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1 Introduction

The French presidential election is a run-off voting system in which, if no candidate obtains an absolute

majority in the first round, a second round of voting is held between the two top candidates. In 2002

presidential election, in the first round the conservative candidate Jacques Chirac received 19.88% of the

votes, Jean-Marie Le Pen, leader of the far-right National Front Party, obtained 16.86%, Lionel Jospin,

leader of the Social Party, obtained 16.18%, and a number of other candidates received a much smaller

fraction of votes. The run-off was therefore between Jacques Chirac and Jean-Marie Le Pen and the former

candidate won by a very large margin with 82.2% of the votes. Restricting the attention on the first three

candidates it is fair to say from the election outcome that the preference ordering Jospin preferred to Le

Pen preferred to Chirac was quasi-non-existent: Le Pen did not really progress and all the voters who

had selected Jospin at the first stage voted Chirac in the run-off.1

Social choice theory establishes a clear difference between voting over two and three or more alternatives.

Majority voting is a simple and effective rule to use in case of two alternatives, because no citizen or

group of citizens have incentives to manipulate, expressing a preference different than their true one. In

case of three or more alternatives no rule except the dictatorial one keeps this desirable property, unless

some further assumptions are made on how citizens may rank the available alternatives.2 In response

to this fundamental result, a large literature has taken up the challenge of identifying domains on which

possibility results emerge (Moulin, 1980, Barberà, Sonneschein, and Zhou, 1991, Nehring and Puppe,

2007). Still, in an arbitrary domain, it is not easy to check whether a rule is strategy-proof (no single

individual has incentive to misreport her preferences) or group strategy-proof (no group of individuals

have incentives to coordinate to jointly misreport their preferences). Consider for example, a collective

decision problem inspired by our initial motivating example.

The citizens of a nation have to choose one among three alternatives: a, b and c. Citizens’ preferences

are strict and any ranking is admissible except the linear ordering c � a � b. All citizens who have c at

the top of their preferences, prefer b to a. Notice that this is the largest domain of strict preferences with

three alternatives in which there may exist a (group) strategy-proof voting rule. It follows that the set of
1We thank Maurice Salles for having suggested this illustrative example.
2See May (1952) and Gibbard (1973) and Satterthwaite (1975) as classical references for two and three or more

alternatives, respectively.
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individual preferences is given by five possible linear orderings:

c b b a a

b c a b c

a a c c b

Suppose that alternative a is implemented unless there is an unanimous agreement that another alternative

should be selected. Two different social choice functions may be proposed to reach a decision. According

to the first voting rule (Rule A) the alternative c is chosen if and only if every citizen reports that c is the

preferred alternative. If c is not the preferred alternative of every citizen, then the alternative b is chosen

if and only if every citizen prefers b to a, otherwise a is chosen.

The second voting rule (Rule B) swaps alternative c with b: alternative b is chosen if and only if every

citizen reports that b is the preferred alternative. If not, then the alternative c is chosen if and only if

every citizen prefers c to a, otherwise a is chosen.

Do both voting rules provide the same incentives to report truthfully? The answer is negative, because

Rule A is group strategy-proof while Rule B violates strategy-proofness (therefore, also violates group

strategy-proofness).3 To see why Rule B is not strategy-proof suppose that there are n ≥ 2 citizens and

consider the preference profile such that citizen 1’s ranking over alternatives is c �1 b �1 a and for every

other citizen i 6= 1 the ranking is b �i a �i c. According to Rule B the alternative selected at this profile

is a, but if citizen 1 manipulates and reports b �1 c �1 a, then b is chosen. It follows that the deviation is

profitable for citizen 1. Rule B not only is manipulable, but it is also not efficient, because at the former

preference profile in which a is chosen, a is Pareto dominated by b. Rule A is group strategy-proof (and

therefore efficient). To see why, notice that if a is the preferred alternative of at least one citizen, then

a is chosen and citizens with a different preferred alternative cannot change the outcome irrespectively

of which preferences they report. If no citizen has a as preferred alternative, then all citizens prefer b to

a and c is obtained only in the case where all citizens have c as their preferred alternative. Thus, in no

cases an agent can change the chosen alternative.

In this paper we focus on the simplest case in which it is non-trivial to investigate whether a full range
3See Section 2 for a formal definition.
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voting rule is strategy-proof, that is when there are three alternatives at stake. In addition to strategy-

proofness we require that the voting rule satisfies two criteria that are standard in practice: anonymity,

meaning that each agent’s preference should play the same role in the decision process and tops-only

property, implying that agents only report their preferred alternative and not the entire ranking. This

second criterion is especially convenient jointly with strategy-proofness; there is empirical evidence (see

for instance Hassidim et al., 2016) that individuals may to not understand or trust a strategy-proof

mechanism; reporting a single alternative is much simpler than reporting a ranking and may help a

cognitively limited agent to recognize that manipulation is useless. The rest of the paper is organized as

follows. Section 2 presents the model, Section 3 illustrates the result and its proof.

2 Model

Let A = {a, b, c} be the set of alternatives and N = {1, ..., n} be a finite set of agents. Each agent i’s

preferences are linear orders over alternatives, denoted by Pi. For any x, y ∈ A, xPiy denotes that x is

strictly preferred to y by i at Pi. For any i ∈ N , let Di = D denote the set containing all strict preferences

on A except the order cPiaPib (“no-cab” domain). Let t(Pi) denote the top alternative of Pi. Elements

in Dn are called preference profiles, and are denoted by PN = (P1, ..., Pn). We also write a preference

profile PN as (PC , PN\C) ∈ Dn when we want to stress the role of coalition C in N . For any profile PN ,

let Nx(PN ) = {i ∈ N : t(Pi) = x} and nx(PN ) its cardinality, or Nx and nx when no confusion about the

profile arises. We say that an alternative x is (Pareto) undominated at PN ∈ Dn if for any y ∈ A\{x}

there exists i ∈ N such that xPiy. Given any PN ∈ Dn, let U(PN ) ≡ {x ∈ A : x is Pareto undominated

at PN} be the set of all undominated alternatives (equivalently, the set of Pareto efficient alternatives).

The following two remarks point out some properties of the undominated set in our problem.

Remark 1. Let PN ∈ Dn. (i) For each x ∈ A, if there exists an agent i ∈ N whose top alternative is x,

then x ∈ U(PN ). (ii) if a ∈ U(PN ) then t(Pi) = a for some agent i ∈ N . (iii) U(PN ) = {x} if and only

if t(Pi) = x for all agent i ∈ N .

Two observations are in order. First, although two profiles of preferences have the same set of tops,

3



the set of undominated alternatives can differ. Second, part (ii) of Remark 1 is false for b and c.4

Remark 2. Let PN ∈ Dn and ρ be a permutation of N , then U(Pρ(N)) = U(PN ).

The proofs of these remarks are straightforward. The following remark highlights a key (unusual)

feature of the “no-cab”domain concerning Pareto domination of alternative a.

We say that an alternative x is (Pareto) dominated at PN ∈ Dn if for some y ∈ A\{x}, yPix for all

i ∈ N .

Remark 3. Let PN ∈ Dn. The following three statements are equivalent: (1) a is Pareto dominated at

PN . (2) a is Pareto dominated by b at PN . (3) No voter i ∈ N has a as top of Pi.5

The equivalence of (1) and (3) is straightforward by parts (i) and (ii) of Remark 1. Clearly, (3) implies

(2) and (2) implies (1).

A voting rule (or simply a rule) on Dn is a function f : Dn → A, that is, f selects an alternative for

each preference profile. We impose several properties on our voting rules. The first one is full range.

A voting rule f on Dn is full range if for each x ∈ A, there exists PN ∈ Dn such that f(PN ) = x.

The second property is strategy-proofness, that is, agents do not gain by misrepresenting their preferences.

A voting rule f on Dn is manipulable at PN ∈ Dn by coalition C ⊆ N if there exists P ′
C ∈ ×i∈CDi such

that P ′
i 6= Pi and f(P ′

C , PN\C)Pif(PN ) for all i ∈ C.6

A voting rule f is group strategy-proof if it is not manipulable at any PN by any coalition C. A voting

rule f is strategy-proof if it is not manipulable at any PN by any singleton coalition.

Notice that individual and group strategy-proofness are equivalent when there are only three alternatives

(see Proposition 1 and Theorem 1 in Barberà, Berga, and Moreno, 2010). We impose two additional

properties that are standard in the literature: anonymity and tops-only property. Anonymity ensures
4To show the first observation, let PN and P ′

N be such that they have the same set of top alternatives: a and
c. In PN some agents with top a prefer b to c but others c to b, while in P ′

N all agents with top a prefer c to b.
Thus, U(PN ) = {a, b, c} and U(P ′

N ) = {a, c}. To show the second observation, note that b ∈ U(PN ) but no agent
consider b as the top alternative. To see that c can belong to the set of undominated alternatives of a profile in
which no agent has c as top alternative, consider the profile P ′′

N with three agents such that aP ′′
1 bP

′′
1 c, aP ′′

2 cP
′′
2 b

and bP ′′
3 cP

′′
3 a.

5We thank an anonymous referee for suggesting this remark that simplifies the proof of the main result.
6Note that one could require all agents to gain but allow for some of them not to change their preferences. That

would turn out to be equivalent to the definition of manipulation we use.
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that the names of the agents do not matter.

A voting rule f on Dn is anonymous if for every permutation ρ of N and each preference profile

(P1, P2, ..., Pn) ∈ Dn we have that f(Pρ(1), Pρ(2), ..., Pρ(n)) = f(PN ).7

Tops-only property guarantees that the voting rule is sensitive only to information about agents’ top

alternatives.

A voting rule f on Dn is tops-only if for any PN , P ′
N ∈ Dn such that t(Pi) = t(P ′

i ) for all i ∈ N , then

f(P ′
N ) = f(PN ).

Weymark (2008) presents two well-known frameworks where tops-only is implied by strategy-proofness:

single-peaked preferences and the standard continuous preferences in consumption. Note that this impli-

cation is not general. In particular, it does not hold in our environment as we show by means of Example

1 below.

3 Results and Discussion

In this section we present first a family of rules named Sequentially Pareto Undominated Rules, SPUR.

Each rule is associated with a given linear order of alternatives and selects for each preference profile the

first Pareto undominated alternative according to the assigned linear order. Formally:

Definition 1. Fixed a linear order � of alternatives. A voting rule f is the sequentially Pareto un-

dominated rule for �, and we write �-SPUR, if for each PN ∈ Dn, f(PN ) = x if and only if either

U(PN ) = {x}, or else x ∈ U(PN ) and for all z ∈ U(PN )\{x}, x � z.

It is worth noticing that Rule A and Rule B in the motivating example described in the introduction

are two SPURs: rule A is the SPUR with the associated linear order a � b � c while rule B is the SPUR

with the associated linear order a � c � b.

We now present two lemmas that will be useful for the proof of our main result.

Lemma 1. Let f be an anonymous and tops-only voting rule. For any PN , P ′
N ∈ Dn such that for all

x ∈ A, nx(PN ) = nx(P ′
N ) then f(PN ) = f(P ′

N ).
7Note that for any profile and any permutation of agents the permuted profile, say (Pρ(1), Pρ(2), ..., Pρ(n)) ∈ Dn

is in the domain.
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Proof. Note that by definition P ′
N =

(
P ′
Nh(P ′

N ), P
′
Nr(P ′

N ), P
′
Ns(P ′

N )

)
. By anonymity, f(P ′

N ) = f(P ′′
N ) where

P ′′
N ≡

(
P ′
ρ(Nh(P ′

N )), P
′
ρ(Nr(P ′

N )), P
′
ρ(Ns(P ′

N ))

)
where ρ is a permutation of N such that ρ (Nh(P ′

N )) =

Nh(PN ), ρ(Nr(P ′
N )) = Nr(PN ), ρ(Ns(P ′

N )) = Ns(PN ). Note that ρ is well-defined since, by hypothe-

sis, for each x, the cardinality of the sets Nx(P ′
N ) and Nx(PN ) is the same. Moreover, by tops-onlyness,

f(PN ) = f(P ′′
N ) since for each alternative x and each agent i ∈ Nx(PN ), t(Pi) = t(P ′′

i ) = x.

Thanks to Lemma 1, from now on, we may only refer to the cardinality of the set of agents having

the same top alternative instead of indicating the full set of such agents.

The second lemma tells us that if c is the outcome of the voting rule at some profile, it remains the

outcome at any profile in which the number of agents with c as top remains the same.

Lemma 2. Let f be a full range, anonymous, tops-only, and strategy-proof voting rule. For any PN ∈ Dn

such that f(PN ) = c and any P ′
N ∈ Dn such that nc(P ′

N ) = nc(PN ) then f(P ′
N ) = f(PN ).

Proof. Let f be an anonymous, tops-only, and strategy-proof voting rule. Let PN ∈ Dn be such that

f(PN ) = c and P ′
N ∈ Dn such that nc(P ′

N ) = nc(PN ). Let P̃N be any profile such that nx(P̃N ) = nx(PN )

for all x ∈ A and agents in Na(P̃N ) ∪ Nb(P̃N ) have c as the worst alternative. Note that P̃N is well-

defined. Moreover, by anonymity and tops-onlyness (by Lemma 1), f(P̃N ) = f(PN ) = c. Consider the

set of profiles such that for each P ′′
N in this set nc(PN ) = nc(P ′′

N ) = nc(P̃N ). By group strategy-proofness

and anonymity, f(P ′′
N ) = f(P̃N ) = c. There exists P ′′

N in this set such that for all i ∈ N , t(P ′
i ) = t(P ′′

i ).

By tops-onlyness f(P ′
N ) = f(P ′′

N ) = c.

We are now able to state our main result characterizing the unique full range voting rule satisfying

anonymity, tops-onlyness, and strategy-proofness.

Theorem 1. A full range voting rule f on Dn (“no-cab” domain) is anonymous, tops-only, and strategy-

proof if and only if f is the �-SPUR with associated linear order a � b � c.

Proof. Step 1. For any PN ∈ Dn, f(PN ) ∈ U(PN ). This is straightforward by group strategy-proofness

and full range:

Let PN ∈ Dn and suppose to get a contradiction that f(PN ) /∈ U(PN ), that is, there exists y ∈ A\f(PN )
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such that for all i ∈ N , yPif(PN ). By full range, let P ′
N be such that f(P ′

N ) = y. Note that N would

manipulate f at PN via P ′
N , which is a contradiction to group strategy-proofness.

Step 2. For any PN ∈ Dn such that #U(PN ) ≥ 2, then f(PN ) 6= c.

Let PN ∈ Dn such that #U(PN ) ≥ 2. Suppose by contradiction that f(PN ) = c. By Step 1, c ∈ U(PN ).

Case 1 : If nc(PN ) = 0, by tops-onlyness, f(P ′
N ) = f(PN ) for P ′

N such that for each i ∈ N, t(P ′
i ) = t(Pi)

and c is the worst alternative. Notice that c is dominated in P ′
N , thus we have a contradiction to Step 1.

We now distinguish two cases where nc(PN ) > 0.

From now on, when we use nx we refer to nx(PN ).

Case 2 : n−nc ≥ nc. Let P ′
N be such that there are nc agents with c as top and n−nc with b as top. By

Lemma 2, f(P ′
N ) = c. Change, one by one, the preferences of each agent in N\Nc(P ′

N ) to a preference

where his top is c until the number of agents having c as top is n − nc. By strategy-proofness, in each

one of the steps the outcome selected is c. Let P ′′
N be the profile obtained after all these changes where

note that there are nc agents with top b and n− nc with top c. By strategy-proofness, f(P ′′
N ) = c.

By tops-onlyness, without loss of generality, in P ′′
N , the nc agents with b as top can have c as the worst

alternative. Let P̃N be such that there are nc agents with a as top and n− nc with c as top. By Lemma

2, f(P̃N ) = f(P ′′
N ) = c.

Let P ′′′
N be such that there are nc agents with a as top and n−nc with b as top. Suppose that f(P ′′′

N ) = b.

By tops-onlyness, without loss of generality, in P ′′′
N , the nc agents with a as top can have b as the worst

alternative. These agents by announcing c as top alternative can obtain c = f(P ′
N ) which is a contradiction

to group strategy-proofness.

Suppose now that f(P ′′′
N ) = a. By tops-onlyness, without loss of generality, in P ′′′

N , the n−nc agents with

b as top can have a as the worst alternative. These agents by announcing c as top alternative can obtain

c = f(P̃N ) which is a contradiction to group strategy-proofness.

Suppose now that f(P ′′′
N ) = c. By tops-onlyness, without loss of generality, in P ′′′

N , all agents have

c as the worst alternative. Since c is dominated, we get a contradiction to Step 1. We get the desired

contradiction since f(P ′′′
N ) is not defined, thus f is not well-defined. This ends the proof of Case 2.

Case 3 : n − nc < nc. Take any i ∈ Nc(PN ). Consider P ′
i such that t(P ′

i ) = x where nx = min{nb, na}.

Without loss of generality, suppose that x = b. Let P ′
N = (P ′

i , PN\{i}). We show that f(P ′
N ) = c.
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Otherwise, if f(P ′
N ) = a then, by tops-only property f(P ′′

i , PN\{i}) = a for P ′′
i such that t(P ′′

i ) = b and

a is the worst alternative. Note that this contradicts strategy-proofness since agent i would manipulate

f at (P ′′
i , PN\{i}) via Pi. If f(P ′

N ) = b then, by tops-only property f(P ′
i , P

′
j , PN\{i,j}) = b such that

t(P ′
j) = a = t(Pj) and b is the worst alternative for j ∈ N\{i}. By Lemma 2, alternative c is chosen in the

profile (P ′
i , P

′′
j , PN\{i,j}) where t(P ′′

j ) = c, since the number of agents having c as top in (P ′
i , P

′′
j , PN\{i,j})

is the same as in PN . Note that this contradicts strategy-proofness since agent j would manipulate f at

(P ′
i , P

′
j , PN\{i,j}) via P ′′

j . Then, f(P ′
N ) = f(P ′

i , PN\{i}) = c.

For P ′
N note first that nc(P ′

N ) = nc − 1 and n− nc(P ′
N ) = n− nc + 1. Redefine PN as P ′

N and go to Step

2.

If nc − 1 = 0 we get a contradiction by Case 1. If 0 < nc − 1 ≤ n − nc, then we get a contradiction by

Case 2. Otherwise, if nc − 1 > n − nc, we can repeat the same argument in Case 3 for each profile that

we obtain changing one by one agents with top c until we reach a contradiction using Cases 1 or 2.

Step 3. For any PN ∈ Dn such that a ∈ U(PN ), then f(PN ) = a.

By contradiction, let PN ∈ Dn be such that a ∈ U(PN ), but f(PN ) 6= a. By Steps 1 and 2, b ∈ U(PN )

and f(PN ) = b. Since a ∈ U(PN ), we get that na > 0 by part (ii) of Remark 1. Let P ′
N be any profile

such that for each agent i ∈ Nc(PN ), t(P ′
i ) = b while for any agent j ∈ N\Nc(PN ), P ′

j = Pj . By group

strategy-proofness, f(P ′
N ) = b (otherwise, if f(P ′

N ) ∈ {c, a} agents in Nc(PN ) would manipulate f at P ′
N

via PNc(PN )). Consider a profile P ′′
N that differs from P ′

N only for agents in Na(P ′
N ) that change their

preferences such that a is still the top while b is the worst alternative. By tops-only property, f(P ′′
N ) = b.

Now, consider a profile P ′′′
N that differs from P ′′

N only for agents i ∈ Nb(P ′′
N ) who change their preferences

such that c is now their top. By group strategy-proofness, f(P ′′′
N ) 6= a (otherwise, Nb(P ′′

N ) = Nc(P ′′′
N )

would manipulate f at P ′′′
N via P ′′

Nb(P ′′
N )). By Step 1 above, f(P ′′′

N ) 6= b since b /∈ U(P ′′′
N ) = {a, c}. Moreover,

by Step 2, f(P ′′′
N ) 6= c since #U(P ′′′

N ) = 2. Thus, we have a contradiction.

To finish the only if part, notice that using Steps 1 to 3 and Remark 3 the voting rule f must be the

�-SPUR for a � b � c, which can be described by the following algorithm: consider any PN

(1) if a is the top alternative for some i ∈ N then f(PN ) = a, otherwise go to (2);

(2) if b is the top alternative for some i ∈ N then f(PN ) = b, otherwise f(PN ) = c.

Finally, it remains to prove the “if” part, that is, the �-SPUR for a � b � c is group strategy-proof,
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tops-only, and anonymous. By construction, the full range rule is tops-only and anonymous.

To check (group) strategy-proofness of f notice that if a is the top alternative of at least one agent i at

profile PN , then the outcome is alternative a. No agent j 6= i can change the outcome. Suppose that no

agent has a as top alternative. If b is the top alternative of at least one agent, say i, then the outcome is

b. By Remark 3, a is Pareto dominated by b at PN . Thus, no agent has incentives to deviate to get a.

Moreover, no agent j 6= i can change the outcome and get c. Suppose that no agent has either a or b as

top alternative. Then, f(PN ) = c and since all agents have c as top alternative, none has incentives to

deviate.

The result in our Theorem 1 is robust as we show below presenting examples of full range rules

satisfying every pair of properties but not the third one.

Example 1. The full range voting rule �-SPUR with the associated linear order b � c � a, say f , is

strategy-proof and anonymous but it is not tops-only.

Anonymity of f is straightforward by Remark 2.

We now show that f is strategy-proof: if b is the preferred alternative for at least one agent, then b ∈ U(PN )

(by part (i) of Remark 1), thus b is chosen by definition of f , and agents with a different preferred

alternative cannot change the outcome irrespective of the preference they report.

If no agent has b as preferred alternative, either (i) all agents have the same preferred alternative, or (ii)

for some agents c is the preferred alternative (and all them have preferences cPbPa) and for some other

agents a is the preferred alternative. In the former case (i): by part (iii) of Remark 1 this alternative is

the only undominated alternative, and thus it is chosen (obviously no agent has incentives to manipulate

since everyone gets his best alternative). In the latter case (ii), we distinguish two subcases:

(1) if some agent with top a has also c as the bottom alternative, and

(2) if all agents with top a have b as bottom alternative.

For case (1), b ∈ U(PN ) and thus b is chosen.

Note that for this case the only coalitions that might want to manipulate are those formed by agents either

(a) with preferences aPbPc and aPcPb if they could get a, or (b) with preferences aPcPb and cPbPa, if

they could get c.
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Note that situation (a) can not happen because the outcome cannot be a since there are agents with c as

top. Thus, either b or c could be the outcome.

Situation (b) can not happen because to get c agents should change preferences such that b /∈ U(P ′
N ) and

c ∈ U(P ′
N ). Thus, for the former to hold, preferences in P ′

N of agents in the deviating coalition can be

neither cPbPa, bPaPc nor bPcPa. Thus, their preferences in P ′
N must have a as top, implying that

c /∈ U(P ′
N ) contradicting the latter.

For case (2), b /∈ U(PN ), c ∈ U(PN ) and thus, c is chosen.

Note that agents with preferences cPbPa get their preferred alternative and they do not want to deviate.

Only a coalition of agents with preferences aPcPb might want to manipulate if they could get a. The

latter is impossible since in the new profile c would be undominated.

To show that f violates tops-only property, let PN and P ′
N be such that they have the same set of top

alternatives: a and c. In PN some agents with top a prefer b to c but others c to b, while in P ′
N all agents

with top a prefer c to b. Since U(PN ) = {a, b, c} and U(P ′
N ) = {a, c}, by definition of f , we get that

f(PN ) = b but f(P ′
N ) = c.

Example 2. The full range voting rule described by the following algorithm is tops-only and anonymous

but it is not strategy-proof: consider any PN

(1) if a is the top alternative for some i ∈ N then f(PN ) = a, otherwise go to (2);

(2) if c is the top alternative for some i ∈ N then f(PN ) = c, otherwise f(PN ) = b.8

By construction this rule is anonymous and tops-only. Also observe that this voting rule is not strategy-

proof because it coincides with Rule B defined in the introduction.

Example 3. Let f be a voting rule where agent i ∈ N is a dictator (that is, f(PN ) = t(Pi) for all

PN ∈ Dn). Any dictatorial rule has full range, is tops-only and strategy-proof but it is not anonymous.9

In the problem of the provision of a public good where agents have single-peaked preferences, the so-

called generalized Condorcet-winner solutions are characterized by Moulin (1980), Barberà and Jackson

(1994), and Ching (1997) on the basis of strategy-proofness. All of them are tops-only (see also Weymark,
8This rule is the �-SPUR with associated linear order a � c � b.
9The proof is straightforward and left to the reader.
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2011).10 We would like to observe that the rule we characterize in Theorem 1 can be also rewritten and

interpreted as a member of the generalized Condorcet-winner solution. To do that, we fix the following

order of alternatives a � b � c. Then, the rule chooses the highest alternative among agents’s top

alternatives relative to this order. It is worth mentioning that in the case with three alternatives if we

depart from the set of single-peaked preferences and we add one preference to obtain the “no-cab” domain,

the unique anonymous rule in the class of generalized Condorcet-winner solutions is the �-SPUR with

associated linear order a � b � c that we characterize in Theorem 1.

10Thomson (1993, 1999) characterized a subclass of the above family of rules using Pareto efficiency and welfare-
domination under preference-replacement, which are also anonymous.
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