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A B S T R A C T

Accurate volume measurements of the brain structures are important for treatment evaluation and disease
follow-up in multiple sclerosis (MS) patients. With the aim of obtaining reproducible measurements and
avoiding the intra-/inter-rater variability that manual delineations introduce, several automated brain structure
segmentation strategies have been proposed in recent years. However, most of these strategies tend to be af-
fected by the abnormal MS lesion intensities, which corrupt the structure segmentation result. To address this
problem, we recently reformulated two label fusion strategies of the state of the art, improving their segmen-
tation performance on the lesion areas. Here, we integrate these reformulated strategies in a completely auto-
mated pipeline that includes pre-processing (inhomogeneity correction and intensity normalization), atlas se-
lection, masked registration and label fusion, and combine them with an automated lesion segmentation method
of the state of the art. We study the effect of automating the lesion mask acquisition on the structure segmen-
tation result, analyzing the output of the proposed pipeline when used in combination with manually and au-
tomatically segmented lesion masks. We further analyze the effect of those masks on the segmentation result of
the original label fusion strategies when combined with the well-established pre-processing step of lesion filling.
The experiments performed show that, when the original methods are used to segment the lesion-filled images,
significant structure volume differences are observed in a comparison between manually and automatically
segmented lesion masks. The results indicate a mean volume decrease of ±1.13% 1.93 in the cerebrospinal fluid,
and a mean volume increase of ±0.13% 0.14 and ±0.05% 0.08 in the cerebral white matter and cerebellar gray
matter, respectively. On the other hand, no significant volume differences were found when the proposed au-
tomated pipeline was used for segmentation, which demonstrates its robustness against variations in the lesion
mask used.

1. Introduction

Multiple sclerosis (MS) is a chronic immune-mediated demyeli-
nating disease of the central nervous system. It is characterized by the
formation of lesions (also called plaques), inflammation, and the de-
struction of myelin sheaths of neurons. As in other neurodegenerative
diseases, the neuronal and axonal loss that MS patients experience as
the disease progresses can be quantitatively evaluated from magnetic
resonance (MR) images. This quantification is very useful for practical
treatment evaluation, since it has been demonstrated that there is a
correlation between brain tissue atrophy measurements and MS dis-
ability status (Filippi et al., 2013; Fisher et al., 2008). Furthermore, a
number of clinical observations as well as neuropathologic and neu-
roimaging studies have clearly demonstrated extensive involvement of

the thalamus, basal ganglia, and neocortex in patients with MS
(Minagar et al., 2013). In the concrete case of the thalamus, its atrophy
has been proved to be a clinically relevant biomarker of the neurode-
generative disease process (Houtchens et al., 2007).

The most extended procedure to obtain this quantification for the
different structures or regions that compose the brain is structure seg-
mentation. This technique consists of delineating the brain structures/
regions in MR images acquired at different time points and then,
computing their volume differences. This segmentation is usually per-
formed on the T1-weighted sequence, due to its good contrast between
tissues, where MS plaques appear as focal low signal intensity areas
(hypo-intense with respect to white matter (WM)). In order to automate
this process and to avoid the intra-/inter- rater variability that manual
segmentations introduce, a large number of brain structure
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segmentation algorithms have been proposed during the last two dec-
ades (Patenaude et al., 2011; Kushibar et al., 2018; Fischl et al., 2002;
González-Villà et al., 2016). However, most of them are not designed to
deal explicitly with MS lesions, which makes oscillate their accuracy
when applied to MS patient images (González-Villà et al., 2017).

A commonly used and successful technique to overcome this issue in
automated tissue segmentation consists of replacing the lesion in-
tensities on the T1-w sequence with signal intensities of the normal-
appearing WM before segmentation (Valverde et al., 2014). This pre-
processing step is commonly referred to in the literature as lesion filling,
and has achieved a significant reduction in the associated errors of WM
lesions in tissue volume measurements (Popescu et al., 2014).

In our previous work (González-Villà et al., 2019), we reformulated
two structure segmentation approaches from the literature (Huo et al.,
2017; Wang et al., 2013) to segment the brain structures on MR images
of MS patients containing lesions. We compared the segmentation re-
sults obtained with those proposals to the ones obtained with the ori-
ginal methods when segmenting the lesion-filled images, concluding
that with the reformulated strategies the pre-processing step of lesion
filling can be disregarded, obtaining similar or even more accurate
segmentation results. Both of the analyzed strategies require a previous
delineation of the lesions, either to perform lesion filling (in the case of
the original methods) or as input of the segmentation algorithm (in the
reformulated version). However, in all of the experiments performed,
the lesion masks used were annotated manually, which in practice are
rarely available, since obtaining them is a highly time-consuming task.
Furthermore, the use of manually annotated masks requires expert in-
teraction before applying the structure segmentation algorithms, which
is impractical if our objective is to automate the whole brain-parcella-
tion process. Fortunately, an increasing number of automated MS lesion
segmentation algorithms have been proposed in recent years with very
promising results (Guizard et al., 2015; Deshpande et al., 2015; Roura
et al., 2015; Tomas-Fernandez and Warfield, 2015; Harmouche et al.,
2015; Valverde et al., 2017). The use of these methods allows us to
automate the lesion mask acquisition, with the final objective of seg-
menting the brain structures in a completely automated manner.

In this work, we present a fully automated pipeline to segment the
brain structures on MR images of MS patients, that uses both T1-w and
FLAIR modalities. The pipeline follows a multi-atlas strategy (Iglesias
and Sabuncu, 2015) in which a set of MR images of healthy subjects
with available manual segmentation, i.e. atlases, are non-rigidly regis-
tered to the target MS patient T1-w image, masking out the lesion areas

to reduce the effect of the lesion intensities on the registration result.
After that, the deformation fields obtained from these registrations are
applied to the corresponding segmentations in such a way that new
pairs of images (structural image and segmentation) are obtained,
which are similar to target. Then, these candidate segmentations of the
target are fused (i.e. label conflicts between the candidate segmenta-
tions are resolved voxel-wise) with one of the reformulated strategies
presented in our previous work (González-Villà et al., 2019), to obtain
the final segmentation. The lesion delineations used in this pipeline are
obtained automatically from the FLAIR sequence by means of a re-
presentative unsupervised method of the state of the art (Roura et al.,
2015). In opposition to our previous study, where the lesion masks were
annotated manually, here, we combine the reformulated label fusion
strategies (González-Villà et al., 2019) with automatically obtained
lesion delineations (Roura et al., 2015; Valverde et al., 2017), per-
forming an analysis of the influence of the lesion masks used on the
structure segmentation result of the proposed pipeline. Moreover, a
detailed analysis of the effect of false positive and false negative lesions
on the pipeline result is also performed.

2. Materials and methods

2.1. Data

The images used for evaluation are from the MICCAI MS segmen-
tation (MSSEG 2016) Challenge database (Commowick et al., 2018).
This dataset consists of 15 MS patients with lesion loads ranging from
0.91 to 68.94 cm3. The images of this database are from three different
MRI scanners and different manufacturers including those using 3T and
1.5T magnets. For each MS patient four different MR sequences (3D
FLAIR, 3D T1 weighted sequence pre- (T1-w) and post-Gadolinium in-
jection (T1-w GADO) and axial dual PD-T2 weighted sequence) are
provided. More details about the acquisition parameters of those
images can be found in Table 1. Furthermore, manual lesion delinea-
tions from seven different trained experts are also available. From these
segmentations, a consensus ground truth segmentation was built for
evaluation with the LOP STAPLE algorithm (Akhondi-Asl et al., 2014).
Demographics are shown in Table 2.

The atlases used in our experiments consist of 45 T1-w MR images
obtained from the MICCAI 2012 Grand Challenge and Workshop on
Multi-Atlas Labeling database (Landman and Warfield, 2012). The
images were obtained from Open Access Series on Imaging Studies

Table 1
MICCAI MSSEG 2016 Challenge dataset acquisition details.

Scanner Modality Matrix Slices Voxel resolution (mm)

Philips Ingenia 3T Sagittal 3D FLAIR 336 × 336 261 0.74 × 0.74 × 0.7
Sagittal 3D T1 336 × 336 200 0.74 × 0.74 × 0.85
Axial 2D PD-T2 512 × 512 46 0.45 × 0.45 × 3

Siemens Aera 1.5T Sagittal 3D FLAIR 256 × 224 128 1.03 × 1.03 × 1.25
Sagittal 3D T1 256 × 256 176 1.08 × 1.08 × 0.9
Axial 2D PD-T2 320 × 320 25 0.72 × 0.72 × 4 Gap: 1.2

Siemens Verio 3T Sagittal 3D FLAIR 512 × 512 144 0.5 × 0.5 × 1.1
Sagittal 3D T1 256 × 256 176 1 × 1 × 1
Axial 2D PD-T2 240 × 320 44 0.69 × 0.69 × 3

Table 2
MICCAI MSSEG 2016 Challenge dataset demographics.

Patient age Patient gender Lesion load (ml)

Scanner Mean Std Male Female Male:female Mean Std
Siemens Verio 3T 35.00 10.10 1 4 0.25:1 17.40 24.86
Siemens Aera 1.5T 43.80 8.32 2 3 0.67:1 6.68 17.90
Philips Ingenia 3T 46.00 9.14 4 1 4.00:1 9.41 14.92
Overall 41.60 9.85 7 8 0.88:1 10.30 20.15
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(OASIS) dataset (Marcus et al., 2007) and labeled according to Brain-
COLOR protocol (Klein et al., 2010), including 133 labels that cover the
whole brain: sub-cortical structures, ventricles, cerebral WM, cere-
bellum, brainstem and 98 regions in the cortex.

2.2. The pipeline

In this section, we explain in detail the different steps involved in
the proposed automated pipeline. A graphical representation of these
steps is presented in Fig. 1. Note from this figure that, besides the brain
structure segmentation result, the automatically obtained lesion mask
can also be considered as an output of this pipeline in case it was ne-
cessary for medical purposes, such as lesion quantification or follow-up.

The proposed pipeline requires as input images the T1-w and FLAIR
sequences. Both image modalities have to be co-registered, being the
target image space the one in which the segmentation results would be
given. The election of the registration method is up to the user, how-
ever, for all the experiments presented in this work, we used the nif-
tyreg software (Ourselin et al., 2001) to affinely register the FLAIR
image to the T1-w sequence.

In a first step, the co-registered T1-w and FLAIR sequences of the
patient are given as input to the automated lesion segmentation algo-
rithm, which generates the lesion mask (step 2a). Here, we have used
the Salem Lesion Segmentation algorithm (SLS) (Roura et al., 2015),
since it is an unsupervised strategy, and hence it does not require any
specific training on the used dataset. Moreover, it has been shown to

Fig. 1. Fully automated pipeline for structure segmentation of MS patients. As input of this pipeline, the T1-w and the FLAIR sequences of the patient are required.
The automatic segmentation of the lesions (step 2a) is performed by means of the SLS algorithm (Roura et al., 2015). Then, the T1-w image and the lesion mask are
moved to MNI space (steps 1b and 2b), where the segmentation is performed. Once in MNI space, the patient T1-w image is bias field corrected (Tustison et al., 2010)
and intensity normalized to the atlases model space (Asman et al., 2015) (step 3). After that, the target is projected to the model space (step 4a) and the 15 most
similar atlases are selected to participate in the segmentation (step 4b). Those atlases are affine (Ourselin et al., 2001) and non-rigid (Avants et al., 2008) registered to
the target, masking out the lesion voxels labeled by SLS (step 5a). The deformation fields obtained from these registrations are applied to the corresponding atlas
labels (step 5b). Finally, the atlas labels are fused by means of one of the reformulated strategies (González-Villà et al., 2019) (m-NLSS or m-JLF), for which
information from the target, the lesion mask and the atlas intensities is required (step 6). The obtained segmentation result is then back-propagated to its original
space (step 7).
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provide good segmentation results (i.e. obtained the second best posi-
tion in both lesion segmentation and detection tasks on the MICCAI
MSSEG Challenge (Commowick et al., 2018)). However, any lesion
segmentation method of the state of the art can be used instead, as we
will see later in our experiments. SLS is an outlier-segmentation-based
approach that uses brain tissue labeling and post-processing rules to
provide a lesion mask. The authors consider the lesions as intensity
outliers, that appear as hyper-intense regions in the FLAIR sequence.
First, they perform tissue segmentation on the T1-w sequence, which
they use to compute the intensity distribution of the gray matter (GM)
in the FLAIR image, since it is the brightest healthy tissue in this
modality. Then, since the lesions are even brighter than the GM, their
intensities are considered to be outliers of this distribution. Thereafter,
some post-processing steps are applied to remove false positive lesions
that remain after thresholding the FLAIR volume.

After the lesion segmentation, the T1-w image is affinely registered
(Ourselin et al., 2001) to the MNI305 template (step 1a) and the re-
sulting transformation is applied to the obtained lesion mask (step 1b).
This is done in such a way that both the T1-w image and the lesion
mask are moved to a standardized space (MNI) where the brain struc-
ture segmentation takes place. Once in MNI space, the patient T1-w
image is N4-bias-field corrected (Tustison et al., 2010), and intensity
normalized to a previously built “atlas model” space (Asman et al.,
2015) (step 3). Normalizing the target intensities with the atlases is
very important since our label fusion strategies depend on correspon-
dence search models based on target-atlas patch-intensity similarity.

In this pipeline, only the 15 atlases more similar to the target, from a
cohort of 45 (Landman and Warfield, 2012), are used for segmentation.
Those 15 atlases are selected by performing a PCA based atlas-selection
strategy (Asman et al., 2015). To obtain the PCA manifold from all the
45 atlases, which is done offline, the 3D intensities within the same MNI
brain mask of each atlas are converted to a 1D vector. Then, a naïve
PCA projection is performed on 1D vectors from all atlases to learn the
PCA manifold. The first fifteen modes of variation in the PCA are used
for both projection and measuring the similarity between the atlases
and the target image.

After intensity normalization, the patient T1-w image is projected
into the same PCA manifold (step 4a) and the 15 atlases with the
smallest Euclidean distance to the patient scan are selected to perform
the segmentation (step 4b). Then, the selected atlases are registered to
the normalized patient image, using an initial affine registration
(Ourselin et al., 2001) followed by a non-rigid procedure (Avants et al.,
2008) (step 5a). In all the registrations performed, the automatically
segmented lesion mask, that is already in MNI space (step 2b), is used to
mask out the lesion areas in such a way that we avoid their intensities
interfering in the similarity metric calculation. The deformation fields
obtained from the registration are then applied to the corresponding
atlas labels, which are propagated to the patient space (step 5b), be-
coming potential brain structure segmentations of the target.

Then, the propagated atlas labels are fused with one of the re-
formulated strategies proposed in our previous work (González-Villà
et al., 2019), i.e. masked Non-local Spatial STAPLE (m-NLSS) and
masked Joint Label Fusion (m-JLF), to obtain the final brain structure
segmentation. These strategies exploit the target-atlas similarity under
the assumption that images with similar appearance are more likely to
have similar segmentations. Assuming that the one-to-one mapping
obtained from the atlas-target registration is not perfect, they re-com-
pute the correspondences for every voxel of the target image and the
atlases before segmentation, based on patch-intensity similarity. Since
the target image contains MS lesions, these methods assume that their
abnormal intensities may affect the correspondence finding on the
healthy atlases, obtaining more inaccurate matches than the ones ob-
tained after a masked registration to the atlas. For this reason, they
force the correspondence imposed by the registration result on the le-
sion areas, whereas they redefine the patch shape on the surroundings
of the lesion to prevent these abnormal intensities from interfering in

the correspondence search.
Both m-NLSS and m-JLF require information from the patient T1-w

image, the lesion mask and the atlas structural images to obtain the
atlas-target correspondences. Thus, in the last step of this pipeline, both
the atlas labels and intensity images, combined with the patient
structural image and its corresponding lesion mask are fed to the fusion
algorithm, that computes the final segmentation (step 6). Note that the
obtained segmentation is in MNI space, therefore, the inverse of the
transformation resulting from affine registration of the original patient
image to the MNI305 template is applied to the fusion result to move it
back to the original patient space (step 7).

2.3. Evaluation

In our experiments, we evaluate how the automatically segmented
lesion masks affect the output of the proposed pipeline. To do this, we
compare the segmentation result of the label fusion methods when
using the consensus masks described in Section 2.1, and the auto-
matically-obtained SLS masks. Besides, in order to better analyze the
effect that the lesion mask has on the proposed pipeline, we also
evaluate a second automated lesion segmentation method (Valverde
et al., 2017). This second method follows a supervised strategy based on
Convolutional Neural Networks (CNN), in contrast to SLS, which is an
unsupervised method. This approach was also presented to the MSSEG
2016 Challenge, obtaining the best position in lesion detection, and the
third best position in lesion segmentation. To perform such experi-
ments, the 15 images are segmented with both methods (m-NLSS and
m-JLF) tree times (consensus, SLS and CNN), applying the same lesion
masks also for the atlas masked registration.

Furthermore, to be consistent with our previous work (González-
Villà et al., 2019), we also compare how the original strategies, i.e.
Non-local Spatial STAPLE (NLSS) (Huo et al., 2017) and Joint Label
Fusion (JLF) (Wang et al., 2013), behave when we perform lesion filling
(Valverde et al., 2014) with the consensus, the SLS, and the CNN masks.
The filling strategy used (Valverde et al., 2014) is the same as in
González-Villà et al. (2019). This method replaces the lesion voxel in-
tensities by random values of a normal distribution generated from the
mean WM signal intensity of each two-dimensional slice. As stated by
their authors, this technique is a compromise between local methods –
which use local intensities from the surrounding neighboring voxels of
lesions – and global methods – which use global WM intensities from
the whole brain–, reducing the bias caused by refilled voxels on GM and
WM tissue distributions by means of global information from the whole
slice, whereas aims to reproduce more precisely the signal variability
between slices by means of re-computing the mean signal intensity of
the normal-appearing WM at each slice.

In this second case, the pipeline presented in Fig. 1 is slightly
modified. In particular, before registering the target T1-w image to the
MNI305 template, lesion filling (Valverde et al., 2014) is applied on this
image, as indicated by the lesion mask. Then, the lesion mask is no
longer used in the rest of the pipeline, neither in the atlas registration
(non-masked) nor in the label fusion (original strategies).

Since brain structure ground truth is not available for the MSSEG
2016 database, we quantitatively evaluate the effect of the automatic
lesion masks on the segmentation using the structure volume percen-
tage increase with respect to the manual lesion mask execution, as
follows:

=
−Vol Vol Vol

Vol
100·( )

increase
automatic manual

manual
%

(1)

where Volautomatic and Volmanual are the structure volumes when the au-
tomatic and consensus lesion masks are fed to the pipeline, respectively.

In order to provide global results, the 133 structures obtained from
the segmentation are combined into the following regions: cortical GM,
cerebral WM, sub-cortical GM, CSF, cerebellum GM, cerebellum WM
and brainstem.
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Statistical analysis is performed using the Matlab software package.
We test for significant differences in the structure volumes obtained
with the analyzed methods, considering the Bonferroni correction to
counteract the multiple comparisons problem. These differences are
computed using one-sample t-tests of the structure volume percentage
increase. Moreover, the Pearson’s linear correlation coefficient is used
to compute the correlation between the lesion volume percentage in-
crease and the structure volume percentage increase achieved when
comparing manual vs. automatic lesion masks.

3. Results

3.1. Quantitative results

In the following, we present a comparative analysis of the structure
volume changes observed on the analyzed methods, when using the two
different lesion masks (manual/automatic). Fig. 2 shows the structure
volume percentage increase and/or decrease obtained for the four
parcellation algorithms: (1) Non-local Spatial STAPLE segmentation of
the lesion-filled target image (NLSS(F)), (2) masked Non-local Spatial
STAPLE of the original target image (m-NLSS), (3) Joint Label Fusion of
the lesion filled target image (JLF(F)), and (4) masked Joint Label Fu-
sion of the original target image (m-JLF).

Each of the four box-plots shows the differences of executing the
same pipeline, i.e. one among (1)–(4), when using manual vs. auto-
matically segmented lesion mask as input. Hence, for example, the
NLSS(F) sub-figure shows the comparison of the result of NLSS when
segmenting the images filled according to the manual lesion masks, to

the segmentation obtained with NLSS when segmenting the images
filled according to the automatically obtained lesion segmentation (for
both CNN and SLS separately). The same applies for the rest of sub-
figures.

The two boxplot colors represent the structure volume changes
when comparing the results using manual lesion masks and those ob-
tained using the SLS (green) and CNN (blue) lesion masks.

Notice that significance is assessed for each box-plot independently,
since they are independent to each other. Each of them represents the
volume percentage increase and/or decrease of the analyzed structure
when the presented pipeline is fed with automatic lesion masks (SLS/
CNN) with respect to the same pipeline fed with manual (consensus)
lesion masks. Negative values indicate a volume decrease.

From the figure we can observe that with the reformulated methods
(m-NLSS and m-JLF), the volume change of the analyzed structures was
not significant, when using either manual or automatic lesion masks,
for both SLS and CNN lesion segmentation methods. On the other hand,
when comparing the result of segmenting the lesion-filled images with
the original methods (NLSS(F) and JLF(F)), we observed that some
brain structures presented a significant volume change. In the case of
NLSS(F), the cerebral WM presented a ±0.13% 0.14 ( <p 0.05) volume
increase when using SLS lesion masks, and a ±0.11% 0.19 ( <p 0.05)
when using the CNN masks. In the case of the CSF, it overcame a

±1.13% 1.93 ( <p 0.05) volume decrease when comparing the NLSS(F)
results of using the SLS masks to perform the filling vs. the manually
annotated lesion masks. Furthermore, in the case of JLF(F), the cere-
bellum GM presented a ±0.05% 0.08 ( <p 0.05) volume increase,
whereas the CSF showed a ±0.74% 1.03 ( <p 0.05) volume decrease

Fig. 2. Structure volume percentage increase and/or decrease. Comparison of the structure volume change when utilizing manual vs. automatic (SLS/CNN) lesion
masks on the analyzed brain structure segmentation strategies: (1) NLSS on the lesion-filled target image (NLSS(F)), (2) masked NLSS on the original target image (m-
NLSS), (3) JLF on the lesion-filled target image (JLF(F)) and (4) masked JLF on the original target image (m-JLF). Green boxplots represent the structure volume
percentage change when comparing SLS to manual lesions masks, whereas blue boxplots represent the change between CNN and manual lesion masks. Significance
assessed for each method and structure independently, with box-plots significance independent to each other.
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when comparing the use of SLS and consensus lesion masks.
In a second analysis, we compared the structure segmentation re-

sults of the four label fusion strategies when using the automatically
segmented lesion masks as input of the pipeline (SLS vs. CNN). In the
case of the reformulated methods (m-NLSS and m-JLF), no significant
structure volume changes were observed when using either SLS or CNN
lesion masks. Contrarily, when the original strategies were used to
segment the lesion-filled images (NLSS(F) and JLF(F)), a significant
volume change of the CSF was observed in both label fusion strategies.
In the case of NLSS(F), the CSF volume decreased a ±1.59% 2.12
( <p 0.05) when using the SLS lesion masks with respect to the CNN
masks, whereas in the case of JLF(F), the decrease was a ±1.00% 1.21
( <p 0.05).

Lastly, we analyzed the extent to which volume changes in the le-
sion load (manual vs. automatic) affected the observed structure vo-
lume changes of the evaluated methods. In the case of the CNN lesion
volume, significant correlations were found on the volume changes of
the CSF when segmented with NLSS(F) ( = − <r p0.73, 0.05) and with
JLF(F) ( = − <r p0.73, 0.05); on the cortical GM ( = <r p0.53, 0.05), the
cerebral WM ( = − <r p0.55, 0.05), and the cerebellum WM
( = − <r p0.54, 0.05) when segmented with m-NLSS; and on the sub-
cortical GM ( = − <r p0.52, 0.05) when segmented with JLF(F). On the
other hand, in the case of SLS, no significant correlations were found
between the lesion volume percentage increase and the structure vo-
lume percentage increase, except for the cerebral WM, which showed a
weak correlation ( = <r p0.53, 0.05) with the lesion load when the
method analyzed was NLSS(F).

3.2. Qualitative results

Some qualitative results of the segmentation outputs obtained in our
experiments are shown in this section. Fig. 3 presents an example of a
false positive lesion on the left hippocampus (right side of the image),
and an over-segmented lesion on the right hippocampus (left side of the
image). The figure shows the (a) FLAIR and (b) T1-w sequences of the
target image and the superimposed lesion masks, in red, of (c) the ex-
perts’ consensus delineation and (d) the automatic segmentation ob-
tained with SLS. In addition to this, the resulting images of applying
lesion filling to the target image with (e) the manual and (f) the SLS
masks are depicted in the image. As we can observe in this image, the
hippocampus area, which is highlighted with red circles on the T1-w
sequence, i.e. Fig. 3 (f), looks brighter than the normal-appearing GM
on the FLAIR sequence (Fig. 3 (a)). For this reason, in this particular
case, the automated lesion segmentation method has mis-classified
some voxels of this area as outliers (lesions). In both lesions shown in
the figure, the over-segmented voxels belong to the hippocampus,
which is a GM structure. Therefore, the resulting “extra” filled lesion
voxels (Fig. 3 (f)) obtained with the automatic mask show abnormal
WM-like intensities on that area. On the other hand, when the manual
mask is used to fill the lesions, both hippocampi seem to conserve their
original intensities and shapes.

Regarding the effect of this mis-classification on the segmentation
output of the analyzed methods, we can observe from Fig. 3 that in-
dependently of the lesion mask used, the proposed strategies (Fig. 3 (i),
(j), (m), and (n)) present similar structure classification results. How-
ever, in the case of the filled images we can observe a similar trend with
both segmentation methods (NLSS and JLF). In the case of the auto-
matic lesion mask, the abnormal WM-like intensities are producing an
under-segmentation of both hippocampi (Fig. 3 (h) and (l)) when
compared to the manual lesion mask (Fig. 3 (g) and (k)).

Another example is illustrated in Fig. 4. This figure shows a case of
false negative lesions, two of them surrounded by WM and one peri-
ventricular lesion, i.e. attached to the lateral ventricle. From Fig. 4 (d)
we can observe that some lesions have not been detected by the auto-
mated segmentation method (highlighted with red circles on Fig. 4 (f)).
Hence, after applying the filling on the target image with the SLS mask

(Fig. 4 (f)), their abnormal intensities have not been replaced by
normal-appearing WM intensities, contrary to Fig. 4 (e).

When analyzing the behavior of the multi-atlas segmentation stra-
tegies (Fig. 4 (g)–(n)) we observed that both families of methods (NLSS
and JLF) achieved similar results. In this case, the three highlighted
lesions should be classified as WM. However, if we pay attention to the
peri-ventricular one (right-inferior circle), we realize that when using
the automatic lesion mask, in which that lesion has not been detected,
the four analyzed strategies (Fig. 4 (h), (j), (l), and (n)) classify it as part
of the lateral ventricles. On the other hand, when the consensus manual
mask is used, both original methods previous lesion filling (Fig. 4 (g)
and (k)) and the proposed strategies (Fig. 4 (i) and (m)), properly
classify the lesion as WM.

Regarding the other two lesions (two circles on the top), they are
totally surrounded by WM. In this case, when the manual lesion mask is
used, either to fill the lesion intensities before performing the structure
segmentation with the original methods (Fig. 4 (g) and (k)), or as input
to the proposed strategies (Fig. 4 (i) and (m)), the lesions are correctly
classified as WM. On the other hand, when the automatic lesion mask is
used, where the lesions have not been detected, all the methods also
segment the lesions as part of the WM. Even though this behavior may
seem disconcerting, it is totally normal, since the original methods
(NLSS and JLF) do not always mis-classify the lesion areas. In parti-
cular, they tend to succeed when lesions appear surrounded by WM.
Given that NLSS and JLF correctly classify these two lesions in the
original (not filled) T1-w image, the analyzed methods, which behave
exactly as their originals when no lesion mask applies, also succeed in

Fig. 3. False positive and over-segmentation example. Axial slice of the original
(a) FLAIR and (b) T1-w sequences, (c) the super-imposed consensus lesion
mask, and (d) the automatic lesion mask. T1-w image with lesion filling on the
(e) the manual and (f) automatic lesion masks. NLSS segmentation on the target
image filled (NLSS(F)) with (g) the manual and (h) automatic lesion masks.
Segmentation result of m-NLSS for the target image with (i) the manual and (j)
the automatic lesion mask as input. JLF segmentation on the target image filled
(JLF(F))) with (k) the manual and (l) automatic lesion masks. Segmentation
result of m-JLF for the target image with (m) the manual and (n) the automatic
lesion mask as input. Note that (g-h) and (k-l) are the result of segmenting the
lesion-filled images, however the original target is shown under the segmen-
tation in order to allow an easier comparison with (i-j) and (m-n), respectively.
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their classification.

4. Discussion

We have evaluated the effect of using automatic lesion masks, from
both SLS and CNN, on the brain structure segmentation results of two
proposed masked strategies (m-NLSS and m-JLF) and on their corre-
sponding originals combined with lesion filling (NLSS(F) and JLF(F)).
The results obtained showed that with the proposed strategies, no sig-
nificant structure volume differences were found with respect to the use
of manual lesion masks. On the other hand, when the original methods
were used, significant volume differences on the CSF, the cerebellum
GM and the cerebral WM appeared, when comparing the segmentation
result obtained for both the lesion-filled images (manual vs. automatic
lesion masks).

Therefore, based on the analysis performed, we can conclude that
the most robust procedure to segment the brain structures in MRI
images of patients with MS visible lesions would be the combination of
one of the proposed masked label fusion strategies, i.e. m-NLSS or m-
JLF, with any of the analyzed lesion segmentation strategies.
Particularly, we would suggest the use of m-JLF combined with SLS.
Combining m-JLF with any of the automated lesion segmentation
methods we obtain structure volumes significantly comparable to the
ones obtained when using manually segmented lesion masks, which
allows us to automate the lesion segmentation task, without the need of
human expert intervention. Even though the results obtained with ei-
ther SLS or CNN are comparable, we suggest the use of SLS, since it is an

unsupervised strategy and does not need to be trained for a specific
dataset, obtaining at the same time slightly better segmentation per-
formance ( ±69.03 9.55 vs. ±67.37 13.18 Dice Similarity Coefficient
(DSC) on the analyzed database). Regarding to the label fusion strategy,
m-JLF showed less variation in volumetric measurements in compar-
ison to m-NLSS, which makes this method more robust when combined
with automatic lesion masks. Besides, based on the quantitative ana-
lysis performed in our previous work (González-Villà et al., 2019),
where both methods were tested on a database of 45 simulated MS
patients, m-JLF showed better global segmentation results ( ±86.03 1.16
DSC) in comparison to m-NLSS ( ±79.35 1.34 DSC).

Regarding the nature of the lesions, when false positives are found
by the automated algorithm, either in the form of a new lesion or as an
over-segmentation of an existing lesion, the use of lesion filling might
be risky. Note that SLS segments lesions as hyper-intense outliers in the
FLAIR sequence, and therefore, since the GM is the brightest healthy
tissue in FLAIR, it is probable that the false positives belong to this
tissue. If this is the case, filling the healthy GM tissue with normal-
appearing WM intensities might be self-defeating, causing the auto-
mated brain structure segmentation methods to mis-classify those areas,
as seen in Section 3.2. On the other hand, with the reformulated
methods, the structure classification in the “fake lesion areas” relies
only on the label information of the healthy atlases. Since we do not
take the intensities into account, it becomes a “traditional” label fusion
problem, i.e. fusion without structural image information, which has
been demonstrated to achieve very competitive results on healthy
subjects (Artaechevarría et al., 2009).

Alternatively, the effect of false-negative lesions will depend mostly
on the behavior of the original algorithms (NLSS and JLF) against that
particular lesion, but also on the (masked) registration result. In par-
ticular, when the lesion is totally surrounded by the structure to which
it belongs, for example WM, the original approaches tend to correctly
classify it as part of this structure, as we saw in Section 3.2. Note that
the effect will be the same when a lesion of this kind is detected as a
false positive. However, in the case of juxta-cortical (attached to the
cerebral cortex) or peri-ventricular lesions (abutting the lateral ven-
tricles), the result is more uncertain, since the lesion intensity and
morphology play an important role in the segmentation result. In any
case, false negative lesions will have the same effect on both the ori-
ginal previous lesion filling and the proposed strategies, given that the
proposed methods behave as their originals in the absence of lesions.

Note that automated lesion segmentation methods are not free of
producing segmentation errors (i.e. misclassification of dirty white
matter, periventricular lesions, imaging artifacts, etc). If desired, those
segmentation errors could be corrected or refined by manual inter-
vention of physicians and radiologists, which could help to improve the
final brain segmentation results. Nevertheless, without any manual
intervention, the proposed pipeline, i.e. automated lesion segmentation
(Roura et al., 2015; Valverde et al., 2017) and masked label fusion
(González-Villà et al., 2019), has shown similar results to those ob-
tained with manually annotated masks.

The present study is not free of limitations. The most important one
is the limited number of analyzed images. However, in spite of being
obtained from only 15 patients, we believe that the database was very
heterogeneous in terms of scanner manufacturers, magnetic fields and
lesion loads, providing, in addition, reliable lesion masks, which were
also necessary for the study. Another limitation of this study is the lack
of gold standards for the volume of the analyzed structures. Even
though this would make the demonstrated robustness of our pipeline
more compelling, as far as we know, there is not any publicly available
database with both MS lesion and structure segmentation ground truth
where we can evaluate our methods.

In conclusion, the proposed pipeline with any of the reformulated
segmentation strategies, m-NLSS and m-JLF, has shown to be robust
against variations in the lesion mask used. The robustness of these
strategies when used in combination with automatically segmented

Fig. 4. False negative example. Axial slice of the original (a) FLAIR and (b) T1-
w sequences, (c) the super-imposed consensus lesion mask, and (d) the auto-
matic lesion mask. T1-w image with lesion filling on the (e) the manual and (f)
automatic lesion masks. NLSS segmentation on the target image filled (NLSS(F))
with (g) the manual and (h) automatic lesion masks. Segmentation result of m-
NLSS for the target image with (i) the manual and (j) the automatic lesion mask
as input. JLF segmentation on the target image filled (JLF(F))) with (k) the
manual and (l) automatic lesion masks. Segmentation result of m-JLF for the
target image with (m) the manual and (n) the automatic lesion mask as input.
Note that (g-h) and (k-l) are the result of segmenting the lesion-filled images,
however the original target is shown under the segmentation in order to allow
an easier comparison with (i-j) and (m-n), respectively.
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lesion masks makes the presented fully automated pipeline totally
suitable for medical practice, obtaining similar results to the ones
achieved with the use of expert segmented lesion masks. However, the
same conclusion cannot be applied to the original strategies when
segmenting the lesion-filled images. Even though the volume change
observed for most of the structures is low, the results show that these
changes are significant when comparing the segmentation of the target
image filled with the manual and automatic lesion masks.
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