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1 Introduction

A social choice function f assigns one alternative to each preference profile P .
Throughout the paper we assume strict preferences. Eliaz (2004) proposed the
following property called preference reversal:
“If a social choice function chooses x at profile P and y at profile P ′, then

there must be at least one agent such that she prefers x to y at P and y to x at
P ′.”
Requiring a social choice function to satisfy preference reversal could seem

to be a not too demanding property, as it just says that, when going from P
to P ′, the position of y relative to x must have changed in favor of the new
alternative for at least some agent. Indeed, Eliaz (2004) shows, in the universal
domain of preferences, that any strategy-proof and onto social choice function
satisfies preference reversal.1

Group strategy-proofness is a hard to achieve property of social choice func-
tions, yet a very attractive one, since it frees the rule from manipulation by
groups and requires the chosen outcome to be weakly effi cient. Barberà, Berga,
and Moreno (2010) study the domains on which it can be attained by some
rules, and the relationship between those domains and the ones admitting rules
that can avoid manipulation by individuals. As a particular case, when at most
three alternatives can be selected by the rules, individual and group strategy-
proofness turn out to be equivalent.
In this short note, we investigate the relationship between preference re-

versal and group strategy-proofness and show that the former has strong im-
plications: it is a suffi cient condition for social choice functions to be group
strategy-proof, whatever its domain of definition might be. It is also necessary
for group strategy-proofness, hence equivalent, for the special cases where only
two or three alternatives are at stake.
While Section 2 introduces the model, Section 3 presents the main results

and their proofs.

2 The Model

Let N = {1, 2, ..., n} be a finite set of agents with n > 2 and A be a set of
alternatives.
Let P be the set of all complete, reflexive, transitive, and antisymmetric

binary relations on A. Let Pi ∈ P denote agent i’s preferences and P ∈ Pn a
preference profile written as P = (PC , PN\C) ∈ Pn when we want to stress the
role of coalition C in N . Let D =

∏
i∈N Di be the Cartesian product of the set

of admissible individual preferences Di ⊆ P.
A social choice function (or a rule) on D is a function f : D → A. We will

omit mentioning the domain of f when no confusion arises.
One of the best known incentive properties is that of strategy-proofness, re-

quiring the truth to be a dominant strategy for all agents. A more demanding

1See an unpublished work by Barberà (1981) for a related work.
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form of nonmanipulations is obtained by requiring that no group of individuals,
of any size, could benefit from joint departures from truthful preference revela-
tion. This is the general idea underlying the notion of group strategy-proofness.

Definition 1 A social choice function f on D is manipulable at P ∈ D by
coalition C ⊆ N if there exists P ′C ∈

∏
i∈C Di such that f(P ′C , PN\C)Pif(P )

for all i ∈ C. A social choice function is group strategy-proof if it is not
manipulable at any profile P by any coalition C.

Notice that when the coalition C is a singleton we have strategy-proofness.
In the proofs we will be explicit about when and how a coalition manipulates by
writing that "a coalition C manipulates a social choice function f at a profile
P via a subprofile of this coalition, P ′C ".
We now define the property introduced by Eliaz (2004), called preference

reversal.

Definition 2 A social choice function f on D satisfies preference reversal
if for any preference profiles P, P ′ ∈ D and alternatives x, y ∈ A, x 6= y such
that f(P ) = x and f(P ′) = y, then there exists an agent i ∈ N for which xPiy
and yP ′ix.

3 Results and discussion

In this section we state and prove our results. First, whatever the domain of def-
inition, any social choice function satisfying preference reversal does also satisfy
group strategy-proofness. Second, both properties are equivalent when there
are at most three alternatives, however this equivalence can not be generalized
as we show by means of Example 5.

Theorem 3 Any social choice function f satisfying preference reversal is group
strategy-proof.

Proof. By contradiction, suppose that f is not group strategy-proof. That
is, there exist C ⊆ N , P ∈ D, and P ′C ∈ D, such that for any agent i ∈ C,
f(P ′C , PN\C)Pif(P ). Let y = f(P ′C , PN\C) and x = f(P ) 6= y. Define P ′ =
(P ′C , PN\C). By preference reversal, there exists an agent k ∈ N for which xPky
and yP ′kx. Since preferences of agents in N\C do not change, then k ∈ C.
However, for each agent in C, yPkx, which is the desired contradiction.

Although the converse does not hold in general, it is satisfied when there are
at most three alternatives.

Theorem 4 If there are at most three alternatives, any group strategy-proof
social choice function f satisfies preference reversal.2

2The result also holds for any set of alternatives when the rule selects at most three of
them. The same proof works.
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Proof. By contradiction, suppose that f is group strategy-proof but it vio-
lates preference reversal. That is, there exist P , P ′ ∈ D such that f(P ) = x,
f(P ′) = y, y 6= x, and for all i either (1) xPiy and xP ′iy (2) yPix and yP ′ix, or
(3) yPix and xP ′iy. Define as S1, S2, and S3 the sets of agents satisfying each
one of the these options, respectively. Consider the following cases:
Case 1: S1 = ∅. Agents S2 ∪ S3 would manipulate f at P via (P ′S2 , P

′
S3
) since

f(P ′S2 , P
′
S3
) = yPif(P ) = x for any i ∈ S2 ∪ S3, which is a contradiction.

Case 2: S2 = ∅. Agents S1 ∪ S3 would manipulate f at P ′ via (PS1 , PS3) since
f(PS1 , PS3) = xP

′
if(P

′) = y for any i ∈ S1 ∪ S3, which is a contradiction.
Case 3: S1 6= ∅, S2 6= ∅. Suppose first that S3 6= ∅.
By group strategy-proofness, f must have the outcomes set as in Table 1 be-
cause: (1) f(P ′S1 , PS2 , PS3) 6= y since otherwise S1 would manipulate f at
(P ′S1 , PS2 , PS3) via PS1 ; (2) f(PS1 , P

′
S2
, PS3) 6= y since otherwise S2 would ma-

nipulate f at P via P ′S2 ; (3) f(PS1 , PS2 , P
′
S3
) 6= y since otherwise S3 would

manipulate f at P via P ′S3 ; (4) f(PS1 , P
′
S2
, P ′S3) 6= x since otherwise S1 would

manipulate f at P ′ via PS1 ; (5) f(P
′
S1
, PS2 , P

′
S3
) 6= x since otherwise S2 would

manipulate f at (P ′S1 , PS2 , P
′
S3
) via P ′S2 ; (6) f(P

′
S1
, P ′S2 , PS3) 6= x since otherwise

S3 would manipulate f at (P ′S1 , P
′
S2
, PS3) via P

′
S3
; (7) f(PS1 , P

′
S2
, PS3) 6= x since

otherwise S1∪S3 would manipulate f at P ′ via (PS1 , PS3); (8) f(P ′S1 , PS2 , P
′
S3
) 6=

y since otherwise S1 ∪ S3 would manipulate f at (P ′S1 , PS2 , P
′
S3
) via (PS1 , PS3);

(9) f(PS1 , P
′
S2
, P ′S3) 6= y since otherwise S2 ∪ S3 would manipulate f at P via

(P ′S2 , P
′
S3
); (10) f(P ′S1 , PS2 , PS3) 6= x since otherwise S2 ∪ S3 would manipulate

f at (P ′S1 , PS2 , PS3) via (P
′
S2
, P ′S3). Thus, f is defined as in Table 1 where z is

neither x nor y:3

f PS3
PS2 P ′S2

PS1 x z
P ′S1 z y/z

f P ′S3
PS2 P ′S2

PS1 x/z z
P ′S1 z y

Table 1. Outcomes of f when S3 6= ∅.

Suppose now that S3 = ∅. Then, applying group strategy-proofness four times
as follows we obtain that f is defined as in Table 2. First, f(P ′S1 , PS2) 6= y since
otherwise S1 would manipulate f at (P ′S1 , PS2) via PS1 . Second, f(PS1 , P

′
S2
) 6= y

since otherwise S2 would manipulate f at (PS1 , PS2) via P
′
S2
. Third, f(P ′S1 , PS2) 6=

x since otherwise S2 would manipulate f at (P ′S1 , PS2) via P
′
S2
. Fourth, f(PS1 , P

′
S2
) 6=

x since otherwise S1 would manipulate f at P ′ via PS1 .

f PS2 P ′S2
PS1 x z
P ′S1 z y

Table 2. Outcomes of f when S3 = ∅.
3Note that in the case of two alternatives, we would get a contradiction in Table 1 since

the social choice function would not be well-defined.
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The following observation applies for S3 being empty or not. Observe that
S1 = T1 ∪ (S1\T1) such that for each agent i ∈ T1, xP ′iyP ′iz and for each agent
i in S1\T1, zP ′iy (and either xP ′iz or zP ′ix). If T1 = ∅, then S1\T1 = S1 would
manipulate f at P ′ via PS1 . If S1\T1 = ∅, then T1 = S1 would manipulate f at
(P ′S1 , PN\S1) via PS1 . Therefore, neither T1 nor (S1\T1) are empty. Similarly,
S2 = T2∪(S2\T2) such that for each agent j ∈ T2, zPjyPjx and for each agent j
in S2\T2, yPjz (and either xPjz or zPjx). If T2 = ∅, then S2 would manipulate
f at (P ′S1 , PS2 , P

′
S3
) via P ′S2 . If S2\T2 = ∅, then S2 would manipulate f at P

via P ′S2 . Therefore, neither T2 nor (S2\T2) are empty.
Let S3 6= ∅. By group stratregy-proofness, f(P ′T1 , PN\T1) = x, otherwise T1
would manipulate f at (P ′T1 , PN\T1) via PT1 (1 in Table 3). Then, f(P

′
T1
, P ′T2 , PN\(T1∪T2)) =

x, otherwise T2 would manipulate f at (P ′T1 , PN\T1) via P
′
T2
(2 in Table 3).

By group stratregy-proofness, f(PS1\T1 , P
′
N\(S1\T1)) = y, otherwise S1\T1 would

manipulate f at P ′ via PS1\T1 (3 in Table 4). Then, f(PS1\T1 , PS2\T2 , P
′
T1
, P ′T2 , P

′
S3
) =

y, otherwise S2\T2 would manipulate f at (PS1\T1 , PS2\T2 , P ′T1 , P
′
T2
, P ′S3) via

P ′S2\T2 (4 in Table 4). Finally, since f(PS1\T1 , PS2\T2 , P
′
T1
, P ′T2 , PS3) = x (by 2 in

Table 3), f(PS1\T1 , PS2\T2 , P
′
T1
, P ′T2 , P

′
S3
) = y (by 4 in Table 4), and agents in S3

strictly prefer x to y under P ′, S3 would manipulate f at (PS1\T1 , PS2\T2 , P
′
T1
, P ′T2 , P

′
S3
)

via PS3 . Thus, we get a contradiction when S3 6= ∅.

f for P(S1\T1)∪(S2\T2)∪S3
PT2 P ′T2

PT1 x
P ′T1 x (1) x (2)

Table 3. Outcomes of f for P(S1\T1)∪(S2\T2)∪S3 departing from Table 1.

f for P ′T1∪T2∪S3
PS2\T2 P ′S2\T2

PS1\T1 y (4) y (3)
P ′S1\T1 y

Table 4. Outcomes of f for P ′T1∪T2∪S3 departing from Table 1.

Suppose now that S3 = ∅. By group strategy-proofness, f(P ′T1 , PN\T1) = x,
otherwise T1 would manipulate f at (P ′T1 , PN\T1) via PT1 (1’in Table 5). Then,
f(P ′T1 , P

′
T2
, PN\(T1∪T2)) = x, otherwise T2 would manipulate f at (P

′
T1
, PN\T1)

via P ′T2 (2’in Table 5). By group stratregy-proofness, f(PS1\T1 , P
′
T1
, P ′S2) = y,

otherwise S1\T1 would manipulate f at P ′ via PS1\T1 (3’in Table 5). On the
other hand, f(PS1\T1 , P

′
T1
, P ′S2) 6= y, otherwise S2\T2 would manipulate f at

(PS1\T1 , PS2\T2 , P
′
T1
, P ′T2) via P

′
S2\T2 (4’in Table 5). This is a contradiction.
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PS2\T2
PT2 P ′T2
PT1 P ′T1 PT1 P ′T1

PS1\T1 x x(1′) PS1\T1 x(2′)
P ′S1\T1 P ′S1\T1

P ′S2\T2
PT2 P ′T2
PT1 P ′T1 PT1 P ′T1

PS1\T1 PS1\T1 ?(3′)(4′)
P ′S1\T1 P ′S1\T1 y

Table 5. Outcomes of f for S3 = ∅ departing from Table 2.

This ends the proof.

Example 5 shows that with four alternatives in the range, there exist group
strategy-proof social choice functions violating preference reversal.

Example 5 Let A = {x, y, z, w}, N = {1, 2}, and the set of preferences profiles
are D={(P1, P2),(P1, P ′2),(P ′1, P2),(P ′1, P ′2)} where xP1wP1zP1y, zP ′1xP1yP1w,
yP2zP2wP2x and zP ′2yP

′
2xP

′
2w. Let f be a social choice function defined as

follows:
f P2 P ′2
P1 x w
P ′1 z y

Observer that f is group strategy-proof but it violates preference reversal: let P ,
P ′, x and y and observe that xP1y and xP ′1y and yP2x and yP

′
2x.

We finally discuss two possible directions for further research. In problems of
choice among multi-dimensional alternatives when preferences are multidimen-
sional single-peaked, there exists a large class of rules that are strategy-proof,4

however, it is well-known that there are members of this class that violate group
strategy-proofness, hence preference reversal according to Theorem 3. Barberà,
Berga, and Moreno (2010) show that under sequential inclusion, group and in-
dividual strategy-proofness are equivalent. It would be interesting, and left for
future research, to explore under what circumstances group strategy-proofness
and preference reversal coincide. For the case of two alternatives, there are sev-
eral papers characterizing the set of rules satisfying (group) strategy-proofness.5

Since our result states the equivalence between strategy-proofness and prefer-
ence reversal, the latter can be used in all those characterization when it applies.
For the case of three or more alternatives Eliaz (2004) obtains an impossibility

4See, for example, Border and Jordan (1983), Barberà, Sonnenschein, and Zhou (1991),
Barberà, Gul, and Stacchetti (1993).

5See Larsson and Svensson (2006), Manjunath (2012), and recently Basile, Rao, and Rao
(2020).
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result of rules satisfying preference reversal when all strict preferences are admis-
sible. Another question for further research would be to characterize the class
of social choice functions satisfying preference reversal on well-known domains.
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