
 

  

 

 

Evaluation of Charge-Transfer Rates in Fullerene-Based Donor-
Acceptor Dyads with Different Density Functional Approximations  
Pau Besalú-Sala,a Alexander A. Voityuk *ab Josep M. Luisa and Miquel Solà*a 

The shift towards renewable energy is one of the main challenges of this generation. Dye-sensitized solar cells (DSSC), based 
on donor-acceptor architectures, can help on this transition as they present excellent photovoltaic efficiencies yet cheap 
and simple manufacturing. For molecular heterojunctions DSSCs, donor-acceptor pairs are linked in a covalent manner, 
which facilitates their tailoring and rational design. Nevertheless, reliable computational characterization of charge transfer 
rate constants (kCT) is needed to speed this development process up. In this context, the performance of time-dependent 
density functional theory for the calculation of kCT’s in donor-acceptor fullerene-based dyads has not been benchmarked 
yet. Herein, we present a detailed analysis on the performance of seven well-known density functional approximations 
(DFAs) for this type of systems, focusing on several parameters as the reorganization energies (λ), electronic couplings (VDA), 
and Gibbs energies (ΔG0CT), as well as in the final rate constants. The amount of exact exchange at short range (SR) and long 
range (LR) electron-electron distances (and the transition from SR to LR) turned out to be key for the success of the 
prediction. The tuning of these parameters improves  significantly  the performance of current DFAs.

Introduction 
Renewable energy boosting is the 7th target of the United 
Nation member states’ 2030 Sustainable Agenda Development1 
whose premise is to accelerate the transition to a competitive 
low-carbon economy. The production of non-contaminating 
renewable energy is undoubtedly one of the biggest challenges 
facing humanity nowadays. The Earth receives just a tiny 
fraction of the Sun’s colossal power output. But even that tiny 
fraction represents 120000 trillion Watts and, consequently, we 
would need to harvest less than 0.02% to fulfil the energy 
consumed on the planet.2 Energy from the Sun can be collected 
with solar cells, which are devices that convert absorbed 
incident sunlight into electricity. Most current solar cells are 
silicon-based inorganic cells. These cells have a high cost, heavy 
weight, and their production requires high energy consumption 
and leads to environmental pollution.3 Thanks to their excellent 
photovoltaic efficiency and simple and low cost production 
process, dye-sensitized solar cells (DSSC) are a promising 
member of the so-called 3rd generation of photovoltaic devices. 
Fullerenes and derivatives have emerged as promising materials 
for the design of efficient DSSCs.4-8 Two different types of DSSCs 
are usually distinguished: bulk heterojunctions9 (BHJs) where 
the donor and acceptor (D/A) moieties are not covalently 
connected, and molecular heterojunctions10 (mHJs) with 
covalently linked donor-acceptor (D-A) dyads. Main advantage 
of mHJs is that charge transfer (CT) processes can be rationally 
designed since a better structural control and charge mobility 
tuning can be achieved within this approach. 
Tuning the electronic and structural parameters of solar cells for 
optimum performance is a difficult task because several trade-
offs should be considered. The experimental approach to 
optimize DSSCs is heuristic, mainly based on trial and error. In 
this sense, computational modelling of molecular interactions 
and charge transport in macromolecular photovoltaic materials 
is the most rational approach for the design of high-
performance DSSCs. Computational modelling of the power 
conversion efficiency of DSSCs requires the knowledge of the 
charge transfer rate constants (kCT).11 In some cases, kCT are 
known experimentally, but in most cases, the most efficient way 

for designing or tuning DSSCs is to estimate the kCT from 
calculations, and select the most promising D-A dyads to be 
used as building blocks for mHJs DSSCs, which should also 
contain anchoring groups to interact with TiO2 electron 
acceptors.12-15 
There a number of studies that have benchmarked different 
density functional approximations (DFAs) for the calculation of 
excited states based on time-dependent density functional 
theory (TDDFT).16-23 It is widely accepted that standard 
functionals underestimate the excitation energies of CT states 
and only range-separated DFAs provide good estimates of these 
states.24-29 To our knowledge, despite its relevance, no 
benchmarks of DFAs for the calculation of kCT in D-A(fullerene) 
dyads are available yet. The present work aims to fill this void. 
In particular, we compare six well-known range-separated DFAs 
(CAM-B3LYP, ωB97xD, LC-ωhPBE, LC-TPSS, LC-BLYP, M11) and 
one meta-hybrid-generalized gradient approximation (MHGGA) 
functional, MN15. For these seven DFAs, we calculate kCT of four 
D-A dyads for which experimental charge transfer rate 
constants are available. 

Computational Methods 
The ground state geometry for each structure was optimized at 
the B3LYP-D3(BJ)/6-311G(d,p) level of theory,30-32 including 
dispersion interactions through D3 empirical model of Grimme, 
with the Becke-Johnson damping.33, 34 Previous studies have 
demonstrated that CT in DSSC are mostly purely electronic 
processes and, for this reason, it is usually not necessary to 
account for the structural changes of the D-A dyads induced by 
the charge-transfer processes,35-37 except for the calculation of 
the reorganization energy. Nevertheless, in order to confirm 
whether this assumption holds for the systems studied herein, 
we have computed the root-mean-square deviation (RMSD) of 
atomic positions of D* with respect to D+ and A* with respect to 
A-, i.e. the two molecular fragments involved in the CT reaction. 
The highest RMSD obtained was <0.1 Å, confirming that one can 
address the CT reactions of this manuscript as purely electronic 
processes (see ESI for further details).  In addition, D-A dyads 



 
 
considered in this work are relatively rigid, and, therefore, we 
do not expect large conformational effects. 
The donor and acceptor geometries needed to estimate the 
internal reorganization energy (vide infra) and the geometrical 
changes upon CS were obtained at the same level of theory as 
the ground state equilibrium geometries. 
Hundred lowest-lying singlet excited states for each D-A pair 
were computed using the TDDFT formalism with the double-ζ 
with polarization Def2SVP basis set38 and the seven DFAs. The 
ground and excited state calculations were performed with the 
Gaussian16 package.39 
 

Analysis of excited states 

A quantitative analysis of exciton delocalization and charge 
separation is carried out in terms of the transition density.40, 41 
It is convenient to perform the analysis using the Löwdin 
orthogonalized basis. The matrix λC, which contains the 
orthogonalized molecular orbital (MO) coefficients in the 
Löwdin orthogonalized basis, is obtained from the matrix C, 
formed by the MO coefficients in the original basis; λC=S1/2C, 
where S is the atomic orbital overlap matrix. The transition 
density matrix T for an excited state Φ* constructed as a 
superposition of singly excited configurations (where an 
occupied MO ψj in the ground state is replaced a virtual MO ψa) 
is given by: 

𝑻𝑻𝛼𝛼𝛼𝛼 = � 𝐴𝐴𝑗𝑗→𝑎𝑎
𝑗𝑗𝑗𝑗

 𝜆𝜆𝑪𝑪𝛼𝛼𝛼𝛼  𝜆𝜆𝑪𝑪𝛽𝛽𝛽𝛽  (1) 

where Aj→a is the expansion coefficient and α and β are atomic 
orbitals. A key quantity Ω(D,A) is determined by: 

𝛺𝛺(𝐷𝐷, 𝐴𝐴) =
1
2 � �𝑻𝑻𝛼𝛼𝛼𝛼�2

𝛼𝛼∈𝐷𝐷,𝛽𝛽∈𝐴𝐴

 (2) 

The weights of local excitations on D and A are Ω(D,D) and 
Ω(A,A). The weight of electron transfer configurations D→A 
and A→D is represented by Ω(D,A) and Ω(A,D), respectively. 
The index CS=Ω(D,A)-Ω(A,D) describes charge separation 
between D and A; the CT= Ω(D,A)+Ω(A,D) is the total weight of 
CT configurations in the excited state Φ*. Note that in the 
situation when charge transfer (𝐷𝐷 → 𝐴𝐴) is equal to the back 
transfer (𝐴𝐴 → 𝐷𝐷) there is no charge separation between the 
fragments, and  𝐶𝐶𝐶𝐶𝐷𝐷→𝐴𝐴  is equal to zero. With this methodology, 
CT states (CTS) and local excited states (LES) can be easily 
distinguished and identified. In LES, the excitation is mostly 
localized on a single fragment (CS < 0.1e), whereas in CTS 
electron density is transferred between D and A (CS > 0.9e). 
Mixed states have significant contributions of LE and CT. 

 

Solvent effects 

The equilibrium solvation energy ES
eq of a molecule (in the 

ground or excited state) in the medium with the dielectric 
constant ε was estimated using a COSMO-like polarizable 
continuum model42, 43 in the monopole approximation: 

ES
eq(Q, ε) = −

1
2 f(ε)Q+DQ, (3) 

  
where the f(ε) is the dielectric scaling factor, ( ) 1 1f ε ε= −  Q 
is the vector of n atomic charges in the molecular system, D is 

the n x n symmetric matrix determined by the shape of the 
boundary surface between solute and solvent.  
D=B+A-1B, where the m x m matrix A describes electrostatic 
interaction between m surface charges and the m x n B matrix 
describes the interaction of the surface charges with n atomic 
charges of the solute.42, 43 The GEPOL93 scheme44  was used to 
construct the molecular boundary surface. 
The charge on atom X in the excited state Φ*, qX

∗ , was calculated 
as: 

qX
∗ = qX

0 + ΔX,      (4a) 

ΔX =
1
2

� � �𝐓𝐓αβ𝐓𝐓αβ − 𝐓𝐓βα𝐓𝐓βα�
α∈X,β∈YY≠X

 (4b) 

 
where qX

0  is the charge on atom X in the ground state and ΔX is 
its change due to excitation.  
The non-equilibrium solvation energy for the molecule in the 
excited state Φ* can be estimated as:45  

ES
neq�𝐐𝐐𝟎𝟎, ∆, ε, n2� = f(ε)∆+𝐃𝐃𝐐𝐐𝟎𝟎 −

1
2 f(n2)∆+𝐃𝐃∆, (5) 

In Eq. (5), n2 (the refraction index squared) is the optical 
dielectric constant of the medium and the vector ∆ describes 
the change of atomic charges, see Eq. (4b); and Q0 is the vector 
of atomic charges in the ground state. By definition, the external 
(solvent) reorganization energy is the difference of the non-
equilibrium (Eq. 5) and equilibrium (Eq. 3) solvation energies of 
the excited state. 
 

CT rates 

Within the nonadiabatic electron transfer theory, the CT 
process DA→D+A- can be described with the Marcus 
equation:46, 47  

𝑘𝑘𝐶𝐶𝐶𝐶 =
2𝜋𝜋
ℏ 𝑉𝑉𝐷𝐷𝐷𝐷

2 1
�4𝜋𝜋𝜋𝜋𝑘𝑘𝐵𝐵𝑇𝑇

𝑒𝑒𝑒𝑒𝑒𝑒 �−
(𝜆𝜆 + 𝛥𝛥𝐺𝐺𝐶𝐶𝐶𝐶

0 )2

4𝜆𝜆𝑘𝑘𝐵𝐵𝑇𝑇 � (6) 

where λ is the total reorganization energy, ∆G0CT is the Gibbs 
energy difference between the final and the initial states in 
standard conditions, 𝑉𝑉𝐷𝐷𝐷𝐷

2  is the square of the electronic coupling 
of the donor and acceptor, kB is the Boltzmann constant, ℏ is the 
reduced Planck constant, and T is the temperature, which was 
set to 298K for all systems. The Marcus equation is widely used 
to estimate the rate of nonadiabatic electron transfer. 
 
Reorganization energy, λ 

The total reorganization energy (Figure 1, right) is usually 
decomposed into the internal and external contributions (λint 
and λext). λint is the average of the energy required to distort the 
nuclear configuration from the D+-A- ((D-A)*) equilibrium 
geometry to the equilibrium geometry of the (D-A)* (D+-A-) state 
without transferring an electron. And λext is the corresponding 
energy required to change the slow (reorientational) part of the 
solvent polarization between both equilibrium geometries. In 
this study, λint was computed considering isolated donor and 
acceptor, which contribute separately to the internal 
reorganization energy: 

𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜆𝜆𝐷𝐷 + 𝜆𝜆𝐴𝐴 (7) 



 

where λD and λA are the reorganization energy of the donor 
and acceptor. In turn, λD was estimated as 

𝜆𝜆𝐷𝐷 =
1
2

(𝜆𝜆𝐷𝐷
′ + 𝜆𝜆𝐷𝐷

′′) (8a) 

𝜆𝜆𝐷𝐷
′ = 𝐸𝐸𝑛𝑛

′ (𝐷𝐷) − 𝐸𝐸𝑛𝑛(𝐷𝐷) (8b) 
𝜆𝜆𝐷𝐷

′′ = 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖
′ (𝐷𝐷) − 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖(𝐷𝐷) (8c) 

 En(D) and Eion(D) are the energy of the neutral and ionic states 
of donor computed at their equilibrium geometry, En’(D) is the 
energy of the neutral state computed at the equilibrium 
geometry of the ionic state D+. Eion’(D) is the energy of D+, 
estimated at the equilibrium geometry of D. Similarly, we 
calculated λA using equilibrium geometries of A and A-. 
There are two contributions to the solvent polarization 
corresponding to fast electronic relaxation and a much slower 
dipole reorientation. During a vertical electronic excitation, the 
solvent does not have enough time to fully relax, and the 
situation is described by nonequilibrium solvation (Enoneq) 
where only electron polarization is allowed. The equilibrium 
solvation (Eeq) assumes both electronic and dipole relaxation.  
Accordingly, the external reorganization energy, λext, is the 
difference between these two quantities (Enoneq-Eeq). This 
scheme to estimate λext is widely accepted and is an extension 
of the two-sphere Marcus model.48 
 
Electronic coupling and changes in Gibbs energy 

There are a number of studies focused on the development of 
theoretical frameworks for the evaluation of electronic 
coupling.49-51 In this manuscript we made use of the Fragment 
Charge Difference method (FCD) to derive the coupling of LES 
and CTS calculated with TDDFT.52 Within the two-states model, 
the D-A couplings reads 

𝑽𝑽𝑫𝑫𝑫𝑫 =
(𝑬𝑬𝒊𝒊 − 𝑬𝑬𝒋𝒋)�𝚫𝚫𝒒𝒒𝒊𝒊𝒊𝒊�

�(𝚫𝚫𝒒𝒒𝒊𝒊 − 𝚫𝚫𝒒𝒒𝒋𝒋)𝟐𝟐 + 𝟒𝟒(𝚫𝚫𝒒𝒒𝒊𝒊𝒊𝒊)𝟐𝟐
 (9) 

where 𝚫𝚫𝒒𝒒𝒊𝒊 and 𝚫𝚫𝒒𝒒𝒋𝒋  are the difference in the donor and 
acceptor charges in the adiabatic states Φi and Φj, respectively, 
and 𝚫𝚫𝒒𝒒𝒊𝒊𝒊𝒊 is the charge difference computed from the Φi → Φj, 
transition density matrix. 
The Franck-Condon excitations in solution and photoinduced 
charge transfer reactions in most C60-based D-A dyads are 
summarized in Figure 1, left. First, the photo-sensible system 
gets excited by light to one high-in-energy LES, which then 
relaxes to the lowest LES, LES1. In this step, the electron-hole 
pair (exciton) is generated in the fullerene cage (usually C60). 
The following step is the electron-hole pair separation, in which 
one electron is transferred from the donor to the acceptor. The 
∆G0 of this step corresponds to the CT process (∆G0CT). Finally, 
the charge recombination occurs, thus leading to the recovery 
of the ground state. Note that CTSs are usually stabilized by 
polar environments much stronger than LESs and thus the 
solvent effects should be accounted for.  

 
Figure 1. Left, the Franck-Condon excitation and photo-induced charge-transfer 
thermodynamic cycle in solution for donor-acceptor(fullerene) dyads. Right, 
schematization of the reaction coordinate and the physical interpretation of λ, VDA 
and ΔG0. 

Results and Discussion 
We have evaluated the performance of seven DFAs; namely 
MN15,53 M11,54 CAM-B3LYP,55 ωB97xD,56 LC-ωhPBE57, 58 LC-
TPSS59, and LC-BLYP30, 31 (the last six are range-separated 
functionals, and the last three are based on the range 
separation scheme from Hirao and coworkers60) for the 
calculation of charge transfer rates, kCT, in C60-based donor-
acceptor pairs. This set of functionals were selected because 
they tend to be the best for CT studies among the huge variety 
of DFAs.24-27 

The four molecular dyads studied (Figure 2) are C60-azulene (C60-
Az);61 C59N-phtalocyanine (C59N-Pc);62 trans-2 C60-ZnTPP63 and 
C60-triphenylamine (C60-TPA).64 All of them were previously 
reported in the literature as functional materials with 
experimentally measured rate constants. In addition, these 
systems are relatively rigid and, consequently, conformational 
fluctuations play here a less important role than in other more 
flexible dyads. For these systems, we analysed the key 
parameters that affect kCT, thus λ, VDA and ∆G0CT. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 2. Donor-Acceptor dyads studied in this work. 
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Reorganization energy, λ 

The internal and external contributions to the reorganization 
energy, λint and λext, computed for all DFAs are listed in Table 1 
(and Figures SI4-6 on the ESI). For each system, the mean and 
the standard deviation (SD) of both parameters for the DFAs 
studied were calculated. As seen, all DFAs give a similar value of 
λint (SD does not exceed 0.05 eV). Therefore, the small variations 
in λint cannot lead to a substantial change in the predicted kCT. 
Higher variations are found for λext, with largest SD of 0.16 eV.  
 

Table 1. Internal and external reorganization energies. All values in eV. 

λint (eV) C60-Az C60-ZnTTP C59N-Pc C60-TPA 

CAM-B3LYP 0.24 0.28 0.13 0.21 

MN15 0.23 0.27 0.13 0.19 

ωB97xD 0.24 0.28 0.13 0.22 

M11 0.25 0.29 0.14 0.21 

LC-ωhPBE 0.26 0.30 0.14 0.24 

LC-TPSS 0.27 0.26 0.15 0.32 

LC-BLYP 0.27 0.31 0.15 0.26 

Mean 0.25 0.28 0.14 0.24 

SD 0.02 0.02 0.01 0.05 

λext (eV)     

CAM-B3LYP 0.37 0.25 0.21 0.94 

MN15 0.10 0.30 0.27 0.97 

ωB97xD 0.22 0.16 0.11 0.82 

M11 0.21 0.22 0.21 0.82 

LC-ωhPBE 0.26 0.09 0.23 0.88 

LC-TPSS 0.24 0.06 0.24 0.89 

LC-BLYP 0.11 0.12 0.24 0.53 

Mean 0.21 0.17 0.22 0.84 

SD 0.09 0.09 0.05 0.15 

 

The relatively small values of λint computed for the dyads are 
associated with a significant delocalization of excess charges 
generated on the donor and acceptor after CT. One may expect 
that in fullerene containing systems the changes in λint are 
mainly due to the donor moiety. Also, the charge delocalization 
and the size of the acceptor modulate the value of λext (Table 1). 
This is an interesting feature of fullerene-based DA molecules.  
As we shall see in further sections, there is much more 
uncertainty in other quantities that will be the main sources of 
the error in predicting kCT. In general, the reorganization energy, 
λ, is a parameter that does not drastically vary by passing from 
one DFA to another and therefore is not the origin of the error.  
 

Electronic coupling, VDA 

The electronic coupling, VDA, is known to be sensitive to the 
mutual orientation of the donor and acceptor sites. In general, 
many thermally accessible conformations of the D-A complex 

should be considered. However, we calculated the coupling only 
for the equilibrium structure of the complexes because all four 
studied systems are relatively rigid, either due to the presence 
of only few dihedral angles or due to strong stabilizing π-π 
stacking interactions. Thus, we expect that the computed values 
of VDA (Table 2, and figures SI7-8 in the ESI) are quite reliable.  
Nevertheless, we are aware that one should account for 
thermal structural fluctuations if more insight in the values of 
the VDA is desired.  
Note that the CAM-B3LYP, and specially MN15, give slightly 
smaller values than the rest of DFAs analysed. Interestingly, all 
DFAs distinguish two clearly different behaviours regarding 𝑉𝑉𝐷𝐷𝐷𝐷

2 : 
C60-ZnTPP and C60-TPA on one hand and C60-Az and C59N-Pc on 
the other.  The latter present 𝑉𝑉𝐷𝐷𝐷𝐷

2  values 3-4 orders of 
magnitude greater than the former. 

Table 2. Electronic coupling squared, VDA
2. All values in eV2. 

DFA C60-Az C60-ZnTTP C59N-Pc C60-TPA 

CAM-B3LYP 5.40·10-3 9.80·10-6 2.76·10-3 2.13·10-6 

MN15 6.72·10-3 2.19·10-6 2.16·10-4 4.90·10-7 

ωB97xD 4.97·10-3 5.84·10-5 5.36·10-3 6.10·10-6 

M11 5.34·10-4 2.13·10-6 9.99·10-4 1.50·10-5 

LC-ωhPBE 5.24·10-3 1.45·10-5 3.81·10-3 1.51·10-5 

LC-TPSS 6.97·10-3 1.83·10-5 4.02·10-3 2.08·10-5 

LC-BLYP 7.19·10-3 1.69·10-4 4.06·10-3 4.72·10-5 

Mean 5.85·10-3 3.92·10-5 3.03·10-3 1.52·10-5 

 
ΔG0CT calculations 

We have seen already that λ has not a critical impact on the 
evaluation of the kCT for the four systems studied since the 
variation among them is minor. ∆G0CT is present in the 
exponential part of Marcus equation as well, thus should be 
analysed carefully since the errors present in ∆G0CT have an 
exponential translation in the rate constant. To take place, CT 
reactions should present negative or slightly positive ∆G0CT 
values. Computationally, small positive values can be also 
accepted at DFT level, since other electronic states are usually 
very close in energy to the ones of interest and therefore, for an 
accurate (and far more expensive) calculation of these energies 
one should use multireference methods. Fortunately, for C60-
Az, C59N-Pc, and C60-TPA experimental ∆G0CT are available and 
the DFT accuracy is benchmarked against them in Table 3, (and 
Figures SI9-10 in the ESI). It is usual for a light-harvesting 
material that the Gibbs energy for the charge separation (∆G0CS) 
is found in the normal Marcus region, therefore ∆G0CT’s are 
expected to be negative in order the charge transfer to occur in 
a given rate (and it is what happens herein). This is a great 
difference with respect to the charge recombination processes, 
which present their ∆G0 (∆G0CR) in the Marcus inverted region. 
In this manner, the lifetime of the CTS are usually longer. If this 
is the case, their theoretical evaluation becomes even more 
challenging. For ∆G0CT’s, not as like in the previous variables, it 
can be seen that the choice of the DFA is crucial for its correct 
evaluation. LC-ωhPBE, LC-TPSS, and LC-BLYP always give 



 

positive ∆G0CT’s when they should be negative. Although kCT can 
still give reasonable results due to some error cancelation, one 
expects to get the proper thermodynamics of the cycle depicted 
in Figure 1. The highest error, 1.57 eV, is given by LC-BLYP for 
C60-Az. On the other hand, a qualitative good description for 
ΔG0CT’s is given by MN15, M11, ωB97xD and CAM-B3LYP. For 
C60-ZnTTP system, we expect to have a negative ∆G0CT’s since 
MN15, CAM-B3LYP, ωB97xD, and M11 predict so. It is important 
to notice that in the exponent of Eq. 6 there is not only ΔG0CT, 
but (λ+ΔG0CT)2. It could happen, then, that the correct kCT is 
reached due to some error compensation effect between 
incorrect ΔG0CT and λ. This, in general, does not occur in our case 
(see Tables SI1 to SI6 for details). We want to finish this section 
stressing the fact that ∆G0CT is probably the best tool to 
discriminate at first sight whether a specific DFA will perform 
appropriately or not for CT rate constant evaluations, and based 
on the results of Table 3, MN15, CAM-B3LYP, ωB97xD, and M11 
are the most promising DFAs. The last three functionals clearly 
do not predict properly even the qualitative sign of ΔG. 
 

Table 3. DFT-computed ∆G0
CT’s and experimental references. All values in eV. 

∆G0CT (eV) C60-Az C60-ZnTTP C59N-Pc C60-TPA 

CAM-B3LYP 0.20 -0.42 -0.52 -0.96 

MN15 -0.02 -0.73 -0.76 -1.41 

ωB97xD 0.35 -0.09 0.03 -0.23 

M11 0.47 -0.15 -0.08 -0.04 

LC-ωhPBE 0.89 0.41 0.03 0.10 

LC-TPSS 1.00 0.51 0.06 0.21 

LC-BLYP 1.30 0.80 0.12 0.96 

Experimental -0.27 - -0.24 -0.31 

 

Charge transfer rate 

After the parameters of the Marcus equation have been 
examined, we are now in the position to look into the estimated 
charge transfer rates. We compare the relative errors of 
calculated values of log(kCT) with the experimental data (Table 
4, Figure 3 and Figures SI1-SI3 in the ESI). The absolute values 
are listed in the supporting information (Tables SI1-SI6 in the 
ESI). The best overall performance is given by the CAM-B3LYP 
functional, followed by MN15 and ωB97xD with the mean 
absolute percentage error (MAPE) error of 6.3%, 10.9%, and 
14.25%, respectively. The functionals LC-ωhPBE, LC-TPSS, and 
LC-BLYP show worse results due to inaccurate estimates of 
∆G0CT. In general, worst functionals always underestimates the 
rate constants, whereas best functionals tend to slightly 
overestimate some of them, except for the case of C60-TPA, for 
which all functionals underestimate kCT. The analysis of the DFA 
errors split by systems clearly shows that CAM-B3LYP, MN15, 
ωB97xD, and M11 are not only the best functionals in MAPE but 
they are also the best functionals for each system, as can be 
seen in Figure 3. It is worth mentioning that all DFAs give very 
good predictions for C59N-Pc, whilst the biggest error is always 
found for C60-Az.  
 

Table 4. Relative errors of the logarithm of the charge transfer rate constant. Mean absolute percentage error (MAPE) for each DFA. Key parameters for the definition of each DFA. 

  Relative error log(kCT) (%) 

System CAM-B3LYP MN15 ωB97xD[a] M11 LC-ωhPBE LC-TPSS LC-BLYP 

C60-Az 2.42 26.72 -21.61 -49.12 -119.83 -146.33 -266.88 

C60-ZnTTP 7.64 0.42 5.14 -7.89 -55.67 -75.52 -121.13 

C59N-Pc 11.53 -5.89 7.35 3.86 0.38 -2.56 -6.96 

C60-TPA -3.64 -10.46 -22.90 -31.90 -46.17 -58.38 -141.58 

MAPE 6.31 10.87 14.25 23.19 55.51 70.70 134.14 

RSH definition        

Full-range HFX coefficient (α) 0.19 0.44 0.222036 0.428 0.00 0.00 0.00 

Long-range HFX coefficient (β) 0.46 0.00 0.777964 0.572 1.00 1.00 1.00 

Total HFX at long range (α+β) 0.65 0.44 1.00 1.00 1.00 1.00 1.00 

Attenuation parameter (ω) 0.33 - 0.20 0.25 0.4 0.47 0.47 

[a] For ωB97xD functional, HFX and DFAX are treated differently. The full-range DFAX coefficient is 1.0 and the long-range DFAX coefficient is 0.

 



 
 

 

Figure 3. Mean percentage error of the log(kCT) for the four Donor-Acceptor dyads 
and the seven DFAs studied in this work. 

The DFAs show similar and most accurate values of ∆G0CT and 
kCT for C59N-Pc (Table SI3 in the ESI). It is worth mentioning that 
C60-Az computed at MN15 level of theory presented two 
pseudo-degenerate CTS which present almost identical kCT of 
1.13·1013 s-1 and 1.70·1013 s-1. We finally reported the CTS 
leading to the former kCT since the rest of the parameters, and 
specially the electronic coupling, resembled more to the ones 
computed with other DFAs, thus indicating that we are targeting 
the same CTS for all functionals.  

The construction of the DFA has a clear impact on the final 
results. For a general long-range corrected (LC) hybrid scheme, 
the 1/r12 operator for the exchange part of the functional is split 
in the short-range (SR), and long-range (LR) parts, 

1
r12

≡
1 − [α + β · erf(ωr12)]

r12���������������
SR

+
α + β · erf(ωr12)

r12�����������
LR

 (10) 

where r12 is the interelectronic distance. On the right-hand side 
of Eq 10, the first term governs the SR part and the second term 
governs the LR part of the functional. Note that using this 
equation, α controls the amount of exact exchange (HFX) added 
at all interelectronic distances, while β governs the extra 
amount of HFX added at LR; and the separation between SR and 
LR is controlled by the ω attenuation parameter. In this context, 
the exchange-correlation energy, EXC, can be expressed as 
 

EXC = αEHFX,ω
SR + (1 − α)EDFAX,ω

SR  

+ (α + β)EHFX,ω
LR + (1 − α − β)EDFAX,ω

LR + EC 
(11) 

where DFAX corresponds to the (semi)local exchange energy. 
Eq. 11 can be used for the construction of CAM-B3LYP (α=0.19, 
β=0.46, ω=0.33 Bohr-1), MN15 (α=0.44, β=0.00), LC-ωhPBE 
(α=0.00, β=1.00, ω=0.40 Bohr-1), LC-TPSS (α=0.00, β=1.00, 
ω=0.47 Bohr-1) and LC-BLYP (α=0.00, β=1.00, ω=0.47 Bohr-1). 
However, the construction of ωB97xD follows a slightly 
different parametrization since it treats differently the HFX than 
the DFAX part, in particular ωB97xD can be defined as 

𝐸𝐸𝑋𝑋𝑋𝑋 = 𝑐𝑐𝑥𝑥𝐸𝐸𝐻𝐻𝐻𝐻𝑋𝑋,𝜔𝜔
𝑆𝑆𝑆𝑆 + 𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝑋𝑋,𝜔𝜔

𝑆𝑆𝑆𝑆 + 𝐸𝐸𝐻𝐻𝐻𝐻𝑋𝑋,𝜔𝜔
𝐿𝐿𝐿𝐿 + 𝐸𝐸𝐶𝐶  (12) 

where cx = 0.222036. Similar to theoretical predictions of the 
UV-visible absorption spectra of fullerenic and non-fullerenic 
DA molecules,65 the amount of exact exchange added to the 
DFAs through the range-separated scheme appears to be a key 
parameter to control the performance of DFA for charge-
transfer reactions. First, the attenuation parameter should be 
relatively small (i.e. <0.4 Bohr-1) and therefore the transition 
towards long range region should occur at rather big electron-
electron distances to get proper kCT values. One could think that 
having less HFX at short range region will be somehow 
compensated by a larger value of the attenuation parameter (to 
switch to the long-range region at shorter distances, i.e. LC-
ωhPBE, LC-TPSS or LC-BLYP). However, this compensation is not 
observed and some amount of HFX must be added at short-
range to get accurate rates, as happens with CAM-B3LYP (19%), 
MN15 (44%), and ωB97xD (22%). On the other hand, the 
optimal amount of HFX at long range needs to be <100%, as the 
best DFA have 0.65 (CAM-B3LYP) and 0.44 (MN15) of total HFX 
at long-range. The same requirement has been reported 
beneficial, in terms of accuracy of the results, for other long-
range properties as electronic excitation energies.66, 67 The 
usage of (α+β)<1 can be rationalized as a requirement to 
reproduce the effective dielectric constant of the material 
(α+β=εeff) that tailors the decay of the XC potential as (εeffr)-1.66, 

67 For M11 functional α+β is equal to 1.0. However, it has two 
other desirable features: (1) the attenuation parameter is 
relatively low (clearly lower than in LC-BLYP, LC-TPSS or even LC-
ωhPBE), and (2) the HFx term at short electron-electron 
distances is not zero.  
 

Tuning, a look into the future? 

Charge transfer rate constants demand properly taking into 
account the long-range interactions to be accurately computed, 
a well-balanced self-interaction error and a proper decay of the 
exchange-correlation potential. In this and some other fields, 
range-separated functionals can be tuned to meet such 
requirements.68 Herein we have tested, as a proof of concept, 
two tuning schemes for LC-BLYP, which is the worst method 
overall, trying to improve their results for C60-TPA. Our goal was 
to perform a preliminary study to explore if the tuned-DFAs 
have the potential to be good candidates to be used for the 
evaluation of log(kCT). 
 
First, we forced LC-BLYP to fulfil Janak’s theorem (OT1) by 
screening the ω parameter,69 as proposed by Kronik and 
coworkers.70, 71 The working ω for OT1 was 0.236. Similarly, we 
also tested a novel tuning strategy recently developed by some 
of us (OT2).72 In OT2 the empirically-tuned attenuation 
parameter is given by a function of a molecular descriptor 
defined from the linear polarizability and the number of 
electrons in the molecule. The resulting ω was determined to 
be 0.303. 
 



 

Then, charge-transfer rates for OT1 and OT2 were computed 
(Table 5). It has been reported that the variation of the DFA may 
change the character of the charge transfer states determined 
by Equation 2.73 We also observe this effect. Since the CT 
character of the D+-A- state increases going from LC-BLYP 
(CS=0.717, CT=0.723) to OT1 (CS=0.930, CT=0.931) and OT2 
(CS=0.982, CT=0.982), the D+-A- state become almost a pure CT 
state. The state character for the DFAs can be found in the SI. 

Table 5. Marcus equation’s parameters and rate constants for LC-BLYP, OT1, and OT2 
functionals. All values in eV. 

Method λint λext 𝑽𝑽𝑫𝑫𝑫𝑫
𝟐𝟐  ∆G Error log(kCT) 

OT1 0.21 0.56 6.81·10-6 0.21 -46.2% 

OT2 0.22 0.89 9.36·10-6 -0.15 -28.8% 

LC-BLYP 0.26 0.53 4.72·10-5 0.96 -141.6% 

 
It is clearly seen that the tuning of range-separated DFAs can 
have deep positive impact on the accuracy of the obtained 
results. For the C60-TPA the errors are reduced more than three-
fold going from pristine LC-BLYP to OT1, and those are divided 
by more than 1.5 again when moving to OT2. Therefore, a five-
fold improvement of the logarithm of the rate constant is 
achieved using OT2. Interestingly, both OT1 and OT2 tuning 
schemes give ω between the values for CAM-B3LYP and 
ωB97xD, which leads to a sharp decrease of the corresponding 
relative error of computed kCT. 
Furthermore, from pristine LC-BLYP to OT2 we are going 
towards a qualitatively more reliable description of the system 
since ∆G0CT is becoming closer to the experimental value of -
0.31 eV. Moreover, OT2 is the only DFA from the LC-BLYP family 
that presents the proper sign for the ∆G0CT of the CT, which is 
conceptually very important. Interestingly, the λext for OT2 is 
clearly different from the ones of pristine LC-BLYP and OT1, 
being closer to the ones for CAM-B3LYP (0.94 eV) and MN15 
(0.97 eV) or ωB97xD (0.82 eV), which could be an indicator of 
quality. Nevertheless, more effort should be put into these 
tuned functionals to be better than other alternatives such as 
CAM-B3LYP or MN15 for the evaluation of charge transfer 
processes. In that line, the ideal candidate to be tuned in further 
work using OT2 procedure is CAM-B3LYP. There are other 
alternatives to tuned DFAs, such as the new revM11 functional, 
which is tailored to tackle ground- and excited-state 
properties.74 

Conclusions 
We have analysed several factors that can determine the 
accuracy of the computed charge transfer rate for four 
fullerene-based systems, namely, C60-Az, C59N-Pc, C60-ZnTPP, 
and C60-TPA, at the DFT level of theory with five well-known 
range-separated GGA DFAs (CAM-B3LYP, ωB97xD, LC-ωhPBE, 
LC-TPSS, LC-BLYP) and one meta-hybrid-GGA functional, MN15. 
We have found that the estimation of the reorganization energy 
and the electronic coupling given by all benchmarked DFAs have 
a small impact in the final accuracy of charge transfer rate. On 
the contrary, ∆G0CT has proven to be a critical parameter for the 

CT rate computation. Only the MN15, ωB97xD, and especially 
CAM-B3LYP functionals are able to describe ∆G0CT accurately 
enough, correctly reproducing their negative sign. These three 
DFAs give also best results for the kCT estimated using the 
Marcus theory. Overall, we recommend CAM-B3LYP as the best 
choice for modelling fullerene-based materials. Tuning the 
amount of full range and long range HFX seems to be a 
promising strategy that needs to be explored in order to 
develop more accurate functionals for predicting photophysical 
properties. 
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An accurate description of the charge-transfer rate constants (kCT) is required for the rational design of fullerene-based molecular 
heterojunction dye-sensitized solar cells. We have assessed the performance of five long-range corrected hybrid functionals and a 
meta-GGA functional, putting attention on all the parameters that are used for the calculation of kCT within the Marcus equation, 
as well as the impact of the different range-separation schemes on the final results. 


