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ABSTRACT Frequency histograms are ubiquitous, being practically used in any field of science. In this
paper, we present a partial order for frequency histograms and, to our knowledge, no order of this kind
has been yet defined. This order is based on the stochastic order of discrete probability distributions and
it has invariance properties that make it unique. First, we model a frequency histogram as a sequence of
bins associated with a discrete probability (or relative frequency) distribution. Then, we consider that two
histograms are ordered if they are defined on the same sequence of bins and their respective frequency
distributions are stochastically ordered. The ordering can be easily spotted because the respective cumulative
distribution functions of the frequencies of two ordered histograms do not cross each other. Finally, with
each bin we can associate a representative value of the bin, and for two ordered histograms it holds that
all quasi-arithmetic means (such as arithmetic, harmonic, and geometric mean) of the representative values
weighted by the frequencies are ordered in the same direction than the histograms are. Our theoretical study
is supported by three experiments in the fields of image processing, traffic flow, and income distribution.

INDEX TERMS Histograms, ordering, quasi-arithmetic mean, traffic flow, histogram equalization, income
distribution.

I. INTRODUCTION
Histograms were introduced by Karl Pearson in [1]. Since
then, they have become ubiquitous in all branches of knowl-
edge, to visually represent the distribution of occurrences,
or frequency, between different values of a variable. To each
value there corresponds a rectangular ‘‘bin’’, which height
gives the corresponding frequency. If the variable is contin-
uous, its range is usually divided into equal intervals, and
a representative value for each segment is given. When we
consider relative frequencies we speak of a frequency his-
togram. We will consider in this paper frequency histograms
representing the distribution of a numerical variable.

We present in this paper a partial order for frequency
histograms. To our knowledge, no order has been yet defined
on frequency histograms, neither on histograms in general.
The order is based on the underlying order of the frequency
distributions of the histograms. This order is such that,
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for any two ordered histograms, any quasi-arithmetic mean
[2], [3] calculated on the same sequence of representative
values and weighted by the frequencies, keep the same order.
For instance, if one histogram precedes another one, then the
arithmetic, harmonic and geometric means will be greater for
this histogram than for the second histogram. This property
will hold whichever representative values we use for the
bins or intervals. And the order is preserved if the bins are
clustered.

Quasi-arithmetic, also called Kolmogorov or Kolmogorov-
Nagumo, means are ubiquitous in many branches of science.
In information theory, Rényi [4] defined axiomatically the
entropy of a probability distribution as a Kolmogorov mean
of the information conveyed by the results, where − log pk
is the information conveyed by result k with probability pk .
In economics, since long time it has been discussed about
which mean was more accurate for a particular problem [5],
and some problems are represented by harmonic mean rather
than arithmetic mean, like the price earning ratio, P/E . Also,
the powermean, depending on a parameter η > 0which gives
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the elasticity of substitution among different types of labor,
is implicitly used for the aggregate labor demand (power
mean with power equal to η−1

η
), and for its corresponding

wage (power mean with power equal to 1− η) [6], pag. 30.
Sometimes a problem is represented by more than one

mean. Interesting examples of two mean representations,
arithmetic and harmonic, come from Physics, where springs
added in series combine harmonically, and in parallel arith-
metically, while resistors in parallel combine harmonically,
and in series arithmetically. Another example is traffic flow
[7] where two different means for speeds are meaningful for
the problem at hand, the arithmetic mean, or time mean
speed, and harmonic mean, or space mean speed. In [8]
both geometric and harmonic mean are used in addition to
arithmetic mean to improve noise sourcemaps. Andweighted
quasi-arithmetic means have been shown [9] to be related
to the optimal variance of the multiple importance sampling
technique in monte carlo. See also [10] for an interesting
discussion on Kolmogorov means.

Recently, an invariance property for quasi-arithmetic
means of a sequence of numbers when weights, or frequen-
cies, changed was described in [11]. When frequencies were
ordered [12], all means were ordered in the same direc-
tion too. But to apply, the invariance property requires the
sequence of numbers to be in increasing order. This appar-
ent restriction does not happen in a frequency histogram,
where by construction the representative values in the bins
are in increasing order. This will allow us to define the
histogram order by inheriting the order of the underlying
frequencies. We will show three applications of this order,
to traffic flow [7], [13], where histogram order explains
inconsistencies in the variation of the two different means
used to measure mean speed between two spots; to image
processing, where we will consider the order between the
original image intensity histogram and its equalized ver-
sion [14]; and to income distribution, where we will compare
histogram ordering with the classic Lorentz order [15] and
Gini coefficient [16] to measure income inequalities.

This paper is organized in the following way. After
the introduction, Section II recalls the definition of
quasi-arithmetic mean and introduces the invariance proper-
ties. In Section III we define the order between histograms
and give its properties. Section IV-A recalls the time speed
and space speed means used in traffic flow. In Section IV-
B we show the relationship of our order with histogram
equalization in image processing. In Section IV-C we show
the application to the study of the income per capita.

II. PREVIOUS WORK: INVARIANCE PROPERTY OF
QUASI-ARITHMETIC MEANS
A. QUASI-ARITHMETIC, KOLMOGOROV OR
KOLMOGOROV-NAGUMO MEAN
The weighted Kolmogorov, or Kolmogorov-Nagumo,
or quasi-arithmetic mean [2], [3] of sequence {bk} is defined

as

h−1
( n∑
k=1

αkh(bk )
)
, (1)

where h(x), called the Kolmogorov-Nagumo function, is a
strictly monotonic function (and thus invertible) with range
a subset of R, with inverse function h−1(x), and the {αk}nk=1
are positive weights adding to 1. Observe that, for the mean
to be defined, for all indexes k the values h(bk ) have to be
defined. The function h(x) is called the Kolmogorov-Nagumo
function.

The Kolmogorov mean contains all classic means, for
instance, for h(x) = x we have the weighted arithmetic mean,
h(x) = 1/x the harmonic mean, h(x) = log(x) the geometric
mean, and for h(x) = xr the family of power means.

B. QUASI-ARITHMETIC MEAN INVARIANCE PROPERTY
The fact that a problem can be represented by differ-
ent weighted means makes us consider whether the order
between means is kept when the weights change. The follow-
ing invariance property was obtained in Sbert and Poch [11]
(see Appendix for a direct proof):
Theorem 1: Let h(x) be an invertible strictly monotonic

function, with inverse function h−1(x). Consider a sequence
of positive weights {αk}nk=1 and {α′k}

n
k=1,

∑n
k=1 αk =∑n

k=1 α
′
k = 1. Then conditions a) and b) are equivalent:

a)

α′1 ≥ α1

α′1 + α
′

2 ≥ α1 + α2

...

α′1 + . . .+ α
′

n−1 ≥ α1 + . . .+ αn−1

α′1 + . . .+ α
′

n−1 + α
′
n = α1 + . . .+ αn−1 + αn

(2)

b) For any increasing sequence of real numbers {bk}nk=1 it
holds:

h−1
( n∑
k=1

α′kh(bk )
)
≤ h−1

( n∑
k=1

αkh(bk )
)
. (3)

Condition a) defines first stochastic dominance or first
stochastic order between distributions [12], [17] and we write
it as {αk} �FSD {α′k} or {α

′
k} ≺FSD {αk}.

In the Appendix we prove the following corollary
Corollary 1: If {αk} �FSD {α′k} then α

′

1 ≥ α1 and α
′
n ≤ αn

The following corollary tells us that the order invariance
extends to all means.
Corollary 2: If {αk} �FSD {α′k} then all quasi-arithmetic

means of an increasing sequence of numbers {bk}nk=1 with
weights {αk} will precede the mean with weights {α′k}.

Proof: If {αk} �FSD {α′k} then condition a) of Theo-
rem 1 is true independently of the mean considered, then for
any mean such that it is defined over the sequence {bk}nk=1
condition b) holds. �
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Eq. 2 means that the cumulative distribution func-
tion (CDF) of {αk}nk=1 will be always under the CDF of
{α′k}

n
k=1. Geometrically, the CDF of the dominating distribu-

tion {αk}nk=1 lies under the CDF of {α′k}
n
k=1.

The order �FSD defines a partial order between the distri-
butions, as it can be easily seen from Eq. 2 that this order
is a reflexive, antisymmetric and transitive relation. It is a
partial order in general, and only a total order for n = 2,
where {α′k} ≺FSD {αk} iff α

′

1 ≥ α1. For n > 2, consider the
distributions {α′k} = {

1
n − ε,

1
n + ε, . . . ,

1
n ,

1
n + ε,

1
n − ε}

and {αk} = { 1n + ε,
1
n − ε, . . . ,

1
n ,

1
n − ε,

1
n + ε}, where

1
n > ε > 0. According to Corollary 1, neither {α′k} ≺FSD {αk}
nor {αk} ≺FSD {α′k}.
Observe that the weights {αk}nk=1 can be interpreted as a

discrete probability distribution, or probability mass function
(PMF), or also as a frequency distribution. Inversely, a PMF
or a frequency distribution can be used as weights. This
double interpretation, as weights and as frequencies, will be
used in next Section.

III. HISTOGRAM ORDERING
We first define formally a frequency histogram (for economy
of notation we will use just ‘‘histogram’’ within the con-
text of this paper). Given a real variable X with values in
D = [lmin, lmax], we divide D into a sequence of n intervals,
[lmin = l0, l1[ , [l1, l2[ , . . . , [ln−1, lmax = ln]. We also allow
for the possibility of l0 = −∞ and/or ln = +∞, and we
do not require the intervals to be of equal length, although
they can be graphically represented as of equal length, see
Fig. 11(a).

Given a distribution of frequencies α = {αk}nk=1, we asso-
ciate interval [li−1, li[ with frequency αi.
Definition 1: Given a sequence of intervals l = {lk}nk=0

and a frequency distribution α = {αk}nk=1, histogramH(l,α)
is a mapping H : l → α such that for all 1 ≤ i ≤ n,
H([li−1, li[) = αi.

Observe that we set the upper boundaries of the intervals
open so they do not overlap with each other.
Definition 2: We say that sequence of real numbers b =
{bk}nk=1 is a representative sequence for histogram H(l,α)
when for all i, bi ∈ [li−1, li[.
Observe that the {bk}nk=1 numbers form by definition an

increasing sequence, and we do not restrict them to be
positive. Using b we can define the mean of a histogram,
extending the quasi-arithmetic transform from sequences to
histograms.
Definition 3: Given a strictly monotonic function h(x),

with inverse function h(x)−1, the quasi-arithmetic mean of
histogram H(l,α), l = {lk}nk=0, α = {αk}

n
k=1, with repre-

sentative values b = {bk}nk=1, is the quasi arithmetic mean of
sequence b with weights α, this is, h−1

(∑n
k=1 αkh(bk )

)
.

We will compare two histograms based on the same
sequence of intervals l:

Definition 4: Two histograms H(l,α),H(l,α′), will be
ordered, and we write H(l,α) � H(l,α′) or H(l,α) ≺
H(l,α′) iif α �FSD α′ or α′ ≺FSD α, respectively.

A. PROPERTIES
We enumerate here the properties of the defined order, based
on the underlying order �FSD between frequencies:

1) The order � between histograms is a partial order, i.e.
it is reflexive, antisymmetric and transitive, and is a
total order only for the binary case. This is because
histogram order inherits the order properties of �FSD.

2) Any clustering of neighbour bins, i.e., merging of inter-
vals, done on two ordered histograms will keep the
order. Observe that any clustering of neighbour values
(i.e. adding the corresponding weights) will keep Eq. 2
true, thus, if α �FSD α′, and αc,α′

c are the clustered
distributions then αc �FSD α′

c, and thus the clustered
histograms will be ordered.

3) Repeated clustering of bins, i.e., merging of intervals,
done on two non-ordered histograms, will eventually
result in ordered histograms, as binary histograms are
always ordered because for any binary distribution
Eq. 2 is always true.

4) If two histograms are ordered, all quasi-arithmetic
means of the same representative values b for both
histograms will keep the same order. This happens
because from Definition 4, if two histograms are
ordered the respective frequency distributions are
ordered, and then we can apply Corollary 2.

5) If two histograms are ordered, any change in represen-
tative values from sequence b to a new sequence b′

will not affect the order of the means. Observe first
that b′ is also an increasing sequence. As the respective
frequency distributions of the histograms are ordered,
we have can apply Theorem 1, condition b) to the
sequence b′.

6) If we refine two ordered intervals, or change its lim-
its, in identical ways for both histograms, we can not
ensure in general that the resulting histograms are still
ordered. However, if the two histograms have under-
lying continuing distributions, changing the limits of
the bins, in particular refining the histogram, should not
affect the order.

7) Two histograms H(l,α),H(l′,α′) are ordered ⇐⇒
l ≡ l′ and the cumulative distribution functions ofα and
α′ do not cross each other, see the two CDFs in Fig. 1
bottom right.

8) Histogram order is invariant to scaling. This is, if two
histograms H(l,α),H(l,α′) are ordered and f (x) is
a strictly increasing function then the histograms
H(f(l),α),H(f(l),α′) keep the order, where f(l) =
{f (lk )}nk=0. Observe that representative values b are
mapped to f(b) = {f (bk )}nk=1. One example of
this property is that representing luminances in the
interval [0, 1] or in [0, 255] should not change the
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FIGURE 1. Left: Histogram equalization (HE) is not effective due to the shape of the CDF (bottom row) that presents some variations around the main
diagonal. Right: HE is effective, CDF of original image is over the equalized one, the histograms are ordered.

order of the luminance frequency histograms (see
Section IV-B), neither should changing to a logarithmic
scale, for instance by tone-mapping, using function
f (x) = log(x + 1). Or a change is speed units should
not alter the order of speed frequency histograms
(see Section IV-A), a change in currency should not
change the order of income distribution histograms (see
Section IV-C), or a change from Celsius to Fahrenheit
should not alter the order of temperature histograms.

9) If two histogramsH(l,α),H(l,α′) are ordered and f (x)
is a strictly decreasing function then the histograms
H(f(l?),α?),H(f(l?),α′?) are ordered inversely, where
α? = {αn−k+1}

n
k=1,α

′?
= {α′n−k+1}

n
k=1, f(l

?) =
{f (ln−k+1)}nk=0. This is because if α �FSD α′ then
α? ≺FSD α′? and vice versa. Observe that represen-
tative values b are mapped to f(b) = {f (bn−k+1)}nk=1.
An example of this property is that if two luminance
histograms (see Section IV-B) are ordered, the his-
tograms of the negative images, obtained for lumi-
nances in [0, 1] with the function f (x) = 1 − x, are
ordered in the inverted sense.

IV. EXAMPLES
A. TIME SPEED AND SPACE SPEED IN TRAFFIC FLOW
In traffic flow, two mean speeds are used to measure a mean
speed between two spots. Time speed vt is defined as the
arithmetic mean of speeds, while space speed, vs, is defined

as the harmonic mean of speeds [7], [13]. When considering
the possible speeds divided in bins, both speeds are weighted
means. If {αi} are the relative frequencies of the speed inter-
vals,

∑n
i=1 αi = 1, and the {vi} are the representative speeds,

then

vt =
n∑
i=1

αivi, (4)

and

vs =
1∑n

i=1 αi
1
vi

. (5)

The set of relative frequencies {αi} of speeds {vi} define
the traffic conditions between the given spots, with mean
speeds vs and vt . Changes in these frequencies, with a new
distribution {α′i}, lead to new mean speeds v′t , v

′
s. The speeds

can change in any order, but if the relative frequencies {αi}
and {α′i} hold Eq. 2, this is, {αk} �FSD {α

′
k}, then both speeds

will change in the same direction. Observe also that if Eq. 2
hold, then according to Theorem 1, invariance also happens
for any other quasi-arithmetic mean, defined as Eq. 1. For
instance, we could consider using the geometric mean of
speeds, say vg,

vg = exp
( n∑
i=1

αi log vi
)
, (6)
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which we know is always between harmonic and arithmetic
mean, vs ≤ vg ≤ vt , and we would have too v′g ≤ vg.

1) SPEED HISTOGRAMS
We show in Figs. 2–7 six examples corresponding to the
distributions of speeds in two different instants of time. In all
the cases, the first distribution (in blue color) is the same,
and what changes is the second distribution (in orange).
In Figs. 2&3, the direction of change of vt and vs is reversed.
In Figs. 4–7, the direction of change is the same. The rela-
tionship between frequency distributions in Figs. 2&3 and
Figs. 6&7 does not hold Eq. 2, thus changes in the mean
speed can be in any order, while in Figs. 4&5, Eq. 2 is held
and the histograms are ordered, thus changes in mean speed
have to follow the same order. The mean speed values for
Figs. 2–7 are the following, where vs, vt correspond to the
first distribution, and v′t , v

′
s to the second one:

FIGURE 2. Top: Histograms of frequency distributions of speeds at two
times. vt decreases, but vs increases. Bottom: the CDFs cross each other.

For Fig. 2:

v′t − vt = −0, 2133, v′s − vs = 0, 1327

For Fig. 3:

v′t − vt = 0, 2133, v′s − vs = −0, 1985

For Fig. 4:

v′t − vt = 0, 5333, v′s − vs = 0, 5783

For Fig. 5:

v′t − vt = −0, 3874, v′s − vs = −0, 6012

For Fig. 6:

v′t − vt = 0, 64, v′s − vs = 0, 0379

FIGURE 3. Top: Histograms of frequency distributions of speeds at two
times. vt increases, but vs decreases. Bottom: the CDFs cross each other.

FIGURE 4. Top: Histograms of frequency distributions of speeds at two
times. Both vt and vs increase. Bottom: the CDFs do not cross each other.

For Fig. 7:

v′t − vt = −0, 0266, v′s − vs = −0, 1877

B. LUMINANCE HISTOGRAM EQUALIZATION
Histogram equalization (HE) is a well-known technique to
adjust the contrast of an image [14]. This is achieved by
modifying the original intensity distribution in order to obtain
a more uniform distribution. It consists in changing the
luminance of the original image so that the CDF of the
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FIGURE 5. Top: Histograms of frequency distributions of speeds at two
times. Both vt and vs decrease. Bottom: the CDFs do not cross each other.

FIGURE 6. Top: Histograms of frequency distributions of speeds at two
times. Both vt and vs increase. Bottom: the CDFs cross each other.

transformed image is a linearized function, i.e., for a lumi-
nance value i, where i ranges between 0 and 255, CDF(i) =
iK so CDF is a linearized function. For a color RGB image,
it is first converted to HSV space and equalization is done on
the luminance component.

Arici et al. [18] and Toet and Wu [19] discuss some
cases where HE does not work well. If the luminance is
concentrated in a small range or there is a spike when the
image has a large low intensity background, some regions
are overenhanced and appearing unnatural, and noise can

FIGURE 7. Top: Histograms of frequency distributions of speeds at two
times. Both vt and vs decrease. Bottom: the CDFs cross each other.

be enhanced too. To overcome this problem they propose
preprocessing the luminance histogram so that the modified
histogram is closer to a uniformly distributed histogram. On
the other hand, we do not introduce in this paper a new
preprocessing method for HE, but study the relationship of
HE with histogram ordering.

An interesting observation is related to the shape of the
CDF of the original images. In general, the CDF of the
original image looks like a logarithmic function. However,
a special case is represented by the images with the shape of
the CDF that present some variation around the main diag-
onal (see Figure 8 and Fig. 1 left). Observe that this means
the histograms corresponding to the original image and the
equalized image are not ordered. In such cases, applying HE
is shown not to be effective and the resulted images are not
enhanced properly (the contrast is not improved significantly
or the images are distorted). As can be seen in Figure 8
the histograms of such images show a significant gap in the
frequencies. This gap partially remains also in the histograms
of the images processed by histogram equalization (HE).

Examples with usual images where the histogram equaliza-
tion works quite well are shown in Figure 9 and Fig. 1 right.
The first image (from left to right) shown in Figure 9 is an
underwater scene. As can be seen the walls of the underwater
cave are almost completely dark but after applying the HE
the details are better revealed and the local contrast in general
is better restored. The third image in Figure 9 is an outdoor
landscape. After applying the HE the contrast of the picture
is slightly improved and therefore the shadows of the clouds
and the forest details look more natural compared with the
original picture. The middle image in Figure 9 represents an
over-exposed building scene. This could be observed also by
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FIGURE 8. Three examples where the HE (top row) is not effective due to the shape of the CDF (bottom row) that presents some variations around the
main diagonal. The middle row shows the corresponding histograms of the input images and the images processed by the HE. Observe that the
histograms of original images and of corresponding equalized images are not ordered (the CDFs cross each other).

FIGURE 9. In contrast to the examples shown in Figure 8, in this figure the HE (top row) is effective. The middle row shows the corresponding histograms
of the input images and the images processed by the HE, and the bottom row the CDFs. Observe that the CDFs do not cross each other, histograms of
original images and of corresponding equalized images are ordered.

analyzing the histogram and the CDF in the second and third
row, respectively. Similarly, applying HE the yielded result
presents more local details and in general the contrast of the
resulted image is better enhanced. Observe that the histogram
of each of the three images is ordered respectively to the
histogram of the corresponding equalized image.

An explanation about why histogram order is important for
histogram equalization would be the following. First, remem-
ber that if histograms are ordered, according to Corollary 2 all
weighted means will keep the order. Consider now the partic-
ular case of weighted power means. Each mean represents
mostly a rank of the intensities. The higher the exponent of
the power mean, the more the higher values of intensity are

over-represented on average, while for negative exponents the
bigger the absolute value of the exponent themore the smaller
values are over-represented on average. Consider that the
contrast is perceived as the differences between the averages
for the different ranks of intensities. If the histograms are not
ordered it wouldmean that contrast for the equalized intensity
would increase for some ranks but would decrease for another
ones, while for ordered histograms the contrast would always
increase (or decrease).

In Fig. 10 we present more examples with images
from [20]. Observe that in general the results are good, and
in general the histograms are ordered, this is, the original
image CDF keeps over the equalized image CDF. A notable
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FIGURE 10. Examples of HE. From top to bottom, advertisement, girl, street01, street07, dark_ocean, guy_5 and subway images. The
original images are in the first column, in the second the equalized image, in the third the intensity histograms of the intensity of the
original image (in blue) and of the equalized image (in red), and in the fourth column the corresponding CDFs.

exception is for guy5 image, where looking at the CDF’s we
see that the original CDF of the intensity histogram crosses
several times the one of the equalized image. Observe also

the sky regions and the tallest part of the white building of
the advertisement equalized image, which appear a bit noisy
and which correspond to the higher intensities, by looking at
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the corresponding CDFs we see that they cross at the higher
intensities.

C. INCOME DISTRIBUTION
Measuring inequality in income distribution has been usually
done by comparing frequency histograms, cumulative distri-
bution functions, or Lorentz curves [15]. As Lorentz curves
usually are very near one another (see Sec. IV-C1), scalar
measures are also used, but they are sometimes contradictory
each other [15]. We show in this Section how applying the
ordering concept to income distribution frequency histograms
can be useful to evaluate the income distribution inequality.

In Figure 11 we see an example of a three year series
(2010-11, 2011-12, 2012-13) of income per capita per week.
Data corresponds to the distribution of total weekly income
in Northern Ireland by household income range and have
been taken from [21], very slightly modified to add to 1,
which did not in the original data due to rounding. Fig-
ure 11 top shows the three year histograms, while Figure 11
bottom shows the three CDFs. From Figure 11 bottom we
can see that series 3 dominates series 1 and 2, but nei-
ther series 1 or 2 dominates the other one. In terms of
weighted means, all means constructed from series 3 using
any representative value in each bin will be greater than the

FIGURE 11. Histograms of income per capita per week (a) and cumulative
distribution frequencies (b) for three year series.

corresponding means for series 1 and 2, while some means
for series 1 can be less than for series 2 or vice versa.
As an example, taking as representative the middle value
of each bin and the value 2000 for the last bin, the arith-
metic means are {655, 50; 651, 50; 692, 50}, the harmonic
means are {339.03; 338.94; 353, 09}, the geometric means
are {474.51; 472.48; 500, 11}, and the quadratic means are
{866.59; 863.00; 910, 56} for series 1,2, and 3, respectively.
Observe that harmonic, geometric, arithmetic and quadratic
means are particular cases of the power mean function, with
parameter r equal to −1, 0, 1, 2, respectively. The power
mean is increasing on parameter r , and the mean is biased
towards higher or lower values of the series according to
the values of r . The obtained means for series 3 are always
greater than for series 1 and 2. This is in concordance with
Figure 11 bottom, where the CDF of series 3 is below the
CDFS of series 1 and 2. Also, the four means for series 1 are
greater than the corresponding ones for series 2. However,
from Figure 11 bottom, we see that the CDFs for series 1 and
2 cross, and thus it is not guaranteed that all possible means
can be ordered in the same way. In fact, if we compute the
powermean for r = −2, we obtain {236.74; 236.99; 241.76},
and the mean for series 2 is slightly greater than the one for
series 1.

The decrease from series 1 to series 2 means that all
segment rents, except the lowest income ones, fared worse,
which can be seen also directly from Figure 11 top, while
the preceding order of series 3 with 1 and 2 means that all
segments of income fared better in series 3.

1) FIRST STOCHASTIC ORDER AND LORENTZ ORDER
Observe that the first stochastic order is different than Lorentz
order [12], [17], used to show inequalities in wealth distri-
bution. Lorentz curve is always convex, with x and y values
ranging from 0 to 1, and representing that the poorest 100%x
of population possess the 100%y of wealth. Thus the ideal
welfare distribution (and limiting curve) is the line y = x.
In Fig. 12 we show the Lorentz curves for the three series
in Figure 11 top. To compute Lorentz curve we compute the
accumulated values and accumulated respective distribution
of population, and represent accumulated wealth on y axis
and accumulated population in x values. The nearest to the
line y = x the better distributed the wealth. Observe that the
three interpolated lines corresponding to the three series cross
each other, and it is very difficult to analyze the change in
distribution of wealth. Visually, it looks like series 1 is a bit
over the other two, which would mean wealth was a bit better
distributed in series 1 than on the other two. This result is not
contradictory with series 3 preceding in histogram order to
series 1 and 2, which means that all segments of income in
series 3 fared better than in series 1 and 2. Because if higher
income segments fare better than middle or lower income
ones, it could mean a worse wealth distribution. In fact,
looking at the difference in the means between series 3 and
series 1 and 2, we observe in series 3 a relative higher increase
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FIGURE 12. Lorentz curves of income distribution for series 1 to 3, shown
in Figure 11(a).

in mean for r = 1, 2, that correspond to higher incomes, than
for r = −1,−2, which correspond to lower incomes.

D. GINI INDEX
The Gini index G [16] was introduced to be able to compare
wealth distributions given by the Lorentz curve. It is equal to
the area between the diagonal y = x and the Lorentz curve
divided by the total area below the diagonal. As the axes
scale from 0 to 1, it can be computed as two times the area
contained between the diagonal and the Lorentz curve. The
most equal society will be one in which every person receives
the same income (G = 0), i.e. when the Lorentz curve is the
diagonal line; the most unequal society will be one in which
a single person receives 100% of the total income andG ≈ 1,
i.e. when the Lorentz curve degenerates into a step curve.
Thus the lower the index, the better the wealth distribution.
If we compute the Gini index, for the three year series Lorentz
curves (see Fig. 12), we will obtain the values 0.284, 0.321,
0.378, this is, wealth distribution worsened from year to year,
and we could conclude that welfare also worsened. However,
we have seen in Fig. 11 that the cdf of the third year is
below the cdf’s of the first two years, that is, the histogram
of third year precedes both first and second year, which
means that all averages increased and all segments of income
improved. Observe that as discussed in Section IV-C1 there
is no contradiction here, both results complement each other.
All segments of income improved, although the wealth was
less equally distributed.

V. CONCLUSION AND FUTURE WORK
We have introduced in this paper a partial order relationship
between frequency histograms. To our knowledge, this is the
first work where an order between histograms is considered.
We have defined formally an histogram as consisting of a set
of intervals and the frequencies associated with each interval.

Then we consider that two histograms, defined on the same
set of intervals, are ordered if the corresponding frequencies
are ordered under the stochastic order. We have presented
many properties of the histogram order, maybe the more
important being that if two histograms are ordered, all the
quasi-arithmetic means taken over representative values of
the histograms bins and weighted by the corresponding fre-
quencies follow the same order. Two ordered histograms can
be easily visualized because the corresponding CDFs do not
cross each other.

We have presented three examples, in traffic flow, his-
togram equalization, and income distribution. In traffic flow,
the order is able to explain the discrepancies in the time speed
and space speed when the distribution of speeds changes.
In histogram equalization, we are able to predict when equal-
ization will work well, or why equalization has not worked
well. In income distribution we have seen that the order
implies a general improvement (or a general worsening) for
all levels of income, and can give a more clear, albeit com-
plementary, information to Lorentz ordering and Gini index.

In future work we will consider other possible orders,
based mainly on the existing work on the stochastic orders
that can be established between distributions. The order con-
sidered in this paper is based on first stochastic order, that
allows for the nice order invariance property for the means,
but it is restricted to distributions with CDFs not crossing
each other. More relaxed (or more strict) conditions could be
considered, or even conditions for the representative values
can be imposed.We believe these additional orders may intro-
duce interesting properties and explain further characteristics
when comparing histograms. We will consider extending the
order to 2d histograms, based on 2d stochastic orders [22],
[23], as two dimensional frequency histograms are used for
image registration [24]. Finally, we will evaluate whether the
defined order can be extended to category histograms, this is,
histograms where variable X takes symbolic, discrete values,
and which properties are kept.

APPENDIX
Proof of Theorem 1:

Proof: Let us first consider the case where h(x) is
monotonous increasing. Then, condition b)

h−1
( n∑
k=1

α′kh(bk )
)
≤ h−1

( n∑
k=1

αkh(bk )
)

is equivalent to

n∑
k=1

α′kh(bk ) ≤
n∑

k=1

αkh(bk ).

To prove b)⇒ a) we proceed in the following way. Consider
the increasing sequence {h(b1), . . . , h(b1), h(bn), . . . , h(bn)},
with b1 < bn (and thus h(b1) < h(bn) by the strict monotonic-
ity of h(x)), and where h(b1) is written l times, denote L =
a1+. . .+al ,L′ = a′1+. . .+a

′
l . Since al+1+. . .+an = 1−L,
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a′l+1 + . . .+ a
′
n = 1− L′ then applying condition b) gives

L′h(b1)+ (1− L′)h(bn)− Lh(b1)− (1− L)h(bn) ≤ 0,

i.e.,

(L′ − L)(h(b1)− h(bn)) ≤ 0⇒ L′ ≥ L,

and varying l from 1 to n − 1 we obtain the first n − 1
inequalities in a), and thus b)⇒ a).

Let us see now that a) implies b). Define for 1 ≤ k ≤ n,
Ak =

∑k
j=1 αk ,A

′
k =

∑k
j=1 α

′
k , and A0 = A′0 = 0. Then

n∑
k=1

αkh(bk )−
n∑

k=1

α′kh(bk ) =
n∑

k=1

(αk − α′k )h(bk )

=

n∑
k=1

(Ak − Ak−1 − A′k + A′k−1)h(bk )

=

n∑
k=1

(Ak − A′k )h(bk )−
n∑

k=1

(Ak−1 − A′k−1)h(bk )

=

n−1∑
k=1

(Ak − A′k )h(bk )−
n−1∑
k=0

(Ak − A′k )h(bk+1)

=

n−1∑
k=1

(Ak − A′k )h(bk )−
n−1∑
k=1

(Ak − A′k )h(bk+1)

=

n−1∑
k=1

(Ak − A′k )(h(bk )− h(bk+1)) ≥ 0,

as a) implies that for all k , A′k − Ak ≥ 0, and {h(bk )} is an
increasing sequence. Thus a)⇒ b).

Consider now the case where h(x) is monotonous decreas-
ing. Then, as h−1(x) is decreasing too, condition b)

h−1
( n∑
k=1

α′kh(bk )
)
≤ h−1

( n∑
k=1

αkh(bk )
)

is equivalent to

n∑
k=1

αkh(bk ) ≤
n∑

k=1

α′kh(bk ),

which is equivalent to

n∑
k=1

α′k (−h(bk )) ≤
n∑

k=1

αk (−h(bk )).

But as h(x) is decreasing, −h(x) is increasing, and we have
the same case than above. �

Proof of Corollary 1:
Proof: The first inequality in condition a) in Theorem 1

gives us α′1 ≥ α1. Subtracting 1 from the last inequality α′1+
. . . + α′n−1 ≥ α1 + . . . + αn−1, reversing it and taking into
account that

∑n
i=1 α

′
i =

∑n
i=1 αi = 1 we obtain α′n ≤ αn. �
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