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A B S T R A C T

Lack of suitable electron donors or acceptors is in many cases the key reason for pollutants to persist in the environment. Externally supplementation of electron donors
or acceptors is often difficult to control and/or involves chemical additions with limited lifespan, residue formation or other adverse side effects. Microbial elec-
trochemistry has evolved very fast in the past years – this field relates to the study of electrochemical interactions between microorganisms and solid-state electron
donors or acceptors. Current can be supplied in such so-called bioelectrochemical systems (BESs) at low voltage to provide or extract electrons in a very precise
manner. A plethora of metabolisms can be linked to electrical current now, from metals reductions to denitrification and dechlorination. In this perspective, we
provide an overview of the emerging applications of BES and derived technologies towards the bioremediation field and outline how this approach can be game
changing.
1. Background

The release of potentially harmful pollutants in the environment has
been a cause for concern for many years. Both inorganic and organic
pollutants can be identified, and most of the pollutants can be chemically
and/or biologically transformed into non-toxic or less toxic forms. Inor-
ganic pollutants, for example, nitrate that is ubiquitously present above
drinking water standards in groundwater can be reduced to nitrogen gas
[1]; arsenite can be oxidized to arsenate which stably adsorbs onto
metal-oxides [2]; and soluble heavy metals such as U(VI) and Cr(VI) can
be reduced to insoluble U(IV) and Cr(III), then removed by precipitation
[3,4]. In terms of organic pollutants, oil and fuel spills lead to hydro-
carbons such as BTEX compounds (benzene, toluene, ethylbenzene, and
xylenes) release, which can be fully degraded by oxidation [5]. Haloge-
nated compounds (e.g., trichloroethylene (TCE), perchloroethylene
(PCE) and polychlorinated biphenyl (PCB) can be reductively dechlori-
nated [6,7]. However, some organic pollutants are extremely persistent
in the environment, such as amphiphilic per- and polyfluoroalkyl sub-
stances (PFAS), whose degradation need strong catalytic activity to
cleave their chemical structures [8,9].
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In most cases, the transformation of pollutants in nature is slow due to
the lack of suitable electron donors or acceptors, a suitable driving force
is ultimately needed to drive their biotic or abiotic reductions or oxida-
tions, respectively. To accelerate pollutant transformation via natural
processes, technologies were factitiously introduced consisting of pre-
cipitation, adsorption, electrodialysis, ion exchange, phytoremediation,
microbiological methods, membrane filtration and nanotechnology
[10–14]. Nevertheless, these conventional technologies are generally
energy and chemical intensive, difficult to control and/or time
consuming [11,13–15]. Moreover, the limitation of electron donor/-
acceptor availability, the lack of contact between the pollutants and
amendments, the interference of other co-existing pollutants and the
generation of toxic by-products have further restricted applications of
those technologies [16–18].

In the past decade, approaches derived from microbial electrochem-
istry have been suggested as alternative strategies to overcome limita-
tions of the conventional remediation technologies [19,20]. Here in this
perspective we provide a brief overview of these alternative technologies
especially from an application point of view. This allows putting the key
advantages and challenges of these approaches into perspective.
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2. What is microbial electrochemistry?

Microbial electrochemistry is a branch of bioelectrochemistry which
analyzes and applies electron transfer reactions taking place between
living microbial cells and electron conductors such as solid-state elec-
trodes or naturally occurring minerals (e.g., iron-, andmanganese-oxides,
metallic particles) [21]. Although early studies on microbial electro-
chemistry date back more than a hundred years [22], only in the past 15
years this research area has been subject of systematic research. This has
not only elucidated the fundamental aspects of microbial extracellular
electron transfer (EET) and the diversity and metabolic capabilities of
microorganisms involved, but also contributed to identifying key chal-
lenging aspects linked to technology development and in some cases
game-changing, industrial and environmental applications [23].

Technology development in this area, referred to as “Microbial elec-
trochemical technology” (MET; https://www.is-met.org/), implies that
the microbial metabolism is deliberately linked to a solid-state electron
donor or acceptor, which can be a mineral particle or an electrode. Where
the electrode functions as electron acceptor, it is effectively an anode as
opposed to a cathode where the electrode donates electrons.

The “Microbial Fuel Cell” (MFC) is the archetype of MET and prob-
ably the most well-known example [24]. MFC is commonly applied for
the bioremediation of organic pollutants [25,26]. Electroactive micro-
organisms oxidize substrates, such as organic acids or hydrocarbons,
using the anode as electron acceptor via diverse metabolisms (Fig. 1)
[27]. Electrons flow from the anode to the cathodewhere, in the presence
of a suitable catalyst, higher potential electron acceptors are reduced. As
this implies a current flow over a positive potential difference, net elec-
trical energy is generated. The study of anodic EET has initially focused
on two model microorganisms, Shewanella oneidensisMR-1 and Geobacter
sulfurreducens PCA, both Gram-negative mesophilic bacteria that in their
natural habitats use insoluble iron- or manganese-oxides as respiratory
electron acceptors in their energy metabolism [27]. To date, almost 100
different isolated microorganisms from the bacterial and archaeal
domain can generate various levels of electric currents [28,29]. Inter-
estingly, many of them are not iron- or manganese-oxide reducers,
thereby raising intriguing questions regarding the ecological and evolu-
tionary basis of EET in these microorganisms.

In an MFC the electron flow is captured for electrical power genera-
tion. By contrast, in a “Microbial Electrolysis Cell” (MEC) additional
energy is input to produce at the cathode a species which would not be
Fig. 1. Schematic overview of microbially-catalyzed reactions taking place a
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feasible to be formed due to thermodynamic or kinetic constraints. Ex-
amples are the reduction of water to hydrogen, carbon dioxide (CO2) to
methane (CH4), or Cr(VI) to Cr(III) [30]. In principle, certain reductions
(e.g. N2 from NO3

�) can occur either in MFC or MEC mode, depending on
aspects such as the anode reaction or the current density [15,31,32]. In
most cases a small amount of electrical energy (0.5–1.0 V), needs to be
added to the circuit in order to drive the otherwise energetically unfa-
vorable cathodic reactions and/or to overcome reaction overpotentials.
While initially abiotic catalysts were almost exclusively considered to
drive cathodic reactions (primarily hydrogen evolution) at sustainable
rates. In recent years there has been an ever-increasing interest in
microbially catalyzed cathodic reactions which are, in turn, opening new
sustainable bioprocessing possibilities for MEC and microbial electro-
chemical technologies in general [33].

3. From microbial electrochemistry to bioremediation processes

In a bioremediation context, many oxidized and reduced species
require removal which opens up opportunities for METs (Fig. 2). In the
following section, we highlight some of the key studied electricity driven
processes for pollutant removal.
3.1. Denitrification

Full denitrification to nitrogen gas driven by a cathode was first
demonstrated by Ref. [34] using a mixed population, whereas a pure
culture of Geobacter metallireducens was reported earlier to reduce nitrate
to nitrite [4]. Since then, this process has been extensively studied. MFCs
were able to remove nitrate at the cathode by feeding acetate at the
bioanode as electron donor [34,35], while MECs showed higher deni-
trification rates due to the external energy input [36]. Several studies
have proven that the cathode potential applied controls the electron
availability and drives the presence of intermediates [36–40]. Indeed, the
cathode potential influences the removal rate, the presence of undesir-
able intermediates (nitrite and nitrous oxide) and the stability of the
biocathode [41]. Operational conditions including nitrate load, hydrau-
lic retention time (HRT) and process configuration also impact the
denitrification rate and the energy consumption [36]. A recent review
[42] evaluated the energy consumption of treating nitrate-contaminated
groundwater by BES, leading to the conclusion that in situ MFCs
consumed the least energy (0.34 kWh kg NO3

�-N�1), while ex situ MFCs
t the anode and at the cathode of a microbial electrochemical systems.
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Fig. 2. Schematic overview of microbial electrochemical bioremediation methods.
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required more energy inputs (1.6 kWh kg NO3
�-N�1) as the groundwater

should be pumped out. Much higher energy costs (19 kWh kg NO3
�-N�1 in

situ and 10 kWh kg NO3
�-N�1 ex situ, respectively) were reported for the

MECs due to external power supply.

3.2. Perchlorate reduction

Perchlorate is often a co-contaminant of nitrate, due to the common
use of nitrogen in the production of explosives. Nitrate (NO3

�/N2 E� ¼
0.75 V vs. SHE) and perchlorate (ClO4

�/Cl� E� ¼ 0.87 V vs. SHE) have
high reduction potential and are considered as ideal electron acceptors
for microbial reduction [11]. [43] demonstrated the microbial reduction
of perchlorate in a biocathode (containing Dechloromonas ans Azospira
species) with 2,6-anthraquinone disulfonate as a mediator. This result
opened the door to further studies using bioelectrical reduction for
perchlorate removal to overcome several issues (i.e. inhibition to oxygen
and to some extent nitrate) associated with bioreactor-based processes
[44].

3.3. Reductive dechlorination

Biological reductive dechlorination is catalyzed by several groups of
bacteria. Some of them (i.e. Dehalococcoides mccartyi and Dehalobacter
species) are specialized for organochlorine respiration and are restricted,
in their natural environments, to the use of H2 as electron donor [45,46].
Once an enriched dechlorinating consortia is established at the bio-
cathode, it enables the reduction of various refractory organic pollutants
3

including TCE, halogenated aromatics, halogenated phenols, nitro-
aromatics and others (D [47–52]. The rate and extent are typically
influenced by several parameters such as the set cathode potential. Three
times higher dechlorination rates of 2,4,6-trichlorophenol via
electro-stimulation were reported (cathode potential of�0.36 V vs. SHE)
as compared to non-electro conditions, and the complete dechlorination
with phenol as the end dechlorination product was achieved [50].
Another study observed 3.7 times higher TCE dechlorination rate by
decreasing the cathode potential from �0.25 V to �0.45 V (vs. SHE).
However, at this lower potential (�0.45 V) competitive reactions can
occur leading to a consumption of over 60% of the electric current for
other microbial metabolisms, such as methane generation [53]. Similarly
[54], observed the highest TCE dechlorination rate (1 mmol/L d) at
�0.26 V, while higher (�0.06 V) or lower potentials (�0.46/-0.66 V) (vs.
SHE) resulted in 7–49% lower dechlorination rates. The removal effi-
ciencies and rates can be reinforced via a sequential anaerobic/aerobic
treatment, which can be realized in a flow-through bioelectrochemical
reactor. Under anaerobic conditions, many microorganisms can trans-
form highly chlorinated parent chlorinated aliphatic hydrocarbons
(CAHs) into their less-chlorinated (yet still toxic) daughter CAHs via
reductive dichlorination. Then, they are fully biodegraded in the
following aerobic anodic chamber, whereby electrolytic oxygen evolu-
tion from water occurs [55].
3.4. Hydrocarbon oxidation

Mono aromatic hydrocarbons such as benzene, toluene, ethylbenzene



Fig. 3. METland® unit (20m2) for treating wastewater from 50pe at Carrion de
los C�espedes wastewater treatment plant (Spain).
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and the three xylene isomers (i.e., BTEX) are frequently found at sites
polluted by petroleum refining and petrochemical industries. BTEX
removal has been studied quite extensively at anodes with modest energy
consumption and at high levels of removal [16] (e.g., pump& treat MECs
as shown in Fig. 2). Toluene is the easiest degradable component of
BTEX, with >90% removal reported in different studies by using mixed
cultures [56–58]. [59] applied a recently developed reactor configura-
tion (referred to as “bioelectric well”) for the treatment of a synthetic
groundwater containing a mixture of BTEX. The rate and extent of
removal was higher for toluene (up to 70 mg/L d�1) and substantially
lower for benzene, ethylbenzene and xylenes, probably due to the fact
that the latter compounds were present in the groundwater at lower
concentrations.

3.5. PAH removal

Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent
organic pollutants which are carcinogenic, mutagenic, and/or terato-
genic. They are preliminary found in soils (coal and tar deposits) and
produced by the thermal decomposition of organic matter, and other
activities. Microbial co-metabolism is an important pathway for the
degradation of these refractory organic pollutants [60,61]. Sediment/soil
based MFCs (shown in Fig. 2) were deployed by Ref. [62] to assess the
degradation of PAHs polluted soils. They found that the system increased
the removal rates of anthracene, phenanthrene, and pyrene meanwhile
producing electricity (12 mW/m2). The electricity production is only a
minor component of the technology but is mostly a good real-time in-
dicator of the level of the degradation activity. Another study [63] also
showed bioremediation capabilities of sediment MFCs on the removal of
naphthalene, acenaphthene and phenanthrene.

3.6. Mineralization of herbicides and antibiotics in soil

Herbicides like atrazine or isoproturon have been extensively used for
treating weeds in soil leading to the pollution of soils. Interestingly, the
use of electrodes polarized at potentials as high as þ600 mV (vs. Ag/
AgCl) was proved to boost microbial mineralization of 14C-labelled
atrazine and isoproturon in soil by 20-fold comparing to electrode-free
controls [64,65]. The same strategy was applied on manure bioremedi-
ation, resulting in 10-fold enhancement of sulfamethazine (antibiotics
frequently used in veterinary medicine) mineralization at a reducing
potential of �400 mV (vs. Ag/AgCl) [66]. Additionally, this electro-
chemical bioremediation strategy can, in principle, drastically reduce the
ecotoxicity associated to the treated soil.

3.7. An unusual configuration: bioelectrochemical wetland systems

Constructed wetlands are now well established for wastewater
treatment. The so-called METland® (Fig. 3) is a MET-based application
that integrates the use of electro-conductive granular material in con-
structed wetlands to effectively perform bioremediation in diverse con-
texts. Originally, METland® was designed to operate under flooded
conditions and short-circuit modes as “snorkel” electrodes [67]. The
natural redox gradient between the bottom of the system and the natu-
rally oxygenated surface greatly enhanced microbial oxidative meta-
bolism for removing organic pollutants [67]. The electron flow along the
METland® bed was elegantly demonstrated by measuring the profile of
electric potential along distances larger than 40 cm [68,69]. Full scale
METland® units have been constructed with different electroconductive
granular material like electroconductive coke [67] or more sustainable
materials like electroconductive biochar (ec-biochar) obtained after
wood pyrolysis at high temperature [70]. Although most of the
MET-based applications are classically operated under anoxic conditions
to avoid oxygen competition with anodic reactions, METland® has been
recently proved to be effective even under down-flow aerated mode [71].
Electroactive bacteria from the genus Geobacter have been found to
4

outcompete in such redox mixed environments and, interestingly, such
aerobic conditions favoured nitrification so METland® can be operated
to remove COD as well as nutrients [71]. Indeed, last generation of
METland® was operated under hybrid operation combining aerated
aerobic downflow with anoxic flooded mode in order to clean-up
25m3/day urban wastewater in less than 0.5 m2 per person equivalent
(www.imetland.eu). METland® is especially effective for removing
recalcitrant pollutants like pharmaceuticals present in urban wastewater.
As reported by a recent study, seven pharmaceutical compounds (sulfa-
methoxazole, paraxanthine, carbamazepine, caffeine, ampyrone, ateno-
lol, and naproxen) in emerging contaminants were removed over 95% in
a horizontal subsurface flow electroconductive filter similar to MET-
land® configuration [72].

4. Why microbial electrochemistry may be the game changer?

Without generalizing too much, it can be stated that most pollutants
are not, or are only slowly, degraded or removed in the environment due
to the lack of a suitable electron donor or acceptor. In some cases, there is
also a lack of suitable (bio)catalyst. Current bioremediation strategies
thus focus on provision of this donor/acceptor which tends to involve the
addition of chemicals to the polluted matrix. Microbial electrochemical
processes deal with this issue by directly providing or extracting elec-
trons via an electrode or a solid state electron donor/acceptor such as
zerovalent iron [73]. A direct and quite specific interaction can thus be
set up between the donor/acceptor and the biocatalyst.

A key advantage of METs is that there is no chemical addition leading
to no major alterations of the quality of the environment over time.
Particularly in cases where water streams are treated towards human
consumption or use, this lack of chemical addition is highly attractive. In
the application of water softening, calcium and magnesium can be
precipitated by the alkaline effluent generated in the cathode of MEC,
instead of adding external alkaline compounds [74]. For groundwater
remediation with low nitrate and COD concentrations, the autotrophic
denitrifiers in the microbial electrochemical process reduce the carbon
requirements needed for conventional heterotrophic denitrification [75].

Some bioremediation processes through microbial electrochemistry
require no energy input whatsoever, for example the sediment MFCs and
METland® technologies mentioned above. The energy requirement can
be maintained at very low levels where electricity consumption is inev-
itable. For instance, the specific power consumption (energy needed to
treat per gram of pollutant) of nitrate removal by a denitrifying MEC
designed by Pous et al. (2015) was 6.8 � 10�3 kWh/(g NO3

�-N removed)
which was much lower as compared to other denitrification processes

http://www.imetland.eu
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(e.g., membrane bioreactor 2.04 � 10�2 kWh/(g NO3
�-N removed) [76].

Conventional bioremediation methods requiring chemical replen-
ishment also have limited controllability. For example, injected organic
electron donors can lead to competition by undesired processes for this
substrate. METs can operate over long time periods, as current is
continuously replenished and is easy to monitor and control. Indeed,
current is straightforward to monitor without risks for sensor bias and
signals can be transmitted easily. Response to changes can be immediate,
as current can be corrected within very short timeframes. This enables
dynamic control over the bioremediation process. The overall process
can be driven by (renewable) electricity which in most cases avoids
transports and makes use of a locally available resource.

5. From challenge to opportunity

Despite the increasingly recognized potential for the application of
microbial electrochemistry, today it is not a process put to practice.
Several hurdles exist, the first being the lack of knowledge on the elec-
troactive microorganisms and their remediation capabilities, particularly
from a reductive perspective. Given the recent development of this field,
this is not unexpected and will be resolved in the years to come. The
outcome of this should be a better control of microbial activity and the
means to cultivate isolates to be introduced with the technology at the
onset of the remediation process. Second, there is a technological chal-
lenge. METs require the introduction of electrochemical technology or at
least solid state electron donors/acceptors into settings for which elec-
trochemical systems are not designed. This requires novel designs, often
accompanied by low cost materials, or even new concepts to bring the
pollutants to this surface-based technology. The latter is key, in some
instances where a groundwater flow exists a spontaneous transport to-
wards the electrodes occurs but typical sediments do not have this option.
In the latter case forced flow can be organized from sediments, such as
done for sulfidic systems [16,77]. A pump and treat approach can be
implemented, as the process is in most cases anaerobic the water loop can
be closed leading to limited energy requirements to overcome hydro-
static pressure differences. Such an approach also allows intensifying the
technology e.g. by using capacitive fluidized bed systems [78]. In some
cases metallic or metal oxide particles can be injected into the subsurface
distributing a solid electron donor/acceptor to drive activity over longer
time periods [79]. Third, the control of the system requires a dynamic
adaptation for which algorithms are yet to be defined and which re-
sponds to fluctuations in temperature, organic matter flux and pollutant
concentrations [80]. Finally, bioremediation is a costly undertaking,
hence the introduction of new technologies tends to be slow due to the
financial constraints often existing. Despite this, it appears that microbial
electrochemistry is here to stay, with deployments to be expected in the
years to come.
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