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Abstract: In the study presented here, fuzzy logic was used to analyze the behavior of a model of
economic dynamics that assumes income to be in equilibrium when it is composed of consumption
and investment, that is, when savings and investment are equal. The study considered that consump-
tion and savings depend on the income of the previous period through uncertain factors, and, at the
same time, that investment is an uncertain magnitude across various periods, represented as a fuzzy
number with a known membership function. Under these conditions, the model determines the
factor of income growth and investments required to maintain equilibrium, as well as the uncertain
values of income for the different periods, expressed through fuzzy numbers. The study also analyzes
the conditions for their convergence and the fuzzy value that income represents in equilibrium.

Keywords: fuzzy logic; fuzzy arithmetic; extension principle; economic models; national income

1. Introduction

A theoretical mathematical model provides us with certain hypotheses about the
causal interrelationship between different magnitudes and the sequence in which they
react [1]. At least three questions should always be taken into consideration when creating a
model. First, given the complexity of reality, a decision must always be made regarding the
choice of variables, either by reasoning why they are considered essential to the model [2,3]
or through statistical studies, using a data set to look for variables that can be deleted [4].
Second, there is the decision of what kind of relationship the model should represent
between the variables [5–7]. The choice of relationships is made while waiting for the
model to be able to predict behaviors or quantify aspects of the system in question. Finally,
the third decision that must be made when working with a model is to determine the
degree of uncertainty to work with [8–10]. It should be borne in mind that determining
the values of most of the parameters involved in the model always represents a problem
since the values are not actually known with any precision. Generally, when models are
used to estimate values and make future predictions, the parameters are assigned accurate
values usually obtained from estimates based on past data. Thus, in an economic model,
for example, if the marginal propensity to consume is estimated to be between 0.7 and 0.8,
a mean can be taken as an intermediate value to perform the calculations and predict future
trends. However, this means taking an uncertain magnitude as definite in the models,
resulting in a loss of information due to all possible cases not being processed. Thanks
to the theory of possibility [11], fuzzy sets theory [12] offers a new way of preserving the
inaccuracy of economic phenomena [13–15]. By assigning a possibility distribution to a
magnitude that is not known with certainty, it is possible to obtain a better adaptation to
economic reality [16–18] since the obtained prediction contemplates and provides more
information, given that it will take all information into account when applying the model
to ultimately provide possible values for the resulting variables, with a degree of possibility
for each. In short, the process consists of considering known possibility distributions for
the values of the uncertain magnitudes and determining the corresponding distribution for
the variables to be predicted.
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This paper presents a dynamic model of income growth in which the parameters
linking the variables are considered to be uncertain values, expressed using fuzzy numbers.
The aim is to demonstrate a way of incorporating uncertainty into the analysis of the model
and show how the prediction process is affected when behavior is studied globally for all
the possible values of the uncertain parameters to be taken into account, each with their
own degree of possibility. To this end, after this introduction, which comprises Section 1
of the article, we have divided the main body of the work into several distinct sections.
Section 2 presents a summary of the need to model economic phenomena by establishing
relationships among variables and of the proposed advantages of incorporating uncertainty
using fuzzy logic. In Section 3, we discuss some relevant concepts about fuzzy equalities
and fuzzy equations, with the inputs used to create the proposed new model. The dynamic
model for determining income using fuzzy parameters is presented in Section 4, and
Section 5 provides a numerical example of the model’s application. Finally, in Section 6,
the study is completed with conclusions and references. This section also includes some
limitations of the study and possible areas for further analysis.

2. Fuzzy Modeling in Economic Theory

Economic theory studies how the economic system works as a whole and tries to
explain the relationships among an economy’s components, taking into account all the
economic facts. Taking this into consideration, we can say that one of the main objectives of
economic theory is to analyze past situations to explain their causes. Studying it, therefore,
helps establish possible models that partially explain economic reality. A second main
objective of economic theory is to make predictions, usually in the short and medium terms,
about the evolution of certain economic variables such as national income, investment, and
consumption, etc.

The fuzzy logic methodology does not appear to be a suitable tool for achieving the
first of these objectives. However, for the second objective, that of making predictions,
considering uncertain parameters in order to establish a better fit with reality in chosen
models may be useful. It is not a question of creating inaccuracy but of taking into account
the variability of the models’ parameters to obtain information, and, as a consequence,
more accuracy in future predictions.

Thus, the use of fuzzy logic [12] and, more particularly, fuzzy arithmetic [19], should
allow scholars of economic theory to approach growth models from this perspective, using
classical calculations and the results of the arithmetic of fuzzy numbers [20–22], together
with the various methods of solving fuzzy equations discussed in Section 3. In this vein,
some early studies [23–25] laid the foundations for incorporating fuzzy logic into the
formulation of economic models, emphasizing the fact that uncertainty is inherent in
economic reality. Knowing the precise values of macroeconomic magnitudes is almost
impossible, and if these are to be used to make predictions, it is important to perform
calculations that take into account all of their ambiguity. For this reason, in Section 4, we
will analyze a simplified dynamic model—which therefore has limitations that distance it
from economic reality—in order to illustrate how we can apply the operational techniques
of fuzzy logic to the model, determining the membership function of each fuzzy variable
and thus ascribing a possibility distribution to the various feasible values of the variable.
Using this methodology, we pave the way for future applications in more complex models.

To analyze this further, we decided to study the behavior of a dynamic model of eco-
nomic theory in which we considered the parameters linking the variables to be uncertain
values, expressed through fuzzy numbers. The model has a simple formulation, and we
analyzed it with the primary goal of showing how fuzzy logic can be incorporated into the
analysis of this model. The originality of the approach lies in it being able to observe how
the prediction process is affected when studying the behavior of income for all possible
values of the uncertain parameters being taken into account, each with its corresponding
degree of possibility. In short, the process is based on considering some possibility distribu-
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tions for the values of uncertain magnitudes and determining the corresponding possibility
distribution for equilibrium income.

By assigning a possibility distribution to a magnitude that is not precisely known,
we achieve a better fit to economic reality [8]. Predictions made in this way will also
be more accurate because all the information is taken into account in the application of
the model. Traditionally, in the practical application of economic models, the values of
many of the parameters involved are not known with any precision. To resolve this,
when using economic models to make future predictions, parameters are assigned an
exact value obtained from estimates based on past data. Indefinite values become definite,
and information is lost. In contrast with this, our approach contemplates keeping all the
information and incorporating it into the model. We achieve this by representing uncertain
magnitudes through fuzzy numbers, which, in reality, will have to be estimated with their
uncertainty load via expert systems. To this end, we incorporate uncertainty into the
model and use fuzzy arithmetic techniques, thereby keeping the possible imprecision of
the estimated variables within the model and not losing information when we apply the
model to make predictions. Thus, with a unified treatment that does not unduly complicate
the calculations, we manage to take into account the consequences of both optimistic and
pessimistic estimates, allowing us to obtain, in one operation, all the possible values of
income for the equilibrium, each with their respective degree of possibility. In this way,
all the information that can be extracted is incorporated in the same formulation, thus
achieving a very complete treatment of the model. At the same time, an analysis of the
sensitivity of the model is performed in the same operation, because the variations of the
parameters are taken into account.

The aim of the proposed fuzzy model of income formation is therefore to observe and
interpret the strength of the use of fuzzy logic within the framework of economic theory
applied to a dynamic case of income growth. This has been performed previously in static
cases and will also have to be carried out in the future with complex models that take into
account a greater number of variables and relationships influencing income formation.
However, with the approach proposed in this paper, we introduce a way of thinking and of
drawing conclusions that employs fuzzy logic to accommodate estimates about the future,
based on expert opinion, that are not foreseen by past data but can be contemplated from
economic conjectures and expectations anticipated by expert systems.

Contrary to more traditional approaches, many models are based on a theoretical
scheme that represents the functioning of the economic system based on a set of relation-
ships among variables linked by parameters with values obtained from past estimates. If
we use this approach exclusively, models become a purely deterministic historical con-
struction that cannot be applied to economic (social) science since they reflect the way of
thinking at the time of their construction. This way of making estimates from probability
distributions constructed exclusively from past data is often contradicted by economic
reality, which is always changing due to factors that are very often not taken into consid-
eration. This is why we propose the model presented in Section 4, which includes all the
uncertainty load that variables may have, dictated by past behavior and by present actions
and future forecasts that change reality.

3. Fuzzy Equalities and Fuzzy Equations

The following definitions, notes, and properties are provided in an attempt to clarify
the concept of fuzzy equalities and fuzzy equations while establishing the terminology
used in the present work.

We take as given the reader’s familiarity with the theory of fuzzy subsets, the concept
of fuzzy number, the theorem of representation through α-cuts, the main operations that
can be performed with them (sum, pseudo-opposed, difference, product, pseudo-inverse,
quotient, product of a scalar number, minimum and maximum), the extension principle
of operations or composition laws, initially introduced by Zadeh [26] and subsequently
modified by other authors [27–30], and the main theorems that allow the compatibility
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of operations through the employment of corresponding α-cuts [31–33]. Study [3] can be
consulted as a practical summary of arithmetic with fuzzy numbers. We will use these
operations and the following definitions, where we will apply fuzzy logic to the economic
model analyzed.

Definition 1. A fuzzy equation is an equation in which there are coefficients or variables that are
expressed through fuzzy numbers and, more generally, through fuzzy subsets of R. In general, we
will write a fuzzy equation as follows:

F
(

Ã1 , Ã2, . . . , Ãn, X̃1, X̃2, . . . , X̃m

)
= B̃, (1)

where Ã1 , Ã2, . . . , Ãn and B̃ are fuzzy numbers or, more generally, fuzzy subsets of R (which
we usually call fuzzy coefficients) and X̃1, X̃2, . . . , X̃m are the unknowns, which we call fuzzy
variables. F(a1,a2,...,an,x1,x2,...,xn) is an implicit function of several variables associated with the
fuzzy equation.

Note 1: Without loss of generality, but in order to facilitate notation, we will consider
fuzzy equations with a single unknown in the following form:

F
(

Ã , X̃
)
= B̃, (2)

which has associated as a crisp equation,

F(a, x) = b. (3)

We must consider that the parameters a and b from Equation (3) are values of uncertain
quantification that can take several possible values expressed through respective possibility
distributions, in turn, expressed from the fuzzy numbers (or more rarely of normal fuzzy
subsets) Ã and B̃ (Ã, B̃ ∈ ℘̃(R)).

Equation (2) can be understood in several ways. Depending on our interpretation of
Equation (2), alternative solutions emerge.

First, we can consider that the equality of (2) expresses equality between fuzzy subsets.
With this interpretation of a fuzzy equation, due to the opposite or inverse not existing in
fuzzy number algebra, it makes no sense to transpose terms and apply the usual arithmetic.
For example, the equation Ã(+)X̃ = B̃ is not equivalent to the equation Ã(+)X̃(−)B̃ = 0.
While the former equation may have a solution with the interpretation we are considering,
the latter does not, since the first member is a fuzzy number, whereas the second is crisp.

Following this interpretation, we know that in order for the fuzzy subsets of the
two members of Equation (2) to be equal for each α level, the α-cuts of the two members
must match.

Remember that if the function F is continuous with respect to a and x, by virtue of
Buckley’s theorem [32], which is a consequence of the extension principle being compatible
with α-cuts, then the α-cuts of the first member of Equation (2), which we will denote with
Fα, are given by

Fα = {z ∈ R/z = F(a, x) , a ∈ Aα , x ∈ Xα}, (4)

and Fα = Bα ∀ α ∈ [0,1] therefore needs to be verified.
Therefore, the solution of the equation must be that fuzzy number X̃, such that its

α-cuts Xα =
[
X(α), X(α)

]
verify the equality Fα = Bα.

If the function F, in addition to being continuous with respect to each variable, satisfies
the hypotheses of Moore’s theorem [33], we can calculate the α-cuts by directly applying
the arithmetic of the confidence intervals, that is, by substituting the intervals Aα and Xα

in the expression of the function and using the arithmetic of the intervals to determine Xα.
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Applying this system, Sánchez [34] showed that it is very common for there to be no
fuzzy number X̃ as the solution of the equation, and that the conditions are very restrictive
for the linear and quadratic equations to admit a solution using this interpretation.

Note 2: To overcome the difficulties presented in Note 1, Buckley and Qu [35] pro-
posed a new interpretation of the fuzzy Equation (2) that was fully consistent with the
possibility theory.

Let us consider Equation (2) F
(

Ã , X̃
)
= B̃.

All of the following is equally feasible for the general case of the fuzzy Equation (1),
as long as the function F satisfies the assumptions of the implicit function theorem.

Buckley and Qu’s idea was to interpret Equation (2) as a family of true equations

F(a, x) = b a ∈ Support
(

Ã
)

and b ∈ Support
(

B̃
)

,

where we assume that a takes all possible values given by the fuzzy number Ã ={(
a , µÃ(a)/a ∈ R

)}
, and b takes all the possible values given by the fuzzy number B̃ ={(

b , µB̃(b)/b ∈ R
)}

. It is a question of finding the different values of x, each with its
degree of possibility, that verify some of the Equation (4).

To do this, we observe that if we assume F to verify the hypotheses of the implicit
function theorem, then we can isolate x from F(a,x) = b to obtain

x = f (a, b), (5)

thus generating the new fuzzy equation

X̃ = f
(

Ã , B̃
)

, (6)

whose solution X̃ expresses the solution in the sense interpreted by Buckley and Qu.
This allows us to understand f

(
Ã , B̃

)
as a binary operation between two magnitudes

of uncertain quantities, which results in another uncertain quantity represented by X̃. Thus,
it is a question of studying the possibility that this magnitude takes a concrete value x while
thinking that there will be several combinations of possible values of a and b such that
f(a,b) = x. Each of these possible values of x satisfies one of the equations in the family (4).

Note 3: Let us now see how the solution to Equation (6) is determined in practice.
Under the hypothesis that function f is a continuous function, and by virtue of the

principle of extension being compatible with the α-cuts, the α-cuts Xα of X̃ are given by

Xα = {x / x = f (a, b), a ∈ Aα , b ∈ Bα}. (7)

If we consider f to be continuous and Ã and B̃ are fuzzy numbers, then the domain
of f, Aα × Bα, is a compact of R2, and therefore, by virtue of the Weierstrass theorem, the
existence of maximum and minimum of f is ensured; this results in

Xα =
[
X(α), X(α)

]
with

X(α) = min {x / x = f (a, b), a ∈ Aα , b ∈ Bα}
X(α) = max {x / x = f (a, b), a ∈ Aα , b ∈ Bα}.

(8)

Therefore, Xα is, in this case, a closed interval and therefore convex. Thus, X̃ is convex.
Furthermore, X̃ is obviously normal since Ã and B̃ are. In fact, since Ã and B̃ are normal,
a* and b* exist with µÃ(a∗) = 1 and µB̃(b

∗) = 1. Thus, the value x∗ = f (a∗ , b∗) satisfies
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µX̃(x∗) = 1. Therefore, the solution X̃ is a fuzzy number. Furthermore, the membership
function of X̃ is expressed by applying the extension principle as follows:

µX̃(x) =
∨

{ x
x = f (a,b)}

(
µÃ(a) ∧ µB̃(b)

)
(9)

It should be noted that when we apply the compatibility of the extension principle
with the α-cuts, it is assumed that the uncertain magnitudes represented by Ã and B̃ do not
interact, meaning that the value taken by one of them does not condition the value taken
by the other. However, it is not generally possible to calculate Xα by directly applying the
arithmetic of the intervals and substituting Aα and Bα in the expression for the function. In
other words, if we have the binary operation (a, b) = a ∗ b and directly calculate the α-cuts
by applying the arithmetic of the intervals, thus

Vα = Aα(∗)Bα, (10)

then we do not generally verify that Xα = Vα, although if f is monotonous with respect
to the inclusion of intervals, then Xα ⊆ Vα. Therefore, if we directly apply the arithmetic
of the intervals to calculate the α-cuts of X̃, then we will generally have wider intervals
containing the solution. If the calculation of Xα is complicated due to the behavior of the
function f, we can admit Vα as an approximation of the true result.

However, we will now highlight two common cases in which the α-cuts Xα can be
calculated easily.

(1) When f (a, b) = a ∗ b is a rational function in which each variable appears once
at most and is raised to the first power, then we encounter the hypotheses in Moore’s
theorem [33], and therefore, Xα = Vα. Thus, in this case, Xα is determined from the direct
calculation Aα(∗)Bα using the arithmetic of the confidence intervals.

(2) When f (a, b) is a monotonic function with respect to each of the variables, then the
lower and upper limits X(α) = min

{
x/µX̃(x) ≥ α

}
and X(α) = max

{
x/µX̃(x) ≥ α

}
will

obviously be reached at some of the ends of the α-cuts Aα and Bα, as Table 1 shows.

Table 1. α-cuts for a monotonic function.

Monotonicity of f
with Respect to a

Monotonicity of f
with Respect to b X

_
(α) ¯

X(α)

increasing increasing f (A(α), B(α)) f
(

A(α), B(α)
)

increasing decreasing f
(

A(α), B(α)
)

f
(

A(α), B(α)
)

decreasing increasing f
(

A(α), B(α)
)

f
(

A(α), B(α)
)

decreasing decreasing f
(

A(α), B(α)
)

f (A(α), B(α))

Note 4: We will use the Buckley and Qu [35] resolution method in our study on the
behavior of the income growth model in a context of uncertainty since it has been shown to
coincide with our interpretation of the values obtained for income in a fuzzy environment.

4. Fuzzy Dynamic Model for Stationary Growth

A dynamic model based on fuzzy logic that is closely related to the classic static
model [3] establishes consumption as a linear function of income, although in this case,
we will consider income from the previous period. This lends a dynamic character to the
model since it allows us to establish a timeline for national income.

Thus, three conditions are imposed in this model for a given period t, expressed
through the following three equations:

(a) A Keynesian-type consumption equation with a delay period

Ct = c·Yt−1 t = 1, 2, 3, . . . (0 ≤ c ≤ 1), (11)
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where Ct represents consumption in period t, and Yt−1 represents income in period t−1,
and c represents the marginal propensity to consume.

(b) An equation for investment, in which we assume that this remains constant

It = I t = 0, 1, 2, . . . , (12)

where It represents the investment in period t.
(c) Finally, the equilibrium condition imposed by savings and investment being equal,

meaning that income is composed of both consumption and investment, by means of which
we establish the equation

Yt = Ct + It t = 0, 1, 2, . . . (13)

From these three conditions, we obtain the following:

Yt = c·Yt−1 + I t = 1, 2, 3, . . . , (14)

establishing an equation in linear finite differences of first order, which has the follow-
ing solution:

Yt = A + B·ct,

being

A =
I

1− c
and B = Y0 − A = Y0 −

I
1− c

, (15)

where Y0 indicates the initial income value.
Indeed. Starting from an initial value of income Y0 at the present time, we have

Y1 = c·Y0 + I
Y2 = c·Y1 + I = c·(c·Y0 + I) + I = c2·Y0 + (c + 1)·I

Y3 = c·Y2 + I = c3·Y0 +
(
c2 + c + 1

)
·I

. . . . . .
Yt = c·Yt−1 + I = ct·Y0 +

(
ct−1 + ct−2 + · · ·+ c2 + c + 1

)
·I =

ct·Y0 +
ct−1
c−1 ·I = ct·Y0 +

1−ct

1−c ·I = ct·Y0 +
I

1−c − ct· I
1−c =

I
1−c +

(
Y0 − I

1−c

)
·ct = A + B·ct

where A and B are the values in (15).
With these hypotheses, since 0≤ c≤ 1, we see that a convergent trajectory of income is

always obtained. However, to obtain an increasing trajectory of the income, it is necessary
that Y0 < I

1−c , since, otherwise, the trajectory would be decreasing, which is contrary to
the real situations for modeling.

If we consider that the values of the marginal propensity to consume and invest are
each of a similar, but uncertain, amount in the various periods, then we can consider them
as fuzzy numbers c̃ and Ĩ, respectively, and consider them the same for each period, that is,
as having the same membership function for each value of t, which we will represent for
µc̃ and µ Ĩ , respectively.

Under these conditions, we can determine the value of income in a period t from the
fuzzy equation

Yt = Ã + B̃·c̃t , (16)

determining the fuzzy numbers Ã and B̃ from the equations

Ã =
Ĩ

1− c̃
and B̃ = Y0 − Ã.
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Given the application of the principle of extension, we can obtain the membership
functions from the expression

µÃ(x) =
∨

{(z,t)/x=z·t}

(
µC̃

(
1− 1

z

)
∧ µ Ĩ(t)

)
, (17)

while
µB̃(x) = µÃ(Y0 − x) and µc̃t(x) = µc̃

(
x

1
t

)
. (18)

Thus, if we make M̃ = B̃·c̃t, then we have

µM̃(x) =
∨

{(b,c)/x=b·c}

(
µB̃(b) ∧ µc̃

(
c

1
t

))
, (19)

with which, after applying the extension principle again, we obtain the following result:

µỸt
(x) =

∨
{(z,t)/x=z+t}

(
µÃ(z) ∧ µM̃(t)

)
. (20)

However, depending on the form of the functions µc̃ and µ Ĩ , the expression (20) for
µỸt

may not be operative, and for this reason, we then determine the expression for Ỹt
through its α-cuts.

If we denote the α-cuts of c̃ and Ĩ for

cα = [c(α), c(α)] and Iα =
[
I(α), I(α)

]
, (21)

then the α-cuts of Ã and B̃ are

Aα =

[
I(α)

1− c(α)
,

I(α)
1− c(α)

]
Bα =

[
Y0 −

I(α)
1− c(α)

, Y0 −
I(α)

1− c(α)

]
. (22)

To lend the model a practical sense, in the fact of obtaining a growing trajectory for
income, we impose the restriction

Y0 <
I(α)

1− c(α)

(
<

I(α)
1− c(α)

)
f or α = 0, (23)

which allows us to ensure an increasing trajectory for income.
It should be noted that the function defining Ỹt in the fuzzy Equation (16) does not

verify the hypotheses of Moore’s theorem [33], in this case, meaning that if we directly
apply the arithmetic of the intervals to determine the α-cuts of Ỹt in a given period, we
would obtain an undesired result in the sense that the interval thus obtained by a given
level of presumption turns out to be wider than the true α-cut of Ỹt for this level. In fact,
using the arithmetic of the intervals it would be

Yt(α) = Aα(+)
[

Bα (·)(cα)
t
]
=[

I(α)
1−c(α) +

(
Y0 − I(α)

1−c(α)

)
·(c(α))t , I(α)

1−c(α) +
(

Y0 − I(α)
1−c(α)

)
·(c(α))t

]
.

(24)

On the other hand, if we consider that cα ⊆ (0, 1) ∀α, it turns out that for a large
enough value of t, regardless of the initial value of income Y0, the partial derivatives of
the function

f (c, I) =
I

1− c
+

(
Y0 −

I
1− c

)
·ct (25)

are both positive.
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Therefore, function (25) is increasing with respect to c and with respect to I. For this
reason, applying Buckley and Qu’s method of solving equations, the α-cuts of Ỹt are
determined from the expression

Ytα =
[
Yt(α), Yt(α)

]
=[

I(α)
1−c(α) +

(
Y0 − I(α)

1−c(α)

)
·(c(α))t , I(α)

1−c(α) +
(

Y0 − I(α)
1−c(α)

)
·(c(α))t

]
.

(26)

It, therefore, turns out that, as the studies by Buckley and Qu [32] showed, the inclusion
Ytα ⊆ Yt (α) is verified.

Let us recall that several methods exist for comparing fuzzy variables and fuzzy
numbers, as analyzed by Bortolan and Degani [36], Nakamura [37], Delgado, Verdegay
and Vila [38], Yuan [39], Chang and Lee [40], and Gil Aluja [41]. However, some of those
based on establishing fuzzy preference relationships using the idea of possibility lead to
counterintuitive results. In this case, we will use the method based on comparing the
confidence intervals defined by the α-cuts from the relation

[a1,b1] ≤ [a2,b2]⇔ a1 ≤ a2 i b1 ≤ b2.

Using this partial order relation, and due to the constraint imposed by (23) and that
0 < c(α) ≤ c(α) < 1, then

t ≤ t’⇒ Ytα ≤ Yt’α. (27)

Thus, if we define the order relation between fuzzy numbers

Ỹt ≤ Ỹt′ ⇔ Ytα ≤ Yt′α, (28)

then income Ỹt follows an increasing trajectory with respect to this order, which approxi-
mates the fuzzy number Ỹe that it has for α-cuts

Yeα =
[
Ye(α), Ye(α)

]
=

[
I(α)

1− c(α)
,

I(α)
1− c(α)

]
. (29)

This would coincide with the solution obtained using the classic static version of the
model [3].

We observe that by using the fuzzy treatment of the model, an increasing trajectory
for income is obtained according to the order defined in (28), which approaches the fuzzy
number Ỹe. We can interpret this as the fuzzy number or value for equilibrium income,
which is understood as the fuzzy subset that contains the possible equilibrium values for
income, each with its respective degree of possibility.

Finally, note that the expressions corresponding to the particular case in which c̃ and
Ĩ are the triangular fuzzy number (TFN) can be obtained immediately, while the specific
membership function of Ỹe is also obtained, in addition to the concrete expression of its
α-cuts, the latter being obtained directly if we substitute the specific expressions for the
triangular fuzzy numbers in the result of expression (29), which is obtained by applying
the general methodology.

5. Examples of Application

We will now use a numerical example to analyze how income increases, and how it is
the expression of equilibrium income in the classical model and the new model studied.

5.1. Example 1—Crisp Case

We consider the classic model presented from conditions (11)–(13), assuming that we
have the following values of the parameters:

marginal propensity to consume c = 0.85;
investment in each period I = 380;
initial value to the income Y0 = 1000.
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In this certain case, using (15), we have the next trajectory for the income

Yt = 2533.33− 1533.33·(0.85)t t = 0, 1, 2, 3, . . . .

Obtaining these values for the trajectory of the income in the first seven periods, we
achieve the following results:

Y0 = 1000 , Y1 = 1230 , Y2 = 1425.5 , Y3 = 1591.67 ,
Y4 = 1732.92 , Y5 = 1852.98 , Y6 = 1955.03 , Y7 = 2041.78 , . . . .

Moreover, its trajectory converges as time progresses toward its equilibrium value,
which is Ye = 2533.33.

5.2. Example 2—Uncertain Case

Let us consider the marginal propensity to consume to be estimated via the TFN
c̃ = (0.8,0.85,0.87) and the investment volume via the TFN Ĩ = (350,380,400).

Although trapezoidal fuzzy numbers could be used to better approximate economic
reality, we have chosen to model the uncertain values of parameters using triangular fuzzy
numbers since the simple structure of triangular fuzzy numbers makes them very conve-
nient in calculations because their membership functions are made up of linear sections,
and for this reason, they are widely used to model vague predicates and uncertain mag-
nitudes. Note that, in practice, the actual conceptualization of triangular fuzzy numbers
allows them to be readily adapted to different real situations, and particularly, to estimates
of economic variables made by expert systems. Thus, experts can determine the values
of the two extremes, corresponding to the minimum and maximum estimates, and an
intermediate value that is taken as the most likely value. In addition to a TFN’s great
adaptability to the structure of human thought, it is also important to consider, as noted
earlier, its great ease of use due to the simplicity of its membership function.

Furthermore, we take the initial value for income to be Y0 = 1000. In this case, the
respective α-cuts of c̃ and Ĩ are

cα = [0.8 + 0.05·α , 0.87− 0.02·α]

Iα = [350 + 30·α , 400− 20·α ].

Note that restriction (23) is verified with the data in the example, since

Y0 = 1000 <
I(0)

1− c(0)
=

350
1− 0.8

= 1750.

As we have seen, this constraint ensures an increasing trajectory for all possible values
of income; as time increases, it approaches an equilibrium value, which we determine
through a fuzzy number.

For a specific value of time t, we obtain the α-cuts of Ỹt by applying (26), with which
we obtain the expression

Ytα =
[
Yt(α), Yt(α)

]
,

where

Yt(α) =
350 + 30α

0.2− 0.05α
+

(
1000− 350 + 30α

0.2− 0.05α

)
·(0.8 + 0.05α)t

Yt(α) =
400− 20α

0.13 + 0.02α
+

(
1000− 400− 20α

0.13 + 0.02α

)
·(0.87− 0.02α)t.

Thus, for example, for cases t = 1 and t = 5, we obtain Table 2 (substituting in the
previous expression the value of t = 1 and t = 5, respectively, and α for the corresponding
values on an hendecadarian scale of 0 to 1, resulting in the confidence intervals shown in
Table 2), which gives the α-cuts of Ỹ1 and Ỹ5 on the hendecadarian scale.
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Table 2. α-cuts of income in the periods t = 1 and t = 5.

α Y1(α) Y1(α) α Y5(α) Y5(α)

0 1150 1270 0 1504.24 2041.74
0.1 1158 1266 0.1 1536.35 2022.24
0.2 1166 1262 0.2 1569.04 2002.89
0.3 1174 1258 0.3 1602.34 1983.68
0.4 1182 1254 0.4 1636.25 1964.60
0.5 1190 1250 0.5 1670.77 1945.66
0.6 1198 1246 0.6 1705.92 1926.86
0.7 1206 1242 0.7 1741.70 1908.19
0.8 1214 1238 0.8 1778.14 1889.65
0.9 1222 1234 0.9 1815.23 1871.25
1 1230 1230 1 1852.98 1852.98

The value of the fuzzy number Ỹ1 maintains a triangular structure, but it is not the
case for the uncertain values of successive periods (because when t > 1 the linear structure
for the extremes of the α-cuts is broken). However, if we take the triangular approximation
of Ỹ5 using the triangular fuzzy number (Ỹ5)T = (1504.24, 1852.98, 2041.74), then the α-cuts
of the triangular approximation are as follows:

[1504.24 + 348.74 · α, 2041.74 − 188.76 · α].

If we use the hendecadarian scale, the confidence intervals for each level of the scale
are the values obtained in Table 3, substituting the corresponding values of α in the previous
interval that represents the cut at level α (α-cut) for the uncertain value of income in the
period t = 5, as shown in the example.

Table 3. Triangular approximation of income in the period t = 5.

α Y5(α) Y5(α)

0 1504.24 2041.74
0.1 1539.11 2022.86
0.2 1573.98 2003.98
0.3 1608.86 1985.11
0.4 1643.73 1966.23
0.5 1678.61 1947.36
0.6 1713.48 1928.48
0.7 1748.35 1909.60
0.8 1783.23 1890.73
0.9 1818.10 1871.85
1 1852.98 1852.98

By using the approximation, we obtain the following deviations:

Dle f t = max
α∈I

∣∣∣Y5(α)−
(
Y5
)

T(α)
∣∣∣ = 7.84

Dright = max
α∈I

∣∣Y5(α)−
(
Y5
)

T(α)
∣∣ = 1.7,

with the result, applying the error dimensioning criterion proposed by Jiménez and Ri-
vas [42], that∣∣∣µỸ5

(x)− µ
(Ỹ5)T

(x)
∣∣∣ ≤ max

{ Dle f t

Y5(1)−Y5(0)
,

Dright

Y5(0)−Y5(1)

}
= 0.022,
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and we can therefore consider the triangular approximation (Ỹ5)T as very suitable since, on
a hendecadarian scale, any value for the support of (Ỹ5)T with a certain degree of possibility
on the scale has the same degree of possibility as Ỹ5.

Similarly, let us determine the fuzzy value of the balanced income Ỹe, which, in this
case, has for α-cuts

(Ye)α =

[
350 + 30α

0.2− 0.05α
,

400− 20α

0.13 + 0.02α

]
0 ≤ α ≤ 1,

which gives rise to the following membership function:

µỸe
(x) =


0 i f x < 1750
0.2x−350
0.05x+30 i f 1750 ≤ x ≤ 2533.3̂
400−0.13x
0.02x+20 i f 2533.3̂ ≤ x ≤ 40000/13 ≈ 3076.92

0 i f x > 40000/13 ≈ 3076.92,

thus completely determining all possible equilibrium values with their respective degrees
of possibility.

The triangular approximations for the trajectory of the uncertain income values during
the first seven periods are

Ỹ1 = (1150, 1230, 1270) Ỹ2 = (1270, 1425.5, 1747.69) Ỹ3 = (1366, 1591.67, 2013.53)

Ỹ4 = (1442.8, 1732.92, 2226.21) Ỹ5 = (1504.24, 1852.98, 2396.35)

Ỹ6 = (1553.39, 1955.03, 2532.47) Ỹ7 = (1592.71, 2041.78, 2641.36).

Figure 1 shows the triangular approximations of the fuzzy values of income Ỹ1 , Ỹ2 , Ỹ3,
Ỹ4 , Ỹ5 , Ỹ6 , Ỹ7 for the first seven periods, and the fuzzy value for equilibrium income,
which is the fuzzy number where the values of Ỹt are approximate. We also note that
uncertainty increases as time t progresses, as expected, and that the values of income’s
time trajectory converge towards the uncertain value of the equilibrium income, as shown
through the approximation of TFN

(
Ỹe

)
approx

= (1750, 2533, 3076).
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5.3. Comparison between Fuzzy Case versus Crisp Case

If we make a comparison between the fuzzy case versus the crisp case, we observe
that if we compare the result obtained with the approach of example 2 to the classic case
of application in the field of certainty of example 1, the classical application becomes a
particular case of the new application presented.

On the other hand, in the field of uncertainty, when the period increases, then the
entropy or degree of uncertainty of the solution also increases. However, the advantage
of this new approach is that we can find, from the initial distributions of possibility, the
degree of possibility of each of the possible values of income, both for a given period and
for each specific value for all possible income equilibrium values.
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6. Conclusions

In this study, we have analyzed the behavior of the dynamic version of a classic model
of economic theory by considering the factors that relate the variables of the model as
uncertain and expressed via fuzzy numbers. In this way, we have obtained the expression of
income and equilibrium income via a fuzzy number, which allows us to obtain, in addition
to the possible equilibrium values, their respective degree of possibility. At the same time, a
fuzzy expression for the multiplier is obtained by the model, that is, the multiplier becomes
a fuzzy subset (in this case, a fuzzy number) with a membership function defined perfectly
through the membership function of c̃.

Analyzing the dynamic model of income formation studied here from the point of
view of fuzzy logic provides for more realistic predicted results. Thus, the methodology
of fuzzy subsets paves the way for the analysis of this dynamic model to have a greater
degree of fit to a specific economic reality. This represents a generalization of the classic
treatment since, if the parameters we have taken as fuzzy numbers take a certain value, the
results obtained coincide with those obtained with the classic application.

In the dynamic model of income determination studied from the point of view of
fuzzy logic, the arithmetic of the intervals is not adequate for calculating the α-cuts of
income for a given period. However, if t is large enough, α-cuts can be obtained due
to the monotony of the function that determines income in period t, depending on the
marginal propensity to consume and investment. The membership function for the fuzzy
expression of income Ỹt is obtained by applying the extension principle, although the
obtained expression may not be operative depending on the expression of µc̃ and µ Ĩ . In
these cases, approximations of the fuzzy expression of income in a given period must be
determined by means of numerical methods.

As a relevant conclusion of this study, we would state that with the constraint imposed,
we have obtained an increasing time trajectory for the income Ỹt, stationary in time at
equilibrium, which is represented in this case by a fuzzy number Ỹe, for which we have
determined the membership function and expression of its α-cuts based on knowledge of
the fuzzy numbers c̃ and Ĩ.

Furthermore, we would add that, by simply increasing the number of fuzzy variables,
the situation studied here can be used to determine the multiplier and the corresponding
value for income if we incorporate the public sector and the foreign sector within the
proposed model. A similar study in this regard and for the case of an explosive trajectory
has been conducted by Mansur [24]. It should be noted that, in the field of uncertainty,
the proposed model generalizes the classic model of dynamic income growth when the
parameters involved are well-established precise numbers since the results obtained with
the application of the new approach coincide with the equilibrium values that would
be obtained with the classical application. In this sense, the proposed approach is an
improvement because it generalizes the classical approach, and the formulation contains
an analysis of the sensitivity of the model’s parameters.

Finally, as a limitation of the study, we would point out that the model we have
analyzed using fuzzy logic has a simple formulation that explains how the model works
but is a long way from being real. As we have stated, the aim of the example applied here
was to show the operability of the model’s behavior and analyze it, and to determine the
trajectory’s convergence toward a blurred value for equilibrium when the parameters that
link variables are fuzzy numbers and fuzzy arithmetic is used. Future research should
analyze which hypotheses are required for the stability of this model to be generally applied
to new models of income behavior, and to the establishment of specific models based on
uncertainty relations among variables. It may also be interesting to study the behavior of
the model using approximations of nontriangular fuzzy numbers, such as trapezoidal fuzzy
numbers, of the general L–R type or those based on the Agnesi or the Gaussian curves.
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