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Abstract

Hospital patient waiting times and length of stay are indicators
of the quality of emergency department (ED) services, factors that
are affected by the number of patient arrivals. It is necessary to ac-
curately estimate ED patient arrivals in order to manage resources
effectively. Prediction models, however, are conditioned by the hospi-
tal population and its placement (i.e. meteorological conditions). In
the particular case of a tourist region, the population has an impor-
tant amount of variability which challenge EDs. This paper aims to
address ED attendances predictions for an hospital placed in a tourist
region by means of a new approach that combines multiple linear re-
gression with artificial neural networks and regression tree ensembles,
looking for dealing for ED variability and prediction for a week time
horizon that enables operational reaction to the ED responsible. The
methodology uses exogenous variables such as calendar, weather and
socio-economic data to improve the accuracy of these forecasts. Pre-
diction models are built on data for 11-years and the predictions are
tested over 1-year. The results showed that the proposed methodol-
ogy is capable to perform weekly predictions with an error about 5%,
demonstrating that it could be used by EDs.
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1 Introduction

Emergency department (ED) overcrowding is a well-known worldwide occur-
rence. Estimates from the Spanish Ministry of Health in 2013 show that for
every 1, 000 people there are 562 emergencies in the entire Spanish national
health system and of the 5.1 million hospital admissions 57% come from ED
[22]. The consequences are long waiting times for patients, reduced service
quality and the possibility of increases in mortality rates [32, 33, 37].

In order to improve the service, it is essential to accurately forecast the
number of patients that will visit the ED in order to have the required re-
sources. Thus, a better match between supply (ED resources) and demand
(patient arrivals) can enhance ED service quality, which in turn, will improve
the patient experience and staff morale [42].

One of the causes of this saturation is the discontinuous flow of patients
to ED, which is determined by factors related to patients (pathologies, pref-
erences) and other external causes such as working hours, holidays, seasons,
weather, pollution or unexpected situations such as natural disasters, ac-
cidents, etc. [4, 39]. Therefore, it is reasonable to think that the flow of
patients in the ED can be estimated by considering some of these factors.
However, prediction models highly depend on population features, which in
a tourist region is highly variant. In particular, our research is concerned
with a tourist region with a high important amount of ED variability (about
20% of the average).

On the other hand, forecasting should be provided in an operational time
horizon so that the ED responsible could set up adequate strategies and re-
sources to deal with the ED demand. Most of the current approaches provide
a one-day prediction that has no room for planning [41, 11], while some other
ones provide longer forecasting approaches [8] that could eventually imply a
too broad planning with an ineffective use of resources. Weekly forecasting
seems to be an adequate prediction time horizon to react to the ED demand
and review scheduling and resources.

There are several methods available to build models for ED forecasting
with successful results: Multiple Linear Regression (MLR) [24], Artificial
Neural Networks (ANN) [27], and regression tree ensembles [6, 10]. Recently,
hybrid approaches have been raised as an alternative approach [44], and our
work is aligned with them.

In this paper, we propose a new method, called TENACE (Tourist Emer-
geNcy AttendanCes Exit), to deal with ED predictions in a tourist area, that
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exhibits a robust behaviour when predictions are performed one week ahead.
The methodology considers different exogenous variables as causes of ED at-
tendances such as calendar, weather, and socio-economic data, which are of
particular interest to our ED problem, at the Hospital of Palamós, which is
located in a tourist area. We used 12 years of data from the ED hospital
records to built, test and analyse the prediction models.

2 Related work

The literature presents various works on forecasting ED attendances. Usu-
ally, these works propose the use of linear methods based on past data about
the attendance time-series. For example, two interesting examples are those
found in the work of [16, 18]. The authors explore the use of exponential
smoothing, Autoregressive Integrated Moving Average (ARIMA), SARIMA
(seasonal ARIMA) and GARCH (generalised autoregressive conditional het-
eroskedasticity) models and pre-processing techniques.

However, patient arrivals time-series have been used alongside working
hours, holidays, seasons, weather, pollution or unexpected situations such
as natural disasters, accidents, etc. in order to improve the accuracy of ED
attendance forecasts [4, 39]. While past ED attendances could represent the
population variability, this correlation could determine an unexpected ED
attendances variation. For example, [5] proposes to classify days into nine
different labels using calendar information and then build a prediction model
for each type of day. The authors in [20, 17, 35] opt for including various
calendar, weather and pollution information that feed the proposed ARIMA
and SARIMA models.

Despite the possible impact on people’s health due to weather and pol-
lution, these variables have to be forecast in order to use them to predict
ED attendances. The authors in [20, 41] conclude that including weather
data does not significantly increase the accuracy of the predictions, but some
other authors do [8], thus the place of the ED would also affect the exoge-
nous variables to consider. This paper proposes not only using calendar and
weather data to predict ED attendances, but also socio-economic data.

Regarding forecasting time horizon, most of the approaches provide one
day prediction [41], and some other larger approaches (14 days in [8], monthly
forecasts in [2]). The former provides few time for reacting to the demand and
organize transition services, if required, and the later are too broad to manage
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organize staff shift. Alternatively, This work provides good results at week
forecasting, meaning, in a time scale suitable for ED resource scheduling.

While the previous approaches follow linear predictive approaches, the
authors in [43] explore the use of ANNs to predict daily ED attendances and
compare the performance of ANNs with MLR and nonlinear least square
regression. In doing so, the authors use calendar and weather information
besides past values of the target time-series. They also pay special atten-
tion to analysing the data in order to identify the most relevant variables
for ANNs, and in the end achieve the best results with such technique. The
presented paper also considers ANNs, but also tree ensembles. Tree ensem-
bles were used in [28] to deal with non-linearity as in this work. However,
this paper proposes a new hybrid method that catches linear and non-linear
relationships between explanatory variables and ED attendances. Other pre-
vious hybrid approaches [44] combine ANN with ARIMA models; while in
our approach we combine ANN with regression tree ensembles.

3 Materials and methods

This paper proposes a new method, TENACE, to build ED prediction models
based on ED attendances and exogenous variables with calendar, weather and
socio-economic information.

3.1 Problem formalisation

Given a set of examples about ED attendance, the learning problem consists
of finding models for forecasting attendance. An example of ED forecast-
ing for time t consists of a set of input variables ~X(t) = [x1(t), . . . , xN(t)]
labelled with the corresponding output or target variable y(t) (ED atten-

dances): 〈 ~X(t), y(t)〉. For the purpose of this work, time is measured in
weeks; however, other time scales (day, month) could be used).

The examples are organised in time series 〈 ~X(t0), y(to)〉, . . . , 〈 ~X(tL), y(tL)〉
starting at time t0 and ending at tL. The variables xi(t) i = [1, . . . , N ]
represent exogenous variables which in this study consist of calendar, socio-
economic and weather variables (see Table 1). Calendar data are nominal
variables that indicate the month, season, weekday, day of year, if it is a
public holiday or not and if it is Easter or a day close to Easter (sometimes
they are holidays too). Weather data are numeric variables that provide
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Table 1: List of exogenous variables
Calendar data Month ∈ [1, 12]: month of the year

Season ∈ [1, 4]: winter, spring, summer, autumn
Weekday ∈ [1, 7] (only for daily attendances forecast): Monday to Sunday
Holiday ∈ [0, 1] (only for daily attendances forecast): public holiday or not
Week number ∈ [1, 53] (only for daily and weekly attendances forecast)
Day of year ∈ [1, 366] (only for daily attendances forecast)
Easter ∈ [0, 9]: a label for each day from the Sunday before Easter to the
Monday after Easter. Label 0 is assigned to other days of the year.

Weather data Average, maximum and minimum temperature of the day, week
or month (depending on the aggregation level of the target variable)
Average, maximum and minimum relative humidity of the day, week
or month (depending on the aggregation level of the target variable)
24h solar radiation: for week and month aggregation levels, it is the average
of the daily (24h) radiation of the days of the corresponding week or month.

Socio-economic data Unemployment rate of Catalonia. Annual value.
Population of the region. Annual value.
Seasonal population of the regionof the hospital on July 1st and December
31st.
Gross domestic product per capita of Catalonia every year.

information about the temperature, humidity and solar radiation amount.
Socio-economic data are numeric variables about the (annual) population
and seasonal (every 3 months) population of the region and the unemploy-
ment rate and gross domestic product per capita of the country. The selected
exogenous variables have been chosen after analysing the correlation between
them and the target variables (ED attendance) and also empirically analysing
the benefits of considering them using the different methods studied: MLR,
ANN, and tree ensembles.

As ED attendances are numeric values, the model to be learnt can be
represented by a function f(·) that estimates the output variable y(t) for a
given time t (ED attendances at the t time, t > tL), so ŷ(t) = f(·). The
arguments of this function are the current input variables x1(t), . . . xN(t),
and the measurements of past ED attendances y(t − dj), with a delay dj,
j ∈ [1, . . . ,M ] and dM < tL, which are assumed to be known when predict-
ing y(t). Equation (1) describes the function archetype for estimating ED
attendance.

ŷ (t) = f (x1 (t) , x2 (t) , . . . , xN (t) , y (t− d1) , y (t− d2) , . . . , y (t− dM))
(1)

The complexity of f(·) depends on the method addressed to model it. For
example, MLR builds a linear function, while ANN, as designed in this work,
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Figure 1: Workflow of the proposed methodology for generating the pre-
dictive model. Linear method box represents MLR and non-linear method
represents an ANN or a regression tree ensemble.

enables learning nonlinear expressions. On the other hand, the methods
are supervised since they use past examples 〈 ~X(t0), y(to)〉, . . . , 〈 ~X(tL), y(tL)〉
to learn f(·), i.e. trying to reduce the error between y(t) and ŷ(t) of the
known examples. In doing so, the methods handle the over-fitting problem
in different ways, which consists of how to avoid to fit f(·) excessively to the
details of the examples and exhibiting a low performance on new instances.

3.2 TENACE method

The TENACE methodology consists of two different shape components that
capture the linearity and non-linearity relations, plus a regression tree ensem-
ble learner as Figure 1 depicts. The input of the method, ~X(t), consists of
past ED attendances and the exogenous variables until time t (see Table 1).
Next, the linear and non-linear estimations are computed, ŷl(t), ŷnl(t) corre-

spondingly. Thus, extended examples
...
~X (t) are generated, from 〈 ~X(t), y(t)〉

to 〈 ~X(t), y(t), ŷl(t), ŷnl(t)〉. Finally, a tree ensemble method is used to build
a prediction model with the extended examples.

The two shape components are separately generated by using a linear and
a non-linear machine learning methods, which are trained with the original
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Figure 2: Workflow of the proposed methodology for obtaining a prediction.

examples 〈 ~X(t), y(t)〉. In particular, we used two combinations: the method-
ology combining MLR and ANN (labelled as TENACE.MLR+ANN) and
MLR and tree ensembles (TENACE.MLR+Boosting). In this latter case,
regression tree ensembles are used twice: once for the non-linear component,
and second, to build the ensemble model from the extended examples.

The intuition behind the hybridisation is that the ensemble method iden-
tifies as a key contribution ŷl(t) if the data available fits a linear function, and
ŷnl(t) otherwise. Moreover, it supports the idea that heterogeneous predictors
combine better than homogeneous ones [12]. Moreover, hybrid approaches
aimed at combine the major benefits of the techniques: MLR is a popular
method but it does not handle complex variable interactions, and it is dif-
ficult to interpret regarding the too many predictor variables that compose
the model; ANN can manage complex interactions while they do not provide
explanations of the models learnt; regression trees provide clinical decision
making rules easy to interpret, and they are easy to use but they could also
hide some complexity when dealing with ensembles. Therefore, combining
these techniques may improve the performance of a sole technique.

Once the models are obtained, the methodology is used to predict next
ED attendances, as shown in Figure 2. ED predictions are performed for the
next week ŷl(t + 1), but a forecast horizon of several weeks ahead can also
be obtained (i.e. ŷl(t+ 1), ...ŷl(t+ h), where h is the forecast horizon). The
combination of linear and non-linear models in TENACE is expected to be
a key to make robust predictions along time in a hospital region with high
variability.
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3.2.1 MLR

MLR [24] is an often used statistical model in medicine and healthcare to
assess the relationship between a number of variables [14]. MLR has achieved
good performances in many fields, such as the prediction of the arrivals and
departures times of aircraft taxis [31], forecasting photovoltaic energy pro-
duction [45] or even ED attendances [43].

MLR assumes that function f of Equation (1) is a linear combination of
the explanatory variables as it describes Equation (2) where αi are the re-
gression parameters of input variables and βi the auto-regression coefficients

ŷ(t) = α0 +
N∑
i=1

αixi(t) +
M∑
j=1

βjy (t− dj) (2)

The constructed MLR model may be used to predict future values of the
target variable. Furthermore, MLR models give the contribution (αi and
βj) of each explanatory variable to describe the target variable. Thus, MLR
models may be also used to analyse and comprehend which factors have a
significant impact.

In order to apply MLR to the problem at hand, it is necessary to tackle
the MLR assumption that explanatory variables are numeric variables. Nev-
ertheless, calendar variables (e.g. weekday) are nominal. Then, for each
nominal variable xi(t), Pi dummy variables are created, x1i (t), . . . x

Pi
i (t) be-

ing Pi the number of values of the corresponding nominal variable. These
dummy variables (e.g. weekday monday) take the value of 1 if the nominal
value takes the corresponding value (e.g. Monday) and 0 if it does not. To
handle the over-fitting problem, cross-validation of the 11-year data has been
used to train the model.

The requirements of having numeric variables could not be always an
straightforward process in the medical field. Moreover, the resulting model
could be difficult to interpret for the clinical staff due to the high amount of
variables involved. On the other hand, MLR models cannot catch complex
variable interactions (i.e. nonlinear relationships between variables) which
may sometimes be significant. Therefore, ANN methods have been proposed
as alternative techniques to manage non-linearity, and regression trees due
to their facility to derive decision making rules.
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3.2.2 ANN

ANNs [27] are inspired by the way the nervous system process information.
An ANN is composed of a large number of highly interconnected neurones
which are trained to learn by example. While learning in biological systems
involves adjustments to the synaptic connections that exist between the neu-
rones, the ANN methods learn by adjusting the connections between neu-
rones. Nowadays, ANNs are widely used for medical applications in various
disciplines, mainly managing signals and images: electronic signal analysis,
medical image analysis and radiology [26]. ANNs are capable of modelling
nonlinear relations between variables, and they are especially useful for fore-
casting problems as in our case.

ANNs use a topology of nodes, each representing a neuron, to perform the
task it has been trained for, as for example, predicting ED attendance. There
are different kinds of topologies, but the most used one is the feed forward
organisation in which there are several layers of interconnected nodes and,
at each layer, every node receives the output variables from the previous
layer. Given a stimulus (input variables), the first layer is activated, and
the stimulus is propagated through the net until the last layer provides the
predicted value. ANNs are considered black-boxes because the presence of
hidden layers makes it difficult to interpret the obtained results. However,
they achieve good results in complex domains [15, 36, 38].

For ED attendances, Figure 3 shows the topology designed with 10 hidden
layers (set empirically), and N + M neurons per layer. The log-sigmoid
function has been used as a transfer function for the neurons of all the layers
except the last one, for which it is proposed to use a linear transfer function.
Cross-validation is also used to avoid the problem of over-fitting.

There are two important weaknesses of ANN. First, the results strongly
depend on the topology defined, which is empirically found, and therefore
they are not easy to use by non skilled personnel. And second, ANN lack
of explanatory capacity, and explanatory models are needed in Medicine in
order to design the adequate interventions to manage the prediction outcomes
[13].

3.2.3 Regression tree ensembles

A regression tree ensemble [10] consists of a set of regression trees that are
used jointly to predict the values of a target variable. A regression tree
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Figure 3: Flow of the artificial neural network designed.

binary recursive partitions the data into two groups according to a certain
criteria. The method to build a regression tree is non-parametric, what makes
it easy to implement, respect to MLR models which are at times difficult to
implement, especially for non-statisticians. Regression trees are also easy to
use and interpret. That is, regression trees enable the creation of clinical
decision making rules from variables to the predicted outcome according to
the criteria selected to split the dataset [19].

Another advantage of regression trees, and unlike MLR and ANNs, is
that they are not vulnerable to the scale of the inputs. Therefore, regression
trees do not require to normalise or scale input data in order to maximise the
performance since they divide the output space in regions which group a set of
samples from training data. Moreover, they can manage variable interactions,
as well as uneven distribution of variables, while MLR methods do not [19].
Regression trees and regression tree ensembles have been used in applications
like electricity consumption forecasts [15, 38], photovoltaic energy production
forecast [45] or vessel arrivals estimations [25]. In the medical field, they have
been tested for forecasting ED attendance with promising results at long term
prediction [8].

This paper proposes to use boosting for ensemble regression trees to cope
with the over-fitting problem by de-correlating the different regression trees.
According to the standard methodology, boosted tree ensembles for ED at-
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tendance are obtained according to the following steps: (i) first a regression
tree is obtained using the available data, (ii) then another regression tree is
generated only with the data that cannot be well-classified with the previ-
ous tree, and (iii) step (ii) is repeated for a given number q of trees. This
procedure is used to convert a set of weak learners (i.e. regression trees)
into a good learner. The final prediction of the ensemble (g in Figure 4) is
obtained by a voting mechanism of the individual outcomes of the regression
trees (i.e. ŷσ1(n), . . . , ŷσq(n)). In our particular implementation, we have set
a great number of trees (q = 1000) that are using 1-split trees.

Regression trees [6] are decision trees whose nodes correspond to input
variables which are ordered according to a given heuristic measure σ. The
heuristic measure used in this work is the mean squared error. The set
of samples are split recursively according to given values vσij of the node
variables (in our particular case, the exogenous variables). The output of
the regression tree is a (weighted) average of the samples of the region (for
example 12.0 is the average of y(t) of the examples with xσ11(n) > vσ11 and
xσ12(n) > vσ12 in the top regression tree of Figure 4).

The use of regression trees is not free of drawbacks, however. One of the
most important concerns about their application is the fact that they cannot
predict beyond the range in the training data (for example, predicting a value
of 10 if the trained examples have values up to 9). On the other hand, while
the generation of decision making rules from regression trees is simple, the
interpretation of ensembles of trees is not so straightforward.

3.3 Dataset

The experimentation has been conducted using 12-year (from 2002 to 2013)
emergency attendances data from Hospital of Palamós (Catalunya) with the
corresponding calendar, weather1 and socio-economic 2 data (see Table 1).

The hospital is located in a tourist region with fluctuations in the popula-
tion depending on the season. Figure 5 shows the number of daily, weekly and
monthly ED attendances over 12 years. Table 2 provides a brief statistical
description of attendance figures for the 12 years.

1Weather data provided by Servei Meteorològic de Catalunya (Catalan Meteorological
Service).

2Socio-economical data provided by Institut d’Estad́ıstica de Catalunya (Institute of
Statistics of Catalunya).

11



Figure 4: Ensemble of regression trees.
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Figure 5: Emergency attendances time-series.
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Table 2: Distribution of ED attendances at different time scales
Daily att. Weekly att. Monthly att.

Average 146.86 1028.4 4470.2
Stand. dev. 36.41 231.43 978.36

Max. 319 2007 7954
Min. 73 513 2920
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Figure 6: Histograms of diagnoses for each season. X-axis represent the
internal codes of the diagnoses.

Despite the significant ED attendances increase in summer, there are not
significant differences between the diagnoses made in summer than in the
other seasons. As Figure 6 shows, there seems to be an increase in all the
diagnoses in summer. Therefore, accurate predictions of ED attendances will
have an impact on hospital admissions, which is also a major issue regarding
resource management (e.g. number of prepared beds, scheduling of surgeries,
etc.).

3.4 Experimentation set up

Eleven years of data, from 2002 to 2012, have been used to train and validate
the models, and 1-year data (2013) has been used to test the models for
predicting ED attendances one week ahead, the interval time suitable for ED
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resources planning. The results are analysed in terms of the Mean Average
Percentage Error (MAPE)

MAPE = 100
1

T

T∑
t=1

∣∣∣∣ ŷ(t)− y(t)

y(t)

∣∣∣∣
and the Normalised Mean Squared Error (NMSE)

NMSE =
1

T

T∑
t=1

(ŷ(t)− y(t))2

var (ytraining)

where ŷ(t) and y(t) are the predicted and measured attendances, var (ytraining)
is the variance of the measured attendances used in the training data, and T
the number of predicted samples. Therefore, the lower MAPE or NMSE the
better.

The proposed methodology is compared to traditional approaches such
as MLR, ANN, and more recent ones such as regression tree ensembles and
the state-of-the-art method [16] labelled as Kadri et al. (2014), in order to
show how TENACE is able to deal with the tourist region variability.

All the methods presented in this paper have been implemented in Matlab
[21].

4 Results and analysis

According to the reaction capacity of the ED and the contributions of the
TENACE methodology, the results have been analysed according to the vari-
ability of data due to tourism, the exogenous variables, the prediction hori-
zon, and the time scales.

and at different time scales (daily, weekly and monthly).

4.1 Results regarding high variability due tourism

Table 3 shows the MAPE and the NMSE obtained at predicting weekly at-
tendances with the data of the tourist region. According to it, the best
results are achieved by MLR and TENACE (combining MLR and tree en-
sembles), followed by the regression tree ensemble method (alone). However,
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Figure 7: Measured and forecast weekly attendances.

Wilcoxon tests3 do not find significant differences between the performance
of these three methods. Moreover, ANN-based methods are the ones that
performs the worse. Regarding the TENACE proposal with ANN, the results
are quite unsatisfactory, and that seems to be inherent to the use of ANN.

Figure 7 shows the measured and predicted weekly ED attendances for
the best methods (MLR and TENACE.MLR-Boosting).

4.2 Sensitivity analysis on exogenous variables

Table 3 shows the results obtained when only calendar data is used instead
of all the variables considered in TENACE. In that regard, the use of ex-

3Since the absolute values of the errors obtained do not follow a normal distribution, the
Wilcoxon test has been chosen to check the differences between time-series errors because
this test does not require the assumption of normality.
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Table 3: Accuracy on weekly forecast. Best values are in bold face.
All variables Calendar

Method MAPE(%) NMSE MAPE(%) NMSE
MLR 4.394 0.0962 5.075 0.1267
ANN 6.939 0.2579 5.809 0.1990

Regression trees ensemble 5.101 0.1230 5.282 0.1239
Kadri et al (2014) 6.309 0.1660 6.309 0.1660

TENACE.MLR+ANN 8.617 0.5717 7.806 0.1695
TENACE.MLR+Boosting 5.038 0.1130 5.587 0.1281

ogenous variables (calendar, weather and socio-economic data) improves the
prediction accuracy since all the methods obtain better results. The greatest
improvement is achieved by MLR, and then by TENACE.MLR-Boosting.

4.3 Sensitivity analysis on the prediction horizon

Figure 8 and 9 show how MAPE and NMSE evolve when the forecast horizon
(in weeks) increases. Figure 8 shows that MLR and TENACE.MLR-Boosting
achieve the best results. Wilcoxon tests corroborate that, while the results
obtained by tree ensemble, MLR, Kadri et al. (2014) and TENACE.MLR-
Boosting do not have significant differences for short prediction horizons,
these differences become significant, especially between MLR and TENACE.MLR-
Boosting, and the others when the forecast horizon increases.

Figure 9 presents similar trends to those showed by Figure 8, but for
calendar variables only. In particular, it shows that all methods, except those
using ANNs, present similar results and TENACE.MLR-Boosting presents
the most robust error against the increase of the forecast horizon.

4.4 Sensitivity analysis on time scales

According to the reaction capacity of the ED, weekly attendances forecasts
are the suitable time scale. Nevertheless, we analyse the capacity of the
method regarding monthly and daily attendances.

4.4.1 Monthly predictions

Results on monthly prediction are shown in Table 4. MAPE and NMSE
values are 3% − 5% and 0.05 − 0.1, respectively. The differences among
the methods are not significant. The best results are obtained using tree
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Figure 8: Weekly attendances forecast MAPE and NMSE of the different
tested methods regarding forecast length. Calendar, weather and socio-
economic data have been used.
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Figure 9: Weekly attendances forecast MAPE and NMSE of the different
tested methods regarding forecast length. Only calendar data have been
used.
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Table 4: Accuracy on monthly forecast. Best values are in bold face.
All variables Calendar

Method MAPE(%) NMSE MAPE(%) NMSE
MLR 3.980 0.0782 6.080 0.1399
ANN 5.321 0.1164 4.287 0.0571

Regression trees ensemble 4.031 0.0827 3.663 0.0800
Kadri et al (2014) 4.363 0.0734 4.363 0.0734

TENACE.MLR+ANN 4.948 0.0957 5.135 0.1365
TENACE.MLR+Boosting 4.429 0.1115 4.672 0.0970
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Figure 10: Monthly attendances forecast MAPE and NMSE of the differ-
ent tested methods regarding forecast length. Calendar, weather and socio-
economical data have been used.

ensembles and ANNs without using weather and socio-economic data. Also,
Kadri et al. (2014) obtains a good NMSE value, with only using past ED
attendances values. Therefore, exogenous variables do not have a significant
impact when forecasting monthly attendances. On the other hand, TENACE
is sensible to this aggregation level.

Figure 10 and 11 show the evolution of MAPE and NMSE according to
the prediction horizon. They show that MLR, MLR + Boosting and Kadri
et al. (2014) obtain similar values, but better than the other methods.
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Figure 11: Monthly attendances forecast MAPE and NMSE of the different
tested methods regarding forecast length. Only calendar data have been
used.

4.4.2 Daily predictions

Table 5 shows the MAPE and the NMSE obtained predicting daily atten-
dances. In this case, the state-of-the-art method [5] labelled as Boyle et
al. (2012) has been also considered, since it provides predictions at this
time scale. The best results are obtained for TENACE.MLR+ANN, followed
by TENACE.MLR+Boosting and MLR. When only calendar information is
used, the accuracy slightly decreases in comparison when weather and socio-
economic information is used. However, there are not significant differences,
according to Wilcoxon tests, between the results achieved with and without
weather and socio-economic information. Moreover, results achieved by the
state-of-the-art methods, Boyle et al. (2012) and Kadri et al. (2012), are
significantly worse than the methods proposed here. Regarding Kadri et al.
(2012), this is due to the fact that it does not use exogenous variables.

Figure 12 shows the measured and forecast daily attendances using the
methods with the best MAPE: TENACE and MLR. It illustrates that the
trained models are capable of catching the attendance behaviour except for
some big local peaks or dips.

Figures 13 and 14 represent the MAPE and NMSE regarding the forecast
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Table 5: Accuracy on daily forecast. Best values are in bold face.
All variables Calendar

Method MAPE(%) NMSE MAPE(%) NMSE
MLR 7.82 0.2232 8.214 0.2411
ANN 8.03 0.2333 8.898 0.2697

Regression trees ensemble 8.17 0.2503 8.442 0.2610
Boyle et al (2012) 12.37 0.3760 12.37 0.3760
Kadri et al (2014) 12.46 0.5715 12.46 0.5715

TENACE.MLR+ANN 7.51 0.2041 8.301 0.2386
TENACE.MLR+Boosting 7.80 0.2268 8.261 0.2467
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Figure 12: Measured and forecast daily attendances.
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Figure 13: Daily attendances forecast MAPE and NMSE of the different
tested methods regarding forecast length. Calendar, weather and socio-
economical data have been used.

horizon4 using weather and socio-economic information or without it, respec-
tively. According to them, there is a slight, but not significant, reduction of
the accuracy as the forecast horizon increases. Moreover, MLR + ANN
and MLR + Boosting significantly outperform not only Boyle et al. (2012)
and Kadri et al. (2012), but also ANN and tree ensembles alone when the
forecast horizon increases.

4.5 Discussion

The proposed method, TENACE, have been analysed predicting ED atten-
dances time-series that have a significant peak in summer (but not always
with the same magnitude and at the same day/week/month) and have annual
non-constant increases (see Figure 5). Therefore, the predicted time-series
are non-stationary (have variant average and standard deviation), have an
important amount of variability (the average standard deviation magnitude
is about 20% of the average) and the seasonality they have do not follow exact
periods of time. These features are considered as detrimental when forecast-

4A prediction horizon of five days is considered as enough to change caretaker shifts
according to Hospital de Palamós ED manager.
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Figure 14: Daily attendances forecast MAPE of the different tested methods
regarding forecast length. Only calendar data have been used.

ing a time-series, but the results achieved in this paper are very good. MLR
usually obtains good results, meaning that catching linear relations between
variables is a good choice for forecasting this kind of time-series. However,
MLR+Boosting achieves good results for all cases and it is specially robust
against the increase of the prediction horizon.

Moreover, weather and socio-economic information has not been proved
to significantly improve the accuracy. This conclusion is aligned with [20].
On the other hand, socio-economic and weather data must be predicted to
further predict ED attendances, which could be a cause of additional ED
forecast imprecision [41].

Regarding the impact of the results on the ED management, the method
proposed achieves a MAPE lower than 5% at the weekly level, the time lapse
in which the ED reviews the scheduling of its resources. The application of
the results is expected to improve the ability to estimate the number and
type of resources that a hospital needs at a particular time, and as a result
improve patient care resources by being prepared for patients beforehand. It
can also help to optimise the economic cost of hospitals, as by anticipating
patient needs, the hospital can make the necessary adjustments according to
the demands of the population and avoiding incurring unexpected expenses.
Currently, Hospital of Palamós weekly checks the ED situation and if a sus-
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tained high demand is detected, mechanisms such as reviewing scheduled
surgeries with patient admission, stopping patient admissions for studies,
opening of new beds, and ED staff reinforcements are activated. There-
fore, weekly forecasts could improve ED management by activating these
mechanisms before the high demand situation happens. The robustness of
TENACE regarding the forecast horizon, at the weekly and daily level, opens
also an opportunity to improve surgery activity scheduling and patient ad-
missions scheduling that could be affected by ED attendances.

4.6 Limitations

ED forecast also depends on returning patients that are not taken into ac-
count in this study. However, and according to the recent study [34], return-
ing patients analysis should be performed in cooperation with the hospitals
of a neighbourhood, since one person could first attend to the ED of a hospi-
tal and become a returning patient in a second one. Therefore, the returning
visit information should be considered in a future work in collaboration with
neighbourhood hospitals.

Other types of ED attendances have been gathered in GEMSA and CCMU
classifications [1]. Therefore, GEMSA and CCMU categories can offer new
ways of generating specific forecasting models (e.g. one per category) with
more robustness to epidemic periods [1].

Finally, the use of ED forecasting models should be put in context, fo-
cussing on the pragmatic applications of the forecasts. This means that ED
personnel should be able to feed the forecasting models [3]. In that regard,
TENACE can be used as a starting point to predict ED overflow and to
schedule permanent and transitory staff accordingly [23].

5 Conclusions and future work

The problem of emergency department overcrowding can be alleviated by the
use of predictive tools to improve the planning of their resources if forecasting
are provided at the appropriate time horizon. Such tools need to take into
account the discontinuous flows in EDs that are conditioned by the hospital
population. For example, hospitals located in tourist areas are subject to
important population fluctuations throughout the year. This paper proposes
a new approach, TENACE, to predict ED attendances in tourist regions with
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such features.
TENACE combines linear and non-linear methods, so that linear mod-

els follow ED time series while non-linear approaches deal with peaks and
other sources of variability. The methods is fed with external factors such as
calendar, weather and socio-economic data. The methods have been tested
on data from the Hospital of Palamós, which is distinctive due to its loca-
tion in a tourist region. Data for 11-years (from 2002 to 2012) have been
used for model training and validation, and tests have been carried out on
data for one year (2013). The results show that TENACE exhibits a perfor-
mance similar to MLR and regression trees for predicting ED attendances
one week ahead, but it exhibits a robust behaviour when the forecast horizon
is enlarged, enabling a better management of ED planning strategies.

For future work, there are other factors in addition to calendar, weather
and socio-economic data, like the evolution of influenza or important and
crowded events, that affect the number of patient arrivals that need to be used
in the prediction models [9, 30], or environmental factors [7]. In addition, the
quality of ED services is tied not only to the number of hospital attendances,
but also the number of admissions, which can be in turn be favoured with
triage ED predictions of disposition outcomes [29, 40]. Therefore, it is also
important to forecast hospital admissions which are not usually correlated
with ED attendances.
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