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Abstract: Complex systems are usually affected by various sources of uncertainty, and it is essential
to account for mechanisms that ensure the proper management of such disturbances. This paper
introduces a novel approach to solve symbolic regression problems, which combines the potential of
Grammatical Evolution to obtain solutions by describing the search space with context-free grammars,
and the ability of Modal Interval Analysis (MIA) to handle quantified uncertainty. The presented
methodology uses an MIA solver to evaluate the fitness function, which represents a novel method
to manage uncertainty by means of interval-based prediction models. This paper first introduces the
theory that establishes the basis of the proposed methodology, and follows with a description of the
system architecture and implementation details. Then, we present an illustrative application example
which consists of determining the outer and inner approximations of the mean velocity of the water
current of a river stretch. Finally, the interpretation of the obtained results and the limitations of the
proposed methodology are discussed.

Keywords: modal interval analysis; machine learning; interval arithmetic; grammatical evolution;
data science; uncertainty modelling

1. Introduction

Continuous improvements in algorithmic problem-solving, together with an increase
in the availability of high-performance computing, have resulted in a new generation of
precise and highly detailed mathematical models [1]. The modeling of the physical proper-
ties within these systems is complex, because they are generally unknown or indeterminate.
Explicitly incorporating uncertainty in the predictions of a model from the beginning is
vital. The identification and management of uncertainty is essential to manage the com-
plexity that occurs in numerous engineering applications [2]. Methods that model these
uncertainties seek to develop robust mechanisms designed to remain flexible and resilient
to appropriately react to new situations.

In general, the uncertainty of a system can arise from many sources, such as distur-
bances from the physical environment (e.g., variability in the flow controlling a water level),
noise from devices that collect data (e.g., blood glucose readings from a continuous blood
glucose monitor [3]), the representation of errors in physical quantities (e.g., the error in the
gravitational acceleration constant g = 9.807 ± 0.027 m/s2), truncation errors in floating
point operations, etc. These uncertainties will lead to undesired system behaviors if not
addressed properly. Therefore, methodologies able to manage such uncertainty in a robust
manner are required.

The purpose of this paper is to present a computational framework for solving sym-
bolic regression problems, which is able to cope with the uncertainty encountered in real-life
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problems, and to make predictions accounting for such uncertainty. The proposed ap-
proach is based on interval analysis and data-driven optimization techniques. In particular,
it combines the advantages of a grammar-based search algorithm [4] with the arithmetic of
Modal Interval Analysis (MIA) [5]. The excellent flexibility of Grammatical Evolution (GE)
for generating models, together with the inherent ability of MIA to manage uncertainty,
led us to propose the development of a combined method to deal with the generation of
predictive models from imprecise, or uncertain, data, without losing interpretability in the
results. This study contributes to the literature by providing an evolutionary algorithm
capable of working directly with MIA, which provides a mathematical framework to deal
with quantified uncertainty. While the GE algorithm delimits the space of the solutions and
guides the search, MIA manages uncertainty naturally and provides semantics to transform
logical formulas into inclusion relationships, which are used to build the algorithm loss
function. In order to illustrate the utilisation of the proposed approach, the resolution of
a real-life problem, consisting of determining the meanstream velocity of the waters of a
river stretch, is presented.

This paper is organized as follows. Uncertainty handling in predictive modeling is
briefly reviewed in the next Subsection, while Sections 2 and 3 summarize the foundations
of GE and MIA theory, respectively. Section 4 introduces our proposed interval-based
grammatical evolution approach. Section 5 presents an illustrative example, the required
implementation steps, and the results. Finally, in Section 6, the obtained results are dis-
cussed and some conclusions provided.

Related Work

Two approaches are typically used to handle uncertainty in predictive modeling: ex-
plicit, or knowledge-driven, models and data-driven models. Techniques such as Bayesian
networks, fuzzy logic, interval analysis, and rough sets have been successfully integrated
into explicit, or knowledge-driven, models to address systems with uncertainty [6–9].
The advantage of these models is that they provide an explicit representation of the internal
operation of the system to predict, simulate, and explain its behavior from the structure,
causality, functional, and behavior of its components. However, these techniques are often
computationally prohibitive or inaccurate for modelling complex systems that depend
on a large number of variables. One of the more important techniques in this group is
the well-know classical interval analysis. Classical intervals have shown a wide range
of abilities, such as addressing problems using optimization to avoid overestimation of
the optimal range of values [10–12]. In addition, the study of the solutions of a linear
system when the coefficients and the independent term are considered as intervals has
received much attention in the interval community, since it appears in the control design of
different physical systems [13–17]. Pursuing the same line, in 2014 Modal Interval Analysis
(MIA) [5], was presented as an extension of classical interval analysis. MIA allows uncer-
tainty to be introduced, as classical intervals, in the generation of mathematical models
by representing it using an interval (i.e., a pair of real numbers bounding a real domain).
In addition to a range, model intervals are defined by a logical quantifier (∀ or ∃), that
affects the represented uncertainty. Hence, MIA allows for a richer semantic interpretation
of the results.

On the other hand, data-driven methods such as deep neural network techniques
have focused on the extraction of predictive models from uncertain data [18]. Such models
are especially effective when knowledge-driven models are difficult to build (e.g., owing
to insufficient understanding of the underlying processes). Data-driven models cannot
catch the physics of the modeled process; they just capture the relationships between the
relevant input and output variables. However, such data-driven methods could potentially
be more accurate than knowledge-driven models because they are based on objective
information (i.e., data). The main drawback of all these black-box approaches is that
they lead to a loss of result interpretability, and causality cannot be inferred. Machine-
learning methods have been prompted by a recent wave of interest due to improvements
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in the algorithms (e.g., activation function) that have made such techniques more efficient.
Finally, the combinations of more traditional approaches, such as control engineering
theory, with artificial intelligence, have resulted in a number of hybrid approaches [19,20].

This paper introduces an approach to solve symbolic regression problems, com-
bining the potential of MIA to handle uncertainties with the ability of GE to obtain
solutions. MIA is a mature mathematical technique that has been widely applied in
control engineering [21], modeling and simulation [22], civil engineering for structural
control [23], biomedical applications [24], computer graphics [25], and finance for insurance
problems [26]. On the other hand, GE is a relatively new machine-learning methodology
with a modular architecture that is applied in the design and optimization of predictive
models [27]. GE shows good performance in complex environments, such as financial
forecasting [28] or blood glucose predictions [4].

To the best of our knowledge, evolutionary algorithms have not been previously
used in combination with MIA and we have not found any work using interval methods
combined with GE. However, different studies investigating hybrid methods applying
interval analysis techniques to deal with uncertainties and evolutionary algorithms to
guide the search of a solution have been proposed. For instance, hybrid approaches based
on multi-objective evolutionary algorithms, either based on the conversion of an inter-
val multi-objective evolutionary algorithm to a deterministic single- or multi-objective
optimization problem [29–31], or based on the interval dominance relation [32,33]. Fur-
thermore, hybrid approaches on multiple types of evolutionary algorithms have also been
presented. For example, Sun et al. [34] implemented a particle swarm optimization method
to power lithium-ion batteries, Femia et al. [35] applied a combination of affine arithmetic
(an extension of interval arithmetic) and genetic algorithms for worst-case analysis in
circuit tolerance analysis, while Claudio et al. presented an hybrid approach applying
interval analysis in a cellular evolutionary strategy [36]. Finally, one of the closer stud-
ies we have found is the work performed by Keijer, which proposed to enhance genetic
programming using interval arithmetic [37]. The author presented an approach to pro-
duce solutions which avoided undefined behaviours and which performed better than
standard approaches.

2. Predictive Modeling by Grammatical Evolution

One of the most compelling forms of evolutionary algorithms can be found in the
GE methodology. GE is a search-based heuristic method with a modular design. It is
widely used to solve optimization problems and is well-suited to the design of predictive
models [27], which are, essentially, multivariate optimization problems. The goal of this
search algorithm is to exploit historical information to guide it toward the regions of better
performance within the search space. The general process of functioning in GE algorithms
remains similar to those applied in other evolutionary algorithm approaches. Essentially,
the algorithm initializes a population of solutions and initiates an iterative process that
applies selection and transformation operators until the algorithm reaches an optimal
solution or a predefined number of iterations.

The candidate solutions are presented as a sequence of codons. Typically, a codon
comprises 8 bits representing an integer. Codons determine which specific grammar rules
will be used.

The array of codons is called a genotype, while the code derived from the values is the
phenotype. GE uses context-free grammar to enable a many-to-one mapping process, from
genotypes to phenotypes. The genetic algorithm handles the generation of populations,
whereas, at the phenotype level, solutions are evaluated in terms of a fitness function.
Therefore, the genotype–phenotype mapping process involves the decoding of variable-
length integer array (chromosomes) into expressions or programs in an arbitrary language.
This feature allows the phenotype to be as complex as necessary, since all genetic operators
are applied to the genotype. The general operation of the algorithm and the mapping
process are outlined in Figure 1.
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Figure 1. Flow chart of the grammatical evolution process with all the steps involved from initializa-
tion until the stop condition is met.

Context-Free Grammar

The key feature of predictive modeling via GE is the use of a context-free grammar
(shortened to “grammar” hereinafter). This structure should incorporate knowledge
related to the addressed problem. It comprises a set of rules that defines the structure of the
generated candidate models. A grammar is defined by a 4-tuple {N, T, P, S}, where N and
T are the set of non-terminal symbols and terminal symbols, respectively, P represents the
production rules by which the symbols in N can be derived, and S the starting non-terminal
symbol that must appear in N. The core of a grammar is typically defined in the Backus
normal form (BNF)

[Symbol]→ production1 | ... | productionk (1)

Thus, given a grammar G = {N, T, P, S}, non-terminals N must be defined by a
derivation rule, whereas terminals T are the lexicons of the predictive model language.
The derivation rules in P comprise a non-terminal on the left-hand side [Symbol] and its
possible derivations on the right-hand side. Each rule definition comprises one or more
alternatives separated by the symbol “|”. A single production is composed of a sequence
σ = (σ1, · · · , σn) where σi ∈ N ∪ T and #σ ≥ 0. Therefore, if we consider a production
rule {[Symbol1] → γ Symboln β} ∈ P where [Symboln] ∈ N and β, γ ∈ N ∪ T, we define
that [Symboln] is a direct derivation of [Symbol1], denoted as [Symbol1] ⇒ [Symboln], if a
sequence of direct derivations exists

[Symbol1]⇒ [Symbol2],

[Symbol2]⇒ [Symbol3],

· · · , (2)

[Symboln−1]⇒ [Symboln]

where n ≥ 0.

A complete derivation tree is constructed by expanding all the non-terminals of the
candidate solutions. Particularly, the process derives the leftmost non-terminal, as it is
selected according the corresponding codon of the genotype. We repeat the process of
derivation until the candidate solutions have no symbols remaining in N. During genotype
mapping, we may reach the end of the genotype and be depleted of values before all
non-terminals are transformed into terminals. At this point, the algorithm assesses the
candidate model as an invalid solution. Therefore, candidate models are penalized if their
genotypes lead to large phenotypes. Invalid solutions are assigned with poor fitness values,
to discard in subsequent iterations.
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3. Interval Methods

In interval analysis, a classical interval [a, b] is defined as the set of numerical values
x that lies between a and b, and operations are performed using intervals instead of
real numbers.

[a, b] = {x ∈ R | a ≤ x ≤ b} (3)

In the system of intervals

I(R) = {[a, b] | a, b ∈ R, a ≤ b} (4)

the real arithmetic operators are introduced. An interval extension of a continuous function
z = f (x1, ..., xn) from Rn to R is the interval united extension R f of f , defined as the domain
of the f -values on its interval argument X = (X1, ..., Xn) in I(Rn)

R f (X1, . . . , Xn) = {z | x1 ∈ X1, . . . , xn ∈ Xn} =
[min{z | xi ∈ Xi}, max{z | xi ∈ Xi}]i=1,...,n (5)

Because the interval united extension of a continuous function can not always be
computed, an interval syntactic extension f R(X1, . . . , Xn) is defined as its corresponding
real function f (x1, . . . , xn) replacing their numerical arguments x1, . . . , xn by the interval
arguments X1, . . . , Xn and their “real” arithmetic operators by their corresponding interval
operators, such that

R f (X1, . . . , Xn) ⊆ f R(X1, . . . , Xn), (6)

where f R(X1, . . . , Xn), is computed from the bounds of the intervals X1, . . . , Xn. The inter-
val syntactic extension is useful for computing the range of a function because it guarantees
the result. However, the exact range is not obtained in the general case. This is because,
in the case that a variable appears more than once in the expression of the function, each
appearance is considered independent of the others, which leads to an overestimation of
the real range.

3.1. Modal Interval Analysis

Modal interval analysis is a logical and algebraic completion of classical interval
analysis, defined to overcome its semantic and algebraic deficiencies. The key concept is
the inclusion of a logical quantifier in the definition of a modal interval. This provides
semantic interpretation to the interval computations. For a more complete introduction to
modal interval analysis, see [5,38].

A modal interval (see Figure 2), A, is a pair formed by a classic interval A′ = [a, b]′, its
domain, and a logic quantifier ∀ or ∃, which is its modality, that is, A = (A′, QA), where
QA is one of the logic quantifiers. Modal intervals of the type A = (A′, ∃) are called proper
intervals and modal intervals of the type A = (A′, ∀) are called improper intervals. A set
of modal intervals is denoted by I∗(R). A modal interval can be represented using its
canonical coordinates in the form

A = [a, b] =
{

([a, b]′, ∃) if a ≤ b
([b, a]′, ∀) if a ≥ b

(7)

For example, the interval [1, 3] is equal to ([1, 3]′, ∃) and the interval [3, 1] is equal to
([1, 3]′, ∀).

A convenient symmetry between proper and improper intervals is established by the
duality operator, which changes the modality of a modal interval. Therefore,
Dual([a, b]) = [b, a].

The construction of modal intervals is completed with the concept of a modal quanti-
fier Q defined by
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Q(x, X)P(x) ⇐⇒
{

(∃x ∈ X′)P(x) if X = (X′, ∃)
(∀x ∈ X′)P(x) if X = (X′, ∀) (8)

that allows us to define the set of real predicates accepted as a modal interval X = (X′, QX).

Pred((X′, QX)) := {P(.) ∈ Pred(R) | Q(x, (X′, QX))P(x)} (9)

Figure 2. Geometrical representation of a modal interval using a lower bound and an upper bound.
The bisector divides the coordinate system into a region of proper intervals above this axis and of
improper intervals below it.

The identification of a modal interval with the set of those real predicates that introduce
the definition of the modal interval inclusion (see Figure 3). If X, Y ∈ Pred(R),

X ⊆ Y ⇐⇒ Pred(X) ⊆ Pred(Y) (10)

Figure 3. Graphical representation of the inclusions and inequalities between two modal intervals,
where A and Bi represent different modal intervals.

Using their canonical coordinates, the inclusion between two modal intervals A = [a1, a2]
and B = [b1, b2] is

[a1, a2] ⊆ [b1, b2] ⇔ (a1 ≥ b1, a2 ≤ b2)

[a1, a2] = [b1, b2] ⇔ (a1 = b1, a2 = b2) (11)



Mathematics 2021, 9, 631 7 of 20

The lattice operations meet and join (see Figure 4) on I∗(R) for a bounded family of
modal intervals A(I) := {A(i) = [a1(i), a2(i)] ∈ I∗(R) | i ∈ I} (I is the index’s domain)
are defined as a function of the interval bounds as

(meet) ∧i∈I A(i) = [max
i∈I

a1(i), min
i∈I

a2(i)]

(join) ∨i∈I A(i) = [min
i∈I

a1(i), max
i∈I

a2(i)] (12)

Figure 4. Graphical representation of the meet and join lattice operators, where A and B represent a
pair of modal intervals.

The inequality relations (see Figure 5) lead to the lattice operators min and max.
Consider a bounded family of modal intervals satisfying A(J) := {A(j) ∈ I∗(R) | j ∈ J}.
Hence, min and max are defined by the following equations

min
j ∈J

A(j) = A ∈ I∗(R) is such that

(∀j ∈ J) X ≤ A(j) ⇔ X ≤ A (13)

max
j∈J

A(j) = B ∈ I∗(R) is such that

(∀j ∈ J) X ≥ A(j) ⇔ X ≥ B (14)

and computationally:

min
j∈J

A(j) = [min
j∈J

a1(j), min
j∈J

a2(j)]. (15)

max
j∈J

A(i) = [max
j∈J

a1(j), max
j∈J

a2(j)]. (16)

Figure 5. Graphical representation of the max and min lattice operators.

Important binary operators involving two operators, A and B, are the arithmetical
operators +,−, ∗, /, together with other operators, namely log, exp, sin, · · · , and some
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metric operators, e.g., the width of an interval A = [a1, a2], defined by wid(A) = a2 − a1,
or distance, defined as

Tolerance(A, B) = max{|a1 − b1|, |a2 − b2|},

which allows for the inclusion to be characterized by the 0 value.

A ⊆ B ⇔ Tolerance(A, A ∧ B) = 0 or

Tolerance(B, A ∨ B) = 0 (17)

3.2. Modal Interval Extensions

Two modal interval extensions exist for a continuous function f from Rn to R in the
variables x = (x1, · · · , xn) to the n-dimensional interval X = (X1, · · · , Xn), and a split in
its proper and improper interval components X = (Xp, Xi),

f ∗(X) =
∨

xp∈X′p

∧
xi∈X′i

[ f (xp, xi), f (xp, xi)] =

= [ min
xp∈X′p

max
xi∈X′i

f (xp, xi), max
xp∈X′p

min
xi∈X′i

f (xp, xi)]. (18)

which is called the *-semantic extension of f , and the following, which is its **-semantic extension

f ∗∗(X) :=
∧

xi∈X′i

∨
xp∈X′p

[ f (xp, xi), f (xp, xi)] =

= [max
xi∈X′i

min
xp∈X′p

f (xp, xi), min
xi∈X′i

max
xp∈X′p

f (xp, xi)]. (19)

Both are related by the equality

f ∗∗(X) = Dual( f ∗(Dual(X))) (20)

3.3. Primary Theorems

The following two key results, named the * and ** semantic theorems, provide a logical
interpretation to these semantic extensions.

*-semantic theorem: Given a continuous real function f : Rn → R and a modal vector
A ∈ I∗(Rn), whenever F(A) ∈ I∗(R) exists

f ∗(X) ⊆ F(A) ⇔
(∀ap ∈ A′p) (Qz ∈ F(A)′) (∃ai ∈ A′i) (21)

z = f (ap, ai).

and **-semantic theorem: Given a continuous real function f : Rn → R and a modal vector
A ∈ I∗(Rn), whenever F(A) ∈ I∗(R) exists,

f ∗∗(X) ⊇ F(A) ⇔
(∀ai ∈ A′i) (Qz ∈ Dual(F(A))′) (∃ap ∈ A′p) (22)

z = f (ap, ai).

For a given n-dimensional interval A, computing f ∗(A) (or f ∗∗(A)) can be a difficult
problem, except for simple cases. When the function f is a one- or two-variable operator,
the computations are easy to obtain and, as for the arithmetic operators, the results are the
same as the ones obtained via Kaucher arithmetic [39].

The values of semantic extensions, f ∗ and f ∗∗, can not be obtained by direct com-
putation, except for simple real functions. If f is a Rn to R continuous with the syntactic
tree function, its syntactic extension to the modal intervals X1, . . . , Xn, is represented by
f R(X1, . . . , Xn), is the function f R from I∗(Rn) to I∗(R) defined by the computational
program indicated by the syntax tree of f . Modal syntactic functions are easy to compute
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but are generally not interpretable. To overcome this problem, semantic theorems provide
inclusion relations to the corresponding *- and **-semantic extensions. Computations
with f R(X) must be performed with the external truncation of each operator to obtain
the inclusions f ∗(X) ⊆ f R(X), and with the inner truncation to obtain the inclusions
f R(X) ⊆ f ∗∗(X). In many cases, the rational extension f R(X) is optimal, i.e.,

f ∗(X) = f R(X) = f ∗∗(X). (23)

Modal interval analysis provides results for these inclusions or equalities. Coercion
theorems provide the conditions and the method to obtain the optimal extensions according
to the monotony.

3.4. f ∗ Algorithm

When these theorems and their results are not applicable, the so-called f ∗ algorithm,
based on branch-and-bound techniques, yields the inner and outer approximations to f ∗.
Consider a continuous function f (u, v), and its associated proper and improper interval
vectors. (U, V).

To obtain the inner (Inn) and the outer (Out) approximations of f ∗(U, V) or f ∗∗(U, V),
we divide the initial domain into cells such that, in each of them, the monotony conditions
necessary to apply the optimality theorems of modal interval analysis are met. The f ∗

algorithm applies a set of strategies to minimize the number of bisections, and to obtain
better local approximations of the resulting partitions. A tolerance function, defined as the
distance between inner and outer approximation, provides the criteria to stop the algorithm

Tolerance(Inn, Out) =

= max(|Inf(Out)− Inf(Inn)|, |Sup(Out)− Sup(Inn)|) (24)

where Inf and Sup are the left and right bounds of the corresponding approximations, re-
spectively.

If we assume a desired tolerance ϕ for the output, the algorithm stops when Tolerance
(Inn, Out) ≤ ϕ. The algorithm also stops when the width of all cell dimensions is smaller
than a fixed precision (wid(X) ≤ ε). A standalone version of this algorithm can be found
online, incorporated in the modal interval calculator package [40,41].

4. Interval-Based Grammatical Evolution

Evolutionary algorithms are are well-known because their high scalability and flexibil-
ity. They have been largely studied, and countless approaches can be found in the literature.
There are other algorithms in this category, such as genetic algorithms and genetic pro-
gramming, to name just two of the most popular members. The idea of an MIA-based
extension of an evolutionary algorithm should be applicable in a more traditional setting
than GE, such as in the aforementioned methodologies. GE has been chosen because of
its versatility and adaptability to extract models from data and our experience working
with it.

Figure 6 shows a schematic representation of the general architecture and the oper-
ation of the proposed methodology. Initially, the system is powered by a database (A)
that provides the required information for system training and the subsequent validation
of the method. In addition to the above-mentioned data sources, there are two other
primary system inputs that must be defined according to the addressed problem. First,
the definition of a problem-specific objective function (B), which evaluates the solutions.
Secondly, a customized grammar (C), which defines the structure of the generated solu-
tions. The module implementing the arithmetic of modal intervals is responsible for the
interval operations associated with the solutions generated by the system (E). Solutions are
iteratively combined to create new and better solutions, aiming to incrementally improve
the quality of solutions (F) and reach a final solution that minimizes the fitness function
satisfactorily. Once a final solution (G) is generated, the prediction model is evaluated
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using data from the remaining database information. The following subsections describe
the complete setup of this methodology in detail.

Figure 6. General diagram of the general methodology, where A is the database; B, C and D are the
inputs of the grammatical evolution methodology; E is the core of the method combining the interval
arithmetic and the evolutionary operators; F is the full set of candidate models and G is the selected
final model.

4.1. Including Uncertainty in Grammatical Evolution

Given a set of the experimental measures y, we shall consider a predictive model
defined by a continuous function f

ŷ = f (y0, p), (25)

where ŷ is the state variable corresponding to y, y0 the initial values, and p are the model
parameters. If we assume uncertainty in the variables and the experimental measures of
this model, we obtain the interval model defined by

Ŷ = f ∗(Y0, P) or Ŷ = f ∗∗(Y0, P), (26)

where P, Y0 and, consequently, the model output (Ŷ) are proper or improper intervals.
The generation of models that satisfy the aforementioned equation would require the

implementation of mechanisms to achieve the following

• Manage intervals as inputs of the system;
• Generate intervals as parameters;
• Compute intervals as basic operations.

Therefore, the integration of uncertainty management into the method of GE directly
affects its two essential features: the use of context-free grammar and the fitness function.

4.2. Uncertainty in Context-Free Grammars

First, before beginning the search-based process of GE (see Figure 1), the method
incorporates a series of preprocessing mechanisms to enable intervals as a native data
type in the computational framework. Interval inputs I associated with the explored
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methodology can be defined using the lower and upper bounds of the interval following
Equation (3) or by defining an increment in the discrete values as follows

I(R) = {[x± ∆x] | x, ∆x ∈ R}. (27)

Therefore, the method encompasses the typical cases and formats to gather data. Mean-
while, the data input may involve uncertain factors provided by the intervals; this is typical
in cases where inaccuracy should be determined via repetitive trials, e.g., air-pollutant
concentrations [42]. Nevertheless, the data entries may be defined as the imprecision of
measuring devices; this is a typical and realistic scenario in which inaccuracy is associated
to an error rate, e.g., in a continuous blood glucose monitor [3].

Additionally, the framework aimed to define the associated grammar that provides
the possibility of generating interval parameters as an alternative to constant values. Thus,
the predictive-modeling search engine can include intervals in the form [x± ∆x] into the
candidate models. This feature is intended to represent the uncertainty of a parameter
without an a priori associated error or deviation values, e.g., the circadian variability of a
patient with diabetes [43].

4.3. Intervalized Fitness Functions

The role of the inclusion of uncertainty and the integration of intervals in the assess-
ment criteria has important implications. Because the outcome of the candidate model
evaluations implies an interval representation, two generic approaches are available to
guide the definition of a fitness function. These can be defined depending on the in-
clusion relationship between the experimental data and the output of the model. If the
pursued model requires the inclusion of the experimental data in the model estimates,
then Ŷ = f ∗∗(Y0, P) ⊇ Y with, e.g., Y0 and P as proper intervals. Therefore, we obtain the
following expression by applying the **-semantic theorem

(∀y ∈ Y′) (∃y0 ∈ Y′0) (∃p ∈ P′) y = f (y0, p). (28)

According to (17), this inclusion is obtained by minimizing an assessment criterion

Tolerance(Y, Y ∧ Ŷ) or Tolerance(Ŷ, Y ∨ Ŷ) (29)

Otherwise, if the requirement is that the estimated solutions are to be contained in the
experimental dataset, i.e., Ŷ = f ∗(Y0, P) ⊆ Y, we apply the *-semantic theorem to obtain

(∀y0 ∈ Y′0) (∀p ∈ P′) (∃y ∈ Y′) y = f (y0, p). (30)

Therefore, the evaluation criteria to be minimized in this case are

Tolerance(Ŷ, Y ∧ Ŷ) or Tolerance(Y, Y ∨ Ŷ) (31)

These generic criteria might be sufficient to handle most predictive modeling problems.
However, according to the semantic theorems and the inclusion conditions considered,
new semantics can be proposed by varying the modalities of the associated intervals.

Finally, the proposed methodology supports the complete set of interval arithmetic op-
erations, including the required f ∗ algorithm, provided that multi-incidence is considered
in the generation of the models. Both of them are presented in Section 3 and are essential
for computing the final outcomes and training fitness values.

4.4. Predictive Modeling Solutions

GE is an evolutionary algorithm that mimics the natural selection process and, in this
mimicked process, randomness is crucial. The stochastic nature of GE makes it a method
well suited for problems with high requirements, but it should be remembered that GE is a
probabilistic stochastic search algorithm, and solution models may vary across different



Mathematics 2021, 9, 631 12 of 20

executions. This method can assess a large number of candidate prediction models that
iteratively converge to the final model. However, GE algorithms have not been proven
to converge to the global optima of the fitness function in a finite time. Thus, an efficient
evolutionary algorithm, which typically implies a balance of exploration and exploitation
of the solutions, is usually expected to converge to multiple sub-optimal solutions rather
than to the global optima. Different strategies can be implemented to select the sub-optimal
prediction model that can be used to provide new estimations from unseen data inputs;
however, they will not be discussed herein, as they are out of the scope of this study.

The proposed combination of interval methods and GE aims to obtain a soft interval
band of estimated intervals that contains, is contained, or is simply the closest to the input
intervals that are to be modeled. However, a discrete approximation, e.g., an independent
modeling of the upper and lower boundaries of a set of intervals, would aim to obtain two
trajectories that coincide or are close to the upper and lower boundary points, regardless of
whether the other extreme coincides or is close to the other extreme of the interval. Thus,
a non-interval approach could not generate a soft-band solution if the trajectories intersect.
In addition, operating directly with intervals allows us to enter conditions and constraints
in the form of logical conditions. By defining the semantics, the modal intervals allow us
to transform these logical formulas into their equivalent form as inclusion relationships
between the modal intervals. Therefore, the interval-based methodology presented herein
is indispensable to generate solutions that follow such semantics.

5. Implementation, Results, and Discussions
5.1. Illustrative Example

In this section, we present an illustrative example in which interval GE is applied
to the problem of determining the average water velocity of a river stretch. We used the
interval GE methodology to build a model based on the bed slope and flow rate of the
river. The method aims to capture the dynamics of the water velocity while managing the
uncertainty associated to the physical system. Thus, the expected output of the model is
the velocity of the river, whereas the model parameters are the river flow and the bed slope
intervals. The interval model that we present in this section is presented as a mere example
of the ability of the interval GE methodology to generate models from intervalized data.

The experimental dataset was obtained from a study aimed to generate a water-quality
model of the Bajo Ter river (Spain) [44]. The measurements include the bed slope (m/m),
the river flow rate (m3/s), and the average surface velocity (m/s) of the river. To encompass
a wide range of possible flow rates and a variety of bed slope values that could comprise
the river’s extreme values, the measurements of the experimental values were performed
at different locations along the river and at different times, and their values were modeled
as intervals.

5.2. Modeling River Velocity

The grammar structure used in this case study is simple but flexible, and is adequate
for illustrating the mechanism of the method. The grammar defined to estimate river
velocity values is presented in Algorithm 1.

The non-terminal [λ] is defined by a derivation rule, with no production involved.
This non-terminal, aside from be a path to avoid the generation of any production of
[OperatorComplex], allows for the termination of the recursion originated by the production
[OperatorComplex][OperatorComplex]. The expressions generated by this grammar com-
prise a variable number of mathematical operations using the bed slope and flow-rate
variables. In order to illustrate the modeling process, Equation (32) presents a basic example
of a model solution derived from this grammar



Mathematics 2021, 9, 631 13 of 20

V̂t = [0.4, 0.6].
√

Bs1.1
t .

0.11
(Fr1.9

t )
+ 0.9.Frt (32)

where V̂t is the predicted velocity of the waters, Bs is the bed slope and Fr is the river flow
rate for a given step t.

Algorithm 1: Context-free grammar used in our case study, where [Constant] is
a non-terminal that generates real constants following a classical implementation
via digit concatenation.

[Expression]→
[Term] | [Term][OperatorSimple][Expression]

[Term]→
([Interval] [OperatorB] [OperatorComplex] (Bed Slope∧[Constant])) |
([Interval] [OperatorB] [OperatorComplex] (Flow Rate∧[Constant]))

[OperatorComplex]→
sqrt | sin | log | pow | [Constant]∧ |
cos | [OperatorComplex][OperatorComplex] | [λ]

[OperatorSimple]→
[OperatorA] | [OperatorB]

[OperatorA]→ + | -
[OperatorB]→ * | ÷

The goodness of the achieved fit relies on the previous grammar definition, and also
on the definition of a criterion to evaluate each model of the population. The definition
of the fitness function guides the methodology toward an objective that will be used to
model the final solutions. In this case study, we analyze different fitness functions based
on the error calculation between the experimental measures and the estimated intervals.
The goal is to achieve the most accurate approximation according to the experimental
measurements. Here, we propose adjusting our estimates using two general approaches
for an interval problem: an external and internal approximation to experimental values.
First, we consider an external approximation of the estimates, i.e., we seek solutions that
contain the experimental measures, thus fulfilling the following condition

Vi ⊆ V̂i ⇔ Tolerance(Vi, V̂i ∧Vi) = 0. (33)

Therefore, we define the first assessment criteria as the minimum distance between
the experimental and estimated intervals constrained by condition (33)

C1 = ∑
i

Tolerance(V̂i, Vi) + K · Tolerance(Vi, V̂i ∧Vi), (34)

where K is a constant for weighting constraint (33).
Secondly, we consider an internal approximation of the estimates, i.e., we seek solu-

tions that are contained in the experimental measures, thus fulfilling the following condition

V̂i ⊆ Vi ⇔ Tolerance(V̂i, V̂i ∧Vi) = 0 (35)

Therefore, we define the first assessment criteria as the minimum distance between
the experimental and estimated intervals constrained by condition (35)

C2 = ∑
i

Tolerance(V̂i, Vi) + K · Tolerance(V̂i, V̂i ∧Vi), (36)

where K is, once again, a constant for weighing the constraint.
The methodology adjusts the model parameters using previously collected historical

data, i.e., the experimental measurements of the river. Additionally, the method has
to be adjusted using a set of hyperparameters that express a higher level of structural
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settings and are not explicitly learned from the data. Table 1 defines the values of these
hyperparameters, which were selected empirically and are associated with the operators
used in this implementation.

Table 1. Hyperparameters of the GE implementation and its operators.

Hyperparameter Value

Population size 500
Generations 100

Crossover prob. 0.9
Mutation prob. 0.03

K (weighting factor) 10
Tournament size 2

Max. Wraps 1
Chromosome length 50

Elitism 1
N (number of executions) 20

5.3. Results

The aim of this case study is to generate and evaluate the solutions for a modeling
problem scenario that uses information contained in an experimental database. This section
presents the estimated results of the two presented approaches and their assessment in
terms of the typical performance metrics used to evaluate predictive accuracy.

The first step in analyzing this case study is to examine the convergence of the evo-
lutionary algorithm. Figure 7 illustrates the average, maximum, and minimum fitness
achieved from the best individuals of the proposed method using the assessment criteria
C1. The fitness value is represented with a logarithmic scale on the y-axis and the number
of generations on the horizontal axis. Results show the mean values of the best individual,
the fittest 50 individuals and the complete population. Similar to all the experiments
presented in this study, performance was assessed after 20 runs, because the method is a
probabilistic stochastic search algorithm.

Figure 7. Graph representing the evolution of the fitness values throughout 250 generations.

Next, we evaluate the estimation results of the approach using the two previously
defined assessment criteria. The results are presented in Figures 8 and 9, which are a
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graphical representation of the outcomes and illustrate the differences between the internal
and external approximations. They show the estimated average velocity values of the
waters in the analyzed river stretch and the standard deviation (σ) of the computed
intervals. The interval results are the mean average of 20 executions, and they estimate a
range of possible values, thus including the uncertainty of the system in the estimations.
Meanwhile, the standard deviation values indicate the variability of the set of executions
in each of the interval bounds.

Figure 8. Graphical representation of the experimental and estimated intervals representing the
velocity values of the waters (m/s). The predicted intervals were assessed by criteria C1.

Figure 9. Graphical representation of the experimental and estimated intervals representing the
velocity values of the waters (m/s). The predicted intervals were assessed by criteria C2.
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To evaluate the impact of interval operations on runtime, we implemented a version
of the algorithm that does not use interval arithmetic in the assessment evaluations. This
version is limited to training models that minimize the root–mean–square error (RMSE)
of the mean value between the upper and lower limits of the experimental intervals.
Figure 10 represents the mean times’ ± standard deviation of 20 trials. Considering that
the variation in the computation time between C1 and C2 is negligible, we used condition
C1 for these trials.

Figure 10. Graph of the mean times (milliseconds) spent for the evaluation of the models throughout
250 generations.

5.4. Discussion

In this study, we presented an interval-based GE methodology, providing both its
theoretical foundations and implementation details. We also introduced an innovative
approach aiming to resolve regression problems affected by uncertainty. Finally, a series
of experiments to test and illustrate the proposed method have been presented. Figure 7
shows how the functioning of the algorithm provides a population that is incrementally
fitted through generations. The mean values of the best individuals achieve the best
solution in the 80th generation, while the 50 fittest individuals give shape to a typical
exponential function that converges at the mean minimum value at approximately the
100th generation. The curve representing all the individuals does not converge at the same
values because the functioning of the crossover operator implements a measure to avoid
premature convergence of the population. The operator avoids the generation of identical
individuals in the same population by replacing these individuals with new randomized
chromosomes. Therefore, there is a variable percentage of the population that is generated
randomly each generation, and increments the mean value of fitness values.

As mentioned above, the objective is to analyze two complementary and general
approaches for an interval problem, an external and an internal approximation with the
targets C1 and C2, respectively. Although the defined criteria were not fulfilled in all the
experimental points, the obtained intervals suggest a fitted representation of the models for
both of them. The V̂C1 : [a, b] provides mean standard deviation values of 0.017 and 0.018
and V̂C2 : [c, d] mean standard deviation values of 0.002 and 0.001, which are satisfactorily
low compared with our cost function, indicating a competitive design of the GE algorithm.
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Figure 7 also shows how the evaluation times of both implementations decrease as
the population converges, and that new assessments are not required. After comparing
this with the version that does not use intervals, we observed a significant increase in
the evaluation times, with an average multiplier of 3.7 over the version that does not
use intervals.

The method is strongly influenced by the nature of the addressed problem; this implies
a trade-off between the complexity of the solution-seeking space and the convergence of the
algorithm. Moreover, it is not exempt from the typical drawbacks of evolutionary computa-
tion methods, such as the reproducibility of the results, the risk of premature convergence,
and the high computational effort required. The latter is of significant importance, mainly
due to the f ∗ function evaluation, which leads to a significant increase in the computational
power required by the system. This is especially due to the branch-and-bound nature
of such algorithms, which aims to reduce the so-called interval overestimation problem.
The use of the f ∗ function involves an inherent algorithmic complexity that grows with the
number of non-monotonic variables, the individuals, and the generations.

Typically, modern machine-learning techniques have a high computational costs
due to the nature of the involved algorithms. An important example is deep-learning
methods, which have recently attracted significant attention from the scientific community
and industry, which are willing to invest in the required high-performance hardware
systems. A serious drawback of GE is its inefficiency when implemented sequentially,
as is the case here. However, GEs have inherent parallel properties that allow them to be
successfully parallellized and obtain considerable accelerations (e.g., calculate the fitness of
all chromosomes in the current population in parallel). The methodology presented herein
still offers ample room for algorithm optimization and a parallelizable architecture, which
could lead to a more mature and efficient machine-learning method.

The experiments conducted were performed based on an instance of a real case, which
was presented as a practical approach to show the proposal. However, the real utility of the
proposed method would be oriented to model more complex real-world problems from
imprecise or uncertain data. A good example could be the glycemic monitoring of type
1 diabetics patients with continuous glucose sensors. The monitoring of blood glucose
permits subjects detect unusual behavior of their glucose dynamics or even take preventive
actions before the occurrence of an adverse events, reducing the risk of complications.
Since continuous glucose monitoring devices were launched, the gathered historical data
are used by data-driven models to capture the dynamics of blood glucose levels [20];
however, the measurement accuracy of these devices is far from optimal [45]. In addition
to this lack of accuracy, we must add the delays that are intrinsically linked with the
measurements on these devices [46,47]. Here, machine-learning methods could be applied
to acquire and maintain knowledge based on treatment information; however, models will
be always biased by the aforementioned measurement errors. This is an open problem in
the diabetes technology community, and we hope to contribute to the solution by using the
methodology presented in this paper.

6. Conclusions

Completely eliminating uncertainty from physical systems is often impossible; hence,
a proactive approach to manage uncertainty is required. The presented approach acknowl-
edges the existence of uncertainty and uses intervals to power a GE system architecture
aiming to resolve regression problems. The methodology involves an evolutionary en-
gine based on a GE approach that implements a set of features to operate with MIA.
The context-free grammar itself allows for the attribution of knowledge that delimits the
search space of the solutions, whereas the intervals allowed for the uncertainty to be man-
aged naturally and MIA provide semantics that allows to transform logical formulas into
inclusion relationships.

This work has explored the first evolutionary algorithm that enables interval arith-
metic, thus handling uncertainties by a search algorithm. Furthermore, it has studied
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the role of uncertainty and integration of intervals in the objective functions of the al-
gorithms, introducing mathematical definitions of fitness functions in a modal interval
context. The performed experiments targeted an instance of a real case, which was pre-
sented as a practical approach to showcase the proposal. The final utility of the proposed
methodology would be oriented to modeling complex real-world problems from imprecise
or uncertain data. A deeper analysis of the methodology results would require the model-
ing of a complex system in real-life scenarios. Although this illustrative example might fall
a bit short in providing an indication of performance in more complex problems (usually
involving a higher number of records and variables), the convergence of the population,
the execution times, and the final estimations results make this approach promising for
modelling problems that are influenced by diverse sources of uncertainty.
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