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RESUM 
Els ecosistemes fluvials són un dels ecosistemes més complexos i diversos del planeta. Les comunitats que 

hi viuen depenen de les interaccions entre els factors ambientals i biòtics que hi succeeixen. Actualment, 

els ecosistemes aquàtics estan sotmesos a condicions d'estrès múltiple que poden incloure factors 

d’estrès tant d'origen natural com antròpic. Un factor d’estrès que segueix sent motiu de preocupació és 

la contaminació per metalls, degut a la seva alta biotoxicitat, perdurabilitat i a la seva capacitat de 

bioacumulació en la cadena tròfica, que acaba causant efectes adversos en la biota i contribuint a la 

deterioració de la integritat dels ecosistemes fluvials. Un bon indicador d’estrès per metalls és la resposta 

del biofilm fluvial, sobretot la dels procariotes que hi viuen. Els procariotes responen ràpidament als canvis 

ambientals ja que la seva abundància, diversitat i taxa de creixement són elevades. Aquests porten a 

terme funcions ecosistèmiques importants assegurant l’estabilitat i recuperació dels ecosistemes fluvials, 

de manera que qualsevol factor d’estrès que afecti a aquests microorganismes pot comportar importants 

conseqüències pels ecosistemes. Per tant, l'ecotoxicologia microbiana, amb l'ajuda de la metagenòmica, 

proporciona una bona aproximació pel coneixement i avaluació de l'impacte que la contaminació per 

metalls té en l'estructura i funcionalitat de les comunitats microbianes. No obstant això, encara existeix 

una certa incertesa en l’avaluació i predicció dels efectes del metalls a gran escala. Els estudis de camp 

ajuden a aproximar-se a aquesta realitat ecològica per mitjà de l’ enfoc holístic. 

Aquesta tesi té l'objectiu d'investigar els efectes dels metalls d'origen natural i antròpic sobre la 

composició i funcionalitat de les comunitats de procariotes que viuen als biofilms epilítics fluvials a través 

d'anàlisis moleculars i estudis de camp. Aquest estudi inclou tres treballs de camp duts a terme en 

diferents escales temporals i espacials, per tal d'abordar la complexitat dels ecosistemes fluvials a 

múltiples escales. Primer, es va realitzar un estudi de monitorització passiva de biofilm en diferents zones 

dels rius Osor, Llémena i Ter per entendre els procediments i l'interès de realitzar anàlisis de seqüenciació 

de les fraccions ADN i ARN del gen 16SrRNA de les comunitats de procariotes que creixen en el biofilm 

dels ecosistemes eutròfics amb contaminació lleu de metalls. El segon estudi es va basar en un experiment 

amb mesocosmos que contenien còdols de riu colonitzats per biofilm al llarg del riu Osor, on es controlava 

la presència de peixos, per tal de determinar el seu impacte en l'estructura i funcionalitat de les 

comunitats microbianes en un ambient d’estrès múltiple. Finalment, el tercer va ser un estudi realitzat en 

una font de ferro procedent d'aigües subterrànies (Can Verdaguer) a la conca del riu Llémena, on es van 



2 
 

prendre mostres d'aigua, biofilm i fulles per reconèixer els factors ambientals i biòtics que determinen 

l'estructura i funcionalitat de la comunitat microbiana.  

Els resultats d'aquesta tesi mostren que les anàlisis d'ADN i ARN per determinar la α i β-diversitat de les 

comunitats de procariotes proporcionen una informació diferent i complementària sobre la integritat 

ecològica de l'ecosistema. La fracció d'ADN (la comunitat resident) esdevingué un indicador pobre de la 

contaminació per metalls, però va detectar un canvi en la composició de les comunitats de bacteris al llarg 

d’un gradient de mineralització i segons el contingut de nutrients. En canvi, la fracció d'ARN (la comunitat 

activa) va mostrar la resposta de la comunitat a nivells lleus de contaminació de metalls amb comunitats 

bacterianes similars en els llocs afectats per metalls. A més, l'alt contingut en ARN d’ aquestes mostres va 

evidenciar la presència d'una comunitat microbiana molt activa, suggerint una resposta específica a 

l'exposició de metalls, com podrien ser els processos de detoxificació.  

Pel que fa a la presència o absència de peixos en un escenari d'estrès múltiple, els resultats obtinguts 

mostren que la combinació dels efectes de contaminació, manca d'aigua i la presència de peixos van tenir 

un fort impacte en l'estructura de les comunitats microbianes. La biomassa, el consum de nutrients per 

part del biofilm i la α-diversitat dels procariotes no van seguir el gradient de contaminació de metalls. En 

canvi, les diferències en la composició de la comunitat (β-diversitat) van ser molt més clares al llarg del 

gradient de contaminació de metalls, seleccionant famílies indicadores de cada lloc. És interessant 

ressaltar l'aparició de bacteris endosimbionts en els llocs més alterats, amb alta concentració de nutrients, 

contaminació de metalls i alteració hidrològica. A més, la bioturbació va reduir el contingut de clorofil·la i 

biomassa del biofilm i va incrementar la toxicitat dels metalls, confirmant la importància d'aquests macro 

consumidors en la seva arquitectura i en conseqüència, en el funcionament de l'ecosistema fluvial. 

En relació a la font de ferro, els principals factors determinants de la composició de la comunitat 

microbiana van ser la química de l'aigua i la competència entre comunitats. Tal com s’ha vist en el cas de 

contaminació per metalls procedents de la mina, l’α-diversitat dels procariotes tampoc es va veure 

influïda per l'estrès químic en aquest ambient aquàtic. De fet, un gran nombre d'espècies va a traspassar 

el filtre ambiental d'estrès químic provocat pel ferro, apareixent una comunitat única i molt diversa 

caracteritzada per espècies quimiolitotròfiques. No obstant això, la β-diversitat dels procariotes, la 

producció primària i les taxes de descomposició de la fullaraca van seguir el gradient d'estrès químic. 

Aquestes condicions extremes van resultar molt nocives per a les algues i els organismes responsables de 

la descomposició de les fulles, portant a valors molt baixos de producció primària i de descomposició. Per 
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altra banda, a mesura que va disminuir la concentració de ferro aigües avall, la producció primària i la 

descomposició van incrementar generant una comunitat de procariotes molt diferent, però amb valors 

més baixos de diversitat i amb altres funcions atribuïts a l’exclusió competitiva.  

En general, aquesta tesi mostra com els metalls d’origen natural i antròpic canvien de forma important la 

composició de les comunitats de procariotes, sobre tot dels bacteris. La β-diversitat és la variable més 

sensible als efectes dels metalls, a diferencia de la α-diversitat, que no es mostra gairebé afectada o fins i 

tot és beneficiada. En escenaris amb contaminació alta i crònica de metalls, la comunitat resident (fracció 

d’ADN) pateix canvis en la seva composició que poden ser detectats a nivell de fílum o classe. Si més no, 

en ecosistemes fluvials sotmesos a nivells més baixos de contaminació de metalls només la fracció d’ ARN 

es veu afectada seleccionant els OTUs/ASVs més actius. El coneixement de la composició de la comunitat 

bacteriana i la identificació de taxons especialment sensibles, ajuden a trobar funcions potencials de 

resposta dels bacteris a situacions d’estrès causades per metalls.  
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RESUMEN 
Los ecosistemas fluviales son uno de los más complejos y diversos del planeta. Las comunidades que viven 

en estos ecosistemas dependen de las interacciones entre los factores ambientales y bióticos que tienen 

lugar en ellos. Actualmente los ecosistemas acuáticos están sujetos a condiciones de estrés múltiple que 

pueden incluir estresores de origen natural o antrópico. Un estresor que sigue siendo motivo de 

preocupación es la contaminación por metales debido a su alta biotoxicidad, perdurabilidad y su 

capacidad de bioacumulación en la cadena trófica, lo cual causa efectos adversos en la biota y contribuye 

al deterioro de la integridad de los ecosistemas fluviales. Un buen indicador del estrés por metales es la 

respuesta del biofilm fluvial, sobre todo la de los procariotas que viven en él. Los procariotas responden 

rápidamente a los cambios ambientales debido a que su abundancia, diversidad y tasa de crecimiento son 

muy altas. Además, éstos llevan a cabo funciones ecosistémicas importantes asegurando la estabilidad y 

recuperación de los ecosistemas fluviales, con lo que cualquier estresor que afecte a estos 

microorganismos puede conllevar serias consecuencias para los ecosistemas. Por tanto, la ecotoxicología 

microbiana con la ayuda de la metagenómica, proporciona una buena aproximación al conocimiento y 

evaluación del impacto que la contaminación por metales tiene en la estructura y función de las 

comunidades microbianas. Sin embargo, todavía existe cierta incertidumbre en la evaluación y predicción 

de los efectos de los metales a gran escala (escala ecosistémica). Son los estudios de campo los que ayudan 

a aproximarse a esta realidad ecológica por medio de un enfoque holístico. 

Esta tesis tiene el objetivo de investigar los efectos de los metales de origen natural y antrópico sobre la 

composición y función de las comunidades de procariotas que viven en los biofilms epilíticos fluviales, a 

través de análisis moleculares y estudios de campo. La tesis incluye tres estudios de campo llevados a 

cabo en diferentes escalas temporales y espaciales, como una forma de abordar la complejidad de los 

ecosistemas fluviales a múltiples escalas. Primero se realizó un estudio de monitorización pasiva de 

biofilm a lo largo de diferentes puntos de los ríos Osor, Llémena y Ter para comprender los procedimientos 

y el interés de realizar análisis de secuenciación de las fracciones ADN y ARN del gen 16S rRNA de las 

comunidades de procariotas que componen el biofilm, en ecosistemas eutróficos y con una 

contaminación leve de metales. El segundo estudio se basó en un experimento con mesocosmos que 

contenían códulos del río colonizados por biofilm a lo largo del río Osor, donde la presencia de peces 

estaba controlada, para determinar su impacto sobre la estructura y función de las comunidades 

microbianas en un ambiente de estrés múltiple. Finalmente, el tercero fue un estudio en una fuente de 



5 
 

hierro procedente de aguas subterráneas (Can Verdaguer) en la cuenca del río Llémena, donde se tomaron 

muestras de agua, biofilm y hojas para reconocer los factores ambientales y bióticos que determinan la 

estructura y función de la comunidad microbiana. 

Los resultados de esta tesis muestran que el análisis de ADN y ARN para determinar la α y β-diversidad de 

las comunidades de procariotas proporciona una información diferente y complementaria sobre la 

integridad ecológica del ecosistema. La fracción de ADN (la comunidad residente) resultó un indicador 

pobre de la contaminación de metales, pero detectó un cambio en la composición de las comunidades de 

bacterias a lo largo de un gradiente de mineralización y en función el contenido de nutrientes. En cambio, 

la fracción de ARN (la comunidad activa) detectó respuestas de la comunidad ante una moderada 

contaminación de metales con comunidades bacterianas similares en los sitios afectadas por metales. 

Además, el alto contenido en ARN de estas muestras indicó la presencia de una comunidad microbiana 

muy activa, sugiriendo una respuesta específica a la exposición de metales, como podrían ser los procesos 

de detoxificación. 

Respecto a la presencia o ausencia de peces en un escenario de estrés múltiple, los resultados obtenidos 

muestran que la combinación de los efectos de contaminación, falta de agua y peces tuvieron un efecto 

pronunciado en la estructura de las comunidades microbianas. La biomasa, la absorción de nutrientes por 

parte del biofilm y la α-diversidad de los procariotas no siguieron el gradiente de contaminación de 

metales. Sin embargo, las diferencias en la composición de procariotas (β-diversidad) fueron muy claras a 

lo largo del gradiente de contaminación de metales, seleccionando algunas familias indicadoras de cada 

sitio. Es interesante resaltar, la aparición de bacterias endosimbiontes en los sitios más afectados, con alta 

concentración de nutrientes, contaminación de metales y alteración hidrológica. Además, el efecto de la 

bioturbación de peces sobre el biofilm, redujo el contenido de clorofila y biomasa e incrementó la 

toxicidad de los metales, confirmando la importancia de estos macroconsumidores en la arquitectura del 

biofilm, y en consecuencia en el funcionamiento del ecosistema fluvial. 

En relación a la fuente de hierro, los principales factores determinantes de la comunidad microbiana 

fueron la química del agua y la competición entre comunidades. Como ya ha sido citado para la 

contaminación por metales procedentes de la mina, la α-diversidad de los procariotas tampoco fue 

influenciada por el estrés químico en esta fuente. De hecho, un gran número de especies pasó el filtro 

ambiental provocado por una elevada concentración de hierro, creando una única y muy rica comunidad 

de procariotas sostenida por especies quimiolitotróficas. Sin embargo, la β-diversidad de los procariotas, 
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la producción primaria y las tasas de descomposición de las hojas siguieron el gradiente de estrés químico. 

Estas condiciones extremas fueron nocivas para las algas y los organismos responsables de la 

descomposición de las hojas, generando muy baja producción primaria y descomposición. Pero según se 

reducían las concentraciones de hierro aguas abajo, la producción primaria y la descomposición 

incrementaban, generando una comunidad de procariotas muy diferente, con baja diversidad y con otras 

funciones a causa de la exclusión competitiva. 

En general, esta tesis muestra cómo los metales de origen natural y antrópico cambian de forma 

importante la composición de las comunidades de procariotas, sobre todo de las bacterias. La β-diversidad 

es la variable más sensible a los efectos de los metales, a diferencia de la α-diversidad, que no se muestra 

casi afectada o incluso es beneficiada. En escenarios con contaminación alta y crónica de metales, la 

comunidad residente (fracción de ADN) sufre cambios en su composición que pueden ser detectados a 

nivel de filo o clase. Sin embargo, en ecosistemas fluviales sometidos a niveles más bajos de 

contaminación de metales sólo la fracción de ARN se ve afectada selecionando los OTUs/ASVs más activos. 

El conocimiento de la composición de la comunidad bacteriana y por consiguiente la elección de algunos 

taxones como bioindicadores, ayuda a encontrar funciones potenciales de las bacterias que podrían ser 

importantes en las respuestas al estrés causado por metales. 
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SUMMARY 
Fluvial ecosystems are one of the most complex and diverse systems on the planet. Biological 

communities that live in these ecosystems depend on environmental factors and biotic interactions. 

Nowadays, freshwater ecosystems are subjected to multiple stress conditions, which can include natural 

and anthropic stressors. A stressor, which is still under concern today, is metal pollution due to its high 

biotoxicity, perdurability and bioaccumulation across the food chain, which causes adverse effects on 

biota and contributes to the deterioration of fluvial ecosystem integrity. A good indicator of metal stress 

is the response of fluvial biofilm, especially prokaryotes living in it. Prokaryotes respond quickly to 

environmental changes due to their abundance, high diversity and fast growth rate. Moreover, they 

support important ecosystem functions and ensure the stability and recovery of fluvial ecosystems, so any 

stressor affecting microorganisms would cause serious consequences to the ecosystems. Consequently, 

microbial ecotoxicology, with the help of metagenomics, provides a good approach to understand and 

evaluate the impact of metal pollution on the structure and function of microbial communities. However, 

there is still some uncertainty in the assessment and prediction of the effects of metals on a large scale 

(ecosystem scale). Field studies help us get closer to this ecological reality over a holistic approach. 

This thesis aims to investigate the effects of metals from natural and anthropogenic sources on the 

composition and function of the prokaryotic communities living in epilithic fluvial biofilms, based on 

molecular analyses and field studies. The thesis includes three field studies carried out at different 

temporal and spatial scales as a multi-scale way of approaching the complexity of fluvial ecosystems. First, 

a passive biomonitoring study with biofilms was conducted along different points of the Osor, Llémena 

and Ter Rivers to understand the procedures and interest of performing amplicon sequencing of the DNA 

and RNA fractions of the 16 rRNA gene analysis of the prokaryotic component of biofilms, in a eutrophic 

environment with low metal pollution. Second, an experiment with mesocosms filled with natural 

colonized cobbles was carried out over the Osor River, where the presence of fish was controlled, to 

determine their impact on the structure and function of biofilm microbial communities in a multiple 

stressed environment. Finally, the third study was performed in an iron (Fe) groundwater spring (Can 

Verdaguer) at the Llémena watershed, where water, biofilm and leaf samples were collected to examine 

the environmental and biotic drivers of the structure and function of microbial community. 



8 
 

The results obtained in this thesis show that the analysis of DNA and RNA to determine α and β-diversity 

of prokaryotic communities provided different and complementary information about the ecological 

integrity of the ecosystem. The DNA fraction (resident community) was a poor indicator of metal pollution, 

although it detected a change in the composition of the bacteria over upstream-downstream gradient of 

mineralization and nutrient contents. However, the RNA fraction (active community) detected community 

responses to low metal pollution with similar bacterial communities in sites affected by metals. In 

addition, the high content of RNA in the most polluted samples indicated the presence of a very active 

microbial community, which suggested a specific response to metal exposure, such as detoxification 

processes. 

With respect to the presence or absence of fish in a multiple-stressed scenario, the results obtained show 

that the combined effects of pollution, water stress and fish had a pronounced effect on the structure of 

microbial communities. Biomass, nutrient uptake of biofilm and α-diversity of prokaryotes did not follow 

the gradient of metal pollution. However, the differences in the composition of prokaryotes (β-diversity) 

were very clear over the metal pollution gradient and therefore, some indicator families of each site could 

be classified. Interestingly, endosymbiotic bacteria appeared in the site most affected by nutrient 

enrichment, metal pollution and hydrological alteration. Moreover, the effects of the fish bioturbation on 

biofilm reduced Chl-a and AFDW and increased the toxicity of metals, thus confirming the importance of 

these macroconsumers in the biofilm architecture, and consequently, in the functioning of fluvial 

ecosystems. 

In relation to the Fe spring, the main drivers of microbial community were water chemistry and biological 

competition. As reported for mining metals, α-diversity of prokaryotes was not affected by chemical stress 

in the Fe spring. In fact, a large number of species passed the extreme environmental filter of high Fe 

concentration creating a unique and very rich prokaryotic community sustained by chemiolitotrophic 

species. However, β-diversity of prokaryotes, primary production and leaf litter decomposition rates 

followed the chemical stress gradient. The extreme conditions were deleterious for algae and organisms 

responsible for leaf decomposition leading to a very low primary production and decomposition rates. As 

the concentration of Fe decreased downstream, the primary production and breakdown increased 

generating competitive exclusion, in such a way that a different prokaryotic community less diverse and 

with other functions was found. 
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Overall, this thesis shows how the metals of natural and anthropic origin change significantly the 

composition of the prokaryotic communities (mainly the composition of bacteria). The β-diversity is the 

most sensitive variable to the effects of metals, unlike α-diversity, which is hardly affected or even 

benefited. In scenarios with high and chronic metal pollution, the resident community (DNA fraction) 

suffers changes in its composition that can be detected at phylum or class taxonomic level. However, in 

fluvial ecosystems, subjected to lower levels of metal pollution, only the RNA fraction is affected by 

selecting more active OTUs/ASVs. In addition, the knowledge about the bacterial composition of 

communities and, consequently, the selection of specific taxa is useful to find some potential prokaryotes 

functions important in stress response caused by metals.  
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1. Ecological complexity of fluvial ecosystems 

 

1.1. Fluvial ecosystems under study 

Freshwater represents only 2.8% of all the water in the Earth. Ice caps and glaciers comprise most of it 

(2.24%), and groundwater (0.61%) is also a sizable percentage. Only 0.009% of the total of freshwater 

reserves are in lakes, about 0.001% in the atmosphere, and rivers contain 0.0001% (Allan & Castillo, 2007). 

Understanding the structure and function of these ecosystems is still a common goal for many aquatic 

ecologists.  

Fluvial ecosystems are open, as well as hierarchical, dynamic and heterogeneous. They are submitted to 

physical, chemical and biological elements and processes across multiple spatial and temporal scales, 

which are interlinked. In particular, this thesis will focus on two important fluvial ecosystems: some rivers 

and a specific groundwater-fed spring, both located in Mediterranean climate regions. 

Although rivers only represent a small percentage of the Earth’s water, they have an important ecological 

relevance and they are among the most complex and diverse ecosystems on the planet. These ecosystems 

behave as a dynamic network of channels and floodplains intermittently connected by the action of the 

flow. Humphries, Keckeis & Finlayson (2014) put forward the river wave concept as an easy and familiar 

way to describe the river flow. This concept emphasizes the key processes that drive river ecosystem 

structure and function, such as the production, storage, transformation and transport of material and 

energy. The objective of the concept is to unite three hypothesis based on previously proposed models. 

These are the productivity model (Thorp, Delong, Greenwood & Casper, 1998), the river continuum 

concept (Vannote, Minshall, Cummins, Sedell & Cushing, 1980) and the flood pulse concept (Junk, Bayley, 

& Sparks, 1989). Following the predictions of the productivity model, the trough of a river wave equates 

to a low flow (baseflow) in which the local production of autochthonous and local inputs of allochthonous 

matter predominate. This fact contributes to the metabolism and the transformation of organic matter 

through decomposition and assimilation at various trophic levels. The ascending or descending limbs of 

river waves equate to rising and falling hydrographs, especially relevant in Mediterranean rivers, where 

upstream allochthonous inputs and longitudinal transport of material and energy are mainly found, 

according to the river continuum concept. Flood flows in rivers, referred in the model as the crest of the 

wave, are characterized by allochthonous inputs of material and energy from floodplain habitats due to 

lateral transport, autochthonous floodplain production and the storage and transformation of material. 

Also, upstream allochthonous production and transport continue to be substantial getting closer to the 
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predictions of the flood pulse concept (Figure 1). Moreover, these behaviors vary depending where the 

catchment is (upstream, middle and downstream), the climate, geology, geomorphology and human 

activity, which also influence the riverscape and its biota.  

 

Figure 1. Theoretical examples of the variation in the time and space of the river waves through of productivity model (Thorp et al., 1998), the 
river continuum concept (Vannote et al., 1980) and the flood pulse concept (Junk et al., 1989). Modified from Humphries et al. (2014).  

 

Other interesting and singular aquatic ecosystems are groundwater-fed springs arising from long transit 

time hydrogeological systems (eg., Beam et al., 2016; Chae, Yun, Kim & Mayer, 2006; Garrels & Mackenzie, 

1967; Hurwitz, Hunt & Evans, 2012). In these systems strong hydrochemical changes often take place 

(Agnelli et al., 2015; Piqué, Grandia & Canals, 2010), creating steep physicochemical gradients, which most 

notably include a dramatic increase in dissolved oxygen and pH and the precipitation of solutes over short 

distances (< 100m). These springs are valued as extreme freshwater systems because of their unusual 

chemical composition, unique microbial assemblages and specific geological sources (Von Fumetti, Nagel 

& Baltes, 2007) allowing to show how the abiotic and biotic factors shape the distribution of species 

(Wellborn, Skelly & Werner, 1996).  

Mediterranean climate is characterized by mild, wet winters and hot, dry summers (Lionello et al., 2006). 

Winter temperatures range from about 8° to 12°C, and summer temperatures can vary between 18° and 

30°C. Annual precipitations usually range between 275 and 900 mm, the rain falls mainly during the three 

months of winter that is when some major storms occur (Gasith & Resh, 1999). This climate influences 
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greatly the hydrology of the fluvial ecosystems under study, causing typical episodes of floods and 

droughts. 

1.2 Community ecology associated to the fluvial ecosystems 

The organisms that form fluvial ecosystems are assembled in communities of various degrees of 

complexity. Communities are defined as groups of interacting populations that overlap in time and space 

(Clements & Newman, 2003).The fluvial ecosystems integrate these biological interactions with all of the 

environmental factors that collectively determine how systems function (Allan & Castillo, 2007).  

Diversity in local communities can be regulated by local factors (competition, disturbance, abiotic 

conditions) as well as by regional ones (history of climate, evolution and migration) (Hillebrand & 

Blenckner, 2002). The assembly of a local community is the result of large sets of species after going 

through a series of filters, which represent historical as well as ecological constraints on the arrival and 

survival of organisms at a certain area. Environmental filtering is a process in which abiotic conditions 

select the organisms that are best adapted to survive to these prevailing conditions (Rath, Maheshwari & 

Rousk, 2019; Song et al., 2019). Alternatively, biotic filtering supports the hypothesis that competitive 

exclusion is the dominant force which structures community assembly; whereby, greater competition 

between similar species leads to the exclusion of species with similar niches (Rapport, Regier & 

Hutchinson, 1985) (Figure 2). 

 

Figure 2. Diagram representation of ecology filtering cascade that shapes the local community. Niche and fitness differences will determine the 
presence and abundance of species in the local communities. Figure from Zurell (2017). 

A variety of approaches have been developed by community ecologists to define and quantify species 

diversity (Clements & Newman, 2003). This thesis highlights two different measures of species diversity, 
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α-diversity, that refers to the species richness within a local area, and β-diversity, that is the change in 

species between adjacent habitats.  

2. Stress ecology 

 

2.1. Concepts and importance 

Natural environments have always been hostile and unavoidable for organisms; in such a way that they 

can come to experience stress. The ecology of the stress defines stress as a condition suffered by an 

organism due to environmental factors that bring it near or over the edges of the reference range of its 

ecological function (ecological amplitude or ecological niche of the species) (Figure 3). These 

environmental factors are known as stressors. The stressors can be of a different nature, including 

chemical, physical or biological ones (Steinberg, 2012). The specific physiological response of an organism, 

induced by the stressor, is the stress response. Some organisms can survive temporarily outside its niche, 

although without growing nor reproducing. So, they need to be relieved from the stress by moving back 

to the niche (using behavioral mechanisms or suppressing the stressor), causing temporary physiological 

adaptations or changing the boundaries of the niche (by genetic adaptation) (Straalen, 2003).  

 

Figure 3. Scheme of niche-based definition of stress. Stress appears when an environmental factor passes from point 1 to 2, so the specie is 
forced out of ecological niche (red line). Stress responses provide temporary survival returning to its niche (blue line). The borders of the niche 

are extended by the specie’s adaptation (green line).From Straalen (2003). 

In addition, stress can be defined in a more realistic way, as a deviation from the normal operating range 

(NOR) in a multidimensional space (Figure 4). NOR is defined by Kersting (1984, 1988) as 95% of 

confidence space of undisturbed areas. This concept of multidimensional stress can be applied to the level 

of communities or even ecosystems.  
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Figure 4. Multivariate stress in a community. The scheme follows the same pattern of colours and arrows as in Figure 3 but all the combinations 
of states in absence of the stress are defined as the NOR. In this figure the stress is defined by two states variables, but can generalizer to more 

variables. From Straalen (2003). 

Nowadays with global change, the most common situation in fluvial ecosystems is the presence of 

multiple stressors, that include natural (biotic and abiotic factors) and human made disturbances that co-

occur and interact. When this occurs, complex responses from additive to multiplicative can appear. 

Additive responses arise when the joint effect of two or more stressors equal the sum of individual effects. 

On the other hand, a multiplicative response takes place when the joint effect is greater (synergism) or 

lesser (antagonism) than the sum of individual effects (Jackson, Loewen, Vinebrooke, & Chimimba, 2016; 

Piggott, Townsend, & Matthaei, 2015).  

Overall, several natural and anthropic stressors, acting at the same time, may become essential driving 

forces in the functioning of the ecosystems. 
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2.2. Metal pollution, a factor of stress 

A stress factor of concern for the freshwater ecosystems is that caused by metal pollution. High 

concentrations of metals in freshwater can affect negatively to the environment. Natural or 

anthropogenic activities can be the sources of metals (Figure 5). 

 

Figure 5. Metal sources to fluvial ecosystems. Natural sources: a) a natural weathering of sulfide rocks feeds acid and iron into the spring in 
Alaska from Andrew Mattox (http://www.groundtruthtrekking.org/) and b) Fe and CO2 rich groundwater spring in the Llémena watershed 

(Girona, Spain) from María Argudo. Anthropogenic sources: c) a smelting plant across the Yalu River, Ji'an (China), d) Tigris River, an important 
river for agriculture just outside Diyarbakir (Turkey), e) Blue Plains Advances Wastewater Treatment Plant (Washington), f) Onyar River across 

Girona city from Wikimedia Commons and g) Osor Mine source at Osor River (Girona) from Carmen Espinosa. 

Soils inherit trace metals from parent materials. Heavy metals can be released into natural waters due to 

mineral deposit-water interactions, such as weathering (Figure 5a). This increases the concentration of 

metals in the water causing the deterioration of the quality of the water in the surrounding areas (Kacmaz, 

2020). For instance, Verplanck, Nordstrom, Bove, Plumlee & Runkel (2009) reported that metal-rich 

waters, produced by oxidative weathering and leaching of trace elements from pyritic rocks (with 

concentrations of 400 mg L-1 of Fe, 3.5 mg L-1 of Cu and 14.4 mg L-1 of Zn), affected adversely the quality 

of water in streams on the Southern Rocky Mountains. In other specific geological settings, such as those 

found in intraplate extensional regions, mantellic emanation of CO2 in faults may lead to the release of 

metals, such as Fe and As from sediments and rocks. These metals, which are incorporated to the 

groundwater systems, have made important changes in the biota, limiting and/or inhibiting algal growth 

(Menció et al., 2016) (Figure 5b).  
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It is generally accepted, that although high concentrations of metals may occur in natural ecosystems, 

human activity is one of the major causes of high concentrations of metals in fluvial ecosystems, mainly 

due to metal manipulation and its wastes. The main sources of heavy metals are mines and industries 

(Figure 5c and g). For instance, a study of the environmental effects in the mining activity of Troya Mine 

on the fluvial ecosystems (Basque Country, Spain) (maximum concentrations of 16.09 mg L-1 of Zn and 

0.34 mg L-1 of Fe in water and 6.84 mg g-1 and 13.97 mg g-1 in sediment, respectively) revealed a de-

structuring of the macroinvertebrate community (Marqués, Martínez-Conde, & Rovira, 2003). A High 

concentration of Pb in water (3 mg L-1), found near a Zn smelter plant in Brazil, reduced the prokaryotic 

biodiversity (Almeida et al., 2009). There are other sources for heavy metals, such as agriculture or urban 

pollution (Figure 5d, e and f). Mendiguchía, Moreno & García-Vargas (2007) associated the concentrations 

of dissolved Ni, found in the Guadalquivir River (average of 2.31 g L-1), with agricultural activity. However, 

data of metals from urban sources are not as readily available and very few studies have been carried out 

focusing on wastewater. For instance, Kahn et al. (2015) reported a concentration of Cr of 210 ± 30 g L-1 

which was above the limits deemed permitted by the Environmental Protection Agency (EPA, 2019).  

Most western countries are carrying out water treatment and waste management programs to improve 

the quality of freshwater. In the United States, according to the EPA, the legislation establishes an aquatic 

life criterion for toxic chemicals, proposing limit values for the concentration of specific pollutants which 

include a great number of metals. These measures try to avoid deleterious effects on the majority of 

species in a given environment. In Europe, the Water Framework Directive (Directive 2008/105/EC) aims 

to achieve good surface water chemical status to avoid the loss of biodiversity, as well as to preserve 

human health. This directive highlights the importance of evaluating the effects of 33 pollutants, referred 

to as priority pollutants, composed mainly of metals, organic substances and emerging contaminants 

(European Comission, 2019). In Spain, the Royal Decree 817/2015 establishes the criteria for monitoring 

and evaluating the state of surface waters and environmental quality standards, by proposing priority 

substances (Ministry of Agriculture Food and Environment, 2015) in which metals such as Zn, Cu, and Cr 

are also included. 

Although all of these measures generate an important improvement in the quality of water, metal 

pollution is still a problem in fluvial ecosystems due to its high biotoxicity, perdurability and 

bioaccumulation across the food chain (Zhang et al., 2014), which causes adverse effects on biota and 

contributes to the deterioration of fluvial ecosystems’ integrity (Corcoll, Bonet, Leira & Guasch, 2011). It 

is important to highlight that nowadays the situation of chronic metal pollution, even at a low 
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concentration, is very common but causes serious environmental health effects on fluvial ecosystems in 

the long run. This type of pollution may lead to gradual effects, which are difficult to differentiate from 

those of natural environmental variations (Moore, 2002). This natural variation could depend on the 

source of pollution, on the hydrological regime or on the transfer processes from the water to other 

compartments (Guasch et al., 2010). For instance, in Mediterranean rivers, water scarcity can exacerbate 

the harmful effects of metal exposure due to low dilution (Guasch, Serra, Corcoll, Bonet & Leira, 2009). 

Therefore, it is very important to have the appropriate tools to detect and evaluate the effects of this 

chronic low metal pollution in fluvial ecosystems. 

3. Specific tools to assess the impact of chronic metal pollution in fluvial ecosystems 

 

3.1. Prokaryotic communities stand out as bioindicators inside epilithic biofilm  

Fluvial biofilms are consortia of phototrophic (green algae, diatoms and bacteria) and heterotrophic 

(bacteria, fungi and protozoa) organisms which make up complex and well-structured assemblages 

embedded in a polysaccharide matrix (Sabater & Admiraal, 2005). Biofilm attached to rock surfaces is 

referred to as epilithic biofilm (Guasch & Sabater, 1994) which is studied in this thesis (Figure 6). Epilithic 

biofilms have a complex 3D structure and generally high algal biomass. However, in shaded environments, 

such as in forested rivers, heterotrophic biomass becomes more relevant (Romaní, 2010).  

 

Figure 6. An idealized scheme of epilithic river biofilm components (mainly algae and prokaryotes) embedded in an exopolysaccharide matrix 
(EPS). Adapted from Mora-Gómez, Freixa, Perujo & Barral-Fraga (2016). 

Biofilms are crucial in the ecosystem functionality in such a way that phototrophic organisms are able to 

carry out primary production (photosynthetic activity) (Underwood et al., 2005) that prokaryotes and 

fungi are also able to process organic matter (Bärlocher, 2005) and to contribute to biogeochemical cycles 

(Battin, Besemer, Bengtsson, Romani & Packmann, 2016). Moreover, biofilm communities are an essential 

source of matter and energy located in the base of the food-web (Lefrançois et al., 2011). Therefore, any 

perturbation in the community, for instance, could provoke a significant impact to higher trophic levels. 
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Biofilms are the first to interact with dissolved substances, such as metals, so they can easily be affected. 

Freshwater biofilms often accumulate metals at greater concentrations and even quicklier than in 

sediments. This metals can be transferred to higher trophic levels such as protozoa, invertebrates or fish, 

increasing their toxicity (Ancion, Lear, Dopheide & Lewis, 2013; Farag et al., 2007; Serra, Corcoll & Guasch, 

2009). Moreover, fluvial biofilms are able to reflect historical and current effects of chemical stressors 

(Corcoll et al., 2015; Proia et al., 2016; Sabater et al., 2007). Thus, they can be used as biondicators of the 

effects that metals cause in the ecosystems. 

The study of communities provides a much broader context for the assessment of environmental 

contamination than the study of individual species (Clements & Newman, 2003). In this thesis, prokaryotic 

communities, which form ephilitic biofilms, will be highlighted as a powerful biological model to assess 

the effects of metal pollution under different environmental scenarios. In order to emphasize the 

prokaryotic fraction within the microbial community of biofilm, the term “microbial community” will be 

used to refer to prokaryotic community hereinafter.  

Microbial communities can be used as indicators of environmental pollution, since any environmental 

impact can be translated into structural and functional changes that can be clearly recognised (Shahsavari, 

Aburto-Medina, Khudur, Taha, & Ball, 2017). Moreover, the community response to environmental 

pollutants can be easily observed thanks to the fact that prokaryotes are very abundant, diverse (Figure 

7a) and have a high growth rate (Figure 7b) (Lear & Lewis, 2009; Ma et al., 2015). 
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Figure 7. a) The prokaryotic phylogenetic tree based on individual trees of 381 globally sampled marker genes and branch lengths estimated 
based on 100 most conserved sites per gene (Zhu et al., 2019) b) The bacterial growth curve represents the number of living cells in population 

over time from Michal Komorniczak (Wikimedia Commons). The annexed image highlight bacteria growing exponentially in a Petri dish from 
Wladimir Bulgar/Science Photo Library/Getty Images. 

A variety of molecular methods have been recently developed to investigate the microbial community 

structure and its potential function. Specifically, amplicon sequencing allows a high number of gene 

sequences to be recovered, since the sensitivity is increased by several orders of magnitude compared to 

previously used molecular techniques, such as cloning or fingerprinting methods (Lear et al., 2013; Qu et 

al., 2017; Wang, Sudduth, Wallenstein, Wright & Bernhardt, 2011). Amplicon sequencing is carried out 

following PCR amplification and further sequencing of any of the target genes of interest, such as the 16S 

rDNA gene, which codifies for the highly conserved 16S rRNA macromolecule, from which it is possible to 

infer phylogenetic and taxonomic information (Rodicio & Mendoza, 2004). Consequently, this powerful 

method can assess community responses at low taxonomic levels. This fact could highlight the important 

ecological attributes of these members that serve as potential biological indicators of ecosystems’ health 

(Hermans, Buckley, Case, Curran-Cournane & Taylor, 2017; Siddig, Ellison, Ochs, Villar-Leeman & Lau, 

2016). 
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3.2. Field studies 

Nowadays, there is a lack of capacity to assess and predict the effects of toxicants on ecosystems at large 

spatial scales. Risk assessment is made under conditions of uncertainty (Beketov & Liess, 2012). In fact, 

the most common approaches are made in the labs at a small scale such as single species toxicity tests 

and microcosms experiments. These experiments provide high control on the variables of study and they 

are easily replicable even though they lose ecological realism (Figure 8). However, field studies are 

conducted at larger spatiotemporal scales and that allows ecologists to know about the complexity and 

dimension of the ecosystem; thus providing a better approach to reality. Despite the important 

advantages of field studies due to the understanding and the need to use this approach, they are less 

common since there is a lack of rigorous control and they are difficult to replicate; specially, field 

experiments that have many logistical difficulties to be carried out (Clements & Newman, 2003) (Figure 

8). Moreover, the complexity of natural settings includes a myriad of confounding factors that may hinder 

our capacity to derive sound conclusions and link stressor effects to ecosystem responses (Romero, 2019).  

 

Figure 8. Relationship between ecological relevance and experimental control and replication in fluvial ecosystems studies. The field 
approaches in bold are carried out in this thesis. Modified from Clements & Newman (2003). 
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Focusing on the advantages of field studies, this thesis will study microbial communities following two 

field approaches: passive biomonitoring and active biomonitoring. The latest is going to include the use 

of mesocosms. Moreover, both approaches will be supported by multivariate analyses. 

To assess pollution effects on aquatic ecosystems, biomonitoring (the study of biological responses of 

exposed organisms) seems to be an appropriate method (Lacroix et al., 2015). Two different strategies 

can be used in biomonitoring: passive or active. Passive biomonitoring consists of collecting organisms 

from the environment to analyse. The passive approach is very useful, it is simple and gives the possibility 

to set-up long-term measurements (Turley et al., 2016). On the other hand, active biomonitoring involves 

direct manipulation of organisms. The chemical and biological consequences of this manipulation can then 

be monitored in space and time to assess the effects of exposure on selected endpoints (Wang et al., 

2011). This approach is specially valuable because it can show causation between stressors and biological 

responses and disentangle different drivers, allowing testing hypothesis (Clements & Newman, 2003). 

Mesocosms are outdoor experimental systems that reduce the complexity and provide replicable and 

controlled test systems that allow ecologists to have the environment under more controlled conditions, 

providing a link between observational investigations and laboratory studies (Stewart et al., 2013). They 

have been widely used to study trophic interactions, such as top-down control exerted by fish (Flecker, 

1996; Rodríguez-Lozano, Verkaik, Rieradevall & Prat, 2015; Rubio-Gracia et al., 2017; Winemiller et al., 

2014). However, its application in fluvial ecotoxicology is less common (Gardham, Chariton & Hose, 2015; 

Roussel et al., 2007).  

In order to interpret complex data obtained from biological communities, its direct and indirect 

relationship with the environment, as well as the effects of metal pollution, multivariate analyses are in 

many cases required. These analyses can perform joint ordination of several sets of physical, chemical and 

biological variables assembled from the field, and also define the distribution patterns of organisms 

according to the driving pressures in a given set of sites (Sabater, Barceló ,et al., 2016). This is a 

correlational approach with recognised weaknesses (Legendre and Legendre, 1998), but also powerful 

enough to define emerging patterns on the structure of ecological data (Legendre and Legendre, 1998). 

Moreover, the popularity of multivariate analyses is continuing to increase and their application to 

microbial ecological data has become technically simplified. However, the large amount of data needs 

more powerful statistic and bioinformatic tools that are being developed (Buttigieg & Ramette, 2014; Paliy 

& Shankar, 2016). 
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The main aim of this thesis is to gain a better understanding of the effects of metals, from natural and 

anthropogenic sources, in the structure and function of the prokaryotic communities developed in 

epilithic biofilms of fluvial ecosystems. A holistic approach, based on the combination of concepts and 

molecular techniques from stress ecology to microbial communities’ ecology, is used. This complex view 

requires the use of several endpoints related with diversity, taxonomy and activity of microbial 

communities. 

To achieve this main goal, the following specific objectives and expectations are formulated through three 

field studies: 

Study I: Responses of resident (DNA) and active (RNA) microbial communities in fluvial biofilms 

under different polluted scenarios 

The specific objective of this study is to provide an interpretation of the molecular data, based on 

the RNA and DNA sequence biomarkers that contribute to the understanding of the effect of low 

metal chronic pollution and eutrophication on the prokaryotic communities.  

It is expected that the RNA data will provide more precise information about the possible changes 

in the structure and potential function of fluvial biofilm’s prokaryotes under different conditions 

of stress than the DNA data. Moreover, it is expected that mining metals would provoke clearer 

changes in the structure of prokaryotes (α and β-diversity) than other anthropogenic metal 

pollution sources or eutrophication. 

Following these ideas, we want to focus on the effects of a higher concentration of mining metals, 

which occurs under low flow conditions, in the structure and function of microbial communities 

inside of the natural complexity of fluvial ecosystems when adding top-down control of 

macroconsumers, such as fish, by means of Study II. 

Study II. Direct and indirect effects of multiple stressors on the microbial communities in a 

mining area 

The specific aim of study II is to ascertain the impact of a multiple-stressed environment (metal 

pollution + hydrological alterations + nutrient enrichment) and its biological interactions in the 

structure and function of microbial communities that form fluvial biofilms.  
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It is expected that remarkable differences in the structure (β-diversity) and function (nutrient 

uptake) of biofilm microbial communities along a chemical gradient will be found. It is predicted 

that these differences would be the highest under multiple stresses situations, when the metal 

effluents and hydrological alterations coincide. In addition, it is hypothesized that the presence 

or absence of fish would affect the biofilm differently, i.e. the presence of fish could produce 

bioturbation to biofilm, and the absence of fish an accumulation of biomass. Furthermore, it is 

believed that fish effects would differ along the water scarcity and pollution gradient, reflecting 

the chronic effects of these multiple stressors in the different trophic levels and their interactions. 

In this sense and with the prior knowledge acquired, our intention is to deepen the knowledge on 

the biotic and abiotic drivers that control the structure and functions of the microbial community 

of biofilm with a high metal concentration from a natural source. In this case, we want to apply a 

novel bioinformatic tool with a great taxonomic resolution (reaching genus or even species 

taxonomic levels) that could allow us to improve what we already know about the structure and 

potential functions of the prokaryotic fraction of biofilms along Study III. 

Study III. Environmental drivers of microbial community structure in a high iron calcareous-

spring 

The goal of this study is to know the drivers of microbial community structure and function by the 

determination of α and β-diversities of prokaryotes, primary production of biofilm and leaf litter 

breakdown/decomposition from a natural iron (Fe) spring.  

It is expected that a shift from environmental filtering to biotic filtering along a chemical gradient 

of decreasing Fe concentration will be found. It is assumed that the most extreme chemical 

conditions will reduce primary production and leaf litter decomposition rate and will exert a 

strong filter on microbial community composition selecting metal tolerant or adapted species. On 

the other hand, under low stress conditions, biotic factors will play a more important role. High 

primary production, leaf litter breakdown, oxygen concentration and nutrient availability will 

predominate. The main limits to growth will be the competition with other organisms, thus 

promoting the competitive exclusion.
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1. Study sites 

 

All the field studies within this doctoral thesis were carried out in the Ter River hydrographical basin. The 

Study I was carried out in the main course of the Ter River and in two of its tributaries the Llémena and 

Osor Rivers. The Study II was conducted in the Osor River and the Study III in a small Fe spring within the 

Llémena watershed (Figure 1).  

 

Figure 1. Study areas in the Ter River hydrographical basin (Catalonia, Spain), the stars of different colours represent the selected sampling 
points where physicochemical and biofilm samples were collected for the Studies I, II and III. From Lluis Zamora. 

The source of the Ter River is in the middle of the Catalan Pyrenees (at 2,400 m) and the river flows into 

the Mediterranean Sea at the coastal town of L´Estartit. The Ter comprises 3,010 km2 of basin surface and 

is 208 km long, being the longest and largest of the Catalan internal basins in the northeast of Spain. Its 
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drainage area is mainly calcareous except for the head, which is siliceous (Céspedes, Lacorte, Ginebreda 

& Barceló, 2008). It forms the Sau-Susqueda-Pasteral dam system which has a total capacity of 375 hm3 

of water and supplies the Barcelona city and its surroundings with raw water for drinking (Espadaler et 

al., 1997). Along its watercourse, it receives the direct impact of metallurgic, pulp mill, textile and tannery 

industries (Céspedes et al., 2008).  

The Osor River is a second-order stream that flows into the Ter River. It is 23.5 km-long and drains a 

catchment area of 88.9 km2 within the Guilleries Mountains (Corcoll et al., 2012). The stream's stone-

bedded geological substratum is mainly siliceous with moderate mineralization (90.8 mg CaCO3 L-1, 

Agència Catalana de l´Aigua (ACA), 2018). Urban pressures are relatively low, although it receives small 

amounts of residual sewage from Osor village (354 inhabitants). Moreover, a wastewater treatment plant 

is located upstream (St. Hilari Sacalm, 5,064 inhabitants) and the hydrology of the stream is altered due 

to a deviation of part of the flow towards a hydroelectric power station that is partially recovered in the 

lower part of the stream. The stream is also affected by effluents and runoff from a mine that extracted 

sphalerite ((Zn,Fe)S) and galena (PbS). Although the mining activity finished in 1980, no environmental 

rehabilitation has been carried out and the stream is still receiving a continuous input of mine effluent 

(Bonet, Corcoll, Tlili, Morin & Guasch, 2014). The concentration of Zn commonly exceeds, the toxicity 

threshold marked by the (EPA, 2019) (120 µg L-1 for acute and chronic exposure). Zn is not part of the 

priority substances in the European Directive 2008/105/EC and in Spain the threshold depends on water 

hardness (500 µg L-1 for CaCO3 > 100 mg L-1) (Ministry of Agriculture Food and Environment, 2015). 

Previous investigations demonstrated that this low but chronic Zn pollution causes many deleterious 

effects on fluvial biota. More precisely, it causes a clear decrease in diatom diversity in favour of 

cyanobacteria and green algae, an increase in malformed diatoms and also an increase in biofilm 

community tolerance (Corcoll et al., 2012; Tlili et al., 2011). Furthermore, Zn pollution reduce the seasonal 

patterns of antioxidant enzymes activities (AEA) and the AEA diversity (Bonet et al., 2014).  

The Llémena River is also a tributary of the Ter River. It is a calcareous stream that is 32 km long. Although 

the upper part of the stream is very well preserved (Bonnineau et al., 2010; Corcoll et al., 2015), human 

activity increases downstream mainly through the agriculture, livestock, and water diversion for irrigation, 

as well as, urban activity. In particular, in the Llémena basin, there is the Can Verdaguer spring, also called 

Fe spring. It is located above the Llorà fault. This fault puts in contact igneous and metamorphic rocks 

from the Ordovician period (zone mainly forested) and young materials from the Quaternary (zone mainly 

for agricultural and urban activities). Based on the chemical composition of water and the geology of the 
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zone, it can be deduced that the spring aquifer receives water from rain, which is enriched with Fe 

throughout water filtration in soil. Moreover, this water dissolves carbonates from carbonated deposits 

found in the lower part. Finally, the water rises to the surface from an artificial fountain. More precisely, 

the water flows through a 12.6 m long pipe and is discharged into a slightly modified water canal covered 

by natural sediments and vegetation debris mainly from the surrounding trees of Quercus pubescens. The 

canal is 62 m long, 0.93 m wide and 0.62 m deep (on average) (Guasch, Acosta, Urrea, & Bañeras, 2012; 

Menció et al., 2016). According to these authors the spring is permanent, with a stable flow of 0.4 L s-1 

and the temperature of source water is 16ºC. The spring is characterized by high Fe concentration of 7,000 

mg L-1 and has been classified as one of the CO2 rich springs in this area. 

2. Methods 

 

This general section provides an overview of collection, storage and methods that this thesis employed to 

achieve the planned objectives through water and biofilm samples analyses. The protocols used for 

collecting and storing water and biofilm samples are common for the three studies. However, some 

techniques and analyses are different, as it is described below for each study (Figure 2, Table 2, Table 4). 

The design, sampling, some specific details of the laboratory analyses and statistical analyses were quite 

different, so they will be described within each study in order to facilitate the understanding of the results 

and discussion of each of them.  

 

Figure 2. Images of some procedures followed to analyse water and biofilm samples. a) falcons for nutrient analysis, b) biofilm collection by 
scrapping, c) dissolved and bioaccumulated metal analysis, d) PCR products on agarose gel, e) Chl-a fluorescence measurements. From María 

Argudo and Helena Guasch. 
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2.1. Pre-treatment in the field 

Water samples for inorganic nutrients were filtered through 0.7 µm pore-diameter glass fiber filters GFF 

(Whatman). Water samples for dissolved organic carbon (DOC) and dissolved organic matter (DOM) were 

filtered with pre-combusted filters (for 4 h at 450 ºC). Water samples for metal analysis were filtered 

through 0.2 µm pore-diameter nylon membrane filters (Whatman) and then the samples were acidified 

with 1% HNO3 (65% Suprapur©, Merck). Finally, water samples for suspended solids (SS) and alkalinity 

(Alk) were not filtered. Afterwards, all the samples were frozen at -20 ºC until analysis. 

Biofilm samples for ash free dry weight (AFDW), chlorophyll-a (Chl-a), C:N:P and metal bioaccumulation 

were scrapped with brushes, cell scrapers and collected by Pasteur pipettes. These samples were also 

stored at -20 ºC until analysis. On the other hand, biofilm samples for microbial community analysis were 

scrapped using sterilized sampling material (cell scrapers, Pasteur pipettes and gloves) (Figure 2b) and the 

samples were immediately preserved in liquid nitrogen and then stored at -80 ºC. 

2.2. Physicochemical analysis of water samples 

 Physicochemical parameters. 

 Temperature (Tª), pH, dissolved oxygen (O2) and conductivity (Cond) were analysed “in 

situ” with a multi-parametric probe (WTW Meters, Weilheim, Germany). 

 Water velocity (𝑣 ) was measured with a flow probe (Schiltknecht 43221; MiniAir2). 

 Discharge was calculated with the measures of width, depth and water velocity of the 

stream channel. 

 Inorganic ions (Figure 2a). 

 PO4
3- was analysed following the method of Murphy & Riley (1962).  

 NH4
+ was measured by Reardon, Foreman & Searcy (1966) method.  

 Other cations (K+, Na+, Ca2+ and Mg2+) were analysed by ion chromatograph DIONEX ICS-

5000. 

 Other anions (Cl−, NO3
2−, NO2

- and SO4
2−) were measured using ion-chromatography (761 

Compact IC, Metrohm, Herisau, Switzarland) (Hach, 1992). 

 SS were analysed according to standard methods of the American Public Health Association 

(APHA) (Elosegui & Butturini, 2009). 

 DOC concentration was determined using a total organic carbon analyser Shimadzu TOC-V CSH 

(230V). 
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 DOM was determined indirectly as absorbance measures at 254 nm (UV-2401PC, Shimadzu) 

following the technique developed by Weishaar et al. (2003). 

 Alk was measured following standard methods (Snoeyink, Jenkins & Jenkins, 1980). 

 Dissolved metals were analysed by inductively coupled plasma mass spectroscopy (ICP-MS 7500c 

Agilent Technologies, Inc., Wilmington, DE) (Figure 2c) and samples with high metal concentration 

were determined by inductively coupled plasma optical emission spectrometry (ICP-OES 5100 

Agilent Technologies). The detection limits are showed in Table 1 for each study. 

 

Table 1. Detection limits for dissolved metals in each study. In Study I the different values for each year of the study are shown. Half of these 
values’ concentration were used to analyse these data. In Studies II and III, half of these values’ concentration were used for data analyses only 
when the values are <15% of the total metal concentrations data (EPA Quality Staff, 2006). Values underlined show the detection limits of ICP-

OES, the others are ICP-MS values. 

 Study I Study II Study III 

Year 2016 2017 2017 2016-2017 

Zn (µg L−1) 0.90 0.28 0.40 3.36 

Mn (µg L−1) 1.96 0.49 1.05 0.47 

Fe (µg L−1) 2.14 0.41  77.95 

Pb (µg L−1) 0.91 0.32   

Ni (µg L−1) 1.23 0.11 0.19 0.45 

Cu (µg L−1)    0.34 

B (µg L−1)    7.02 

Sr (µg L−1)    12.17 

Al (µg L−1)    12.91 

Cr (µg L−1)    0.23 

Co (µg L−1)    0.09 

As (µg L−1)    0.16 

Ba (µg L−1)    0.47 
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Table 2. Summary of different variables measured with the methods described before in water samples in each study of this thesis. 

 Study I Study II Study III 

Tª, pH, O2, 
Cond 

   

�⃗�    

Discharge    

PO4
3-    

NH4
+    

Other cations    

Other anions    

SS    

DOC    

DOM    

Alk    

Metal 
concentrations 

   

 

2.3. Biofilm analysis 

 AFDW analysis was used as a measure of total biofilm biomass. The biofilm samples with water 

were filtered through 0.7 µm pore-diameter glass fiber filters GFF (Whatman), dried for 48 h at 

50 °C in order to calculate dry matter. Afterwards, the samples were combusted in an oven at 450 

°C (Obersal MOD MF12-124, Spain) for 4 h and then weighted again to calculate the mineral 

content. Therefore, the organic fraction was obtained by the difference between mineral content 

and dry matter (Steinman, Leavitt & Uzarski, 2017). 

 Chl-a fluorescence measurements were performed “in situ” by portable amplitude modulated 

fluorimeter (Mini-PAM fluorometer Walz, Effeltrich, Germany). The measurement was obtained 

by placing three to six small glass substrata (1.2 x1.2 cm) at the bottom of methacrylate boxes (9 

x 15 cm), covered with a small quantity of water for 15-20 min (Figure 2e). 

 Chl-a concentration was obtained by the method proposed by Jeffrey & Humphrey (1975). Chl-a 

was extracted from biofilm samples with 10 mL of 90% acetone at 4 °C for 24 h in dark conditions. 

Extracts were read at 430, 665 and 750 nm for the calculation of Chl-a content using a 

spectrophotometer (UV-1800 spectrophotometer (Shimadzu Corporation, Kyoto, Japan)). This 

content was used as a measure of algal biomass. 
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 C:N:P was calculated in order to obtain C:N, C:P and N:P molar ratios. To measure C and N content, 

the biofilm samples were lyophilized, homogenized and analysed by elemental analyser (AE2400 

Perkin Elmer). On the other hand, P content was determined after a basic digestion (NaOH + 

K2S2O8 + H3BO3) in an autoclave (110 ºC for 90 min) (Grasshoff, 1983). Then the inorganic forms 

of P were analysed following the protocol described by Murphy & Riley (1962). 

 Metal bioaccumulation concentration was obtained by lyophilizing, weighing and digesting 

biofilm samples with 4 mL of HNO3 (65% Suprapur©, Merck) and 1 mL of H2O2 (30% Suprapur©, 

Merck) in a high performance microwave digestion unit (Milestone, Ethos Sel) using the following 

method: 85 ºC for 2 min, 145 ºC for 5 min, 210 ºC for 7 min and, finally, 210 ºC for 10 min. 

Thereafter, the samples were diluted to 15 mL with Milli-Q water. So, the liquid samples were 

analysed with the same criteria as dissolved metals (Figure 2c). The detection limits are showed 

in Table 3. 

Table 3 Detection limits for bioaccumulated metals in each study. In Study I the different values for each year of the study are shown. Half of 
these values’ concentration were used to analyse these data. In Studies II and III, half of these values’ concentration were used for data 

analyses only when the values are <15% of the total metal concentrations data (EPA Quality Staff, 2006). Values underlined show the detection 
limits of ICP-OES, the others are ICP-MS values. 

 Study I Study II Study III 

Year 2016 2017 2017 2016-2017 

Zn (µg L−1) 0.90 0.28 0.66 2.50 

Mn (µg L−1) 1.96 0.49 2.38 2.04 

Fe (µg L−1) 2.14 0.41 2.27 3.36 

Cd (µg L−1) 2.02 1.09   

Pb (µg L−1) 0.91 0.32 0.31  

Cr (µg L−1) 1.47 1.36 1.03 0.48 

Ni (µg L−1) 1.23 0.11 0.69 0.26 

Cu (µg L−1)   0.75  

Co (µg L−1)    1.09 

As (µg L−1)    1.12 

Ba (µg L−1)    1.95 

B (µg L−1)    2.28 

Al (µg L−1)    4.87 

Sr (µg L−1)    0.69 
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 The uptake of NO3
-, NH4

+and PO4
3- was measured following an adaptation of Rubio-Gracia et al. 

(2017). This analysis will be described in more detail in the Study II. 

 Biofilm samples used for molecular analysis of the microbial community (Figure 3) were thawed, 

centrifuged at 4,000 rpm for 10 minutes at 4 ºC and weighted in order to keep only the fresh 

pellet for nucleic acids extraction. 

 

Figure 3. Scheme of the workflow of molecular analysis of the microbial community in the studies. 

 DNA extraction was performed with different commercial kits such as Soil DNA isolation 

plus kit (Norgen Biotek, Ontario, Canada) for the Study I and DNAeasy® PowerBiofilm® Kit 

(Qiagen) for the Studies II and III. In both we included a step of mechanical cell disruptions 

(3 cycles at 5.5 power intensity for 30 sec) with FastPrep®-24 Instrument. The DNA 

extracts obtained were quantified with a Qubit® DNA Assay Kit (Thermo Fisher Scientific, 
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EEUU) and the quality of this nucleic acid was determined with a Nanodrop ND-1000 

(NanoDrop Technologies Inc, New York, USA). 

 RNA extraction was done using the AllPrep DNA/RNA Mini kit (Qiagen) in the Study I. The 

biofilm samples followed the same pre-treatment and mechanical cell disruptions as in 

DNA extraction. Each extract of RNA was treated with DNases using TURBO DNA-free Kit 

(Ambion, Inc) and quantified by Qubit® RNA Assay Kit (Thermo Fisher Scientific, EEUU). 

The quality was determined with a Nanodrop ND-1000 (NanoDrop Technologies Inc, New 

York, USA). 

 Retrotranscription of RNA extracts was carried out with SuperScript® III First-

Strand Synthesis System for RT-PCR KIT (Invitrogen, EEUU), using random 

hexamers to synthesize first-strand cDNA. Then, this cDNA was quantified again 

by Qubit® cDNA Assay Kit (Thermo Fisher Scientific, EEUU). 

 Control PCRs were made for DNA (positive) or RNA (negative) extracts to ensure that the 

samples contained DNA or did not, respectively. They were carried out with primers for 

the 16S rRNA gene, the 357F and 907R (Weisburg, Barns, Pelletier & Lane, 1991) using a 

PCR Core Kit (Qiagen). PCR amplifications were performed in a GeneAmp PCR System 

9700 (Applied Biosystems) following these conditions: 94 ºC for 4 min, 10 cycles of 94 ºC 

for 30 s, 61 ºC for 45 s, 72 ºC for 1 min; 30 cycles of 94 ºC 30 s, 56 ºC for 45 s and 72 ºC 

for 1 min, finally 72 ºC for 10 min. PCR products were checked by an agarose gel (1.5%, 

w/v) electrophoresis with a loading buffer using the Marker GeneRuler 1,000 bp to check 

for the PCR product specificity (Figure 2d). The gel was stained in an ethidium bromide 

solution (0.2 µg mL−1) for the DNA visualization on a transilluminator Herolab UVT-20M.  

 Quantitative PCR (qPCR) was conducted in a Roche LightCycler® 96 System to determine 

copy numbers of amoA genes from ammonia-oxidizing archea (AOA), using the primers 

pair Crenamo-A23f/-Crenamo A616r (Tourna, Freitag, Nicol & Prosser, 2008). The 

reactions contained 10 µl LightCycler® 480 SYBR Green I Master (Roche Life Science, Basel, 

Switzerland), 1 µL of each primer (20 µM), 2 µL of DNA from samples at 5 ng µL-1 and 6 µL 

of Milli-Q water for a total volume of 20 µl. Calibration curves were prepared by serial 

dilutions (108-101 copies) of plasmid with AOA amoA gene fragments cloned in the 3,957 

bp vector pCR®4-TOPO® (Invitrogen, Carlsbad, CA). Amplification was performed 

following conditions proposed by Tourna et al. (2008) with minor modifications. Controls 

without templates gave null or negligible values.  
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 Inhibition tests were performed for all samples supplementing the qPCR reaction 

mixture with plasmids at a known concentration (105 copies µL-1). These plasmids 

harbour the M13 region, a target for M13F-20 and M13R primers, which is 

supplied by the pCR®4-TOPO® Cloning kit (Invitrogen, Carlsbad, CA). Plasmid 

quantifications in the presence of samples did not differ from plasmid controls 

devoid of samples.  

 Analysis of 16S rRNA gene was carried out from the DNA and RNA extracts. Sequencing 

were performed at MSU Genomics Core (Michigan, USA) using a 2x250 bp paired-end 

Illumina MiSeq platform (Mardis, 2008). The V4 region of the 16S rRNA gene of the 

prokaryotes was amplified using the 515F/806R primer pair (Caporaso et al., 2011). 

Afterwards the quality of raw reads was initially checked using the FastQC application 

(Andrews, 2010). Raw sequences were treated following different protocols along the 

three studies to increase the resolution of taxonomy, so these will be explained carefully 

in each study. However, all of these treatments had the objective to calculate the α and 

β-diversity of prokaryotes.  

Accordingly Gotelli & Chao (2013): 

 α diversity was calculated with different indices as observed OTUs (Sobs) and 

Chao1.  

 Sobs indicates the total number of species, in this case OTUs or amplicon 

sequence variants (ASVs) presents in the sample. 

 Chao1 estimator uses only the numbers of singletons and doubletons 

(rare species), which complement Sobs to obtain a good estimation of 

richness.  

 β-diversity was calculated with Shannon index (H’) and Inverse Simpson index 

(1/D). 

 H’ quantifies the uncertainty in the species identity of a randomly chosen 

individual in the assemblage. 

 1/D measures the probability that two randomly chosen individuals 

(selected with replacement) belong to two different species. 
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Table 4. Summary of the different procedures used in biofilm samples in each study of this thesis. 

 Study I Study II Study III 

AFDW    

Chl-a fluorescence    

Chl-a    

C:N:P    

Metal 
bioaccumulation 

   

Nutrient uptake    

DNA extraction and 
control PCR 

   

RNA extraction and 
control PCR 

   

qPCR    

Analysis of 16S rRNA    
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Study I: Responses of resident (DNA) and active (RNA) 
microbial communities in fluvial biofilms under different 

polluted scenarios 

Argudo, M., Gich, F., Bonet, B., Espinosa, C., Gutiérrez, M., & Guasch, H. (2020). 
Chemosphere,242, 125108. 

https://doi.org/10.1016/j.chemosphere.2019.125108 
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1. Contextualization 

 

Rivers are influenced by the landscapes through which they flow. Consequently, the global transition from 

undisturbed landscapes to human-dominated ones with ever increasing agricultural, urban, forestry, 

mining and recreation land uses will impact habitat, water quality and biota, becoming a principal threat 

to the ecological integrity of river ecosystems (Allan, 2004). Overall, these activities generate multiple 

pollutants such as metals (Beasley & Kneale, 2004; Brunzel, Kellermann, Nachev, Sures, & Hering, 2018; 

Mance, 1987) and nutrients (Drury, Rosi-Marshall, & Kelly, 2013; Smith, Tilman, & Nekola, 1999; Withers 

& Lord, 2002) entering the river.  

Nitrogen (N) and phosphorous (P) concentrations are of concern because they cause eutrophication that 

threatens the ecological status of the aquatic ecosystem (Lemm & Feld, 2017). Nutrients commonly 

generate an increase in algal biomass, which can result in increased diel swings in oxygen concentrations, 

thereby stressing some aquatic species (Correll, 1998). Occasionally, low levels of these perturbations 

enhance the productivity of a body of water if nutrients are limited under natural conditions. These 

favourable deflections are subsidiary responses (Odum, Finn, & Franz, 1979). 

Changing anthropogenic activities cause imbalances in N and P, loading. P is the primary limiting nutrient 

in most aquatic ecosystems (McGarrigle, 1993; UK Technical Advisory Group on the Water Framework (UK 

TAG, 2013)), however, it is not the sole limiting nutrient in streams and rivers. Instead, it is the N:P ratio 

that indicates which nutrient is likely to limit algal growth (Allan, 1996).  

Metal pollution is a great concern due to its high biotoxicity, perdurability and bioaccumulation across 

food chain (Zhang et al., 2014) which causes adverse effects on biota and contributes to the deterioration 

of fluvial ecosystems’ integrity (Corcoll et al., 2011). It is already known that the most common heavy 

metals found in all matrices at contaminated sites are, in order of abundance, Pb, Cr, As, Zn, Cd, Cu, and 

Hg (Masindi & Muedi, 2018; PRC Environmental Management, 1997). The main sources of heavy metals 

are mines and industries, leading to high concentrations of Cd, Zn and Pb in water and sediment. For 

instance, Zang et al. (2017) studied remediation in a Dongdagou stream with sediments contaminated by 

Zn, Cd and Pb with concentrations of 1,523.50, 24.90 and 857.75 g g−1, respectively, due to non-ferrous 

mining and smelting plants treated and untreated spills. Elevated concentrations of Pb in water (3 mg L-1) 

were found near a Zn smelter plant in Brazil (Almeida et al., 2009) and in sediments from an industrial 

town in China (Zhu et al., 2013) with values of about 700 g g−1. There are other sources for heavy metals 
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such as agriculture via fertilizers or the feed included in animal diets (Yu, Gunn, Wall, & Fanning, 2016). 

For instance, Mendiguchía et al. (2007) associated the concentrations of dissolved Ni found in the 

Guadalquivir River (average of 2.31 g L-1) with agricultural activity. However, data from urban sources of 

metals are not as readily available and there are very few studies. Such studies that show values of 210 ± 

30 g L-1 for Cr above the limits deemed permissible by the EPA (2019) for wastewater (Khan et al., 2015). 

In another work, Rule et al. (2006) attribute domestic appliances as being sources of Cr and Ni.  

Aquatic organisms living in fluvial systems reflect the historical and current effect the combined impact of 

chemical, physical, and biological stressors have. However, the interaction between natural stressors and 

toxicants is difficult to predict, thus complicating the understanding of the effects that these multiple-

stress scenarios have (Sabater, Muñoz, García-Berthou, & Barceló, 2014). Biofilms, made up of 

prokaryotes, algae, fungi, and microfauna, located in close physical contact and embedded in a 

mucopolysaccharide matrix and which grow attached to any substrate submerged in water, are a 

ubiquitous component of fluvial systems. Because of their quick response to environmental changes, 

biofilms can be regarded as early warning systems that can be used to detect the effects toxicants are 

having on changes in aquatic systems (Sabater et al., 2007). Biofilms can accumulate heavy metals in high 

concentrations, Morin et al. (2008) described high Zn and Cd concentrations in biofilms (23,750 ± 2,470 

and 1,809 ± 200 μg g−1, respectively) in the Riou Mort (France) showing their effect in the diatom cell 

densities and taxonomic composition. Biofilm microbial communities are very diverse and play a central 

role in the functioning of the ecosystem, as they interact with both biotic and abiotic components of the 

ecosystems. They are a key factor of specific functions such as biogeochemical cycling and the 

biodegradation of pollutants. Therefore, any perturbation in the community, for instance, could provoke 

a significant impact in fluvial ecosystems.  

Microbial ecotoxicology paves the way to assessing and evaluating the impact contaminants have on the 

taxonomic and functional microbial biodiversity which support ecosystem functions and ensure their 

stability and recovery (Ghiglione, Martin-Laurent, & Pesce, 2016). In the case of fluvial biofilms, there 

remains a lack of knowledge concerning the structure of prokaryotic microbial communities (Zeglin, 2015). 

These communities can be described in terms of richness (e.g. number of taxonomic units) and 

composition (which taxonomic units are present). While important for biological understanding, metrics 

of richness are difficult to translate into diagnostics (Van Rossum et al., 2015). With the development of 

microbial community studies based on DNA and RNA sequencing, the effect of pollution on the ecosystem 

health can be better addressed. Amplicon sequencing has developed a high sensitivity to recover a high 
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number of gene sequences (Lear et al., 2013; Qu et al., 2017; Wang, Sudduth, et al., 2011). It is carried 

out following PCR amplification and further sequencing of any of the target genes of interest, such the 

16S rDNA gene which codifies for the highly conserved 16S rRNA macromolecule from which it is possible 

to infer phylogenetic and taxonomic information (Rodicio & Mendoza, 2004). However, DNA-directed 

community analysis does not provide accurate information since DNA extracts contain DNA that is not 

present only in actively growing cells. More precisely, it includes extracellular DNA from deceased cells, 

DNA from dormant cells, DNA from non-growth active cells, i.e. microbial activities not linked to cell 

growth like cellular maintenance or motility (Van Bodegom, 2007), or DNA from allochthonous 

microorganisms present in the environment due to passive migration driven by physical processes like 

water flow (Sobek, Algesten, Bergstrom, Jansson, & Tranvik, 2003). On the other hand, analysing the 

actual RNA pool, for which more than 90% consists of ribosomal RNA, may provide a better strategy for 

predicting the actual performance of an ecosystem. RNA is only stable in active cells because it conducts 

metabolic processes, while potential extracellular RNA pools are rapidly degraded after cell death. 

Therefore, RNA makes a better indicator for existant microbial activity than DNA does, although some 

limitations have been recently considered (Blazewicz, Barnard, Daly, & Firestone, 2013).  

Nowadays most of developed countries carry out freshwater water treatment and waste management 

programs, and although this generates an important improvement in the water quality, pollution is still a 

problem. An example of this situation can be found in the Mediterranean rivers in Catalonia (NE Spain) 

because they are affected by low but chronic metal and nutrient pollution, as is reflected in the data 

obtained from 2007 through the monitoring carried out by the ACA. Gaining a better understanding of 

the composition of fluvial biofilm prokaryotic communities, their major drivers and their response to 

anthropogenic pressures are of critical importance to obtain insights into ecosystem health and to 

preserve its biodiversity and function. Accordingly, to determine the effects of metal-pollution and/or 

eutrophication on fluvial biofilms in the present study amplicon 16S rRNA gene sequencing analysis of the 

active (RNA fraction) and resident (DNA fraction) prokaryotic community was performed. Subsequently, 

we analysed 19 biofilm samples taken in the winter-spring from 7 different sites and measured a large set 

of environmental and biofilm variables. The sites were chosen to represent a variety of human activities, 

thus, different types of metal pollution and nutrient enrichment of different magnitudes were expected. 

The analyses presented here aim to provide a foundational interpretation of the data that contributes to 

the understanding of the effect of water pollution on the prokaryotic microbial communities living in 

fluvial biofilms. This work will provide support for future developments in water quality monitoring based 
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on the RNA and DNA sequence biomarkers indicative of eutrophication and chronic but low metal 

pollution, thus contributing to provide novel microbial bioindicators of pollution.  

2. Specific methods 

 

2.1. Study sites 

Seven sampling points along these rivers were selected (Figure 1 pag. 27). Three sampling points were 

located in the Osor River, the first (OU) upstream from the mine, the second (OM) downstream from the 

mine effluent and the third (OD) 12 km downstream from OM. Another sampling point was selected in 

the lower part of the Llémena River (Sant Gregori) (LL), which is expected to be moderately polluted as a 

result of urbanization, agricultural and farming activities. The Ter River was sampled first (TU) before the 

confluence of the Osor River (Cellera del Ter) and considered as a reference site, the (TM), after the 

confluence of the Osor River but before the confluence with the Llémena River, thus potentially impacted 

by the Osor River and finally (TD) in Celrà, downstream from the city of Girona (98,255 inhabitants) and 

below a wastewater treatment plant with a tertiary treatment with a removal efficiency of 5-day 

biochemical oxygen demand (BOD) (95%), chemical oxygen demand (COD) (92%), N (75%) and P (97%) 

with a flow nearly 45,000 (m³ day-1) (ACA, 2017a). 

2.2. Design and sampling 

A passive biomonitoring with biofilm was conducted from late-February to mid-April for two consecutive 

years (2016 and 2017). Artificial substrata were used for biofilm growth (Figure 1a and b). Colonization 

lasted for almost seven weeks (49 days for the first year and 46 days for the second). The artificial 

substrata consisted of different sized pieces of sand-blasted glass: the smaller ones being 1.21.2 cm and 

the larger 77 cm. These were glued onto pieces of cement cobbles (752710 cm) with silicon sealant. 

Two cement cobbles were placed on the different streambeds at a depth of 20-30 cm to guarantee similar 

light and current conditions at each sampling site (Figure 1c).  
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Figure 1. Set up of biomonitoring study with biofilm. a) Artificial substrate before biofilm colonization, b) and after seven weeks of colonization, 
c) Artificial substrata on the streambead. From Carmen Espinosa and María Argudo. 

Water samples were taken three times in 2016, whereas a more intense sampling was performed in 2017. 

In the two years, biofilm samples for Chl-a fluorescence measurements (small glass substrata) were taken 

7-8 times to monitor algal growth. For the rest of the analyses (AFDW, metal bioaccumulation and DNA 

and RNA extraction for 16S rRNA analysis), explained in general methodology, biofilm was sampled once 

at the end of the study, but in 2017 the biofilm samples had two replicates (one from each cement cobble) 

in order to collect more data and to be able to validate the objective.  

Monthly rainfall data (February, March and April) were obtained from two observatories located near the 

study sites: Sant Gregori (“Estació meteorològica Sant Gregori (Gironés)”, 2016, 2017) and Sant Hilari 

(“Meteoguilleries”, 2016, 2017) in order to know if the two years were hydrologically comparable. 

2.3. Data analysis 

Raw microbial community data needed to be processed by bioinformatics prior to statistical analysis, so 

these data were treated separately. Raw sequence data from microbial community of this study were 

deposited in the short-read archive (SRA) via Biosample Submission Portal (National Center for 

Biotechnology Information (NCBI), 2019) under the accession number PRJNA523926. Raw sequences 

were demultiplexed, joined paired reads, quality-filtered, chimera checked and clustered into operational 

taxonomic units (OTUs) (97% cut-off) using MOTHUR version 1.39.5 (Kozich, Westcott, Baxter, Highlander 
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& Schloss, 2013). Paired-end sequences were aligned, chimeras removed and sequences classified using 

the SILVA release 132 reference alignment and taxonomy database. To analyse the microbial community, 

α-diversity indices as (Sobs and Chao1) and (H’ and 1/D) were calculated in MOTHUR after the 

normalization of the number of sequences in each sample by randomly selecting a subset corresponding 

to the lowest amount of sequences found in a sample (54,753 sequences per sample). Moreover, a matrix 

of the dissimilarity of the data from total number of OTUs was calculated for the β-diversity analysis by 

Yue & Clayton measure of dissimilarity (ThetaYC calculator) using MOTHUR. This matrix was used to 

perform a principal coordinate analysis (PCoA) by MOTHUR to ordinate sampling sites and the axes were 

thereafter related with environmental variables with Pearson correlation. A permutational multivariate 

analysis of variance (PERMANOVA) (Anderson, 2001) was also performed to test the differences of the 

community by site, year and the interaction (site*year) of biomonitoring and Mantel test to check if the 

resident and active microbial communities were correlated. These analyses were performed by PRIMER 

version 6 software (Anderson, Gorley & Clarke, 2008) and R software version 3.5.2 (R Core Team, 2018), 

respectively. In order to select potential biondicators of metal pollution; firstly, an nonmetric 

multidimensional scaling (NMDS) was generated with relative abundance at order taxonomic level by the 

PRIMER software; secondly, a selection of no shared OTUs between polluted sites and non-polluted sites 

from the most abundant OTUs (20) was conducted. This selection was based in the PCoA information from 

active community with the phyloseq package (McMurdie & Holmes, 2013) of the R software. These OTUs 

were selected to identify potential biondicators of metal pollution. 

A two-way ANOVA was used assuming independence between sampling sites to evaluate physicochemical 

parameters, inorganic nutrients, dissolved metals, monthly rainfalls, minimal fluorescence yield (F0) and 

maximal or optimal quantum yield (Ymax) (biofilm parameters) differences among sites, between years and 

the interaction of annual temporality in each sampling site (site*year). Data was transformed when 

required to accomplish the assumptions of the model (normality and homocesdasticity) by neperian 

logarithm and square root. A post-hoc Bonferroni test was performed when significant differences (p < 

0.05) were found between the sites in order to check exactly where significant differences were found. 

Moreover, a two-way ANOVA was performed with α-diversity indexes of microbial communities, among 

years and type of nucleic acid (factors). In addition, a one-way ANOVA was performed with the rest of 

biofilm characteristics (AFDW, metal bioacummulation, DNA and RNA concentration) to test differences 

among years of the study with a previous data transformation by neperian logarithm. Pearson correlations 
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were used to explore the relationship between environmental variables and α-diversity of prokaryotes. 

ANOVA and correlations analysis were done by SPSS version 25 and the R software.  

3. Results 

 

3.1. Physicochemical characterization of sampled sites 

Monthly rainfalls in years 2016 and 2017 did not show significant differences in this area (Sant Gregori 

and Sant Hilari) (p > 0.1) showing that two years were hydrological comparable. 

Physical and chemical water samples results are summarized in Table 1 and Supplementary material 

Figure 1. Two-way ANOVA results show differences at specific sites, between the two sampling times 

(2016 and 2017) and for the interaction between sampling time and site. 

Regarding temporal variability, pH was higher in 2017 (p < 0.001), with the exception of OU. Conductivity 

was higher in 2017, mainly at the Ter (p < 0.001). PO₄³⁻ and NH4⁺ concentrations were slightly higher in 

2016 compared to 2017 (p < 0.05 and p < 0.01, respectively). 

Concerning site-specific differences, pH showed statistical differences among the sampling sites (p < 

0.001) and with the interaction between the sampling site and year also significant (p < 0.05). TD and OD 

had lower pH values in relation to LL, OU and OM (p < 0.01). O₂ concentration presented differences 

among sites (p < 0.05), which was statistically lower in TD compared to TU, TM and LL (p < 0.05). 

Conductivity was two times higher in the Ter and Llémena rivers compared to Osor (p < 0.001) and an 

interaction between sampling site and year (p < 0.001) was found. PO₄³⁻ showed differences among sites 

(p < 0.001). The Osor River had the highest PO₄³⁻ concentraƟon, especially upstream (OU) being above 

the standard concentrations for a good ecological status (0.009-0.022 mg P-PO₄³⁻ L−1) (UK TAG, 2013), 

whereas LL had the lowest values of all the sampled sites (p < 0.005). An average of three times higher 

N/P ratio was found in the Ter compared to the Osor River. Moreover, the Llémena had the highest values 

of N/P ratio (285 in average). 

Metals dissolved in water showed temporal and site-specific variability (Table 1, Supplementary material 

Figure 1). Statistical differences in Zn concentrations were found among sites (p < 0.05) but not between 

years. The highest values were always found in OM, while LL had the lowest Zn concentration, which was 

statistically different from OM (p < 0.05). The Zn concentration found in OM exceeded the threshold set 
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up by EPA (2019) which is determined to be maximum concentration of 120 µg L−1 for acute and chronic 

exposure. Moreover, highest values for Ni, Pb and Mn were found at OM. Pb was only detected in 2016 

with its highest concentration in OM. All sampling points in 2016 showed a Pb concentration above 2.5 µg 

L−1, which is the limit for chronic exposure in freshwater systems (EPA, 2019). Ni was only present above 

detection limit in 2017 with three-times higher values in OM compared to OU. Concerning Mn, its 

concentration in OM was 3 and 10 times higher than in OU in 2016 and 2017, respectively. Fe content 

showed a significant reduction in 2017 (p < 0.001) for all sampling points with exception of LL. Cr and Cd 

were below the detection limit for all sampling sites in both years. 

 

 

 

 

 



 
RESULTS 

48 
 

Table 1. Average and standard deviation of physicochemical parameters at each sampling site n = 49. A two-way ANOVA was performed to detect significant differences between year and sampling 
sites. Zn and Pb concentrations above the toxicity threshold according EPA (2019) (120 µg L-1, 2.5 µg L-1) and phosphate concentrations above good ecological status levels established (UK TAG, 2013) 

(0.022 mg P-PO₄³⁻ L-1) are set in bold and underlined. bdl: below detection limit. Metals under detection limits are not displayed. Variables with blank holes in two way ANOVA did not accomplish 
assumptions. 

Sample 
code 

OU OM OD TU TM TD LL Two way ANOVA 

Sample Osor upstream Osor mine 
Osor 

downstream 
Ter upstream Ter middle Ter downstream Llémena Site Year Site*Year 

Year 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 P value P value P value 

Tª 

(ºC) 
10.3  
± 3.2 

9.7 
± 1.6 

11.0 
± 2.6 

11.7 
± 2.7 

11.2 
± 2.7 

11.1 
± 2.2 

11.6 
± 1.7 

11.3 
± 1.4 

12.0 
± 1.5 

13.4 
± 1.4 

13.1 
± 1.6 

14.7 
± 1.7 

11.5 
± 2.7 

13.6 
± 2.1 

ns ns ns 

pH 8.93 
± 0.38 

8.60 
± 0.06 

8.73 
± 0.31 

8.87 
± 0.15 

8.02 
± 0.27 

8.46 
± 0.12 

8.51 
± 0.16 

8.65 
± 0.36 

8.25 
± 0.09 

8.71 
± 0.31 

7.95 
± 0.14 

8.56 
± 0.09 

8.45 
± 0.34 

8.96 
± 0.13 

< 0.001 < 0.001 0.012 

O₂  
(mg L-1) 

11.51 
± 1.10 

10.08 
± 0.47 

11.24 
± 0.91 

9.88 
± 0.66 

11.11 
± 0.93 

10.35 
± 0.30 

11.95 
± 0.75 

10.56 
± 1.03 

10.81 
± 0.77 

10.75 
± 1.3 

9.04 
± 0.77 

9.23 
± 0.41 

10.18 
± 1.93 

11.35 
± 1.74 

0.029 ns ns 

Cond 
(µS cm-1) 

234 
± 17 

227 
± 36 

254 
± 23 

240 
± 33 

248 
± 21 

240 
± 30 

431 
± 37 

518 
± 17 

416 
± 4 

485 
± 13 

483 
± 13 

554 
± 44 

500 
± 25 

500 
± 63 

<0.001 <0.001 <0.001 

SS 
(mg L-1) 

82.3 
± 133.7 

14.4 
± 22.0 

75.2 
±127.4 

5.0  
± 4.5 

78.2 
± 117.1 

1.4 
± 0.4 

100.2 
± 170.3 

149.3 
± 233.7 

121.5 
± 206.3 

19.4 
± 16.3 

68.9 
± 110.4 

13.2 
± 5.6 

102.3 
± 110.7 

27.1 
± 9.7 

   

NH₄⁺ 
(mg N-NH₄⁺ 
L-1) 

0.08 
± 0.08 

0.06 
± 0.04 

0.04 
± 0.02 

0.02 
± 0.02 

0.04 
± 0.04 

0.04 
± 0.04 

0.06 
± 0.03 

0.07 
± 0.11 

0.05 
± 0.03 

0.03 
± 0.01 

0.38 
± 0.27 

0.07 
± 0.04 

0.13 
± 0.11 

0.02 
± 0.01 

ns 0.006 ns 

PO₄³⁻ 
(mg P- PO₄³⁻ 
L-1) 

0.21 
± 0.03 

0.15 
± 0.07 

0.13 
± 0.01 

0.06 
± 0.01 

0.16 
± 0.05 

0.09 
± 0.01 

0.03 
± 0.01 

0.03 
± 0.02 

0.07 
± 0.03 

0.03 
± 0.01 

0.08 
± 0.04 

0.10 
± 0.01 

0.02 
± 0.00 

0.01 
± 0.01 

< 0.001 0.001 ns 

NO₃⁻ 

(mg N-NO₃⁻ 

L-1) 

1.51 
± 0.25 

1.30 
± 0.38 

0.97 
± 0.19 

0.44 
± 0.12 

1.01 
± 0.28 

0.99 
± 0.25 

0.91 
± 0.04 

0.99 
± 0.09 

1.08 
± 0.13 

1.12 
± 0.09 

1.25 
± 0.08 

1.31 
± 0.13 

1.55 
± 0.07 

1.27 
± 0.38 

   

N/P ratio 

(molar) 
17.29 
± 4.25 

1.24 
± 0.38 

17.32 
± 1.27 

0.82 
± 0.52 

16.22 
± 7.77 

1.21 
± 1.16 

68.87 
± 17.89 

11.96 
± 22.04 

36.93 
± 10.47 

2.63 
± 1.47 

52.77 
± 36.76 

2.14 
± 1.98 

184.44 
± 51.73 

9.65 
± 7.51 

   

Zn 
(µg L-1) 

69.06 
± 41.23 

45.15 
± 27.45 

139.8 
± 45.8 

292.1 
± 252.3 

96.46 
± 9.71 

109.3 
± 109.1 

26.25 
± 9.71 

100.8 
± 49.1 

8.00 
± 34.16 

43.62 
± 17.15 

35.91 
± 15.41 

117.4 
± 128.2 

22.17 
± 4.13 

99.47 
± 65.98 

0.016 ns ns 

Fe 
(µg L-1) 

121.4 
± 91.0 

49.86 
± 32.05 

75.39 
± 24.55 

24.36 
± 14.59 

86.93 
± 37.72 

37.13 
± 24.93 

47.96 
± 34.28 

31.10 
± 17.22 

109.6 
± 77.9 

24.18 
± 13.01 

77.72 
± 9.35 

38.03 
± 18.15 

56.65 
± 12.69 

59.79 
± 52.72 

ns < 0.001 ns 

Pb 
(µg L-1) 

8.10 
± 4.25 bdl 

11.52 
± 5.48 bdl 

2.77 
± 0.29 bdl 

3.19 
± 1.09 bdl 

9.22 
± 11.49 bdl 

4.97 
± 5.07 bdl 

3.33 
± 3.67 bdl    

Mn 
(µg L-1) 

15.00 
± 5.42 

7.10 
± 2.26 

32.57 
± 0.73 

98.36 
± 7.34 

24.17 
± 7.42 

16.23 
± 8.20 

9.21 
± 3.79 

9.95 
± 2.70 

8.56 
± 3.48 

7.42 
± 0.99 

15.01 
± 2.17 

26.50 
± 3.37 

5.07 
± 2.62 

12.79 
± 8.41 

   

Ni 
(µg L-1) 

bdl 
0.81 
± 0.45 

bdl 
2.69 
± 1.94 

bdl 
1.15 
± 0.9 

bdl 
1.69 
± 1.07 

bdl 
1.28 
± 0.4 

bdl 
1.39 
± 0.26 

bdl 
1.85 
± 1.36 
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3.2. Biofilm characterization 

Biofilm measurements are shown in Table 2 and Supplementary material Figure 2. The biofilms did not 

present significant differences between their principal characteristics in relation to the year of evaluation 

(p > 0.05). F0 did not show significantly differences between sampling sites (p > 0.1) but Ymax was 

significantly higher in OU, TU and OD sampling points (p < 0.01). Although differences among sites could 

not be demonstrated statistically for the rest of characteristics due to the lack of replication, it was 

possible to point out some patterns. Regarding RNA, the results obtained in OM stand out remarkably 

because of high values of almost ten times more than in the other sampling sites. Moreover, the RNA 

values in the Llémena and the Ter rivers showed a notably temporal difference with higher values in 2016 

mainly in TU and TD (up and downstream). 

Neither bioaccumulated metals showed significant differences between years (p > 0.05) but some 

differences between sampling sites were detected. Cd bioaccumulation was mostly below the detection 

limit, except in OM, where it was detected in both years. In fact, sampling site OM differs from the rest of 

the sites mainly by its bioaccumulated metals (Zn, Mn, Pb and Cd) provided by the mine (Table 2). In 

addition, Zn exceeded the threshold (150 µg g−1) proposed by Corcoll (2012).  
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Table 2. Average and standard deviation of biofilm characteristics for two years in the different sampling sites (n = 7 in 2016 and n = 12 in 2017). Values above the toxicity threshold (150 µg Zn g-1) 
according to structural and functional changes in biofilms (Corcoll, 2012) are shown in bold and underlined. mv: missing value, bdl: below detection limit. 

 

Sample code OU OM OD TU TM TD LL 

Sample Osor upstream Osor mine Osor downstream Ter upstream Ter middle Ter downstream Llémena 

Year 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 

Zn (µg g-1) 63.57 115.2 2438 
2678  
± 840 

1139 
538.3  
± 167.9 30.77 

50.27  
± 0.76 

97.47 
178.0  
± 68.5 98.11 283.1 38.12 

29.76  
± 0.23 

Fe (µg g-1) 15234 18345 17215 
14984  
± 9679 

15586 
17354  
± 10330 

3784 
9193  
± 2293 

69.14 
10088  
± 3941 

6935 20800 13452 
10395  
± 1201 

Pb (µg g-1) 19.72 23.72 225.0 
214.8 
± 100.0 

145.2 
110.0 
± 51.0 

4.71 
17.48  
± 11.32 

14.04 
13.71 
± 12.42 

24.16 64.96 3.36 
5.56 
± 0.19 

Mn (µg g-1) 835.7 539.9 2773 
1040  
± 706 

1619 
657.2 
± 298.5 

387.3 
699.1 
± 212.4 

856.4 
632.8 
± 77.1 

577.9 1144 361.6 
461.97 
± 65.18 

Cr (µg g-1) 7.50 7.86 10.97 
7.62 
± 4.18 

9.30 
10.31 
± 5.82 

3.94 
9.79 
± 1.46 

5.15 
10.35 
± 3.92 

11.28 25.3 8.16 
15.45 
± 5.67 

Ni (µg g-1) 3.77 4.50 9.94 
12.11 
± 7.70 

6.53 
5.78 
± 2.35 

5.00 
10.37 
± 1.44 

6.26 
6.64 
± 1.20 

9.02 21.60 28.23 
29.31 
± 3.55 

Cd (µg g-1) bdl bdl 3.03 
1.98 
± 0.90 

bdl bdl bdl bdl bdl bdl Bdl bdl bdl bdl 

F0 final 223 386 15 476 452 139 644 22 28 339 83 121 10 349 

Ymax 0.533 0.541 mv 0.430 0.573 0.559 0.609 0.470 mv 0.471 mv 0.449 mv 0.459 

AFDW (mg cm-2) 2.61 1.18 0.67 0.81 2.44 1.59 0.60 1.62 0.70 0.62 1.66 0.52 mv 0.53 

DNA (ng mg-1) 4.7 5.1 6.4 9.3 6.7 4.9 5.6 8.9 1.3 4.7 9.3 6.6 3.5 2.0 

RNA (ng mg-1) 13.0 14.2 177.4 188.0 17.2 65.5 117.6 22.4 86.1 61.0 89.5 16.3 59.7 18.9 
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3.2.1. Microbial community response 

Microbial community was studied based on the 16S rRNA gene sequences. A total of 4,488,081 sequences 

passed quality trimming and filtering. On average, 118,107 sequences with a length of 246 bp were 

obtained per sample. This sampling effort was enough to capture most of the bacterial diversity as 

indicated by the rarefaction plots (data not shown).  

Clustering of sequences into OTUs at a 97% taxonomic cut-off ranged from 484 to 6,134 OTUs per sample. 

The prokaryotic richness (Sobs and Chao1) and diversity (H’ and 1/D) were significantly higher in the RNA 

fraction (active community) than in the DNA fraction (resident community) with p < 0.005 (means 3,729-

2,147), p < 0.0001 (means 6,291-3,075) for richness and p < 0.05 (means 5.84-5.25), p < 0.1 (means 96.07-

73.06) for diversity, respectively (Table 3), but no significant differences were observed between years (p 

> 0.1). 

Differences between sites could not be tested, as in the biofilm characterization. However, it is worth 

highlighting that in the Osor River, OU and OD had a high richness and diversity mainly in the active 

fraction (Table 3). In contrast, richness and diversity were lower in OM, principally in the RNA fraction but 

also in the DNA fraction. The Ter upstream was very similar to OU and OD sampling points in terms of the 

richness and diversity values. On the other hand, the TM and the LL had the lowest values of richness in 

DNA and RNA fractions, respectively. TD was very different between years with the lowest values for 

diversity found in 2016 in both resident and active communities.  

α-diversity indices of the resident community had more correlations with temperature and conductivity 

(negative). However, the richness and diversity of the active community was more correlated with metals 

and Ymax positively, while negatively with activity (RNA concentration) (Supplementary material Table 1). 
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Table 3. Average and standard deviation of α-diversity results with estimated coverage of microbial community DNA (above) and RNA (below) fractions of the sampling sites and different years n = 7 
in 2016 and n = 14 in 2017. 

DNA parameters  

Sample code OU OM OD TU TM TD LL 

Sample Osor upstream Osor mine Osor downstream Ter upstream Ter middle Ter downstream Llémena 

Year 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 

Coverage 0.99 0.98 0.99 
0.99 
± 0.01 

0.98 
0.96 
± 0.00 

0.98 
0.99 
± 0.00 

1.00 
1.00 
± 0.00 

1.00 0.99 0.98 
1.00 
± 0.00 

Sobs 2649 3641 1501 
1488 
± 522 

2941 
5324 
± 386 

3374 
2153 
± 619 

484 
598 
± 88 

776 2414 2623 
633 
± 223 

Chao 1 3323 5061 1894 
2291 
± 863 

4154 
8650 
± 201 

4464 
2791 
± 528 

722 
826 
± 18 

1102 3026 4400 
792 
± 283 

1/D 162.18 86.03 61.54 
15.38 
± 6.15 

126.17 
202.74 
± 113.64 

86.40 
85.77 
± 74.87 

36.85 
28.53 
± 7.96 

13.60 64.80 28.62 
28.54 
± 8.26 

H’ 6.21 6.01 5.37 
4.11 
± 0.30 

5.95 
6.61 
±0.46 

6.02 
5.59 
± 1.03 

4.50 
4.63 
± 0.32 

3.71 5.83 5.03 
4.62 
± 0.36 

RNA parameters 

Sample code OU OM OD TU TM TD LL 

Sample Osor upstream Osor mine Osor downstream Ter upstream Ter middle Ter downstream Llémena 

Year 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 

Coverage 0.96 0.95 0.98 
0.98 
± 0.00 

0.97 
0.96 
± 0.01 

0.97 
0.96 
± 0.01 

0.99 
0.97 
± 0.01 

0.98 0.95 0.99 
0.97 
±0.01 

Sobs 4267 5326 2872 
2563 
± 58 

3356 
5226 
± 1604 

4040 
4437 
± 1126 

1770 
3805 
± 792 

1881 6134 1718 
3706 
± 635 

Chao 1 7019 9277 4993 
4592 
± 118 

5561. 
8415 
± 2119 

6023 
7362 
± 2128 

2981 
6761 
± 1245 

2999 10745 2207 
6732 
± 1035 

1/D 175.91 146.47 52.07 
38.93 
± 3.20 

87.52 
147.05 
± 26.88 

159.05 
153.40 
± 52.22 

36.45 
63.14 
± 24.75 

28.32 139.67 87.67 
53.57 
± 9.42 

H’ 6.44 6.53 5.45 
4.88 
± 0.03 

5.91 
6.52 
± 0.57 

6.47 
6.37 
± 0.52 

4.84 
5.68 
±0.57 

4.66 6.82 5.81 
5.56 
±0.33 
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Most of the sequences identified in the samples corresponded to the Bacterial domain (4,703,891 

sequences) and only 1,377 belonged to Archaeal domain. Overall, all the samples were dominated by the 

phylum Proteobacteria (38.42%-88.88%) mainly Alphaproteobacteria in the DNA fraction (22.48%-

52.46%), followed by Bacteroidetes (5.15%-37.53%) more abundant in the RNA fraction (12.52%-28.19%), 

(Supplementary material Figure 3).  

The differences in the structure of both resident and active microbial communities were analysed using a 

PCoA (Figure 2, Figure 3). The PCoA based on the total OTUs abundance of the microbial community 

corresponding to the resident community explained 48.8% of the observed variance. The first axis 

explained 30.87% of the variance and was positively correlated with water Tª (r = 0.614, p < 0.05), Ni 

(dissolved) and Ni (bioaccumulated) (r = 0.482, p < 0.05 and r = 0.516, p < 0.05, respectively) and Cond (r 

= 0.528, p < 0.05) and negatively correlated with PO₄³¯ (r = -0.668, p < 0.005) and Ymax (r = -0.609, p < 0.05). 

The second axis explained 17.93% of the variance and it was positively correlated with Fe (dissolved) (r = 

0.458, p < 0.05) and negatively to pH (r = -0.536, p < 0.05), clustering metal affected samples near the 

positive X axis and biofilm growth under high phosphate in the opposite site. On the contrary, the 

distribution of the sampling sites in the PCoA corresponding to the active community was different to 

resident community (Figure 3). In this case, axis 1 explained 24.16% of the variance and was correlated 

with the RNA content (r = -0.555, p < 0.05) and axis 2 explained 15.59% of the variance and was correlated 

with N/P (r = 0.553, p < 0.05), Cond (r = 0.511, p < 0.05), SS and negatively with Mn (bioacummulated) (r 

= -0.542, p < 0.05), Pb (bioaccumulated) (r = -0.589, p < 0.005), Zn (bioaccumulated) (r = -0.527, p < 0.05) 

and PO₄3- (r = -0.603, p < 0.01), showing a higher metal impact in the samples with the highest 

concentration of RNA. Some abundant and determinant OTUs from this active community ordination 

were found and are shown in Table 4 and in Supplementary material Figure 4 at order level. The most 

abundant genera found only in metal polluted sites were identified Sphingorhabdus, Flavobacterium, 

Prosthecobacter, Ferruginibacter and Arcicella. 

β-diversity differences between resident and active communities were checked out by PERMANOVA and 

Mantel ´s test analysis. The resident community was different for site (p < 0.05), year (p < 0.0516) and site 

* year (p < 0.05), while it was only different for site (p < 0.05) in the active community (Supplementary 

material Table 2). Moreover, β-diversity of DNA and RNA fractions were not significantly correlated (r = 

0.06, p-value > 0.1, permutations = 999). 
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Figure 2. PCoA of the dissimilarities between samples positions respect to the total OTUs of resident community using thetaYC distances and 
correlations with the environmental and biofilm parameters. 

 

Figure 3. PCoA of the dissimilarities between samples positions respect to the total OTUs of active community using thetaYC distances and 
correlations with the environmental and biofilm parameters. 
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Table 4. Specific metal polluted and nonmetal polluted OTUs of active microbial community (RNA fraction) from a taxonomic selection of 20 
OTUs with higher abundance. Metal polluted sites correspond to OM 2016, OM 2017 and TD 2016 and nonmetal polluted sites to OU 2016, OU 

2017, TU 2016 and TU 2017. 

Phylum Metal polluted sites Non metal polluted sites 
Acidobacteria   Acidobacteria GP3 
Bacteroidetes  Ferruginibacter 

(Fam. Chitinophagaceae, 
Ord. Sphingobacteriales). 
 Flavobacterium 
(Fam.Flavobacteriaceae, 
Ord. Flavobacteriales). 
 Arcicella 
(Fam. Cytophagaceae, 
Ord. Cytophagales). 

 

 Fam. Flavobacteriaceae 
(Ord. Flavobacteriales) 

Gemmatimonadetes   Gemmatimonas 
(Fam. Gemmatimonadaceae, 
Ord. Gemmatinomonadales). 

Alphaproteobacteria  Sphingorhabdus 
(Fam.Sphingomonadaceae,  
Ord. Sphingomonadales) 
 Fam. Sphingomonadaceae 
(Ord. Sphingomonadales) 

 

 Fam. Acetobacteraceae 
(Ord.Rhodospirillaes) 

Betaproteobacteria   Fam. Comamonadaceae 
(Ord. Burkholderiales) 

Deltaproteobacteria   Fam. Polyangiaceae 
(Ord. Myxococcales) 

Gammaproteobacteria   Fam. Pseudomonadaceae 
(Ord. Pseudomonadales) 
 Haliea 
(Fam. Alteromonadaceae, 
Ord. Alteromonadales) 

Verrucomicrobia  Prosthecobacter 
(Fam. Verrucomicrobiaceae,  
Ord. Verrucomicrobiales) 
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4. Discussion 

 

4.1. Complementary approach of DNA and RNA microbial communities. 

In this study, the analysis of DNA and RNA to determine α and β-diversity of prokaryotic communities 

provided different and complementary information about the ecological integrity of the ecosystem. More 

precisely, Mantel´s test and PERMANOVA showed it since both data sets were not statistically correlated.  

The information provided by the DNA fraction, that represents the taxa that is present in the biofilm, 

including spores, dormant or non-growing active cells and dead cells (Blagodatskaya & Kuzyakov, 2013) 

was not very conclusive in terms of bioindication of metal pollution, since it was mainly attributed to 

ecological differences among river sites (i.e. upstream-downstream gradients of mineralization and 

nutrient contents). On the contrary, the RNA fraction which reflects the active community members was 

related to chronic but low metal pollution (Figure 3). However, there are some constraints in the 

interpretation of the RNA values as indicators of microbial activity that should be considered. For instance, 

growth rate of many prokaryotes is not always simply correlated to RNA content and can differ 

significantly among taxa (Worden & Binder, 2003). In addition, dormant cells can contain higher number 

of ribosomes than in the vegetative state (Sukenik, Kaplan-Levy, Welch & Post, 2012). Overall, these 

considerations should be contemplated when RNA is used as a proxy of cell activity. 

Based on the assumption of the information associated with RNA represents only a fraction of that from 

the resident community i.e. that only active cells (growing or non-growing) contain significant amounts of 

RNA while all cells being active or not harbour genomic DNA, one would expect higher diversity and 

richness in the DNA fraction (Lennon, Muscarella, Placella & Lehmkuhl, 2018). Contrarily in this study, it is 

noteworthy to highlight that the richness and diversity were significantly higher in the active community 

than in the resident community supporting other studies such as Baubin et al. (2019); Gill, Lee & McGuire 

(2017). This could be explained because rare bacterial taxa could be disproportionately more active than 

common taxa, accordingly to what Jones & Lennon (2010) reported. However, as stated by Gill et al. (2017) 

we can not rule out the effect of alternative splicing in post-transcriptional processes which may be the 

cause that expressed transcripts seem more diverse than their corresponding DNA templates. 

Despite the limitations inherent in the RNA analysis, we show that the complementarity of both RNA and 

DNA analyses provide a more complete and comprehensive characterization of complex environmental 

microbial communities and their response to different stresses.  
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4.2. Different response of microbial communities to different stressors 

In this investigation, nutrient enrichment and metal pollution were used as a proxy to characterize water 

pollution in fluvial systems. This approach confirmed some of the alterations which were expected as a 

result of human activity (namely agriculture, urban and mining effluents), in the different catchments and, 

which were, in most cases, consistent between years. The differences between the two sampling periods 

(2016 and 2017) were better detected by physicochemical variables of water and resident community of 

prokaryotes, while the effects of the different metal polluted sites were found out mainly by biofilm 

parameters and active community of prokaryotes. 

4.2.1. Response of biofilms to nutrient enrichment 

Phosphate concentration followed the opposite pattern to that for water conductivity, (i.e., higher in the 

Osor and lower in the Llémena). The lowest conductivity and maximum phosphate concentration were 

measured in the Osor (the siliceous stream). In this stream, phosphate concentration, mainly upstream, 

was always high. This was attributed to the effluent from the WWTP in Sant Hilari Sacalm and Osor, leading 

to concentrations 10-20 times higher than background phosphate concentration in undisturbed streams 

which are around 0.003 mg P-PO₄³⁻ L-1 (UK TAG, 2013). Phosphate concentration was also high in the Ter 

downstream from the WWTP of Girona, but lower in the Ter upstream due to the reservoirs which act as 

nutrient purification tanks (Sabater et al., 2018). The PO₄³ concentration was the lowest in the calcareous 

stream (Llémena) where chemical removal of phosphate was expected due to co-precipitation of with 

carbonate (Otsuki & Wetzel, 1972). It is interesting to highlight that phosphate and conductivity were 

correlated with the first axis of the PCoA of the resident microbial community which would explain the 

30.87% of variance in community composition (Figure 2), and also phosphate with the second axis (which 

explains 15.59% of variance) of the PCoA of the active microbial community both performed at OTUs level 

(Figure 3). These points to nutrient enrichment and mineralization as being the driving forces behind the 

resident microbial community composition, which has been already shown in other studies such as (Drury 

et al., 2013; Van Horn, Sinsabaugh, Takacs-Vesbach, Mitchell & Dahm, 2011; Wakelin, Colloff & Kookana, 

2008), with a low influence on the active community. It is also important to note that this pattern was not 

observed at phylum or order level, indicating that species differing in their preference concerning nutrient 

concentration and/or water conductivity may belong to the same order or phyla (Chodak, Gołębiewski, 

Morawska-Płoskonka, Kuduk, & Niklińska, 2013).  

The first axis of the PCoA of the resident microbial community was also correlated with Ymax, suggesting a 

causal relationship with nutrients that have a subsidiary effect on autotrophic organisms (Aristi et al., 
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2015; Gücker, Brauns & Pusch, 2006). This effect is shown mainly in the Osor, except in OM where the 

inhibitory effect of metals on photosynthetic organisms is not counterbalanced by the availability of 

phosphate. As mentioned above, phosphate concentration followed the opposite pattern to conductivity, 

Ni in water and bioaccumulated and temperature. This co-occurrence does not allow the role that each 

factor plays on the variability observed to be discriminated.  

The second axis of the PCoA of the active microbial community was correlated with phosphate but also 

with Mn, Pb and Zn accumulated in biofilm, with concentrations which were well above toxicity 

thresholds, indicating that metal pollution may have a major contribution to determining the composition 

of the active microbial community as discussed below. 

α-diversity of prokaryotes was correlated negatively with conductivity and water temperature and 

positively with Ymax (Supplementary material Table 1). On one hand, a higher number of species in the 

sites with lower water conductivity may also be related to the subsidiary response to nutrients in the Osor 

as predicted by the intermediate disturbance hypothesis (Odum et al., 1979). High Ymax could lead to 

increased α-diversity of heterotrophic bacteria due to positive interaction between algae and bacteria 

biofilms (Battin et al., 2016; Rier & Stevenson, 2002). On the other hand, differences in species richness 

may also be attributed to mineralization and an upstream-downstream gradient that exerts a selection 

pressure towards a lower number of species. Overall, we can conclude that the differences among study 

streams have a great influence on the resident community as reported in Findlay & Sinsabaugh (2006). 

4.2.2. Metal pollution effects on biofilm 

In addition to nutrients and conductivity, the sites differed in terms of the metals in water and 

accumulated in biofilm. The highest concentrations (Zn, Pb and Mn in water and Zn and Pb in biofilms) 

were measured in the Osor downstream from the mine effluent (mainly in OM but also in OD). Ni, Cr, Pb 

and Zn were measured in biofilms in TD, mainly in 2017 and Ni and Cr in the biofilms of the LL, also in 

2017. While metal pollution in the Osor was attributed to mining, Ni and Cr are commonly associated with 

urban, industrial and agricultural activities (Tien & Chen, 2013; Victoria & Gómez, 2010). The lowest 

concentrations of metals measured in the OU and in the Ter upstream from the reservoirs (TU), are within 

the range of background metal contents reported elsewhere (Bonet et al., 2014; Vishnivetskaya et al., 

2011; J. Zhu et al., 2013).  
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As for the nutrients, the effects of metal pollution were mainly observed at OTUs levels. Ni (in water and 

bioaccumulated) was correlated with the first axis of the PCoA of the resident microbial community, 

whereas Mn, Pb and Zn bioaccumulated were correlated with the second axis of the PCoA of the active 

microbial community.  

Focusing on the resident community, although Ni was correlated with the first axis of the PCoA, this may 

be due to a co-occurrence rather than a cause-effect relationship between Ni and the community 

composition since the values reported (maximum 29.31 µg Ni g-1) were moderate.  

Metals from the mine effluent (Pb and Zn accumulated in biofilm) are correlated with the PCoA of the 

active microbial community (Figure 3), supporting our expectation of the effects of metal pollution on the 

composition of the community. Likewise, the combination of metals in the biofilms explained the greater 

proportion of the variations observed in the bacterial communities (Ancion et al., 2013). The sampling 

sites most affected by mining metals and TD 2016 were separated from the rest. The sites affected by 

mining metals had values of Zn concentration above the 150 μg g−1 toxicity threshold in accordance with 

Corcoll (2012). These values, detected in previous studies, are shown to inhibit antioxidant enzyme 

mechanisms such as glutathione-S-transferase (Bonet et al., 2014), decrease photosynthetic efficiency, 

enhance protection mechanisms through the xanthophyll cycle, modify the diatom community (Corcoll et 

al., 2012) and exert structural pressure by selecting the most metal-tolerant species (Tlili et al., 2011). 

Focusing on DNA values (Table 2), which is a proxy of the biomass of the whole microbial community (in 

this case, including autotrophic and heterotrophic organisms) the values measured in metal-polluted sites 

were relatively high, indicating that metal toxicity was mainly affecting the accrual of the biomass of the 

autotrophic component of the biofilm. Moreover, RNA content was even higher (in relative numbers) than 

DNA values, indicating the presence of a very active microbial community (Besaury, Ghiglione & Quillet, 

2014). Since this community was active, one could envisage that prokaryotes respond to metal exposure 

by means of metallic rate reduction as previously shown for Zn, Cd and Pb (Almeida et al., 2009). 

Patterns observed in α-diversity did not follow the increase of metal pollution unlike β-diversity as in Yang, 

Huang, Wu, Zhang & Liu (2013). In fact, Ter downstream of the Girona city was very different between 

years with respect to this parameter, the diversity was the lowest in 2016 appearing with sampling sites 

affected by mining metals, although this could be attributed to different urban waste not analysed in this 

study like antibiotics as Kümmerer (2009) who suggested the possibility of these substances reduce the 

number of bacteria in hospitals´sewage systems. Although some differences were observed between sites 
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located in the same stream. Microbial richness decreased downstream from OM with respect to the 

sampling sites on the Osor River. This result is in agreement with results from previous studies that 

pointed out that heavy metal pollution of aquatic, soil and biofilm ecosystems induces a decrease in the 

microbial diversity and richness (Almeida et al., 2009; Ancion, Lear, & Lewis, 2010; Kavamura & Esposito, 

2010; Singh et al., 2014).  

In addition, RNA content was correlated negatively with the richness and diversity of active microbial 

community. Therefore, bacteria were less diverse but more active indicating a shift towards a polluted-

resistant community suggesting the presence and activity of detoxifying genes (Desai & Madamwar, 

2007). 

Once the effects of heavy metals on the microbial communities were detected, it was possible to identify 

5 bacterial genera proposed as bioindicators of the heavy metal contamination. More precisely, 

Sphingorhabdus which has been described by Jogler, Chen, Simon, Rohde & Busse (2013) is known for 

their ability to cope with various metals because contain multiple genes associated with resistance to Cu, 

Co, Zn, Cd and Hg (Silva, Lago-Lestón, Costa & Keller-Costa, 2018). In fact, the family Sphingomonadaceae 

harbours members with known ability to biodegrade pollutants and generate exopolysaccharides 

(Mahmoud, Goulder & Carvalho, 2005). Concerning Flavobacterium, Maja, Menke, Höckner & Sommer 

(2019) suggested this genus as a biomarker of heavy metals in soils and some authors found it in stream 

water or composting plants associate with metals (Najiah et al., 2009; Zhao et al., 2019). The genus 

Prosthecobacter is very common in freshwaters (Bao et al., 2017), but also is known as indicator of metal 

pollution in soils (Maja et al., 2019). Ferruginibacter can reduce Fe (III) and was found as an abundant 

genus in riparian soils adjacent to mine drainage settling pond of Pb-Zn smelter (Fan et al., 2016) and 

although Arcicella is a non-dominant bacteria in freshwaters, Londono, Donovan, Shi, Geisler & Liang 

(2019) noticed that increased with metals as Ti and Zn. 

5. Concluding remarks 

 

We conclude that in Mediterranean rivers such as the Ter, Osor and Llémena subjected eutrophication 

and chronic but low metal pollution, nutrients and conductivity were the main driving factors behind the 

diversity and composition of the microbial communities. These driving factors were very clear in terms of 

resident community, but also affected the active one. Moreover, metal pollution was found in many sites, 

not only in streams affected by mining activities but also in zones with intense human activity, namely 
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agriculture, industry and urbanization. However, the effects of mining were mainly seen on the structure 

of active microbial community (β-diversity). This indicates that metal exposure may not affect the whole 

(resident) community but will selectively stimulate the activity of a set of species that respond to this 

specific type of stressor. Moreover, metal-impacted communities were very active, indicating a close link 

with the stress faced, probably related to the stimulation of detoxification processes. 
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Study II: Direct and indirect effects of multiple stressors on 
the microbial communities in a mining area 
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Study III: Environmental drivers of microbial community 
structure in a high iron calcareous-spring 
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Microorganisms are essential actors in the functioning of the ecosystem. The evaluation of the pollution 

effects on microorganisms is of paramount importance since their response may serve as a proxy to report 

the negative effects on the ecosystem, as well as its recovery capacity (Cravo-Laureau, Lauga, Cagnon, & 

Duran, 2017). This fact motivated the development of microbial ecotoxicology, an emergent 

multidisciplinary field that integrates microbial ecology, microbial toxicology, chemistry and physics 

(Shahsavari et al., 2017). Microbial ecotoxicology offers great potential in the assessment of the impact 

of pollution on the structure and function of microbial communities. However, there are still conceptual 

and methodological challenges to design studies that link the structure and function of microbial 

communities (Bier et al., 2015). Molecular technologies allow us to identify microbes and their activity 

throughout their genes but does this information enable us to understand, predict and assess the 

functioning of the ecosystem under metal stress? The technical and methodological advances help us 

define the role of microorganisms, which is a complex task because metabolic flexibility and diversity of 

microbes are greater than we can imagine (Blagodatskaya & Kuzyakov, 2013; Prosser, 2012). 

In view of these challenges, the main objective of this thesis was to determine the responses/changes to 

metal stress from different sources in the structure and function of the prokaryotic communities in 

epilithic biofilms. We wanted to study these responses at an ecosystem-scale, combining traditional 

ecological methodologies and recent molecular microbial ecology methods. 

Results from this thesis have revealed that microbial communities are able to respond to changes in metal 

concentrations. When the concentration of metals was low, changes in active bacteria (RNA fraction, 

which indicate potential function) were detected mainly in β-diversity, at OTU level and in an increment 

of RNA content. These changes allowed us to classify some genera as metal pollution indicators, but the 

resident community (DNA fraction) was unaffected (Study I) (Figure 1). However, a further increase in the 

concentration of metals, due to low flow conditions, affected mainly the community structure. 

Remarkable changes in the composition of bacterial communities over a metal pollution gradient (β-

diversity at OTU level) were detected and bacteria indicators were selected in each site. In this case, there 

were hardly any changes in functions related to the nutrient cycling (Study II) (Figure 1).  
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 MICROBIAL COMMUNITIES RESPONSES  
STRUCTURE FUNCTION STRUCTURE FUNCTION STRUCTURE FUNCTION STRUCTURE FUNCTION 
DNA content RNA content X   X  X  

DNA α-diversity RNA α-diversity X ~ X  X  

DNA β-diversity 
Phylum 

RNA β-diversity 
Phylum X X X     

Order Order X ~ X     
OTUS OTUS X        
ASVs ASVs        

DNA Indicators Family RNA Indicators Family        
Genera Genera X        

  AOA     X   
  Nutrient uptake     ~   

  Leaf litter 
decomposition 

        

Figure 1. Synthetic figure of principal results obtained along this thesis highlighting the metal stress condition and the responses of microbial communities. Gray colour symbolize anthropic source and 
orange natural source of metals. The tick mark describes the metal affected properties (structure or function) of microbial communities, the cross mark indicates those do not affect and the diacritical 

mark, an unclear response. The empty spaces show that these variables have not been analysed in the study. 

METALS

NATURALANTROPHIC

STUDY I 
Responses of resident 
(DNA) and active (RNA) 
microbial communities 
in fluvial biofilms under 
different polluted 
scenarios 

Metal concentration 

STUDY II 
Direct and indirect 
effects of multiple 
stressors on the 
microbial communities 
in a mining area 

Metal concentration 
 
Flow 

STUDY III 
Environmental drivers of 
microbial community 
structure in a high iron 
calcareous-spring 

 Metal 
concentration 

Field studies 
and molecular 
approaches 
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On the other hand, a higher concentration of metals, generated by extreme natural gradient of metals, 

affected the structure and function of bacteria. The bacteria showed a high variation of taxa over the 

metal gradient at phylum level (β-diversity). These dramatic changes in the composition let us identify a 

large number of resistant genera. Respect to the function, the leaf litter decomposition showed a clear 

inhibition in sites with higher concentration of metals (Study III) (Figure 1). 

In this general discussion, the possible links between the structure and the function of microbial 

communities and the pros and cons of different molecular approaches, followed to accomplish the 

principal goal of this thesis, will be presented and discussed combining and commenting the different 

results obtained. Future perspectives will be also integrated.  

1. Linking structure and function 
 

The strong relationship between structure and function into complex microbial community of fluvial 

biofilm required an approach to complement the use of structural and functional descriptors to assess 

potential effects of stressors on the fluvial ecosystem. Therefore, the use of a multi-marker approach in 

ecotoxicology studies is very useful (Bonnineau et al., 2010; Sabater et al., 2007). Following the same 

argument, in this thesis a multi-descriptor approach has been used to cover both functional and structural 

aspects of biofilm communities mainly adapted to prokaryotic communities. However, even today, one of 

the main goals of microbial ecology is to identify possible links between microbial community structure 

and microbial processes (Bier et al., 2015).  

Several researches have shown that some alteration of environmental variables can cause shifts in both, 

the structure and function of microbial communities (Galand, Pereira, Hochart, Auguet, & Debroas, 2018; 

Reed & Martiny, 2013; Vishnivetskaya et al., 2011). The identification of both responses could depend on 

the conditions and techniques used in each study (Shade et al., 2012) or on the time-scale over which 

measurements occur. It is easier to link structure and function in organisms with narrow phylogenetic 

distributions, like nitrifying microbial communities (Suarez et al., 2019). In the Study III of this thesis, the 

structure and function of microbial communities were affected, and we associated it to the extremely 

high concentration of metals. 

On the contrary, in literature, there are lots of studies in which the structure and function appear 

uncoupled. Several authors observed that microbial communities functional responses to stressors were 

detected earlier than responses in the structure or in both, the structure and functioning of microbial 
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communities (Bier et al., 2015; Comte, Fauteux, & Giorgio, 2013; Ruiz-González, Lefort, Massana, Simó, & 

Gasol, 2012). In this thesis, the structure and function also appear unlinked (Study I and Study II), but we 

related these situations mainly to the concentrations of metals. While potential functional β-diversity of 

the active community changed in low metal concentrations sites, the resident community (DNA fraction) 

characteristics were not affected by these concentrations (Study I). However, Jacquiod et al. (2018) 

showed that the DNA fraction in river sediment microbiome had the discriminate power to tell the 

difference between metal concentration sites and non-metal concentration sites (with concentrations of 

Zn 10-fold higher compare to the highest concentrations of Zn in biofilm at Study I). Accordingly, in this 

thesis, the β-diversity of the resident fraction of communities suffered a change when the concentration 

of metals increased (Study II) without noticing important changes in nutrient cycling. Therefore, the 

changes in the microbial resident fraction are mainly affected to a high concentration of metals. 

Bier et al. (2015) gave several reasons for the lack of linking between structure and function. He mentions 

microbial dormancy, horizontal gene transfer, functional redundancy, priority effects and neutral 

assembly processes. In the Study II of this thesis, we suggested that the fact that nutrient uptake was not 

affected by metals could be due to the functional redundancy or to the compensatory effects of microbial 

communities, which is more probable if diversity is high in the ecosystem (Yachi & Loreau, 1999). 

Overall, according to our interpretations of the results of the three studies about the link between the 

structure and the function of microbial communities, it was observed that the link was associated with 

different concentration of metals. In fact, Eng & Borenstein (2018) stated that it could vary depending on 

the environment. 

2. Pros and cons of the molecular and traditional approaches carried out in this thesis 
 

In this section, we are going to discuss the methods carried out in this thesis and the advantages and 

disadvantages in microbial ecotoxicology. The following arguments will be debated based on the study of 

the structure and function of microbial communities. 

2.1 Structure 

The prokaryotic identification based on sequencing of gene encoding 16S rRNA polyribonucleotide has 

lots of advantages and it has allowed us to make good progress on microbial ecology and, consequently, 

on microbial ecotoxicology (Table 1). Current editions of the two fundamental treatises, Bergey’s Manual 

of Systematic Bacteriology (Whitman, 2015) and The Prokaryotes (Dworkin & Falkow, 2006) base the 

structure of the prokaryotic world on the phylogenetic relationships established with the 16S rRNA 
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macromolecule. Rodicio & Mendoza (2004) explained that it is present in all the current bacteria and 

archaea, so it constitutes a universal target for identification. Moreover, its structure and function have 

remained constant for a long time; changes occur slowly enough to provide information about all 

prokaryotes over their evolutionary scale. Furthermore, it has been demonstrated that a precise 

identification of prokaryotes does not always require amplification and subsequent sequencing of the full 

16S rDNA gene. Generally, some partial amplicons are used in most studies, such as the v4 region, also 

used in this thesis.  

Cultivation-independent genome approaches of 16S rDNA amplicon have revealed an unexpected huge 

diversity of microorganisms (Hug et al., 2016; Jay T Lennon & Locey, 2016). The study of this diversity is 

crucial in microbial community ecotoxicology. In this thesis, changes in the α and β-diversity have allowed 

us to know about the important influence of metals in fluvial ecosystems. In fact, several studies have 

looked into the impact of pollutants, such as metals on the diversity of microbial communities, and shifts 

have been reported in the community structure (richness and evenness) when there are similar 

environments (Ancion et al., 2010; Fan et al., 2016; Zhang et al., 2018; Zhang et al., 2019; Zhu et al., 2013). 

Furthermore, Gibson et al. (2015), among other authors, revealed that amplicon sequencing can provide 

more detailed taxonomic information than the conventional morphological analysis. High-throughput 

sequencing offers a greater sequencing depth with rapid and relatively easy taxonomic characterization 

of microbial communities at a high level of resolution (Liu et al., 2012). High taxonomic resolution can be 

used to select bioindicators, such as metal-resistant bacteria (Leon et al., 2018), which are associated to 

some metals or sites with high metal concentrations (Bao et al., 2017; Guo, Nasir, Lv, Dai, & Gao, 2017; 

Londono et al., 2019). This characteristic is very useful in microbial ecotoxicology and has been considered 

in this thesis. 

The fast development of microbial eco-genomics provides well established lab protocols, commercial 

nucleic extraction kits and bioinformatic pipelines, such as MiSEQ SOP (Schloss et al., 2009), Phyloseq 

(manual) (Callahan, Sankaran, et al., 2016) or Usearch manual (Edgar, 2016), which were used in this thesis 

to process raw 16S rRNA gene sequences in order to obtain data on diversity and on the composition of 

prokaryotic communities.  

Bacterial identification, based on 16S rDNA gene sequence analysis, is supplied by many companies. For 

example, Illumina Company (www.illumina.com) provides a line of products and services that serve the 
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sequencing, genotyping and gene expression markets. This technology has reduced the cost of 

sequencing.  

However, this approach also has some disadvantages or limitations. These limitations must be taken into 

account when making a correct interpretation of the results (Table 1). 

This approach requires making decisions between different options, which can change the results, such 

as the choice of the region targeted. Whiteley et al. (2012) clarify the importance of using longer 

fragments of 16S rDNA gene, such as V3 fragments (200 bp) where the 80% of sequences were accurately 

classified to known taxa. However, when using shorter fragments as V6 (100 bp), 95% of the total reads 

were classified to the bacterial root.  

Moreover, the bioinformatic process of amplicon sequencing is subject to various levels of sequencing 

error. Different pipelines may produce significant different results. The choice of algorithms for quality 

filtering, OTU clustering and taxonomic assignment with reference database, may affect the downstream 

analysis of the taxonomic composition of microbial communities (Kopylova et al., 2016; Whelan & Surette, 

2017). Somboonna et al. (2014) advised to use more than one database to determine whether they lead 

to the same result. 

Another key method to study the structure of microbial communities followed in this thesis was looking 

into the communities at different bacterial taxonomic levels (Table 1). There are many tools to quantify 

and compare the composition of communities adapted to different conditions. Common approaches use 

the notion of clustering all 16S rRNA gene sequences with a similarity of 97% and then assigning these to 

“OTUs” from reference trees (Caporaso et al., 2010; Schloss et al., 2009). Recently, new atomic units that 

infer the sequences before the introduction of amplification and sequencing errors and distinguish 

sequence variants with a single different nucleotide, such as ASVs, have been develop. ASV methods show 

a higher resolution than the OTUs methods, which improve the capacity to discriminate ecological 

patterns (Callahan, McMurdie, & Holmes, 2017). These approaches were followed in this thesis and have 

let us compare microbial communities at different taxonomic levels to find one, which could detect 

responses of bacteria to metal stress (Table 1). When the environmental differences are very large, 

changes in the community can be detected at phylum level, which occurs in the Study III of this thesis. 

Following the same line, important differences in bacterial composition at phylum level are found in some 

samples located at different sites under extreme environment, Río Tinto (Sánchez-Andrea et al., 2011) or 

when comparing microbial communities of river sediments with a great different concentration of loads 
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of metals (Zhu et al., 2013). However, when the changes in the environmental variables are less sharp, it 

is necessary to increase the taxonomic resolution at OTU level. The study II of this thesis evidence that 

metals affected the community composition as it was also shown in the results obtained by Gołebiewski, 

Deja-Sikora, Cichosz, Tretyn, & Wróbel (2014), in which OTU level was the best option since it allowed the 

demonstration of Zn influence on soil bacterial communities. Moreover, assessing community responses 

at low taxonomic levels, such as the genus level, could highlight important trends that might not always 

be observed in the higher taxonomic ranks (Dohrmann et al., 2013). 

Unfortunately, using different approaches and statistical analyses, such as in this thesis, does not allow us 

to compare the results of the different studies, nor to study statistically the possible link between 

structure and function as Bier et al. (2015) pointed out (Table 1).  

In the Study III of this thesis, the ASV approach was used and rare species were eliminated because there 

are some errors in the amplicon data processing, such as chimeras/artefacts/contaminants that they can 

be understood as real variants like singleston-doubleston types (Callahan, Sankaran, et al., 2016). 

Including rare species in diversity analyses can almost entirely drive richness estimates to nonsensical 

values. However, this receives a lot of criticism since rare members are assumed to play an important role 

harbouring ecologically critical functions in the ecosystem (Pester, Bittner, Deevong, Wagner, & Loy, 2010; 

Tsementzi, Poretsky, Rodriguez-R, Luo, & Konstantinidis, 2014). So far, there is not a universal scientific 

consensus to calculate the richness and it is an issue widely discussed in popular forums about 

metagenomics.  
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Table 1. Summary of the main potentials and drawbacks of the molecular methods used in this thesis for the study of the composition and diversity (structure) of prokaryotes. 

 
 APPROACHES PROS CONS 

ST
RU

CT
U

RE
 

16S rRNA 
(DNA fraction) 

 Target for identification 
 

 Huge diversity 
 

 High taxonomic resolution 
 Laboratory protocols and 

procedures available 
 Standard bioinformatic 

pipelines 
 

 Availability of sequencing 
commercial systems 

 Rodicio & Mendoza, 
2004 

 Hug et al., 2016; Jay T 
Lennon & Locey, 2016  

 Gibson et al., 2015 
 
 

 Callahan, Sankaran, et 
al., 2016; Edgar, 2016; 
Schloss et al., 2009 

 Chosen target region 
 

 Bioinformatic choices 
and errors 
 
 
 

 Whiteley et al., 2012 
 

 Kopylova et al., 2016; 
Whelan & Surette, 2017. 
 

Different 
taxonomic 
levels for β-
diversity 

 Phylum  
 

 
 Genus 

 
 OTU/ASV 

 
 
 
 

 Sánchez-Andrea et al., 
2011; Zhu et al., 2013 
 

 Dohrmann et al., 2013 
 

 Caporaso et al., 2010; 
Gołebiewski et al., 
2014/Callahan et al., 
2017; Dohrmann et al., 
2013 

 No comparison 
analysis among Study 
I, Study II and Study III 

 Rare members 
(singletons and 
doubletons) 

 Bier et al., 2015 
 
 

 Pester et al., 2010; 
Tsementzi et al., 2014 

Indicator 
species 

 High sensitivity 
 Low site disturbance 
 Environmental risk 

assessment 

 Hermans et al., 2017; 
Lear & Lewis, 2009; 
Shahsavari et al., 2017 

 

 Environment 
complexity 

 Subjective election 
criteria 

 Methodology 
difficulties 

 Lindenmayer & Likens, 
2011 

 Siddig et al., 2016 
 

 Urban, Swihart, Malloy, 
& Dunning, 2012  
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The search for indicator species (Table 1) was used in this thesis as the first step to develop microbial 

metal-pollution indices targeted to assess environmental risk. Microorganisms, such as bacteria, are 

highly sensitive, play crucial roles in biogeochemical cycles, have fast growth rates and respond quickly to 

changes in the environment. Hermans et al. (2017), among others, confirmed that microbial community 

indicators and specific taxa can reflect changes in the environment due to anthropogenic activities and 

therefore, sites can be classify into contaminated and noncontaminated sites. Bacteria have significant 

advantages as indicators in terms of relative speed, ease of data analysis and minimization of site 

disturbance during sampling collection but the use of these indicators is not as common as the use of 

macroorganisms such as plants, waterbirds, fish and invertebrates (Yang, Li, Gao, Chen, & Zhan, 2019).  

Despite the increasing popularity and the advantages of using indicator species, several limitations have 

been described (Table 1). A single population rarely reflects the complexity of the environment; needless 

to say single species (Lindenmayer & Likens, 2011). Siddig et al. (2016) argued that election criteria for 

indicators are subjective. Many times they are just selected because they are locally abundant or 

ecologically significant. The term “indicator” is ambiguous. There are lots of terms use to refer to this 

word: ecological indicator, indicator species, bioindicator... Additionally, methodological difficulties like 

experimental protocols and statistical methods may bias results (Urban et al., 2012). 

2.2 Function 

In this thesis, 16S rRNA gene amplicon ARN sequencing was also performed. Apart from having all the 

advantages commented before for DNA sequencing (Table 1), it is also an approximation to the function 

of the communities in the sense that it reflects the active fraction of community members (Jacquiod et 

al., 2018) (Table 2). This approach is a better strategy than the DNA sequencing for predicting the actual 

performance of an ecosystem under metal stress. 

However, this approach has some limitations (Table 2). The RNA extraction is very difficult to obtain from 

natural environments because this molecule is very unstable and degrades easily. In addition, there are 

some constraints in the interpretation of the RNA values as indicators of microbial activity that should be 

considered. For instance, the growth rate of many prokaryotes is not always simply correlated with the 

RNA content (Worden & Binder, 2003). In fact, the relationship between the RNA concentration and the 

growth rate can be significantly different among taxa (Blazewicz et al., 2013). Dormant cells can contain 

higher number of ribosomes than in the cells in vegetative state (Sukenik et al., 2012). 

A second approach used to determine the function of microbial communities in this thesis was the 

quantification of functional target genes. This allows to study in depth the functions of interest. 
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As it has been exposed in this thesis, microbial communities play an important role in nutrient cycling. 

Denitrification, nitrification, anammox and dissimilatory nitrate reduction to ammonia metabolic 

pathways are well known. It is also known that some can be affected by metals such as nitrification. 

Nitrification is a key process in the cycling of nitrogen in terrestrial and aquatic ecosystems. The first rate-

limiting step of nitrification is the oxidation of ammonia to nitrite, which is carried out by AOB and AOA 

and it is catalyzed by the enzyme ammonia monooxigenase. The subunit A of the amoA gene is the most 

commonly used marked for tracing ammonia oxidizers in environmental samples by means of gene 

sequencing and qPCR (Fernàndez-Guerra & Casamayor, 2012; Merbt et al., 2012). These prokaryotes can 

be very interesting for ecotoxicology field because they can be indicators of metal pollution. In the Study 

II of this thesis AOA were quantified and they did not seem to be affected by metal concentrations. In fact, 

Wang et al. (2014) indicated that these effects on ammonia oxidizers are complex and they depend not 

only on metal concentrations but also on the physiological role of each metal element in the 

microorganisms and on the environmental conditions. 

In this thesis, the study of these genes was carried out by qPCR following the standardized protocols 

previously published. This technique is preferentially used due to its high specificity, sensitivity, wide 

dynamic range for huge variety of functional genes and its relatively low cost (Ginzinger, 2002) (Table 2). 

However, qPCR requires a previous and thorough study to understand the complex, very diverse and in 

some cases even unknown metabolic pathways of prokaryotes. This includes primer design for these 

genes, which is sometimes a complex task due to primer optimization (Cantos-Parra, Ramió-Pujol, 

Colprim, Puig, & Bañeras, 2018). Moreover, the usefulness and interpretation of qPCR results depend 

heavily on a number of factors, including the quality and quantity of extracted samples, random errors in 

experiments and the reference gene selected for normalization and comparison (Klein, 2002) (Table 2).  

Furthermore, in this thesis we also used some traditional ecological methodologies to study the effect of 

metal concentration on microbial functions such as nutrient uptake and decomposition. The use of these 

endpoints also has benefits and drawbacks (Table 2). 

Nutrient cycling is a central aspect of stream ecosystem functioning in which prokaryotes play an 

important role as we have commented before. For this reason, several researchers have used a variety of 

methods to quantify related parameters to describe nutrient retention (isotopic methods, short-term 

nutrient addition experiments, chambers experiments) (Dodds et al., 2002; Mulholland et al., 2000; 

Niyogi, Simon, & Townsend, 2004).  
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Nutrient cycling is mostly affected by metal pollution as a functional descriptor for microbial 

ecotoxicology. This concept has been largely studied in soils (Kandeler, Kampichler, & Horak, 1996; Liu, 

Xue, Yu, & Li, 2019; Plante, 2007). In this thesis, experiments with crystallizers and stream cobbles were 

used in order to study nutrient uptake of microbial communities affected by metal stress in streams. In 

the Study II, we mainly looked for the effect of heavy metal on nitrification. This approach is largely known 

and the main advantage is that these methods are easy to conduct, replicable and inexpensive, so they 

are available to a wider research community (O’Brien & Dodds, 2008). 

However, in many streams, nutrient concentration is relatively stable over a time frame of hours during 

baseflow conditions and there is little net uptake. That is to say that, the nutrient uptake method is slow. 

It takes at least 2 hours to carry out. Moreover, it is difficult to scale measurements up to the whole 

system. On the contrary, O’Brien & Dodds (2008) did not find significant differences between chamber 

experiments and short-term nutrient addition experiments but a selection of representative components 

of the stream was necessary to obtain that result. 

Leaf litter decomposition was addressed in this thesis as a model of key microbial activity under metal 

stress in the same way as Ferreira et al. (2016) and Sridhar & Bärlocher (2011) did. They found negative 

effects of heavy metals on this decomposition. Leaf litter is a dominant component of coarse particulate 

organic matter in streams and its decomposition has received considerable attention. Gessner & Chauvet 

(1994) and Mora-Gómez et al. (2015) determined the drivers of this decomposition. Duarte, Pascoal, 

Alves, Correia, & Cássio, 201) studied the succession of organisms that take part in this degradation. 

Furthermore, Artigas, Romaní, Gaudes, Muñoz, & Sabater (2009) and Romaní et al. (2013) looked into 

how climatic and hydrological dynamics affect it. As this concept has been largely studied, there is a 

standard procedure with litter bags and exponential decay model to obtain a decomposition rate 

(Bärlocher, 2005). 

The critical role of faunal community composition in leaf decomposition has been demonstrated using 

different mesh size litter bags to control exposure of litter to different faunal size classes (Alp, 

Cucherousset, Buoro, & Lecerf, 2016; Handa et al., 2014). In this thesis, the breakdown was studied by 

using of a mesh with the of size 1 cm2. The decomposition was also explored as the extreme environmental 

conditions did not allow macro and meiofauna to survive (Study III). However, to center the study on 

prokaryotes and fungi is usually necessary the use of litter bags with a finer mesh size (<1mm2). This 

decomposition could occur at a slower rate than when using litter bags with a larger mesh size. Moreover, 

it is dominated by dissolution processes (Lecerf, 2017). 
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Table 2. Summary of the main potentials/benefits and drawbacks of using molecular methods and other endpoints in this thesis to study the function of prokaryotes. 

 APPROACHES PROS CONS 
FU

N
CT

IO
N

 

16S rRNA (RNA 
fraction) 

 Active fraction  
 

 Jacquiod et al., 2018  Costly extraction 
 No correlation to 

growth rate 
 Dormant cells 

 
 Blazewicz et al., 2013; 

Worden & Binder, 2003 
 Sukenik et al., 2012  

Functional 
genes 

 Ecophysiology and habitat 
distributions of ammonia 
oxidizing microorganisms 
 

 Available molecular 
standardized protocols for 
genes of interest qPCR 

 Fernàndez-Guerra & 
Casamayor, 2012; 
Merbt et al., 2012; 
Wang et al., 2014 

 Ginzinger, 2002 

 Complex metabolic 
pathways. Primers 
design 
 

 qPCR method errors 

 Cantos-Parra et al., 2018 
 
 
 

 Klein, 2002 

Nutrient uptake 

 Widely applied method 
 Easy to conduct and 

reproducible 
 Inexpensive 

 

 Kandeler et al., 1996; 
O’Brien & Dodds, 
2008; Plante, 2007  

 Stable nutrient 
concentration  

 Difficult scaling up 
measurements 

 
 O’Brien & Dodds, 2008 

Decomposition/
breakdown 

 Standard procedure (litter 
bags) 

 Bärlocher, 2005  Mesh size <1mm2 to 
center the study on 
prokaryotes and fungi 

 The velocity of rate 
vary among streams 

 Lecerf, 2017 
 
 

 Menéndez et al., 2001 
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In addition, the decomposition rate of a given leaf species can vary greatly depending on the streams, so 

the classification concerning velocity of rate has limitations subject to the environmental characteristics 

of the stream (Bärlocher, 2005; Menéndez, Martinez, Hernández, & Comín, 2001). 

3. Future perspectives 

 

This thesis, through its three studies, mainly observational, has generated a deeper insight into the effects 

of different metals on epilithic microbial communities. These observations give us the basis for the 

following questions that might require a more controlled approach.  

 Is there a link between the resident community structure and its functioning? 

 Future experiments with manipulation of the structure of microbial communities could 

potentially help assess directly if the composition alter the function under controlled 

conditions. 

 Which genes within active microbial communities are expressed? And more specifically, how do 

the genes involved in metal resistance or metal detoxification respond under these different 

metal concentrations? 

 Laboratory experiments with biofilm microcosms simulating these different environmental 

conditions analyzed with the new molecular methods, such as shotgun metagenomics and 

metatranscriptomics, would allow us to check the identification and expression patterns of 

these resistant genes and quantify their gene expression in order to compare them. 

 In this context, how do bacterial metal indicators at genus or family taxonomic levels selected in 

this thesis respond to multiple stress? Could they serve as Mediterranean indicators? 

 It would be interesting to define certain experimental conditions simulating different 

Mediterranean regions in channels that permit the growth of some indicator species, such as 

genera Sphingorhabdus, Flavobacterium, Prosthecobacter, Ferruginibacter, Arcicella (Study I) 

or family Family XII, TRA3-20, Caedibacteraceae, Paracaedibacteraceae, Rickettsiaceae or 

Diploricttsiaceae (Study II). Then, it could add an inoculum of experimental microbial 

community with only one of the indicator species commented before and verify through 

monitoring if this specie can be always detected in a significant number. 
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 The nutrients and the conductivity conditions of the three streams in the Ter River basin had a 

great influence on the α and β-diversity of the resident prokaryotic community of epilithic biofilms 

under chronic and low metal stress.  

 Chronic exposure to low levels of metal pollution (mainly Zn) changed the composition of the 

active prokaryotic communities (β-diversity) without reducing the number of species (α-diversity) 

favouring metal adapted communites in epilithic fluvial biofilms. Metal-impacted communities 

were very active, indicating a close link with the stress deal with, probably related to the 

stimulation of detoxification processes.  

 Low flow conditions associated with water scarcity increased the dissolved and bioaccumulated 

metal concentration in the Osor River (mainly 400 µg Zn L-1 and 17,000 µg Zn g -1) causing great 

effects on the β-diversity of the resident microbial community of epilithic biofilms. 

 High toxicity of chronic metals caused by interactions between hydrological and chemical 

alterations led surprisingly to the presence of endosymbiotic bacteria, probably related to the 

adaptation of the community to metal pollution. 

 Abrupt changes in metal concentrations at short space scale (Fe spring) affected both, the 

resident structure and the function of microbial community at a higher taxonomic level (phylum) 

than those previously reported in epilithic biofilms sampled at a larger scale in the Osor, Llémena 

and Ter Rivers.  

 Natural high metal concentrations increased the richness and diversity of prokaryotes generating 

a singular environment dominated by chemolithotrophic bacteria. However, low metal 

concentrations decreased the richness and diversity of prokaryotes, changing their composition 

and suggesting that eukaryotic communities (algae and fungi) compete with prokaryotic ones. 

 The methodologic approaches followed in this thesis, with field studies and the use of molecular 

tools, has shed light on the metal chronic stress which fluvial ecosystems suffer in the 

Mediterranean regions.  
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Study I: Responses of resident (DNA) and active (RNA) microbial communities in fluvial biofilms under 
different polluted scenarios 

 

 
Figure 1. Principal component analysis (PCA) of the different physicochemical parameters in each sampling site and year (shown in legend). 

 
Figure 2. PCA of the different biofilm parameters in each sampling site and year (shown in legend). 
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Table 1. Pearson correlations between some environmental variables and α-diversity of microbial communities (those that are considered more 
important). Coefficients (r) and significance levels (p) (top and bottom values, respectively) are given. 

 DNA RNA 
Environmental 

variables 
Sobs Chao1 1/D H’ Sobs Chao1 1/D H’ 

T 
(ºC) 

-0.56 
(0.01) 

-0.54 
(0.02) 

-0.48 
(0.04) 

-0.48 
(0.04) 

    

Cond 
(µS cm-1) 

-0.49 
(0.03) 

-0.49 
(0.03) 

      

Ni 
(µg L-1) 

   -0.47 
(0.04) 

    

Cr  
(µg g-1) 

    0.48 
(0.04) 

0.52 
(0.02) 

  

Fe  
(µg g-1) 

0.47 
(0.05) 

   0.52 
(0.02) 

0.52 
(0.02) 

  

Ymax     0.68 
(0.00) 

0.68 
(0.00) 

0.54 
(0.02) 

0.57 
(0.01) 

RNA  
(ng mg-1) 

    -0.47 
(0.04) 

-0.47 
(0.04) 

-0.46 
(0.05) 

-0.55 
(0.02) 
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Figure 3. Relative abundance at phylum (or class) level of the DNA fraction (above) and RNA fraction (below) of microbial communities in the 

studied sites, average of 2016 and 2017 sampling sites n=21. The group “Others” represents the 1.7% of the total sequences.  
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Figure 4.The NMDS represents the RNA fraction respect to the bacteria relative abundance at order level with a 0.7 Pearson correlation based on Bray-Curtis distance measures. 
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Table 2. PERMANOVA results show significant differences between years and sampling sites. Significant p-values (at a level of α = 0.05 with 999 
permutations) are highlighted in bold. 

 PERMANOVA Site Year Site*Year PERMDISP Site Year 

DNA p-value 0.005 0.006 0.034  0.554 0.511 

 Signification * * *    

RNA p-value 0.026 0.186 0.57  0.614 0.892 

 Signification *      
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Study II: Direct and indirect effects of multiple stressors on the microbial communities in a mining 
area 

 

 
Figure 1. An NMDS analysis of physicochemical parameters (Pearson correlations > 0.2) shows differences between sites and no differences 

between treatments. Numbers represents replicates of each site (different enclosures). C: river samples (control), NF: treatment without fish, F: 
treatment with fish. 

C
Na

Standardise Samples by Total
Resemblance: D1 Euclidean distance

2D Stress: 0.09

Treatment

C

F

NF

C

1

2
1

3

C

1

2
3

C

2
3

1 3

2

1

2
3 C

1

3
C

2

C

2
3

13

1

2 3C

1
23

C

1
23C

C 1
2

3
C

1
3C

2
3 C

3

2
3

C

1 3
C

2C

3

1

2

3

C

2

O2 

Cond

DOC 

P-PO4

N-NH4 Cl 

K

Mg 
Ca

Mn
Zn

Ni 

N-NO3

Tª

pH

Site

Downstream 1

Downstream 2

Mine

Upstream 1

Upstream 2

Supplementary Figure 1. A nonmetric multidimensional scaling (NMDS) analysis of physicochemical parameters of wáter (Pearson correlations> 0,2) , showing differences between sites and no differences

U1

U2
M

D1
D2



 
SUPPLEMENTARY MATERIAL  

161 
 

 
Figure 2. Relative abundance of bacterial community at phylum level (or class) by sites (a) and treatment (b). C: river samples (control), NF: 

treatment without fish, F: treatment with fish. 
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Table 1 Average and standard deviation of biofilm parameters at each sampling site, n= 40. 

 U1 U2 M D1 D2 
Uptake PO₄³⁻  

(µg P-PO₄³⁻ cm⁻²) 
0.001 ± 0.016 -0.010 ± 0.044 -0.021 ± 0.023 0.004 ± 0.022 0.008 ± 0.017 

Uptake NO₃⁻  
(µg N-NO₃⁻ cm⁻²) 

0.020 ± 0.132 -0.005 ± 0.110 -0.010 ± 0.158 -0.106 ± 0.145 0.037 ± 0.062 

Uptake NH₄⁺  
(µg N-NH₄⁺ cm⁻²) 

0.010 ± 0.10 0.002 ± 0.008 -0.008 ± 0.016 -0.001 ± 0.011 -0.006 ± 0.008 

C/N 9.90 ± 1.71 9.09 ± 1.09 9.86 ± 0.68 8.89 ± 0.77 8.75 ± 1.09 

C/P 1155 ± 513 1746 ± 1163 1244 ± 458 1570 ± 533 1465 ± 904 

N/P 128.6 ± 81.6 195.5 ± 142.6 126.2 ± 46.0 179.7 ± 67.0 171.8 ± 118.3 
AOA  

(gene copies mg⁻¹ biofilm) 
1981.3 ± 1508.8 1552.6 ± 1084.5 856.5 ± 326.5 1481.7 ± 1016.7 3320 ± 859.2 

DNA yield  
(ng DNA mg⁻¹ biofilm) 

20.8± 1.8 23.6 ± 5.6 14.0. ± 6.3 23.4 ± 7.9 33.1 ± 13.4 

AFDW  
(mg cm⁻²) 

0.74 ± 0.58 0.66 ± 0.36 0.87 ± 0.73 0.76 ± 0.36 1.40 ± 1.12 

Chl-a  
(µg cm⁻²) 

1.21 ± 0.96 2.09 ± 2.35 2.74 ± 2.62 4.07 ± 3.38 6.92 ± 6.49 

Autotrophic 
index 

0.73 ± 0.34 0.52 ± 0.36 0.42 ± 0.20 0.25 ± 0.12 0.25 ± 0.08 

H’ 6.73 ± 0.14 6.54 ± 0.24 6.66 ± 0.28 6.29 ± 0.23 6.66 ± 0.31 

1/D 247.37 ± 81.44 164.17 ± 58.63 223.87 ± 97.23 142.64 ± 29.71 194.81 ± 101.30 

Sobs 4184 ± 687 4171 ± 387 4181 ± 500 3499 ± 412 4601 ± 371 

Chao1 5745 ± 1332 5869 ± 577 5636 ± 875 4885 ± 681 6562 ± 503 
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Table 2. Average and standard deviation of biofilm parameters for the three different treatments. C: river samples (control), NF: treatment 
without fish, F: treatment with fish, n =40. 

 C NF F 
Uptake PO₄³⁻  

(µg P-PO₄³⁻ cm⁻²) -0.008 ± 0.021 0.001 ± 0.036 -0.006 ± 0.021 

Uptake NO₃⁻  
(µg N-NO₃⁻ cm⁻²) 0.033 ± 0.159 -0.062 ± 0.066 0.005± 0.147 

Uptake NH₄⁺  
(µg N-NH₄⁺ cm⁻²) 0.002 ± 0.011 0.000 ± 0.016 -0.003 ± 0.009 

C/N 9.03 ± 1.33 10.17 ± 0.62 8.61 ± 0.98 

C/P 1593 ± 1079 1317 ± 501 1451 ± 749 

N/P 186.1 ± 136.5 129.6 ± 48.3 173.9 ± 100.2 
AOA  

(gene copies mg⁻¹ biofilm) 
1995.6 ± 1585.1 2457.6 ± 1103.3 1114.5 ± 882.9 

DNA yield.  
(ng DNA mg⁻¹ biofilm) 

23.1± 5.6 22.4 ± 10.2 23.5 ± 11.9 

AFDW  
(mg cm⁻²) 

0.87± 0.41 1.38 ± 0.87 0.40 ± 0.10 

Chl-a  
(µg cm⁻²) 

4.96± 5.24 4.57 ± 4.27 1.21 ± 0.70 

Autotrophic 
index 

0.41 ± 0.36 0.42 ± 0.26 0.46 ± 0.30 

H’ 6.57 ± 0.36 6.71 ± 0.21 6.45 ± 0.24 

1/D 194.15 ± 96.46 240.05 ± 79.48 149.37 ± 52.76 

Sobs 4194 ± 696 4106 ± 639 4105 ± 406 

Chao1 5987± 985 5550 ± 1221 5824 ± 661 
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Study III: Environmental drivers of microbial community structure in a high iron calcareous-spring 
 

 
Figure 1. Changes along the canal in a) dissolved oxygen (cuadratic curve); b-d) water temperature, conductivity and pH (sigmoidal curve); e-f) 

As and Fe (exp decay); g-i) Mn, Ni and Co (sigmoidal curve). See tables 1 and 2 for fitting results. 
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Table 1. Biofilm metal contents in sampling sites. 

Site 1 2 3 4 5 

Al (µg/g) 2827 1059 424.6 506.3 15631 

Cr (µg/g) 5.48 2.28 2.74 2.51 310.5 

Fe (µg/g) 167288 182250 23338 5740 11845 

Mn (µg/g) 222.5 615.5 1355.7 820.5 355.5 

Sr (ug/g) 591.7 837.7 888.8 694.6 497.3 

As (µg/g) 279.7 287.4 51.22 9.20 8.78 

B (µg/g) 172.5 189.4 21.99 4.54 129.4 

Ba (µg/g) 227.7 255.4 69.0 33.2 154.3 

Co (µg/g) 3.77 5.47 7.64 4.11 7.10 

Ni (µg/g) 7.48 7.00 4.86 2.44 17.15 

Zn (µg/g) 16.39 16.68 14.94 7.90 36.29 

 

 
Figure 2. Decomposition curves of percentage of Remaining organic matter vs Time let calculate the decomposition or breakdown rates in each 

site.  
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Figure 3. Different fittings of F0 vs Colonization days in each site. The area below the curves allow us to calculate primary production. 

 

  

1

Colonization days

0 10 20 30 40 50

F
o

0

2

4

6

8

10

2

Colonization days

0 10 20 30 40 50

F
o

0

10

20

30

40

3

Colonization days

0 10 20 30 40 50

F
o

-100

0

100

200

300

400

500

600

700

4

Colonization days

0 10 20 30 40 50

F
o

0

200

400

600

800

1000

1200

1400

5

Colonization days

0 10 20 30 40 50

F
o

0

100

200

300

400

500



 
SUPPLEMENTARY MATERIAL  

167 
 

Table 2. Report of fitting of Figure 3. 

SITE 1 

R  Rsqr  Adj Rsqr  Standard Error of Estimate 

0.9788 0.958 0.9454 9.8296 

                   Coefficient    Std. Error      t P 

a 732.181 52.5845 13.9239 <0.0001 

b 0.1915 0.0173 11.0463 <0.0001 

x0 5.9551 0.0934 63.7357 <0.0001 

y0       4.1764 3.5212 1.1861 0.263 

SITE 3 

R  Rsqr  Adj Rsqr  Standard Error of Estimate 

0.9704 0.9417 0.9242 7.7805 

  Coefficient Std. Error t P 

a 456.2929 38.779 11.7665 <0.0001 

b 0.1999 0.0206 9.7096 <0.0001 

x0 5.514 0.1087 50.7491 <0.0001 

y0 6.6644 2.7322 2.4392 0.0349 

SITE 4 

R  Rsqr  Adj Rsqr  Standard Error of Estimate  

0.9948 0.9896 0.9864 2.7678 

  Coefficient Std. Error t P 

a 365.9259 12.3974 29.5164 <0.0001 

b 0.2985 0.0133 22.5225 <0.0001 

x0 5.7479 0.0682 84.309 <0.0001 

y0 1.769 1.2574 1.4068 0.1898 

SITE 5 

R  Rsqr  Adj Rsqr  Standard Error of Estimate 

0.9927 0.9854 0.981 4   

  Coefficient Std. Error t P 

a 483.0472 19.4701 24.8097 <0.0001 

b 0.2501 0.013 19.2855 <0.0001 

x0 6.0542 0.0705 85.8605 <0.0001 

y0 3.3823 1.6537 2.0453 0.068 
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Table 3. Fe-tolerant ASVs with a presence > 90% in site 1. 

 

Acidobacteria

Blastocatella
Aridibacter famidurans
Stenotrophobacter
RB41
Geothrix

Actinobacteria

Actinoplanes
Microbacteriaceae
Cellulomonas 
Nocardioides glacieisoli
Crossiella
Lapillicoccus
Gaiella
Paenarthrobacter
Rubrobacter

Bacteroidetes

Dysgonomonadaceae
Macellibacteroides
Flavisolibacter
IheB3-7
Paludibacteraceae
WCHB1-32
Niastella
ST-12K33
Prolixibacteraceae

Alphaproteobacteria

Ellin6055
Qipengyuania
Sphingomonas lutea
Sphingomonas parvus
Rubellimicrobium
Devosia geojensis
Phenylobacterium mobile
Xanthobacteraceae
Rhodoplanes
Mesorhizobium
Hirschia
Beijerinckiaceae

Deltaproteobacteria

Oligoflexus
Myxococcaceae
Desulfovibrio mexicanus

Gammaproteobacteria

Gallionella
Candidatus_Nitrotoga
Massilia
Piscinibacter

Cyanobacteria

Leptolyngbya_ANT.L52.2
EcFYyy-200
Scytonema_UTEX_2349
Chalicogloea_CCALA_975
Mastigocladopsis_PCC-10914
Aliterella_CENA595
Pleurocapsa_PCC-7319

Spirochaetes

RBG-16-49-21
Spirochaetaceae
Salinispira
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Figure 4. ASVs representing < 1% of total number of sequences in different sites. 
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