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1 Introduction

It is well understood that collective decision-making mechanisms can only satisfy interesting
lists of desiderata if their domain of definition is somewhat restricted. In some cases, by
limiting the scope of a theory to mechanisms that operate on a given class of domains, it
becomes possible to identify, or even to fully characterize families of satisfactory mechanisms.
In other cases, impossibilities still persist, in spite of such limitations, and this is equally
relevant, especially when the domains appropriately represent social environments of interest.
There is an extensive literature on the subject, whose antecedents can be traced back

to old times (see Gaertner, 2005), but the modern literature on the subject was sparkled
by the fundamental works of Duncan Black (see Black, 1948 and 1958) and Kenneth Arrow
(see Arrow, 1951-1963). The purpose of this essay is to comment on the nature and the
role of restricted domains in the analysis of a variety of economic and political situations.
More specifically, we will show how research on this topic is still active and fruitful, proving
once again the far reaching influence of Arrow’s work in so many directions. Gaertner (2001,
2002) has provided insightful overviews of work on domain restrictions up to the beginning
of this century. In addition, specific approaches and subjects where domain restrictions play
a crucial role are the object of several extensive surveys in the Handbook of Social Choice
and Welfare (see Arrow, Sen, and Suzumura, 2002 and 2010). We shall refer to some of the
important results already discussed in these works, but mostly insist on recent contributions
that witness the continued fertility of the field.

2 Arrow on domain conditions

In Chapter V of Social Choice and Individual Values, after proving his General Possibility
Theorem, Arrow restated this fundamental result in the following terms: "If we exclude the
possibility of interpersonal comparisons of utility, then the only methods of passing from
individual tastes to social preferences which will be satisfactory and which will be defined
for a wide range of sets of individual orderings are either imposed or dictatorial”. Then he
concluded the chapter by announcing that the rest of the book (Chapters VI and VII, if we
exclude the Notes in Chapter VIII) would be devoted to examine the meaning of the condition
that “the method of forming a social ordering should work properly for a wide range of sets
of individual orderings”. In these late chapters, Arrow discussed three important instances
in which relevant domains would need to be significantly restricted and the relevance of his
impossibility result deserved re-examination. The first instance is discussed in his Chapter VI
and refers to the case when alternatives are the possible distributions of goods in an economy,
agents are individualistic (selfish) and it is socially desirable to rank states according to the
Pareto principle. The second and third instances are addressed in Chapter VII, under the
general heading of “similarity as the basis of social welfare judgments”, but refer to different
situations. One of them is the case where preferences over alternatives are single peaked,
as discussed by Black a few years before Arrow’s work. Here similarity refers to the fact
that different agents use a common dimension to form their preferences, but these can vary
across individuals. In the other case, that Arrow calls the idealist position, all agents share
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the same preferences.
In this Section we briefly discuss Arrow’s and some other contributions to the discussion

of these three sources of domain restrictions and their consequences. Two additional Sections
3 and 4, will be devoted to discuss in more detail some of the work on economic and political
domains, and on single peakedness, before we turn to additional sources of questions and
developments in Sections 5 and 6.
Before we elaborate on these three avenues opened by Arrow, we must briefly comment

on an early and highly relevant paper by Julian Blau (1957). Blau discovered that Arrow’s
Condition 1, requiring the existence of one free triple was in fact insuffi cient to carry the
conclusion of his theorem when more that three alternatives were at stake. This was an
important finding, because it showed that Arrow’s initial formalization of the idea that
domains had to contain "a wide range of sets of individual orderings" needed adjustment,
and so did the proof of his theorem. Blau provided these adjustment by requiring that
all triples should be free, and referring to what we now know as the universal domain
assumption as a particular instance where this assumption would hold. In his 1963 edition
Arrow used the condition of universal domain, which has become standard, even if not
necessary to precipitate the dictatorship conclusion, as we shall see. From here on, we
use the universal domain as a reference point, and thus treat any departure away from as
a domain restriction. But notice that the notion of a free triple has continued to prove
important in different contexts, as it allows to express conditions on domains leading to
both possibility and impossibility results. It will appear in several instances throughout our
text. Very lucid accounts of its role in connection to the further study of social welfare
functions are found in Maskin (1979) and Schmitz (1977).
Let us first comment on the consequences of specializing the analysis to focus on situations

where alternatives represent possible states of an economy. Formally, a first step in that
direction requires to identify alternatives as vectors of real numbers representing what each
agent will obtain of each one of the goods in that economy. Arrow plunged directly into the
case where goods are private, hence allocations for each agent may differ. That allowed him
to discuss the individualistic assumption that agents are selfish. That case was particularly
relevant because a main purpose of Social Choice and Individual Values was to provide new
light in the complex disputes between economists of the time regarding welfare economics,
its purposes and instruments. Chapters III and IV, which precede the statement and proof
of his theorem, are indeed devoted to prepare the reader to enter that debate, where his
decisive contribution was far from generating immediate consensus.
Indeed, the idea of a Bergson-Samuelson social welfare functions was strongly rooted

in the welfare economics of the time (Bergson, 1938, Samuelson, 1947), and the question
whether Arrow’s result had any bearing on that concept was disputed by different economists,
most notably by Samuelson (see Igersheim, 2017, for an account of the discussions that
ensued).
Because of his special interest in the debate about the foundations of welfare economics,

Arrow immediately considered the impact of his work on the analysis of economies with
private goods and selfish consumers. The individualistic assumption is relevant in many
economic situations. But there are other cases of interest in economics, involving the choice of
levels for public goods, and in politics, where alternatives are the characteristics of candidates
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or platforms, that share an important common feature with private goods economies: all
these social decisions can be modeled as choices of vectors of real numbers. In view of this
fundamental analogy, we shall discuss all these models synthetically in the next section.
But let us go back to how Arrow defended of his impossibility in economic domains

where agents are selfish and the Pareto principle must prevail, based on the following idea.
He argued that any social welfare function satisfying these properties and the rest of his
requirements in the impossibility theorem had to be the extension of a partial ordering
which could be proven to precipitate dictatorship. Indeed, Blau’s criticism to the original
proof had to be taken into account to make this intuition work, and a great merit of Blau’s
paper is that he also provided an appropriate argument to that effect.
The second direction discussed by Arrow in the first part of his Chapter VII was that of

escaping his impossibility result when Black’s condition of single peakedness holds. Arrow
stressed that this condition requires a similar assessment of the position of alternatives by
different agents even if they finally do not agree on how to rank them. Under that condition,
it is not only possible to obtain results regarding social welfare functions, but also extend
them to the discussion of other types of social aggregators and to widely enlarge the range
of questions in economic design admitting positive solutions. We shall devote Section 4 to
explain how research has uncovered the many wonderful implications of single peakedness
and related conditions like single crossing, top monotonicity, multidimensional or semi single
peakedness, to answer in the positive not only Arrow’s initial questions but also many others.
Yet a third direction is announced in the second part of his Chapter VII in Social Choice

and Individual Values, when referring to domains of definition, and it comes with the dis-
cussion of the approach that Arrow calls the idealist position. He centers his attention on
the views of different authors who assume, for one reason or another, that agents may be
endowed with a common view regarding social alternatives. These include Rousseau, in
reference to the notion of the general will, Kant on the role of the moral imperative, and
later thinkers. Although he did not discuss it directly, the assumption that agents share the
same view regarding what is correct, but differ in the information they have, is the start-
ing point for the Condorcet jury theorem. In the historical remarks that Arrow added in
his second edition he referred to the fact that Condorcet actually developed two different
approaches. One led him to the discovery of cyclical patterns and the puzzles that Arrow
himself was attacking in his work. He relates the other approach to the idealistic position,
that he had associated in his first edition with Rousseau and Kant, this time establishing the
connection between that line of thought with the theory of juries as developed by Condorcet,
which he qualified as “a stochastic version of the idealistic position”. We shall not pursue
a discussion of this third topic in Arrow’s list of subjects relating to domain restrictions,
although we still think it would be of great interest to keep trying some sort of rejoinder
between these two important lines of thought. Relevant questions regarding this framework,
which appears to be orthogonal to the Arrowian one, have been the subject of much recent
research. See, for example, the literature on communication in juries, as exemplified by the
work of Austen-Smith and Banks (1996) and Austen-Smith and Feddersen (2005, 2006), or
the writings on judgment aggregation, that are surveyed in List and Polak (2010). In spite
of essential differences, the issue of domains is also important in these other cases. We insist
on that point in our final remarks.
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3 Economic and political domains

In many occasions, it is natural to endow the set of alternatives with a specific structure, and
then use the characteristics of the space of alternatives to generate domain restrictions whose
interpretation arises naturally from the meaning attached to those alternatives in concrete
applications.
Economic and political environments are clear examples where such possibilities arise.

Vectors of real numbers stand for quantities of goods or candidates’ characteristics, and
this endows the space of alternatives with a lot of structure, allowing to introduce formal
and economically meaningful restrictions on the sets of admissible preferences of agents (like
selfishness or monotonicity), and on the functions used to aggregate them (like continuity).
The treatments of environments with private or public goods are different because some of

the natural restrictions in one case and the other are not the same. But others are common,
like those arising from the structure of alternatives as vectors of real numbers. We cannot
be exhaustive, and will just try to give a taste of the questions raised and partially solved
in these particular setups. Similar questions have been also discussed in other settings.
The early realization that impossibilities could persist even in the presence of domain

restrictions led to the study of two complementary questions. One is to determine how much
one can restrict the domains of definition of social welfare functions and still have the rest of
Arrowian conditions to precipitate dictatorship. Such domains are referred as being Arrow
inconsistent. The other is to identify domains that are as large as possible and still avoid
the impossibility result. Ideally, both approaches would merge if one could fully characterize
the frontier between possibility and impossibility, but this is more a guide than a feasible
objective.
These two quests generated a lot of research, but we shall only comment on a few papers

and refer the interested reader to an extensive and masterful survey due to Le Breton and
Weymark (2010), to Chapter 6 of Gaertner (2001) and Chapter 5 in McKelvey (1996).
The possibility of finding positive results for large domains, once properly restricted, was

studied from different angles by Maskin (1979), Muller (1982) and Fishburn (1997, 2002),
who also surveyed other works regarding the largest domains under which majority rule
would not cycle.
On the other hand, negative results regarding the specific formulations of economic do-

mains with private goods, were shown to persist, as in Border (1983). Kalai, Muller, and
Sattertwaite (1979) concentrated in identifying suffi cient conditions for a preference do-
main to be Arrow inconsistent. Their paper defined the notion of saturating preferences for
economies with public goods, and was later extended to cover other cases.
Let us start by introducing some minimal formalism.
Let N be a set of agents, A be the set of alternatives, and let B denote the set of all

reflexive and complete binary relations on A. Given R ∈ B, we will denote by P the induced
strict relation such that xPy if and only if xRy and not yRx. A preference relation R ∈ B
is transitive if for any triple x, y, z ∈ A, xRy and yRz, implies xRz. It is a linear order if in
addition to transitivity it is antisymmetric. R is quasi transitive if its induced strict binary
relation is transitive. Let R $ B be the set of all complete, reflexive, and transitive binary
relations.
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The preferences of individuals over alternatives are represented by transitive, complete,
and reflexive binary relations on A: For each i ∈ N , let Ri ⊆ R be the class of i’s admissible
preferences. We call Ri the domain of individual preferences and ×i∈NRi the domain of
preferences. A preference aggregation rule on ×i∈NRi is a map F : ×i∈NRi → B. A social
welfare function on ×i∈NRi is a function f : ×i∈NRi → R. Note that this is the notion we
used without definition in the preceding section. A social choice function on ×i∈NRi is a
function f : ×i∈NRi → A.1

A free triple is a set of three alternatives such that everyone’s preferences are unrestricted
on it (that is, all possible orderings over the three alternatives are admissible in each agent
i’s set of preferences). A preference domain ×i∈NRi is saturating if any two pairs of
alternatives are connected through a sequence of free triples.2

The idea of connecting different pairs of alternatives relative to a domain through a
systematic procedure will be highlighted in Section 5 as a productive source of results, both
positive and negative. We postpone discussion of the general idea, but wanted to mention
here that, again, Arrow’s free triple condition is at the root of this form of thinking.
Kalai, Muller, and Satterthwaite (1979) prove that any social welfare function with a

common saturating preference domain satisfying Independence of Irrelevant Alternatives
(IIA) and Weak Pareto (WP) must be dictatorial.
Further work by Bordes and Le Breton (1989) proved an analogous result through the

use of a new concept of hypersaturating preferences, which applies in particular to the nk-
dimensional space of standard preference profiles with private goods, among other domains.
Le Breton and Weymark (2010) show that for a Cartesian set of alternatives A, if a social

welfare function on a preference domain that is both selfish and hypersaturating satisfies IIA
and WP, then it is dictatorial.
The research on economic domains by these authors, and also by Maskin (1976) and Bor-

der (1983), exhibited a wide array of cases where Arrow’s dictatorship conclusion holds. The
analysis can be further extended to cases where feasibility constraints rule out the frequent
assumption that domains are Cartesian products, like, for example, when alternatives are
allocations in an Edgeworth box (Bordes and Le Breton, 1990; Bordes, Campbell and Le
Breton, 1995).
The research on Arrow inconsistent environments, did also provide examples in the op-

posite direction, by identifying cases where even slight variations in the definition of such
environments allow to escape the dictatorship conclusion. However, the functions that avoid
full dictatorship are in general quite unattractive, as they retain partial dictators.
Another consequence of modelling alternatives as vectors of real numbers is that the rele-

vant spaces on which preferences and social welfare functions are defined become topological,
whose characteristics can then be used to raise and solve additional questions. Several au-
thors have exploited the richness of the set of preferences to show how impossibilities evolve

1Notice that many other variants of collective rules could be adopted when defining how individual
preferences are combined. Domains could be enlarged by not requiring individual preferences to be transitive,
and codomains could allow for different expressions of aggregation, including sets of alternatives, choice
functions, lotteries, or different sorts of binary relations. We restrict attention to the three basic forms
defined above, which are enough to make our points.

2We refer the reader to Le Breton and Weymark (2010) for definitions and results related to this section.
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when enlarging the set of alternatives to be a continuum, rather than discrete. Kramer
(1973) pioneered in that direction, by showing how easily new cyclical patters can emerge in
that case. In a line of work that exploits the topological structure of the set of alternatives
more deeply, Redekop (1991) proved that Arrow inconsistency is retained under domain
restrictions that preserve a large enough degree of preference diversity, in a precise sense.
Specifically, let X = Rm+ and Ccm be the set of all preference orderings on X that are

continuous and monotonic. Le Breton andWeymark (2010) show that ifX = Rm+ withm ≥ 2
and D∗ ⊆ Ccm is somewhere dense, then there is no social welfare function F : Dn∗ → R that
satisfies IIA and WP except for dictatorial rules.
Another set of important contributions that exploits the topological structure of the social

choice problem was sparkled by the work of Chichilnisky (1980, 1982). Her ambitious plan
was to reformulate the issues considered by social choice theory in a form that would allow
comparisons and unification with market models. The approach proposes the abandonment
of the Arrowian condition of independence of irrelevant alternatives, and stresses the decisive
impact of continuity and contractibility in drawing the line between unified models that
admit possibility results and others where impossibilities prevail.
We wanted to call the attention of the reader to this line of research but will not follow it

up further, as it escapes a bit the standard formulation of social choice. The interested reader
is referred to the survey by Baigent (2010), the outline in Gaertner (2001) and Chichilnisky
and Heal (1983).
Last, but not least, let us mention that what we understand here the public goods model

is in fact the setting for much of the voting theory developed by political scientists, under
the assumption that alternatives are real valued vectors indicating the degree of compliance
with different characteristics, voters have a single preferred alternative or bliss point and
preferences decline as the alternatives are “further away”from that ideal.
Again, there is an extensive literature on the subject, whose essence consists in showing

that the possibility of cyclical patters is pervasive, not only under majority voting but also
when other rules based on binary comparisons are considered. Chaos theorems have been
refined to prove the extent to which cycles, who are at the root of Arrow’s impossibility
result, are to be expected to arise in this class of models, unless very restrictive assumptions
are made (see Plott, 1967, Davis, De Groot, and Hinich, 1972, for early contributions, and
McKelvey, 1996 or Schofield, 1978 for accounts by fundamental contributors to this line of
research).
In this section we have concentrated mostly on papers devoted to the analysis of Arrowian

social welfare functions. But the literature has evolved in different directions, and a large
part of papers in social choice theory formalize the outcome of social decision processes not as
an aggregate preference through which to select alternatives, but directly as choices of one or
several alternatives. Attention has somewhat shifted from social welfare functions to social
choice functions or correspondences, especially since the analysis of the latter was proven,
through the work of Gibbard and Satterthwaite (see Gibbard, 1973 and Satterthwaite, 1975),
to be the most appropriate formalism to discuss strategic issues.
In the next section we mix the discussion of social welfare functions with that of social

choice functions, which take the central position in Section 5.
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4 The wonders of single peaked domains

We already mentioned that the consequences of restricting attention to single peaked prefer-
ences were extensively discussed by Arrow in connection to his impossibility result. In fact,
considering this domain condition has proven to be, since then, an extremely fruitful idea,
which can be factorized into different properties, extended in several ways, and related to
other interesting and natural domain restrictions. We shall discuss several lines of research,
reaching to the present, which prove its importance in different applications: location of
public services, choice of political candidates, allocation of funds, election of members to a
club, etc.
In this section we restrict our attention to the case where both the set of alternatives

and agents is finite, and preferences are linear orders. Elements in Rn are called preference
profiles denoted by RN = (R1, ..., Rn). For any i ∈ N , let τ (Ri) denote the best alternative
of Ri on A, also called its peak.

A preference profile RN is single peaked if there exists a linear order ≺ on A such that for
each agent i ∈ N and any two alternatives x, y ∈ A, τ (Ri) ≺ x ≺ y or y ≺ x ≺ τ (Ri), then
xPiy.

Characterizing single peakedness
In many applications, the order relative to which single peakedness is predicated arises

naturally from the interpretation of the situation that is modeled. This is the case, for
example, when alternatives are political candidates, whose position on a left-right spectrum
is agreed upon by all voters, or locations of some public facility on a linear space. In other
cases, determining the existence of an order that turns the profile into a single peaked one
is itself a question that needs analysis. Hence, one may ask whether there are properties
that characterize single peakedness without need to explicitly refer to the underlying order.
Indeed there are two, that were discovered with a considerable time gap between them.
One condition was identified in seminal papers by Sen (1966) and Sen and Pattanaik

(1969) and it involves the ranking of triples of alternatives by triples of agents.

A preference profile RN satisfies Condition 1 if for any three agents and each triple of
alternatives, there exists one alternative that no agent ever ranks as being worse than the
other two.

Condition 1 is necessary for a profile to be candidate to satisfy single peakedness, but
not suffi cient. Actually, it is one of three conditions that Sen and Pattanaik collected under
the common name of value restriction.
Much more recently, Ballester and Haeringer (2011) identified a second necessary condi-

tion, this time involving four alternatives, but only two agents at a time.

A preference profile RN satisfies Condition 2 if for any two agents i and j, and every four
alternatives x,y,z, w such that xPiyPiz and zPjyPjx, it cannot be that wPiy and wPjy.

These two authors prove that Conditions 1 and 2, together, characterize single peaked
preference profiles. This result nicely closes a gap in our understanding of single peakedness.

Aggregation and decision under single peakedness
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Consider the following frameworks, that will allow us to recall the best known conse-
quences entailed by single peakedness, and to raise additional questions.
An immediate consequence of assuming that all preference profiles in the domain of an

aggregation rule are single peaked is that the social preference obtained by simple majority
voting is transitive, when the number of agents is odd, and quasi transitive in all cases. Since
majority voting satisfies all other conditions demanded by Arrow’s impossibility theorem,
restricting preferences to be single peaked allows us to escape from the impossibility. In fact,
many other nice aggregation rules can also be defined in single peaked domains. See Austen-
Smith and Banks (1996), for example. Regarding the construction of social welfare functions,
a remarkable characterization under a weak version of single peakedness is provided in Ehlers
and Storcken (2008).
A very classical observation regarding majority voting as a social choice function is that

for all single peaked preference profiles, it selects the median of the peaks’ distribution
whenever this is unique. This median voter result is extremely useful to analyze political
and location problems, among other applications.
Since single peakedness is such a fruitful condition on domains and leads to nice positive

results, it is natural to ask whether some alternative condition on preference profiles may
lead to similar conclusions.
Recall that Arrow stressed that single peakedness relates the agents’preferences to an

underlying onedimensional ranking, that expresses a similarity of their views regarding al-
ternatives, even if they value them differently. That led him to conjecture that similarity
among agents is at the root of the solution to the aggregation problem.
The attractiveness of single peakedness does not only come from the technical facts

regarding the possibility of designing mechanisms with good properties when preferences
satisfy it. It also derives from the fact that one can present that condition as rather possible
in a variety of cases and under different interpretations. Single peaked preferences on an
interval can be the result of agents’tendency to prefer public services as near as possible
to their own location, or to prefer candidates whose one dimensional views are closer to
their own, or as a reduced form of the trade-off between the values of two competing uses
of resources when actual preferences on pairs are convex. Another domain restriction that
entails a natural justification is single dipped preferences: there, agents prefer locations
(typically of public bads) to be as far as possible from their own, or have a preference for
extremist candidates. Other types of restrictions, as we shall see, are harder to justify,
though in each case it is possible, and relevant to look for reasons to use them, other than
the fact that “they work”. A different form of similarity among preferences underlies the
definition of another important domain restriction:

A preference profile RN satisfies single crossing if there exist a linear order � on the set
of alternatives and a linear order �′ on the set of agents such that for all i,j ∈ N such that
j �′ i, and for all x, y ∈ A such that y � x, if yPix then yPjx.

The implications of single crossing on the design of aggregation and decision rules is quite
parallel to those of single peakedness. For an odd set of agents, the preference of the median
voter, according to the reference ranking of agents, actually coincides with the majoritarian
social preference and is thus transitive. And the top alternative for this median agent is the
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majority winner. Again, slight qualifications must be added when the number of voters is
even. Thus, single crossing performs very well.3

Given the similarities of results, one could ask whether single peakedness and single
crossing are somewhat part of the same family of domain conditions. Indeed, they are.
In Barberà and Moreno (2011) it is proven that, in fact, there is a common root: a weaker

condition, called top monotonicity, can be imposed on domains, is implied by both single
peakedness and single crossing, and still retains the common property that a median voter
is well defined and would choose the majoritarian outcome.

A preference profile RN is top monotonic if there exists a linear order � over A, such that
for each agent i ∈ N , there exists τ (Ri) ∈ A, and for all i, j ∈ N , any z ∈ A such that
τ (Ri) � τ (Rj) � z or z � τ (Rj) � τ (Ri) then τ (Rj)Piz.

We can now state the following result which is a corollary of Theorem 1 in Barberà and
Moreno (2011) for strict preferences and when the aggregation rule is majority voting: if the
profile of preferences RN satisfies top monotonicity, then the median(s) of the distribution
of agents’peaks coincides with the majoritarian outcome(s).
Until here we have spoken of single peakedness as a property of single profiles, but it may

be worth defining what we mean by a single peaked domain. And here we have two choices,
both of them interesting. One of them is to simply define a domain to be single peaked if
each one of the profiles it contains is single peaked relative to some order of the alternatives,
not necessarily the same for all profiles. We can label such domains as extensively single
peaked. A more restricted possibility is to consider that all the profiles in a single peaked
domain must satisfy this condition with respect to the same order of alternatives. The
results we have presented till now apply to the extensive definition, but from now on we will
concentrate on the narrower one, which requires us to assume a common order.

Single peakedness and strategy proofness
The interesting facts about single peakedness do not stop at considering classical Ar-

rowian aggregation issues. One important aspect that Arrow mentioned insightfully but did
not develop in his book was the question of strategic voting.

A social choice function f on ×i∈NRi is manipulable at RN ∈ ×i∈NRi by coalition C ⊆ N
if there exists R′C ∈ ×i∈CRi (R′i 6= Ri for all i ∈ C) such that f(R′C , RN\C)Pif(RN) for all
i ∈ C. A social choice function is group strategy proof if it is not manipulable at any RN by
any coalition C ⊆ N , and it is (individually) strategy proof if it is not manipulable by any
singleton agent.

Following Gibbard and Satterthwaite’s initial negative result on the possibility of de-
signing nontrivial strategy proof rules, several fruitful lines of research on the design of
strategy proof rules did concentrate on relaxing the universal domain assumption, which
clearly played a crucial role in precipitating their conclusion. And single peaked domains
also turned out to be crucial for making it possible to define social choice functions with

3Single crossing is equivalent to order restriction, a condition also used in different contexts. See Gans
and Smart (1996).
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good incentive properties. All the comments that ensue refer to domains of single peaked
preferences that share the same underlying order of alternatives.
Let us start by an important remark. Under single peaked preferences the social choice

function generated by majority voting4 satisfies not only the property of strategy proofness
but also that of group strategy proofness. And again, this is only one of the many inter-
esting functions that can be defined having these properties on the domain of single peaked
preferences.
A fundamental paper by Moulin (1980) characterized all the rules in this domain that are

strategy proof and unanimous (i.e., whenever all agents agree on what alternative is their
best then this is the social choice). Without loss of generality, we can identify the finite
set of ordered alternatives with integer numbers. Then, the class of rules satisfying those
properties coincide with that of minmax rules, defined as follows.

A social choice function f is a minmax rule associated with a set of integers (aS)S⊆N if for
each preference profile RN , f(RN) = minS⊆N {maxi∈S{aS, τ(Ri)}} .
Massó and Moreno de Barreda (2011) showed that additional rules can satisfy the same

properties if we further restrict the class of single peaked preferences by using symmetry
conditions that are natural in many instances. Notice that here we refer to results which
apply to single peaked domains in the version whereby all profiles in the domain must satisfy
the condition for the same underlying order of alternatives. In an interesting paper, Penn,
Patty, and Gailmard (2011) have remarked that a notion of group strategy proofness could
not be attained if we considered the extensive definition of a single peaked domain. These
authors make the point that certain domains that avoid aggregation issues may not solve
incentive problems. Notice that under the extensive definition of single peaked domains,
Arrow’s idea of similarity among agents is weakened, while assuming that all profiles in the
domain share the same underlying order of alternatives expresses a much stronger notion of
similarity. In fact, when all profiles in a single peaked domain arise from the same linear
order of alternatives, it makes sense to think of single peakedness as a property of individual
preferences (relative to that common order). This allows us to define the domains of single
peaked profiles as a Cartesian product, and to avoid any diffi culties in interpreting the
meaning of strategy proofness.

4Here again this loose statement should be qualified depending on whether the number of alternatives is
odd or even. The precise statement of Moulin (1980) will clarify any possible ambiguity. Similar remarks
regarding strategy proofness of the median rule under single crossing preferences is contained in Saporiti and
Tohmé (2006).
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Extensions of single peakedness
In view of the fruitful implications of single peakedness there have been many efforts to

adapt this idea to different contexts in order to address a variety of questions.
Demange (1982) introduced a natural extension of the unidimensional property of single

peakedness to preference profiles that satisfy a similar condition relative to a tree, and
showed that aggregation diffi culties could still be circumvented under this less demanding
requirement.
Chatterji, Sanver, and Sen (2013) adapt her notion of single peakedness and introduce

the concept of semi single peakedness assuming that the set of individual preferences is the
same for all agents and it is a subset of linear orders.

Let G be a tree, that is a graph where there is a unique path linking every pair aj, ak ∈ A.
A path is maximal if it cannot be “extended”by adding more edges at the ends. Denote
P (G) as the set of maximal paths in G. For pt ∈ P (G) and ak ∈ A, ak /∈ pt, let γ(pt, ak) be
the unique alternative, say ar, in pt with the property that every path from an alternative in
pt to ak contains ar. The map λ : P (G) → A is a threshold assignment map if there exists
ak ∈ A such that: (i) for all pt ∈ P (G), [ak ∈ pt] =⇒ [λ(pt) = ak], and (ii) for all pt ∈ P (G),
[ak /∈ pt] =⇒ [λ(pt) = γ(pt, ak)].

For any pair of alternatives aj,ak ∈ A, let 〈aj, ak〉 denote the unique path connecting aj
and ak.

The domain of individual preferences Ri is semi single peaked with respect to the ad-
missible pair (G, λ) if for all Ri ∈ Ri and all pt ∈ P (G) such that τ(Ri) ∈ pt, we have:
(i) [ar ∈ pt such that λ(pt) ∈ 〈τ(Ri), ar〉] =⇒ [λ(pt)Piar], and (ii) [ar, as ∈ pt such that
ar, as ∈ 〈τ(Ri), λ(pt)〉 and ar ∈ 〈τ(Ri), as〉] =⇒ [arPias].

Chatterji, Sanver, and Sen (2013) have proven that if a domain (of individual preferences)
is semi single peaked, then there exists an anonymous, strategy proof, unanimous, and tops
only (that is, social outcomes depend only on agents’best alternative) social choice function
on that domain.
Introducing indifferences in the definition of single peakedness is a delicate matter. Al-

lowing for several alternatives to be tied in the top (see Fishburn, 1973, Moulin, 1984, and
Berga, 1998) or having at most two indifferent alternatives, one on each side of the peak,
is not a problem. Yet, other types of indifferences can cause the breakdown of all the nice
results that are guaranteed by single peakedness (see Barberà, 2007). In the case of private
goods and selfish preferences, indifferences between alternatives where one agent receives the
same are unavoidable, but then it is possible to still require that their preferences on private
consequences be single peaked, and to obtain nice results regarding the existence of strategy
proof mechanism (Sprumont, 1991 and Barberà, Jackson, and Neme, 1997).
In many applications, alternatives can be expressed as vectors of characteristics. A

natural direction to extend the notion of single peakedness is the one taken in political
science, when assuming that alternatives are some subset of Rn, and agents’ preferences
have a maximal alternative and are concave. In that case, important results, exemplified by
McKelvey’s (1976) and Schofield’s (1978) chaos theorems have proven that such an extension
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does not avoid cyclical patterns, for majority or for other rules, and that Arrow’s impossibility
still prevails.
By contrast, an alternative extension of the notion of single peakedness still provides

good results regarding individual incentive properties. Let us be more specific.
Consider alternatives to be elements of the Cartesian product of K integer intervals

A =
K∏
k=1

Bk, where Bk = {ak, ..., bk}, for any k = 1, ..., K and endow this set with the L1-

norm where ‖x‖ =
K∑
k=1

|xk|. Given α, β ∈ A, the minimal box containing α and β is defined

by

MB(α, β) = {γ ∈ A : ‖α− β‖ = ‖α− γ‖+ ‖γ − β‖} .

A preferenceRi ∈ R is (multidimensional) single peaked if it has a unique maximal element
τ (Ri) ∈ A, and for any γ, β ∈ A, if β ∈MB (γ, τ (Ri)) then βRiγ.

Notice that the distance between any two alternatives α and β is the length of any
shortest path between α and β and the extension of single peakedness is based on the idea
that one alternative is better than another if it is “closer”to the best.
In multidimensional single peaked domains, there exist many nontrivial strategy proof

rules. For example, one can ask agents to reveal their best alternative, decompose this
information by projecting each component of this bliss point on each of the integer intervals,
choose the median of these projected best components in each interval, and finally propose
the vector of these onedimensional medians as the social outcome.5

Yet, there are losses in that generalization. A major difference between the onedimen-
sional and the multidimensional world is that, in the former, strategy proofness implies group
strategy proofness as well, and thus effi ciency. This implication fails in the multidimensional
case.
Notice that the positive results one obtains under the notion of multidimensional single

peakedness do not hold if we extend single peakedness by using the Euclidean metric, as
political science’s canonical model does. Also remark that, even under multidimensional
single peakedness, which allows for positive results regarding strategy proofness, one can
get no parallel when dealing with the aggregation problem: McKelvey and Schofield’s chaos
theorems, whereby cycles persist in these worlds, are not overruled by altering the metric.

What domains admit strategy proof rules?
Another intriguing question remains, once having proved that multidimensional single

peaked domains admit many strategy proof mechanisms to be defined on them. Is it possible,

5For precise characterizations and properties of these rules in Cartesian domains, see Barberà, Gul, and
Stachetti (1993), Le Breton and Sen (1995 and 1999). The positive results in these papers must be qualified
when some potential alternatives cannot be chosen and the range of the function is not a Cartesian product.
See Barberà, Massó, and Serizawa (1998), Barberà, Massó, and Neme (1997), and Barberà, Massó, and
Neme (2005).
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in some sense, that this condition on domains is not only suffi cient but also necessary to
achieve strategy proofness? Several authors have tried to substantiate the hunch that some
form of single peakedness lures behind the possibility to design satisfactory strategy proof
rules, and have gotten quite close to it. In particular, Chatterji, Sanver, and Sen (2013) show
that for a wide class of domains that they call strongly path connected it is only possible
to define anonymous, strategy proof, and unanimous social choice functions that depend
only on the best alternative of agents if the domain of definition is semi single peaked on a
tree. The result can be interpreted in spirit as partial proof that domains admitting “well
behaved”social choice functions must be “close”to single peaked.
In a similar spirit Nehring and Puppe (2007) investigated the structure of strategy proof

social choice functions in an abstract algebraic setting, and again showed the prominent
role of median spaces, that can be viewed as an extension of single peakedness, as domains
allowing for strategy proof rules.
In this section we have tried to emphasize how a condition that was recognized to be

interesting long ago, and that is heavily used in different contexts of application to politics
and public economics, has kept the interest of researchers alive over the years, and continues
to prove essential in many contexts, and worth understanding in depth, like mechanism de-
sign (Roth, 2008), judgement aggregation (List, 2012), and even new applications (Gaertner,
2019).

5 Connected paths as a basis for domain conditions

It is not easy to classify domain conditions in a consistent and exhaustive way. Gaertner
(2001) does not propose a systematic classification but distinguishes between different types
of conditions for expository purposes. He studies those that apply to continuous spaces,
those that are based on the quantitative distribution of preferences, and those that he calls
exclusion conditions. Single peakedness belongs to this latter category. If it is defined relative
to a fixed order then some preferences are excluded. If we do not fix the order a priori then
any preference can be attributed to agents in a single peaked profile, but not all combinations
of preferences are admissible: once some agents hold a preference, those of others may be
restricted.
We want to present now a set of conditions on domains that adopt a different form than

the ones we just mentioned. This will add variety to the already long list of conditions that
have attracted the interest of analysts. We have found some of them to be useful in our
own work, and we have also identified other pieces of research that use similar ideas. The
common characteristic of the class of conditions we want to present is that they require
domains to contain certain sequences of preference profiles, obtained by successive changes
in preferences by a single agent at a time. The choice of those preferences that an agent can
introduce at each step when she changes preferences depends on each particular condition,
but can in all cases be indexed by an alternative, used as a reference point, that determine
what preference changes are admissible. Hence, it is more precise to say that the conditions
are imposed on sequences of pairs, each one formed by one alternative and an admissible
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preference profile.6

Before presenting any specific condition in this class, let us refer to a fundamental tech-
nique that was developed by Alan Gibbard in his seminal paper on strategy proofness, and
has since been at the basis of many proofs and lines of argument. Given two preference pro-
files, RN and R′N , Gibbard considered the sequence of profiles that are obtained by changing
one by one the preferences of agents, starting at Ri and leading to R′i.
This simple construction of a sequence connecting RN to R′N was used by Gibbard (1973),

and is the starting point for many arguments and proofs in the study of incentive properties.
What matters to us here is that it is the seed for other similar constructions. Notice that
under the universal domain assumption, all profiles in the sequence connecting any RN to
any R′N are also part of the domain. But this needs not be the case if some combinations of
preferences are excluded from the domain. Then, determining whether certain connections
can be established without leaving a given set of profiles, to be used as a domain, is essential
to establish how far one can go in proving possibility or impossibility results. As an example,
consider one of the uses that has this technique of travelling from one profile to another
through a sequence that derives from changing one preference at a time.
Given a social welfare function F , two alternatives x and y, and two preference profiles

RN and R̃N such that F (RN) ranks x over y and F (R̃N) ranks y over x, there must be some
profile in the sequence we described above where the image of F jumps and changes the
ordering of these two alternatives. Similarly, if f is a social choice function and f(RN) = x,
while f(R̃N) = y, there must be some profile R′N in the path from RN to R̃N where f(R′N)
differs from x for the first time. This technique of gradual substitutions can be used to
locate agents that are pivotal under a given rule, and are at the basis of direct proofs of both
Arrow’s and Gibbard-Satterthwaite’s theorems that were first proposed in Barberà (1980,
1983).
The conditions on domains that we shall present are used in a similar manner, and require

the possibility to study how social choice functions change values at critical points along a
sequence. We present them one by one, in connection to different normative issues that
the literature has considered and found solutions for by appropriately defining the relevant
domains. All of them share similar characteristics, but are not identical, since they have
been developed in connection to a variety of different questions.

The frontiers between dictatorial and non dictatorial domains
Here is a first set of questions that give rise to domain restrictions based on connections

among different pairs formed by a feasible alternative and a preference profile in the domain.
As we have already remarked, one may want to relax domain conditions that are un-

necessarily strong and play a role in impossibility results, in order to explore the frontier

6In his classical book, Fishburn (1973, page 178) proposed a classification of different conditions that one
may impose on social choice functions, and distinguished, among others, between intraprofile and interprofile
conditions, depending on whether the requirements on the outcomes of a function could be expressed in
reference to one profile at a time, or needed to identify several ones that were somewhat connected. The
conditions we present are on domains of definition, rather than on a function’s outcome, and the classification
does not directly apply, but there is a parallel. Single peakedness can be checked profile by profile, while the
conditions we are about to present refer to combinations of profiles.
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between possibility and impossibility. Aswal, Chatterjii, and Sen (2003) have investigated
what characterizes those domains that, even allowing for restrictions, still cannot avoid the
conclusion that only dictatorial social choice functions can satisfy strategy proofness. Their
result is based on the following definition of linked domains where they consider a common
preference domain and linear orders.

For any i ∈ N , let τs(Ri) denote the s-th ranked alternative in Ri on A where τ1(Ri) =
τ(Ri).

A pair of alternatives aj, ak are connected, denoted aj ∼ ak if there exist Ri, R̃i ∈ R such
that τ(Ri) = aj, τ2(Ri) = ak, τ(R̃i) = ak, and τ2(R̃i) = aj. Also, an alternative aj is linked
to B ⊂ A\{aj} if there exist ak, ar ∈ A such that aj ∼ ak and aj ∼ ar. The domain of
individual preferences Ri is linked if there exist a one to one function σ : A→ A such that
(i) aσ(1) ∼ aσ(2), and (ii) aσ(j) is linked to {aσ(1), aσ(2), ..., aσ(j−1)}, j = 3, ...,m.
Based on this condition, which substantially weakens the assumption of universal domain

used in the Gibbard-Sattherthwaite theorem, they can prove that, still, any nonmanipulable
social choice function defined on a linked domain must be dictatorial.
On the positive side, as we have already mentioned in the preceding section, Chatterji,

Sanver, and Sen (2013) produced a theorem proving that it is not only possible to define satis-
factory strategy proof rules under appropriate domains, but that a form of single peakedness,
semi single peakedness, is essential to attain this objective. We already stated this result in
the preceding section but here we want to point out that the additional condition of strong
path connectedness they impose on domains to obtain the result fits into our category of
connectedness requirements.

A pair of alternatives aj, ak are strongly connected, denoted aj ≈ ak if there exist Ri, R̃i ∈ R
such that τ(Ri) = aj, τ2(Ri) = ak, τ(R̃i) = ak, τ2(R̃i) = aj and τs(Ri) = τs(R̃i) for all
s = 3, ..,m. The domain of individual preferences Ri is strongly path connected if for
all aj, ak ∈ A, there exists a sequence of alternatives as(r) ∈ A, r = 0, ..., T , such that (i)
as(0) = aj, (ii) as(T ) = ak, and (iii) as(r) ≈ as(r+1), r = 0, ..., T − 1.

This line of work is still very active, as witnessed, among others, by the recent work
of Chatterji and Massó (2018). It is clear that most of the proposed domain restrictions
we have discussed have a technical flavor, while a few, notably single peakedness are easier
to motivate through real life examples. But let us elaborate a bit on the meaning and
the motivation of the connectedness restrictions. Essentially, they require that the different
profiles are linked through changes that lead from one admissible profile to another which
is also permissible. This allows us to argue that the impact of domain restrictions is not
so much quantitative as it is structural. It is not the number of preference relations that
counts to determine the frontier between possibility and impossibility results, but rather the
structure of the connections between different admissible environments.
We can go even further and propose an interpretation that is still tentative but hopefully

suggestive. We refer to the notions of knit and partially knit environments (Barberà, Berga,
and Moreno, 2018). Knit domains lead to strong impossibilities, partially knit ones admit
nice rules, and since the restrictions satisfied by these two types of environments do not differ

15



much, one could say that they both lie close to the frontier between the two worlds that
the literature about domain restrictions tries to explore. Remember that Arrow interpreted
single peakedness as a form of agreement among individuals: agents may differ in preferences,
but they agree on a common underlying order of alternatives. By analogy, a main difference
between environments that are knit and others that are not is related to the following fact:
it is necessary for an environment to be knit that the changes in the information of an agent
that carry an improvement of some alternative, imply changes in the preferences of some
other for that alternative in the opposite direction. Hence, knitness introduces the possibility
of strong disagreement among individuals when evaluating situations, while environments
that are not knit imply that some form of basic collective agreement.
At any rate, these last remarks can only reinforce our message that there is still much to

do in the trail the Arrow opened for us.

Some equivalence results
We shall now describe several questions regarding the connections between different nor-

mative requirements of interest, and how these depend on the domain of definition of the
rules on which these requirements are predicated.
Let us begin by one question, having to do with the possibility that strategy proofness

might be characterized by some elementary requirements.7

The following two very simple conditions are necessarily satisfied by strategy proof social
choice functions. One is a very sharp version of monotonicity: if f(RN) = x , and R′N is a
profile where, “ceteris paribus”, x is now better ranked by some agents than at RN , then
f(R′N) = x as well. The other condition requires that, if f(RN) = x, and the upper and lower
contour sets of x in R′N are the same as the ones in RN , again f(R′N) must equal x. These
two necessary conditions are, however, not always suffi cient to precipitate strategy proofness,
depending on the domain of definition of the social choice function where they apply. In
Barberà, Berga, and Moreno (2012) we show that they do if the domain is intertwined, a
condition that we now describe for strict preferences over consequences.

For any i ∈ N , let Bi be a non-empty set of possible consequences for i, A ⊆ ×i∈NBi be the
set of alternatives, and, abusing notation, let Ri be the set of agent i’s preferences on Bi.
We assume that preferences are selfish, that is, for all z, x ∈ A, zRix if and only if ziRixi.

Let Ri, Ri ∈ Ri, y ∈ A. We say that Ri is a y-direct transform of Ri if either (i) for any
v ∈ A,

[
yPiv ⇔ yP iv

]
, or else (ii) for any v ∈ A,

[
yPiv ⇒ yP iv

]
, and for any w, t ∈ A\{y},[

wPit⇔ wP it
]
.

Let Ri, Ri ∈ Ri, y ∈ A. We say that Ri is a y-transform of Ri if there exists a finite chain
of preferences, say {Rt}, t = 1, ..., k, such that R1 = Ri, Rk = Ri and for any t > 1, Rt is a
y-direct transform of Rt−1.

Let Ri, R
′
i ∈ Ri, z, x ∈ A where zPix. We say that Ri is (z, x)-intertwined with R′i if there

exists Ri ∈ Ri such that Ri is both an x-transform of Ri and a z-transform of R′i.

7A presentation of some of the properties that follow, directed to a computer science audience, is contained
in Barbera, Berga, and Moreno (2013).
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A set of individual preferences Ri is intertwined if for any Ri ∈ Ri, for any z, x ∈ A such
that zPix, and any R′i ∈ Ri, Ri is (z, x)-intertwined with R′i. A domain ×i∈NRi ⊆ Rn is
intertwined if for any agent i, Ri is intertwined.

Proving the equivalence between our elementary conditions and that of strategy proofness
is a technical result. But remark that although easy to define, strategy proofness of a
rule may be very hard to check. This diffi culty vanishes when working on intertwinned
domains, because then strategy proofness becomes equivalent to reshuffl ing invariance and
monotonicity, which are both easy to check.
Our next application is, again, to prove an equivalence result between two normatively

attractive requirements on social choice functions. We have already noted, in the preceding
section, that all strategy proof social choice functions on (onedimensional) single peaked
domains are also group strategy proof. And the same holds for other functions on that
domain, and on a variety of other domains. But not always! Since we know that one of
the two conditions implies the other, but not viceversa, we can ask: what is the common
characteristic that separates those domains where the equivalence holds from those where
the weaker condition does not imply the stronger one? In Barberà, Berga, and Moreno
(2010) we have identified a condition that is suffi cient (and in essence almost necessary) to
imply this equivalence.
Given a preference profile RN ∈ ×i∈NRi and a pair of alternatives x, z ∈ A, denote

by S(RN ; z, x) ≡ {i ∈ N : zPix}, L(Ri, x) = {y ∈ A : xRiy}, and L(Rj, z) = {y ∈ A :
zPjy}. We define a binary relation % (RN ; z, x) on S(RN ; z, x) as follows: i % (RN ; z, x)j if
L(Ri, x) ⊆ L(Rj, z).

A preference profile RN ∈ ×i∈NRi ⊆ Rn satisfies sequential inclusion if for any pair z, x ∈ A
the binary relation % (RN ; z, x) on S(RN ; z, x) is complete and acyclic.

For preferences Ri,R′i ∈ Ri and alternative x ∈ A, R′i is a strict monotonic transformation
of Ri at x if R′i is such that for all y ∈ A\{x} such that xRiy, xP ′iy.

Let R′N , RN ∈ ×i∈NRi be two preference profiles and let x ∈ A. We say that R′N is a strict
monotonic transformation of RN at alternative x if for any i ∈ N , either R′i = Ri or else R′i
is a strict monotonic transformation of Ri at x.

A domain ×i∈NRi satisfies indirect sequential inclusion if, for all profiles RN ∈ ×i∈NRi,
either (a) the profile RN satisfies sequential inclusion; or else (b) for each pair z, x ∈ A
there exists R′N ∈ ×i∈NRi where R′N\S(RN ;z,x) = RN\S(RN ;z,x), such that (1) R

′
N is a strict

monotonic transformation of RN at x, (2) for any i ∈ S(RN ; z, x), zP ′ix, and (3) % (R′N ; z, x)
is complete and acyclic.

In domains satisfying indirect sequential inclusion, strategy proof rules must also be
group strategy proof.8 Moreover, given any domain violating the condition, it is possible to
construct a social choice function that on that domain and for which the implication does
not hold.9

8See Le Breton and Zaporovhets (2009) for a related domain condition.
9For details about this “almost necessity”result, see Barberà, Berga, and Moreno (2010). The argument

is not quite a necessity implication, and in that sense is reminiscent of previous definitions of “necessity”in
social choice, like the one used in Sen and Pattanaik (1969).
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While still a technical result, this one has an important implication, because it identifies
conditions under which even the coalition of all agents will not be able to jointly improve
upon the outcome prescribed by the social choice function, and thus strategy proofness will
be compatible with a weak notion of Pareto effi ciency. Given the wide spread feeling that
providing good incentives leads to ineffi ciency, the result helps to identify situations in which
this conflict between two normatively attractive conditions need not arise.
An additional result in the same vein, but involving a different form of connectedness,

applies in the case where alternatives consist of vectors of private consequences for selfish
individuals. Rationing, matching or auctions are examples of economic problems that fit
this general description and may be solved through the use of centralized mechanisms. The
revelation principle10 allows us to study the conditions under which these mechanisms will
have good incentive properties, by studying their associated direct mechanisms, that is, the
social choice functions which relate the preferences of agents directly with the mechanisms’
outcome. Individual and group strategy proofness are desirable properties for such direct
mechanisms. One can observe that both conditions, individual and group strategy proofness,
hold for the direct versions of mechanisms that solve matching, rationing, and allocation
problems in contexts that are apparently very different from each other. In Barberà, Berga,
and Moreno (2016) we have identified the common characteristics of these environments,
proving that they all share some essential traits that can be expressed as a connectedness
condition on domains.

The strict upper contour set of Ri at ai ∈ Bi is U(Ri, ai) = {bi ∈ Bi : biPiai}.

A set of individual preferences Ri is rich if for any Ri, R̃i ∈ Ri, ai, bi ∈ Bi such that
biPiai, there exists R′i ∈ Ri such that U(R′i, bi) ⊆ U(Ri, bi) ∩ U(R̃i, bi), L(R̃i, bi) ⊆ L(R′i, bi),
U(Ri, ai) = U(R′i, ai) and L(Ri, ai) = L(R′i, ai). A domain of preferences ×i∈NRi is rich if
for any i ∈ N , Ri is rich.

Again, in that context, one can prove that the equivalence between individual and group
strategy proofness is precipitated by the richness of the domains of definition.
We have laid down a catalog of similar conditions that can be used to solve a variety of

questions regarding the role of domains in precipitating the compatibility or the equivalence
of different normative requirements. These conditions share common characteristics. The
most essential one is that they demand the possibility to connect pairs of preference profiles
through sequences of changes, each one involving one agent’s preference, and that the changes
that are considered admissible, at each step, depend on a reference alternative. This is
obvious for some of the conditions, like strong path connectedness, where at each step there
is a reference alternative that becomes top for the changing agent. Likewise, the one requiring
domains to be linked also involves changes from one preference to another that depend on
a reference alternative, which is used to impose a monotonicity condition on the changing
preferences. In other cases, the reformulation of the original statement into the common
terms is not so direct, but still possible.

10See for example Gibbard (1973), Myerson (1979), Dasgupta, Hammond, and Maskin (1979) and Harris
and Townsend (1981).
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6 Final remarks

We have tried to show by example how one of the many research lines that Arrow opened for
all of us to follow has maintained its vitality till our days. The account is certainly biased
and incomplete, but the main point regarding Arrow’s pioneering role in this and so many
other fields would only be strengthened by further additions.
Let us just remark that the importance of domain conditions is not limited to the study

of social choice, where domains involve profiles of preference relations. It is also a rele-
vant concern for other related classes of problems, like those considered by extensions of
the Condorcet jury theorem to study communication and debate in committees, or those
raised by the literature on judgement aggregation. In particular, defining domains is an
important ingredient in mechanism design, where the characteristics of agents are described
in a comprehensive way, through the language of types, that include not only what agents
prefer, but also what they know, what they believe, how they process the information they
get by themselves or through communication with others. There, the domains on which a
mechanism is defined are represented by type profiles, and similar considerations than the
ones mentioned in this essay, regarding the role of domain conditions, could be added to the
ones we made here.11
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