f (k)}, {αM−k+1}) ≥M({ f (k)}, {α′M−k+1}) (11)

(c) Condition (c) of Lemma 1 holds

Proof. It is a direct consequence of Lemma 1 and the definition of quasi-arithmetic mean,
observing that the inverse g−1(x) of a strictly monotonic increasing (respectively decreas-
ing) function g(x) is also increasing (respectively decreasing).

4. Invariance

Theorem 2 (Invariance). Given two distributions {α′k}, {αk}, and two quasi-arithmetic means
M,M?, the following propositions are equivalent:
(a) for all increasing functions f (x)

M({ f (k)}, {α′k}) ≤M({ f (k)}, {αk}) (12)

(b) for all increasing functions f (x)

M?({ f (k)}, {α′k}) ≤M
?({ f (k)}, {αk}) (13)

(a’) for all decreasing functions f (x)

M({ f (k)}, {α′k}) ≥M({ f (k)}, {αk}) (14)

(b’) for all decreasing functions f (x)

M?({ f (k)}, {α′k}) ≥M
?({ f (k)}, {αk}) (15)

Proof. It is a direct consequence of the observation that conditions (c) and (d) in Lemma 1
do not depend on any particular g(x) function considered, and thus the order of inequalities
does not change with the mean considered as long as {αk} and {α′k} are kept fixed.

The following properties relate stochastic order with the quasi-arithmetic mean. Let
I be the set of monotonous functions, I< the set of increasing functions, I> the set of
decreasing functions.

Definition 3 (preserve mean order property). We say that a stochastic order preserves mean
order for a given mean M and a set I< ⊂ I< of increasing functions when, for all functions
f (x) ∈ I< and any distributions {α′k}, {αk},

{αk} ≺ {α′k} ⇒M({ f (k)}, {α′k}) ≤M({ f (k)}, {αk}). (16)
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Definition 4 (preserve inverse mean order property). We say that a stochastic order preserves
inverse mean order for a given meanM and a set I> ⊂ I> of decreasing functions when, for all
functions f (x) ∈ I> and any distributions {α′k}, {αk},

{αk} ≺ {α′k} ⇒M({ f (k)}, {α′k}) ≥M({ f (k)}, {αk}). (17)

Theorem 2 together with the preserve mean order properties allows us to state the
following invariance property:

Theorem 3 (preserve mean order invariance). Given a stochastic order that preserves mean
order (respectively preserves inverse mean order) for a given mean and for I< (respectively for I>),
then for any mean it preserves both mean order for I< and inverse mean order for I>. In other
words, the preserve mean order properties are invariant with respect to the mean considered.

Observe that from Lemma 1 and Theorems 1 and 3 , we have that a necessary and
sufficient condition for an order to preserve mean order for I< (or preserve inverse mean
order for I>) is the holding of Equation (6), independently of the mean considered. We
will see in Section 6 that this corresponds to first stochastic dominance order.

5. Concavity and Convexity

Let us consider now I<v ⊂ I<, the set of all increasing concave functions, I<x ⊂ I<,
the set of all increasing convex functions, I>v ⊂ I>, the set of all decreasing concave
functions, and I>x ⊂ I>, the set of all decreasing convex functions. The following theorem
relates the preserve mean order properties with the mirror property.

Theorem 4. If an order holds the mirror property, then holding preserve mean order for I<v (re-
spectively I<x ) implies holding preserve inverse mean order for I>v (respectively I>x ) and viceversa.

Proof. Suppose {α′k} ≺ {αk} and f (x) decreasing and concave (respectively convex). Then,
by the mirror property {αM−k+1} ≺ {α′M−k+1}, and by the hypothesis of the theorem

M({ f (k)}, {αk}) = M({ f (M− k + 1)}, {αM−k+1}) =M({ f (m(k))}, {αM−k+1}) (18)

≤ M({ f (m(k))}, {α′M−k+1}) =M({ f (k)}, {α′k}),

where m(x) = M − x + 1, and because if f (x) is decreasing and concave (respectively
convex) then f (m(x)) is increasing and concave (respectively convex).

The following result is necessary to prove Lemma 2.

Theorem 5. Given f (x) and weights {α′k}, {αk}, if inequalityM({ f (k)}, {αk}) ≤M({ f (k)},
{αk}) holds for any g(x) strictly increasing and convex (respectively concave) then it holds for
any g(x) strictly decreasing and concave (respectively convex). If it holds for any g(x) strictly
decreasing and convex (respectively concave) then it holds for any g(x) strictly increasing and
concave (respectively convex).

Proof. Consider the quasi-arithmetic mean with Kolmogorov function g? = −g(x) (with
inverse g?−1 = g−1(−x)). When g(x) is increasing, g?(x) is decreasing and viceversa.
When g(x) is convex, g?(x) is concave and viceversa. We have

g?−1(∑
i

α′ig
?( f (i))

)
= g−1(− (∑

i
α′i(−g( f (i)))

))
= g−1(∑

i
α′ig( f (i))

)
(19)

≤ g−1(∑
i

αig( f (i))
)
= g−1(− (∑

i
αi(−g( f (i)))

))
= g?−1(∑

i
αig?( f (i))

)
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The following Lemma is needed to prove how the invariance properties for one mean
extends to other means.

Lemma 2. Given two distributions {α′k}, {αk}, and a quasi-arithmetic meanM({ f (k)}, {αk})
with function g(x). Consider the following Equations:

M({ f (k)}, {α′k}) ≤M({ f (k)}, {αk}), (20)

and

M
(
{ f (k)}, {αM−k+1}

)
≤M

(
{ f (k)}, {α′M−k+1}

)
. (21)

Then, for each line in Table 1, and for g(x), f (x) filling the conditions in first and second column
in Table 1 and holding Equations (20) and (21), Equations (20) and (21) hold too for g?(x), f ?(x)
filling the conditions in columns three and four.

Additionally, for each line in Table 1, changing f ?(x) in column four from increasing to
decreasing, Equations (20) and (21) hold with the inequalities reversed.

Table 1. For each line, for g(x), f (x) filling the conditions in first and second column, then Equa-
tions (20) and (21) hold for g?, f ? filling the conditions in columns three and four. By changing f ?

from increasing to decreasing, the reverse of Equations (20) and (21) hold. ICX: convex and increasing,
ICV: concave and increasing, DCX: convex and decreasing, DCV: concave and decreasing.

g f g? f ?

1 ICX ICV ICV ICV
1’ " " DCX ICV
2 DCX ICX DCV ICX
2’ " " ICX ICX
3 ICV ICX ICX ICX
3’ " " DCV ICX
4 DCV ICV DCX ICV
4’ " " ICV ICV
5 ICX ICV DCV ICX
5’ " " ICX ICX
6 DCX ICX ICV ICV
6’ " " DCX ICV
7 ICV ICX DCX ICV
7’ " " ICV ICV
8 DCV ICV ICX ICX
8’ " " DCV ICX

Proof. The proof of lines 1–8 in Table 1 is in the Appendix B. Lines 1’-8’ in Table 1 are a
direct consequence of Theorem 5 applied to lines 1–8.

Theorem 6. Given a quasi-arithmetic meanM({ f (k)}, {αk}) with function g(x), we have that
if an order holds the mirror property then for each line in Table 1, and for g(x) filling the condition
in the first column in Table 1 and preserving order for f (x) in the second column in Table 1, the
mean for g?(x) filling the condition in column three in Table 1 preserves order for f ?(x) filling the
condition in column four in Table 1.

Proof. It is enough to apply Lemma 2, taking into account that if Equation (20) holds then
Equation (21) holds too by the mirror property.

Corollary 1. Consider the weighted arithmetic mean A({ f (k)}, {αk}). Given an order that holds
the mirror property and preserves the order for mean A, then
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(a) If order is preserved for mean A and for I<v then order is preserved for any mean with
concave-increasing/convex-decreasing (respectively concave-decreasing/convex-increasing) function
g(x) and for I<v (respectively for I<x ).

(b) If order is preserved for mean A and for I<x , then order is preserved for any mean with
convex-increasing/concave-decreasing (respectively convex-decreasing/concave-increasing) function
g(x) and for I<x (respectively for I<v ).

Proof. Arithmetic mean is a quasi-arithmetic mean with increasing function g(x) = x,
which is both concave-increasing and convex-increasing, and thus Table 1 collapses to
Table 2.

Table 2. For each line, g(x) = x, f (x) filling the conditions in second column and Equations (20) and
(21) holding, then Equations (20) and (21) hold too for g?, f ? filling the conditions in columns three
and four. ICX: convex and increasing, ICV: concave and increasing, DCX: convex and decreasing,
DCV: concave and decreasing.

f g? f?

ICV ICV ICV
ICV DCX ICV
ICX ICX ICX
ICX DCV ICX
ICV DCV ICX
ICV ICX ICX
ICX DCX ICV
ICX ICV ICV

Functions xp, for p ≥ 1 are convex-increasing and with p ≤ 0 are convex-decreasing
over R++ , ex convex-increasing over R, while log x, xp, for 0 < p ≤ 1 are concave-
increasing over R++. Affine functions are both concave and convex over R. If g(x) is
convex, −g(x) is concave and viceversa, and the composition of concave-increasing and
concave is concave, and convex-increasing and convex is convex. We will see in the next
section that preserving the order for mean A for I<v is defined as second-order stochastic
dominance or increasing concave order, and preserving the order for mean A for I<x
is defined as increase convex order stochastic dominance. Both orders hold the mirror
property and thus Corollary 1 applies to both.

6. Application to Stochastic Orders and Cross-Entropy
6.1. First-Order Stochastic Dominance

Originating in the economics risk literature [24], first-order stochastic dominance [1,2]
FSD, between two probability distributions, {α′k}, {αk}, {α′k} ≺FSD {αk}, is defined as:

Definition 5. {α′k} ≺FSD {αk} ⇐⇒ for any increasing function f (x),

E[ f (k)]α′k ≤ E[ f (k)]αk .

Remember that the expected value is the arithmetic weighted mean.

A necessary and sufficient condition for first-order stochastic dominance is defined
by the condition c) of Lemma 1, which is equivalent to condition d) of Lemma 1, thus
{α′k} ≺FSD {αk} ⇒ {αM−k+1} ≺FSD {α′M−k+1}, i.e., the mirror property holds. From the
definition of FSD, and from Theorem 3, we can redefine FSD, {α′k} ≺FSD {αk} as there
exists a meanM such that, for any increasing function f (x), Equation (16) holds. This is,
the definition of FSD is independent of the mean considered, while the original definition
relies on the expected value (arithmetic mean). The mean considered can be arithmetic,
harmonic, geometric or any other quasi-arithmetic mean.
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Let us consider now a strictly monotonous function g(x), and define a generalized cross-
entropy GCE({pi}, {qi}) = g−1(∑i pig(− log qi)). Observe that it is a quasi-arithmetic
mean, and for g(x) = x, we get the cross-entropy CE({pi}, {qi}) = −∑ pi log qi. Other
functions that generalize cross entropy have been defined in the context of training deep
neural networks [25]. We can state the following theorem:

Theorem 7. Given distributions {p′i}, {pi}, {qi}, increasing, and {p′k} ≺FSD {pk}, then for any
mean GCE with function g(x), GCE({pi}, {qi}) ≤ GCE({p′i}, {qi}).

Proof. Observe first that f (k) = − log qk is a decreasing sequence. From the hypothesis,
condition c) of Lemma 1 holds, thus we can then apply Theorem 1 to the mean with
function g(x) and for { f (k)} decreasing.

The following result relates the entropies of two distributions with the first stochastic
order.

Theorem 8. Given {pk}, {qk} increasing, and {qk} ≺FSD {pk}, then H({pk}) ≤ H({qk}),
whereH stands for Shannon entropy.

Proof. The Kullback–Leibler distance is always positive [26], ∑i pi log pi
qi
≥ 0, and thus

we have thatH({pk}) = −∑i pi log pi ≤ −∑ pi log qi. Applying Theorem 7 for g(x) = x,
−∑ pi log qi ≤ −∑ qi log qi = H({qk}).

6.2. Second-Order Stochastic Dominance and Increase Convex Ordering

Definition 6. Second-order stochastic dominance between two probability distributions, {αk},
{α′k}, {α

′
k} ≺SSD {αk}, occurs when for any increasing concave function f (x),

E[ f (k)]α′k ≤ E[ f (k)]αk .

Trivially
{α′k} ≺FSD {αk} ⇒ {α′k} ≺SSD {αk}.

Let us consider the cumulative distribution function, Fi = α1 + α2 + . . . + αi, and the
survival function F̄i = 1 − Fi = αM + αM−1 + . . . + αi+1. A necessary and sufficient
condition for second-order stochastic dominance [1,2] is the following:

F′1 ≥ F1

F′1 + F′2 ≥ F1 + F2

...

F′1 + . . . + F′M−1 ≥ F1 + . . . + FM−1

F′1 + . . . + F′M−1 + F′M ≥ F1 + . . . + FM−1 + FM, (22)

or equivalently,

F̄′1 ≤ F̄1

F̄′1 + F̄′2 ≤ F̄1 + F̄2

...

F̄′1 + . . . + F̄′M−1 ≤ F̄1 + . . . + F̄M−1

F̄′1 + . . . + F̄′M−1 + F̄′M ≤ F̄1 + . . . + F̄M−1 + F̄M. (23)

Let us see first that {α′k} ≺SSD {αk} ⇒ {αM−k+1} ≺SSD {α′M−k+1}, i.e., SSD holds
the mirror property. Effectively, define Gi = αM + αM−1 + . . . + αi+1, and the survival
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function Ḡi = 1− Gi = α1 + α2 + . . . + αi. However, Gi = F̄i, Ḡi = Fi, G′i = F̄′ i, Ḡ′ i = F′i ,
and substituting in Equation (22) or Equation (23), we obtain the desired result.

From Corollary 1, second-order stochastic dominance preserves mean order for all
means M defined by a concave-increasing/convex-decreasing (respectively concave-
decreasing/convex-increasing) function g(x), and for the set of all concave-increasing
functions I<v (respectively convex-increasing functions I<x ). For instance, order is pre-
served for the geometric mean, or any mean with g(x) = xp, 0 < p ≤ 1 and for I<v , or for
or any mean with g(x) = xp with p < 0, as the harmonic mean, for I<x . In particular, we
can state the following theorem about cross-entropy of two distributions,

Theorem 9. Given distributions {p′i}, {pi}, {qi = f (i)}, f (x) concave-increasing, and {p′i} ≺SSD
{pi}, then CE({pi}, {qi}) ≤ CE({p′i}, {qi}).

Proof. We have that CE({pi}, {qi}) = − logG({qi}, {pi}) = − log(Πiq
pi
i ) = − log(exp(∑i

pi log qi)), where G stands for geometric mean. The geometric mean is a quasi-arithmetic
mean with function g(x) = log x, concave-increasing. Using Definition 6 and applying
Corollary 1(a), we obtain the inequality G({qi}, {p′i}) ≤ G({qi}, {pi}) and we apply the
function − log x to both members of this inequality.

When we consider f (x), a convex instead of a concave function, we talk of increasing
convex order, ICX. This is,

Definition 7. Second-order stochastic dominance between two probability distributions, {αk},
{α′k}, {α

′
k} ≺ICX {αk}, occurs when for any increasing convex function f (x),

E[ f (k)]α′k ≤ E[ f (k)]αk .

{αk} is greater in increasing convex order than {α′k}, {α
′
k} ≺ICX {αk}, if and only if

the following inequalities hold:

F′M ≥ FM

F′M + F′M−1 ≥ FM + FM−1

...

F′M + . . . + F′2 ≥ FM + . . . + F2

F′M + . . . + F′2 + F′1 ≥ FM + . . . + F2 + F1 (24)

or equivalently,

F̄′M ≤ F̄M

F̄′M + F̄′M−1 ≤ F̄M + F̄M−1

...

F̄′M + . . . + F̄′2 ≤ F̄M + . . . + F̄2

F̄′M + . . . + F̄′2 + F̄′1 ≤ F̄M + . . . + F̄2 + F̄1 (25)

Trivially
{α′k} ≺FSD {αk} ⇒ {α′k} ≺ICX {αk}.

Mirror property is also immediate. From Corollary 1, second-order stochastic dominance
preserves mean order for all meansM defined by a convex-increasing/concave-decreasing
(respectively convex-decreasing/concave-increasing) function g(x) and for the set of all
convex-increasing functions I<x (respectively concave-increasing functions I<v ). For in-
stance, any mean with g(x) = xp, p ≥ 1 as the weighted quadratic mean with I<x , or
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g(x) = xp, p < 0 as the harmonic mean with I<v , or the mean with g(x) = − log x with I<v .
In particular, we can state the following result,

Theorem 10. Given distributions {p′i}, {pi}, {qi = f (i)}, f (x) concave-increasing, and {p′i} ≺ICX
{pi}, then CE({pi}, {qi}) ≤ CE({p′i}, {qi}).

Proof. Consider the quasi-arithmetic mean G ′({qi}, {pi}) with g(x) = − log x, convex-
decreasing. We have that CE({pi}, {qi}) = − logG ′({qi}, {pi}). Using Definition 7 and
applying Corollary 1(b), we have that G ′({qi}, {p′i}) ≤ G ′({qi}, {pi}), and we apply to
each member of the inequality the function − log x.

6.3. Likelihood Ratio Dominance

Definition 8. Likelihood ratio dominance, LR, {α′k} ≺LR {αk}, is defined as

{α′k} ≺LR {αk} ⇐⇒ ∀(i, j), 1 ≤ i, j ≤ M, i ≤ j⇒ α′i/α′j ≥ αi/αj. (26)

As α′i/α′j ≥ αi/αj ⇒ αj/αi ≥ α′j/α′i, we have that LR holds the mirror property.
It can be shown that LR order implies FSD order,
and then LR order holds Theorems 3 and 7 and Equation (16) holds for any meanM,

Theorem 11. Likelihood-ratio order implies first stochastic order, i.e.,

{α′k} ≺LR {αk} ⇒ {α′k} ≺FSD {αk}. (27)

Proof. There are indirect proofs in the literature [1,17]. A direct proof is in the Appendix
C.

As the condition for LR order, Equation (26), is easy to check, this order comes
very handy in proving sufficient condition for FSD order. Additionally, for the uniform
distribution {1/N} and any increasing distribution {αk}, we have that {1/M} ≺LR {αk},
while for any decreasing distribution {αk} we have that {αk} ≺LR {1/M}.

Consider Shannon entropy,H({pk}), and Rényi entropyRβ({pk}) of a distribution
{pk}, that as seen in Section 3 are quasi-arithmetic means of the sequence {1/ log pk}
with weights {pk}, and with g(x) = x and g(x) = 2(β−1)x, respectively. Without loss of
generality, we can consider {pk} in increasing order, then the sequence {1/ log pk} will be
decreasing. We have that {1/M} ≺ {pk}, and then we can apply Theorem 3, and obtain
for Shannon entropy

H({pk}) ≤ A({1/ log pk}),

where A({1/ log pk}) is the arithmetic mean of {1/ log pk}, and for Rényi entropy, observ-
ing that g−1(x) = 1

1−β log x,

Rβ({pk}) ≤
1

1− β
log ∑

k

1
M

p(β−1)
k =

1
1− β

logA({p(β−1)
k }.

For Tsallis entropy, which can be considered the weighted arithmetic mean of the sequence
{1/ lnq pk} with weights {pk}, as for {pk} in increasing order the sequence {1/ lnq pk} will
be decreasing (the derivative of lnq x is positive), we have similarly to Shannon entropy,

Sq({pk}) ≤ A({1/ lnq pk}).

We can also state the following result for the generalized cross entropy GCE . We say
that {pi} is comonotonic [27,28] with {qi} when, for all 1 ≤ i, j ≤ M, qi < qj =⇒ pi ≤ pj.

Theorem 12. Given distributions {pi}, {qi} comonotonic, then GCE({pi}, {qi}) ≤ GCE({1/M},
{qi}).
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Proof. Without loss of generality, we can reorder {pi}, {qi} so that both are increasing. We
know that {1/M} ≺LR {pk} and thus {1/M} ≺FSD {pk}. From the definition of ≺FSD,
preserve mean order holds for increasing functions and for arithmetic mean, thus we can
then apply Theorem 3 for {− log qi} decreasing.

From Theorem 12, when {pi}, {qi} are comonotonic, then

CE({pi}, {qi}) ≤
1
M

M

∑
k=1
− log qk. (28)

6.4. Hazard Rate

Definition 9. A probability distribution {αk} is greater in hazard rate, HR, to {α′k}, {α
′
k} ≺HR

{αk}, if and only if for all j ≥ i, the following condition is filled

F̄′ i
F̄i
≥

F̄′ j
F̄j

.

Observe that this can be written as

F̄j

F̄′ j
≥ F̄i

F̄′ i
,

or
1− Fj

1− F′ j
≥ 1− Fi

1− F′ i
,

If we consider now the sequences written in inverse order, i.e., αM−i+1, α′M−i+1, it is
clear that if i ≤ j then M− j + 1 ≤ M− i + 1, and from 1− F̄j = F̄M−j+1, we get

F̄M−j+1

F̄′M−j+1
≥ F̄M−i+1

F̄′M−i+1
,

which means {αM−k+1} ≺HR {α′M−k+1}, and HR order holds the mirror property.
It can be shown that {α′k} ≺HR {αk} ⇒ {α′k} ≺FSD {αk} and then HR order holds
Theorems 3 and 7, and Equation (16) holds for any meanM.

7. Example: Linear Combination of Monte Carlo Techniques

When we want to estimate an integral µ =
∫

h(x)dx using MIS (multiple importance
sampling) Monte Carlo methods, we have several choices of techniques, each of them with
a given pdf {pk(x)}, 1 ≤ k ≤ n, which provide the primary estimators {Ik,1 = h(x)

pk(x)}. If
for h(x) > 0, we have that pk(x) > 0, then the technique is unbiased. We are interested in
optimal ways of combining the techniques. One option is linearly combining the different
estimators {Ii,ni}, ∑M

i=1 wi Ii,ni , with weights {wk} and sampling proportions {ni = αi N},
with N = ∑M

i=1 ni. If all techniques are unbiased, the resulting combination is also unbiased.
The variance is given by

VN =
M

∑
i=1

w2
i

vi
ni

=
1
N

M

∑
i=1

w2
i

vi
αi

=
1
N

V, (29)

where vi are the variances for the primary estimators of each technique and V is the
variance for the primary MIS estimator.

The optimal combination of weights, i.e. the one that leads to minimum variance, has
been studied in [18,29,30].
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The variance value will depend on two sets of weights, {wi} and {αi}, but there are
cases where we can reduce it to a single set of weights. We present the following examples,
where variances are taken for N = 1:

• when αi = wi, then V = ∑M
i=1 αivi, the weighted arithmetic mean (g(x) = x) of {vi}.

• when the sampling proportions are fixed, the optimal variance is given byH({ vk
αk
}),

the weighted harmonic mean (g(x) = 1/x) of {vi}.
• when weights {wi} are fixed, the optimal variance is given by (∑M

k=1 wk
√

vk)
2, which

is the weighted power mean of {vi} with exponent r = 1/2 (g(x) = x1/2).

Observe that the variance in these three cases is a quasi-arithmetic mean.
Let us now order {vk} in increasing order, and let us take α′k = h(vk), h(x) decreasing,

and αk = 1/M. We have that α′k = h(vk) ≺LR {αk = 1/M} and thus, by Theorem 11,
α′k = h(vk) ≺FSD {αk = 1/M}, and we can apply Theorem 2 with f (k) = vk to the quasi-
arithmetic means above. Thus, the variance is less when taking sampling proportions or
coefficients decreasing in vk than for equal sampling or equal weighting.

The same would be the case when considering a different measure of error, whenever
the error of the combined techniques can also be expressed as a weighted quasi-arithmetic
mean of the values of this measure for all techniques. For instance, suppose we use as
measure of error the standard deviation, σ2

i = vi, σ2 = V, the above cases become

• when αi = wi, then σ =
√

V =
√

∑M
i=1 αiσ

2
i , the weighted root mean square or

quadratic mean of {σi}, or weighted power mean with r = 2 (g(x) = x2).
• when the weights {wi} are fixed, the optimal standard deviation is given by σ =

√
V =

√
H({ σ2

k
αk
}), the power mean of {σi} with r = −2 (g(x) = x−2).

• when the sampling proportions are fixed, the optimal standard deviation is given by
σ =
√

V = ∑M
k=1 wkσk, the arithmetic mean of {σi} (g(x) = x).

For more details see [18].

7.1. Liabilities vs. Utilities

From the above example, we can study the relationship between utilities, which we try
to maximize, and liabilities, that we try to minimize. As a liability can always be considered
as the inverse of a utility, we can see from Theorem 1 that establishing invariance properties
on the order between means of utilities is equivalent to doing this with liabilities, except
that the order is inverted. We can define for instance the efficiency E = 1/V as the inverse
of the variance, and obtain it as a weighted mean of individual technique’s efficiencies,
ei = 1/vi. Consider, for instance, the first case in the example above, where V = ∑M

i=1 αivi.
We have

E =
1
V

=
1

∑M
i=1 αivi

=
1

∑M
i=1 αie−1

i

= H({ ei
αi
}),

whereH denotes the weighted harmonic mean.
Considering now the second case

E =
1
V

=
1

H({ vk
αk
})

=
M

∑
i=1

αiv−1
i =

M

∑
i=1

αiei,

or weighted arithmetic mean. For the third case,

E =
1
V

=
1

(∑M
k=1 wk

√
vk)

2
= (

M

∑
k=1

wke−1/2
k )−2,

which is the weighted power mean with r = −1/2.
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8. Conclusions and Future Work

We have presented in this paper the relationship between stochastic orders and
quasi-arithmetic means. We have proved several ordering invariance theorems, that show
that given two distributions under a certain stochastic order, the ordering of the means
is preserved for any quasi-arithmetic mean we might consider, this is, not only for the
arithmetic mean (or expected value). We have shown how the results apply to first order,
second order, likelihood ratio, hazard-rate, and increasing convex stochastic orders, and its
application to cross-entropy. We have also presented an application example based on the
linear combination of Monte Carlo estimators, and shown that the invariance allows costs
or liabilities to be considered as the symmetric case of utilities.

In the future, we want to generalize our results to spatial weight matrices [31]. The
rows in a spatial weight matrix are weights that give the influence of n entities over each
other. Different weighted means such as arithmetic, harmonic, or geometric [32] can be
used to compute this influence. We can thus apply our invariance results to each row. We
will also investigate which of our results for Shannon entropy extend to Tsallis entropy
too. Both Shannon and Tsallis entropy are weighted arithmetic means [23], and given {pk}
monotonic, both {1/ log pk} and {1/ lnq pk} are monotonic too. Finally, we will investigate
the invariance of the different stochastic orders under the operations of compositional
data [3].
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Appendix A. Proof of Lemma 1

Proof. Subtracting 1 from both sides of each inequality proves (c)⇔ (d). To prove (a)⇒
(c), we proceed in the following way. Consider the increasing sequence {g( f (1)), . . . , g( f (1)),
g( f (M)), . . . , g( f (M))}, f (1) < f (M) (and thus g( f (1)) < g( f (M)) by the strict mono-
tonicity of g(x)), and where g( f (1)) is written l times, denote L = a1 + . . . + al , L’ =
a′1 + . . . + a′l . Since al+1 + . . . + aM = 1− L, a′l+1 + . . . + a′M = 1− L’, then (a) gives

L’g( f (1)) + (1− L’)g( f (M))− Lg( f (1))− (1− L)g( f (M)) ≤ 0,

i.e.,
(L’− L)(g( f (1))− g( f (M))) ≤ 0⇒ L’ ≥ L.

This proves the first M− 1 inequalities in c, thus (a)⇒ (c). Observe now that

L’ ≥ L⇒ 1-L ≥ 1-L’,

and thus (a)⇒ (d) (although this can be seen directly from (a)⇒ (c) and (c)⇔ (d). To
prove that (b) implies (c) and (d), consider the sequence,

{g( f (1)), . . . , g( f (1)), g( f (M)), . . . , g( f (M))},

f (1) < f (M), g( f (M)) is written l times, and the same definitions as before for L, L’, then
(b) gives

(1− L)g( f (1)) + Lg( f (M))− (1− L’)g( f (1))− L’g( f (M)) ≤ 0,
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and we proceed as above. Thus, (a)⇒ (c).
Let us see now that (c) implies (a).

Define for 1 ≤ k ≤ M, Ak = ∑k
j=1 αk, A′k = ∑k

j=1 α′k, and A0 = A′0 = 0. Then,

M

∑
k=1

αkg( f (k))−
M

∑
k=1

α′kg( f (k)) =
M

∑
k=1

(αk − α′k)g( f (k)) (A1)

=
M

∑
k=1

(Ak − Ak−1 − A′k + A′k−1)g( f (k))

=
M

∑
k=1

(Ak − A′k)g( f (k))−
M

∑
k=1

(Ak−1 − A′k−1)g( f (k))

=
M−1

∑
k=1

(Ak − A′k)g( f (k))−
M−1

∑
k=0

(Ak − A′k)g( f (k + 1))

=
M−1

∑
k=1

(Ak − A′k)g( f (k))−
M−1

∑
k=1

(Ak − A′k)g( f (k + 1))

=
M−1

∑
k=1

(Ak − A′k)(g( f (k))− g( f (k + 1))) ≥ 0,

as (c) implies that for all k, A′k − Ak ≥ 0, and {g( f (k))} is an increasing sequence. Thus,
(c)⇒ (a).
Repeating the proof for the sequences {αM−k+1} and {α′M−k+1}, we obtain that (d)⇒ (b).

Let g(x) be decreasing. Observe that

M

∑
k=1

αM−k+1g( f (k)) =
M

∑
k=1

αM−k+1g( f (m(M− k + 1))) =
M

∑
k=1

αkg( f (m(k))),

where m(k) = M − k + 1, and thus (a) ⇒ (b′) because {g( f (m(k)))} is an increasing
sequence. Now suppose g(x) is increasing, from

M

∑
k=1

αkg( f (k)) =
M

∑
k=1

αM−k+1g( f (M− k + 1)) =
M

∑
k=1

αM−k+1g( f (m(k))),

we have that (b′) ⇒ (a) because {g( f (m(k)))} is a decreasing sequence. We can show
similarly that (b)⇔ (a′).

Consider now f (x) decreasing. Reversed (a) is

M

∑
k=1

αkg( f (k)) ≤
M

∑
k=1

α′kg( f (k)), (A2)

but it can be written as

M

∑
k=1

αM−k+1g( f (M− k + 1)) ≤
M

∑
k=1

α′M−k+1g( f (M− k + 1)) (A3)

=
M

∑
k=1

αM−k+1g( f (m(k))) ≤
M

∑
k=1

α′M−k+1g( f (m(k))),

where {g( f (m(k)))} is an increasing sequence, and thus (c)⇒ (a) when f (x) is decreasing
and for order of inequality in (a) reversed. The other cases for f (x) decreasing can be
analogously proven.



Entropy 2021, 23, 662 16 of 19

Appendix B. Proof of Lines 1–8 from Table 1 in Lemma 2

Proof. Let us prove first Lines 1–4 from Table 1.
Let g(x) be the strictly monotonic function associated with meanM. Consider the

following inequalities. For g(x) increasing, g? increasing:

M

∑
k=1

α′kg?( f ?(k)) =
M

∑
k=1

α′kg(g−1(g?( f ?(k)))) (A4)

≤
M

∑
k=1

αkg(g−1(g?( f ?(k)))) =
M

∑
k=1

αkg?( f ?(k)).

For g(x) decreasing, g? decreasing:

M

∑
k=1

αkg?( f ?(k)) =
M

∑
k=1

αkg(g−1(g?( f ?(k)))) (A5)

≤
M

∑
k=1

α′kg(g−1(g?( f ?(k)))) ≤
M

∑
k=1

α′kg?( f ?(k)).

Observe that the central inequalities in Equations (A4) and (A5) are true whenever Equa-
tion (20) holds and viceversa. We are interested in considering all possibilities for it to hold,
when f ? and f (x) = g−1(h(x)) are increasing, with h(x) = g?( f ?(x)). We need first to
study the convexity/concavity of the function g−1(h(x)). Let us suppose all functions are in
C2, then h′(x) = g? ′( f ?(x)) f ? ′(x), and h′′(x) = g? ′′( f ?(x))( f ? ′(x))2 + g? ′( f ?(x)) f ? ′′(x).
Dropping the arguments for convenience, we have h′′ = g? ′′( f ? ′)2 + g? ′ f ? ′′. For h′′ to be
positive (convex) g? ′′ has to be positive (convex) and g? ′, f ? ′′ have to be both positive or
negative (thus g? convex-increasing, f convex, or g? convex-decreasing, f concave). For
h′′ to be negative, g? ′′ has to be negative (concave) and g? ′, f ? ′′ have to have a different
sign (thus g? concave-increasing, f concave, or g? concave-decreasing, f convex). For
g−1(h(x)), we can apply the same rule. Observe also that the composition of two increas-
ing or two decreasing functions is increasing, and increasing and decreasing or viceversa is
decreasing. For the inverse function, as (g−1(g(x)) = x we have that g−1′(g(x))g′(x) = 1,
g−1′′(g(x))(g′(x))2 + g−1′(g(x))g′′(x) = 0, which isolating g−1′′(g(x)) and dropping argu-
ments becomes g−1′′ = −g−1′g′′, and thus for g−1 convex-increasing (concave-increasing),
the inverse is concave-increasing (convex-increasing), while for g−1 convex-decreasing
(concave-decreasing), the inverse is convex-decreasing (concave-decreasing). In Table A1,
we show the different possibilities for f (x) to be increasing when f ? is increasing.

Table A1. Different possible combinations where the concavity/convexity of g−1(h(x)) can be
predicted for g(x) and f ?, f (x) increasing. ICX: convex and increasing, ICV: concave and increasing,
DCX: convex and decreasing, DCV: concave and decreasing.

g g−1 g? f? h = g? ◦ f? f = g−1 ◦ h

1 ICX ICV ICV ICV ICV ICV
2 DCX DCX DCV ICX DCV ICX
3 ICV ICX ICX ICX ICX ICX
4 DCV DCV DCX ICV DCX ICV
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Let us prove now Lines 5–8 from Table 1.
Consider the following inequalities, where m(x) = M − x + 1, for g(x) increasing, g?

decreasing,

M

∑
k=1

αkg?( f ?(k)) =
M

∑
k=1

αM−k+1g?( f ?(M− k + 1)) (A6)

=
M

∑
k=1

αM−k+1g(g−1(g?( f ?(m(k))))) ≤
M

∑
k=1

α′M−k+1g(g−1(g?( f ?(m(k)))))

=
M

∑
k=1

α′M−k+1g?( f ?(M− k + 1)) =
M

∑
k=1

α′kg?( f ?(k)),

and for g(x) decreasing, g? increasing

M

∑
k=1

α′kg?( f ?(k)) =
M

∑
k=1

α′M−k+1g?( f ?(M− k + 1)) (A7)

=
M

∑
k=1

α′M−k+1g(g−1(g?( f ?(m(k))))) ≤
M

∑
k=1

αM−k+1g(g−1(g?( f ?(m(k)))))

=
M

∑
k=1

αM−k+1g?( f ?(M− k + 1)) =
M

∑
k=1

αkg?( f ?(k)).

Observe that the central inequalities in Equations (A6) and (A7) are true whenever Equa-
tion (21) holds and viceversa. We are interested in considering all possibilities for it to hold,
when f ? and f (x) = g−1(h(x)) are increasing, with h(x) = g?( f ?(m(x))). As before, we
need first to study the convexity/concavity of the function g−1(h(x)).

Consider the function h(x) = g?( f ?(m(x)). The second derivative is, as m′(x) = −1
and m′′(x) = 0, h′′(x) = g? ′′( f ?(m(x)) f ? ′2(m(x)) + g? ′( f ?(m(x)) f ? ′′(m(x)). Let us drop
the arguments for convenience, then h′′ = g? ′′ f ? ′2 + g? ′ f ? ′′. Observe that it is the same
result obtained above. In Table A2, we see the possible combinations for f (x) to be
increasing when f ?(x) is increasing. The difference with Table A1 is that we have to
consider here m(x).

Table A2. Different possible combinations where the concavity/convexity of g−1(h(x)) can be predicted and f (x) is
increasing when g(x) is increasing and g?(x) decreasing (or viceversa) when f ? is increasing. ICX: convex and increasing,
ICV: concave and increasing, DCX: convex and decreasing, DCV: concave and decreasing.

g g−1 g? f? f?(m) h = g? ◦ f? ◦ m f = g−1 ◦ h

5 ICX ICV DCV ICX DCX ICV ICV
6 DCX DCX ICV ICV DCV DCV ICX
7 ICV ICX DCX ICV DCV ICX ICX
8 DCV DCV ICX ICX DCX DCX ICV

Then, we can summarize the results from Tables A1 and A2 in Table 1. This will do to
prove Equation (20). The results for Equation (21) are obtained as above by substituting
{αk}, {α′k} by {α′M−k+1}, {αM−k+1}.

Suppose now f ?(x) is decreasing and that Equations (20) and Equation (21) hold for
g?(x) and for f ?(x) increasing. Then, the following inequalities, for g?(x) increasing,

∑
k

αkg?( f ?(k)) = ∑
k

αM−k+1g?( f ?(m(k))) (A8)

≤ ∑
k

α′M−k+1g?( f ?(m(k))) = ∑
k

α′kg?( f ?(k)),
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∑
k

α′M−k+1g?( f ?(k)) = ∑
k

α′kg?( f ?(m(k))) (A9)

≤ ∑
k

αkg?( f ?(m(k))) = ∑
k

αM−k+1g?( f ?(k)),

and for g?(x) decreasing,

∑
k

α′kg?( f ?(k)) = ∑
k

α′M−k+1g?( f ?(m(k))) (A10)

≤ ∑
k

αM−k+1g?( f ?(m(k))) = ∑
k

αkg?( f ?(k)),

∑
k

αM−k+1g?( f ?(k)) = ∑
k

αkg?( f ?(m(k))) (A11)

≤ ∑
k

α′kg?( f ?(m(k))) = ∑
k

α′M−k+1g?( f ?(k)),

hold because f ?(m(x)) is an increasing function. Thus, Equations (20) and (21) hold
with the direction of inequality reversed. Observe also that f ?(m(x)) will have the same
character of convexity/concavity than f ?(x). Applying Equations (A8)–(A11), according to
whether g? is increasing or decreasing, to each line of Table 1, we obtain the desired result.

Appendix C. Proof of Theorem 11

Proof. First, note that if α′i
α′j
≥ αi

αj
for i ≤ j, then α′1 ≥ α1 and α′M ≤ αM, see [17]. Let us

proceed now by induction. For M = 2, the condition c) of Lemma 1 is true, because α′1 ≥ α1,
and α′1 + α′2 = α1 + α2. Let us suppose that it is true for M− 1. If {α′k}

M
k=1 ≺LR {αk}M

k=1,
then it is immediate that {α′k/ ∑M−1

k=1 α′k}
M−1
k=1 ≺LR {αk/ ∑M−1

k=1 αk}M−1
k=1 , and by the induction

hypothesis, the condition c) of Lemma 1 holds, and thus

α′1/
M−1

∑
k=1

α′k ≥ α1/
M−1

∑
k=1

αk (A12)

(α′1 + α′2)/
M−1

∑
k=1

α′k ≥ (α1 + α2)/
M−1

∑
k=1

αk

. . . ≥ . . .

(α′1 + α′2 + . . . + α′M−1)/
M−1

∑
k=1

α′k = (α1 + α2 + . . . + αn−1)/
M−1

∑
k=1

αk.

However, we know that α′M ≤ αM, and thus ∑M−1
k=1 α′k ≥ ∑M−1

k=1 αk because ∑M−1
k=1 α′k =

∑M−1
k=1 αk = 1, and thus we obtain condition c) of Lemma 1.
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