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Abstract 13 

This article focuses on how bacteriophages (phages), antibiotic resistance genes (ARGs) 14 

and disinfection practices intersect. Phages are considered the most abundant biological 15 

entities on Earth and they have the potential to transfer genes among their bacterial hosts, 16 

including ARGs. In the urban water cycle, phages are used as indicators of faecal 17 

pollution and surrogates for human viral pathogens but they are also known to withstand 18 

common disinfection treatments deployed to produce safe drinking/reclaimed water. 19 

Recent studies also suggest that phages have the potential to become an additional 20 

footprint to monitor water safety. A precautionary approach should therefore include 21 

phages in surveillance programs aimed at monitoring antimicrobial resistance (AMR) in 22 

the urban water cycle. This article argues that phages ought to be used to assess the 23 

efficiency of disinfection treatments (both classical and novel) on reducing the risk 24 

associated with antibiotic resistance. Finally, this article discusses contributions to the 25 

advancement of AMR stewardship in aquatic settings and is relevant for researchers and 26 

water industry practitioners.  27 
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Highlights 32 

• From a precautionary viewpoint, monitoring of phages and ARGs should be 33 

included when designing and developing new disinfection treatments aimed at 34 

removing possible AMR risks from treated water.  35 

• Investments in upgrading wastewater treatment plants to decrease AMR risk in 36 

treated waters are on the horizon for the water industry. 37 

• Deployment of disinfection to remove phages and the related AMR risk needs 38 

further assessment. The method should be cost-effective and should not trigger 39 

horizontal gene transfer side-effect. Membrane filtration methods are promising 40 

technologies to remove both phages and ARGs, but these still need to decrease 41 

in cost. 42 
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Glossary box 44 

• Antimicrobial resistance (AMR): intrinsic or acquired ability of bacteria to 45 

withstand antimicrobial treatment. 46 

• AMR determinants: All genes that encode for mechanisms of AMR. It should be 47 

noted that phages or other MGE are not antimicrobial resistance determinants per 48 

se. AMR determinants are all genes that encode for proteins involved in AMR [1]. 49 

• AMR stewardship [2]: coordinated interventions designed to promote, improve, 50 

monitor and evaluate the judicious use of antimicrobials to preserve their future 51 

effectiveness, and to promote and protect human and animal health. 52 

• Bacteriophages: viruses that infect and replicate in bacterial cells. 53 

• Horizontal gene transfer (HGT): is a process in which an organism (the donor) 54 

transfers genetic material to another organism (the recipient) of the same or 55 

different species. 56 

• Mobile genetic elements (MGEs): are identified as fragments of DNA that encode 57 

a variety of virulence or resistance determinants, as well as the enzymes that 58 

mediate their own transfer and integration into new host DNA. Phages, phage-59 

related particles, plasmids, genomic islands, integrons and integrative conjugative 60 

elements (ICEs) are MGEs [3,4]. 61 

• NDMA (N-Nitrosodimethylamine): a well-known DBP (disinfection-by-62 

products) characterized by its toxic and carcinogenic effects. 63 

 64 
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 Introduction 66 

Antimicrobial resistance (AMR) has become a growing global public health concern 67 

due to the difficulties and increased costs in treating antibiotic-resistant infections [5,6]. 68 

In fact, AMR causes an estimated 700,000 deaths annually worldwide and that has been 69 

predicted to exponentially rise to above 10 million deaths annually by 2050 [7]. A better 70 

understanding of the mechanisms and pathways underlying AMR is therefore urgently 71 

needed to implement effective public health policies, programmes and interventions at all 72 

levels. Reclaimed water systems are not exempt from the impact of AMR. Considering 73 

that there is increasing evidence that bacteriophages may carry antibiotic resistance 74 

genes (ARGs) [8,9], their implications for environmental and human health should not be 75 

underestimated. Phages – viruses that infect bacterial hosts – are biological entities 76 

consisting of single or double stranded DNA or RNA surrounded by a protein coat 77 

(capsid), which is able to withstand disinfection treatments [10,11].  78 

Disinfection is an essential step during drinking water production. Most wastewater 79 

treatment plants (WWTP) have only up to secondary treatment (focused on the removal 80 

of organic matter by activated sludge), and disinfection is mainly limited to when water 81 

is intended for reuse [9] or recreational bathing purposes. However, the quest to achieve 82 

a circular economy in the water sector [12], driven by a growing global need for reusing 83 

water, is expected to increase the application of disinfection methods and tertiary 84 

treatment technologies in WWTPs.  85 

This review article puts the spotlight on phages and their contribution to AMR in the 86 

context of water treatment. Novel insights on the relationships between water 87 

disinfection, antimicrobial resistance, and phages and ARG are presented (Figure 1). 88 

 89 



Figure 1. 90 

 Antimicrobial resistance and phages 91 

Although substantial efforts have been made to understand the mechanisms that promote 92 

AMR [13,14], limited information is available about the extent to which phages 93 

contribute to the acquisition, maintenance and spread of this phenomenon. Among the 94 

main processes responsible for the increasing prevalence of AMR, horizontal gene 95 

transfer (HGT) plays an important evolutionary role that allows the movement of genetic 96 

material between both closely and distantly related organisms. This process is mediated 97 

by mobile genetic elements (MGEs), such as phages [3,15,16]. The concentration of 98 

phages in the biosphere is estimated at ~1031 phages, thereby increasing the likelihood of 99 

phage related HGT events occurring [17,18] (see Box 1 for more details on HGT).  100 

Phages are mainly involved in HGT by transduction mechanisms. In fact, many studies 101 

have provided evidence that phage particles carry genes conferring resistance to different 102 

antibiotics and, in some cases, these particles effectively transduce ARGs to recipient 103 

bacterial cells [19–21]. By doing this, phages may benefit from host survival under 104 

antibiotic selection and thus favour not only their own persistence but also the spread of 105 

transferred ARGs [22–24]. 106 

Interestingly, a recent study has shown that environmental phage fractions contain genes 107 

conferring resistance to β-lactamase and carbapenems (7.3% to 64.9%, respectively) at a 108 

greater proportion than in bacterial fractions (5 to 36.8%, respectively) [19]. Some 109 

authors, however, argued that ARGs are more abundant in bacteria than in phages [20,21]. 110 

Also, phages in the human microbiome rarely encode ARGs [25]. In clear contrast, 111 

phages from non-human sources (e.g., pig faeces, raw sewage, and freshwater and marine 112 

environments) contain a large reservoir of ARGs [26]. Despite the controversy, a recent 113 



study has demonstrated that phages isolated from wastewater successfully transduced β-114 

lactamase genes into E. coli [27]. Further efforts are needed to elucidate the rate at which 115 

phages actively contribute to the transfer of ARGs among environmental bacteria in 116 

aquatic settings.  117 

Box 1. Horizontal gene transfer and phages 118 

Mobilization of genes (including ARGs) among bacterial cells occurs through three main 119 

mechanisms: (i) conjugation (mediated by plasmids or conjugative transposons); (ii) 120 

transformation (the uptake of free DNA from the surrounding milieu); and (iii) 121 

transduction (mediated by phages). Three transduction mechanisms have been described, 122 

namely generalized, specialized and lateral [10,23,28]. The latter has been recently 123 

described in temperate phages of Staphylococcus aureus and its characteristic feature is 124 

that prophages excise later in their life cycle, allowing for an exacerbated (up to 1,000 125 

greater that previously observed) random packaging of host genome fragments. This 126 

process will generate both true or competent phages and transducing particles containing 127 

bacterial DNA, and it is considered key to bacterial evolution [28].  128 

Phage life cycles: lytic and lysogenic pathways 129 

Depending on the phage, the infection of the bacterial host may follow either a lytic or a 130 

lysogenic pathway. In the lytic cycle, the infecting (or infectious) phage uses the cell 131 

machinery to replicate itself, to assemble new viral particles and to lyse the host cell, 132 

thereby resulting in the release of its progeny. The lysogenic (or temperate) cycle usually 133 

involves the integration of the phage genome into the host chromosome and the 134 

maintenance of a latent state – the prophage – that perpetuates until environmental cues 135 

(nutrient imbalance, UV light, chemicals) trigger the lytic pathway (induction).  136 

Phages and transducing particles 137 



Errors in the packaging of phage genomes during assembly of new virions may result in 138 

the formation of viral particles containing hybrid genomes (in specialized transduction 139 

this correspond to a defective phage genome + bacterial genes) or particles containing 140 

only bacterial genome fragments (transducing particles in generalized transduction) [19–141 

22]. Both hybrid genomes and transducing particles can infect the host, but they cannot 142 

multiply inside the host cell. Only “true” phages (those which contain the complete viral 143 

genome) are able to carry out the viral cycle, multiply inside the host and release progeny.  144 

 Disinfection of phages and ARGs 145 

Phages are usually considered surrogates of human viral pathogens and thus it is 146 

important that their removal be monitored to ensure water safety. Phages have recently 147 

been suggested as more reliable indicators of the occurrence of viral pathogens than 148 

traditional indicator bacteria (E. coli, coliforms, etc.) [29]. New commercially available 149 

tests that utilize phage kits (BluePhage®) [30] are thus gaining market traction. Therefore, 150 

we foresee the surveillance of phages being implemented at larger scale in WWTPs and 151 

water reuse scenarios.  152 

Most disinfection studies to date, both in the lab and in real scale, have focused on the 153 

removal of faecal bacterial indicators (FBIs). In this context, data on phage and ARG 154 

removal are still scarce. A precautionary approach to deal with the possible AMR risk is 155 

therefore necessary. Advanced tertiary treatments (which may include certain disinfection 156 

or membrane methods) have a better potential to remove phages and AMR determinants. 157 

In this article, we argue that phages ought to be used to assess new disinfection treatments, 158 

so that the potential removal of phages carrying ARGs and the possible associated AMR 159 

risks are more fully comprehended. 160 



Representative data on the responses of phages and ARGs to various disinfection methods 161 

are compiled in Table 1. Filtration methods have been included for comparison purposes. 162 

For the evaluation of the disinfection efficiency, it is necessary to count phage plaques or 163 

halos (lytic zones caused by infection of a sensitive bacterial host by a phage particle) on 164 

double agar overlay plaque technique [31]. In this way, the information available from 165 

the disinfection literature regarding phage disinfection originates mostly from studies 166 

targeting true phages and not transducing/defective particles. As regards disinfection of 167 

ARGs, the data shown in Table 1 were resourced from studies targeting disinfection of, 168 

in most cases, extracellular ARGs. We have only encountered one study that targeted 169 

disinfection of ARGs in the phage fraction of wastewater samples [32]. Each disinfection 170 

method is commented on in more detail below. 171 

 172 

Table 1. 173 

 174 

From Table 1, we observe an overall trend: the disinfection dose to achieve a 1–Log 175 

reduction (90%) of ARG concentration is commonly greater than the dose required to 176 

achieve a similar reduction of phage counts. The specific reasons for these differences 177 

need to be analysed by taking into consideration the environmental conditions under 178 

which the disinfection assays were performed. Factors such as aqueous media 179 

composition, competing COD (chemical oxygen demand), and specific biochemical 180 

features of the ARG and phages involved may play a role in the response to a disinfectant 181 

[33,34]. Also, from the reviewed data, it is possible to conclude that disinfection of ARGs 182 

and phages is not yet cost-effective. High doses of disinfectant would be required to (i) 183 

achieve the disassembly of the viral capsid, and (ii) ensure enough contact time to 184 



inactivate the ARG. If the total elimination/disinfection of ARGs or phages is still not a 185 

feasible target, the alternative goal should be to monitor traditional indicators of AMR 186 

such as antibiotic-resistant bacteria (ARB). 187 

3.1. Ultraviolet Radiation 188 

In wastewater treatments, generally the type of UV deployed for microbial activation is 189 

the germicidal wavelength of monochromatic lamps emitting UV light at 253.7 nm (or 190 

UV-C). Other wavelengths and lamps may be utilised, although UV-C is the one that is 191 

most commonly used. Doses of UV are calculated as a function of the lamp or reactor 192 

emission in mW per cm-2 versus exposure time in seconds, which in turn is equated to a 193 

value in mJ. UV-C doses range between 5 and 400 mJ/cm2, which corresponds to a 194 

reduction of gene copies in the range between 0.2–6 Log [32,33,35–37]. UV-C doses to 195 

achieve reduction of phage particles between 4–7 Log were relatively lower, that is 196 

between 5–250 mJ/cm2. From these values, described in detail in Table 1, it seems that 197 

Log reductions of phages are more easily achieved by UV than Log reductions of ARG 198 

copies. However, it is important to highlight that, in some cases, deployment of high UV 199 

doses has been shown to increase the abundance of ARGs [38].  200 

Phage genomes are enclosed by a protein shell (i.e., the capsid), which provides protection 201 

against environmental challenges including UV radiation. In fact, the deactivation of 202 

ARGs in phage fractions of wastewater are delayed in comparison to the deactivation of 203 

ARG in bacterial fractions [32]. Other influential factors in UV disinfection are aqueous 204 

media composition, such as suspended particles, which may shield ARGs and phages 205 

from UV radiation, and aggregation of viruses to particles. 206 



3.2.Chlorination 207 

In WWTPs of USA and Canada, disinfection is often required prior to wastewater effluent 208 

discharge into the environment. The first and most widely used method of water 209 

disinfection results, unfortunately, in the generation of disinfection-by-products (DBPs). 210 

Although required in these North American countries, at global scale, disinfection of 211 

wastewater is generally not a standard practice in WWTPs [39]. In WWTPs, standard 212 

doses of chlorination are 5 to 20 mg/L versus a contact time which depends on 213 

physicochemical features of the wastewater [40]. Impairment of ARGs and phages are 214 

likely to occur by chlorine but largely depend on aqueous media composition. The dose 215 

that has been reported to reduce phages by 1–Log is 1 mg /L × 30 min. On the other hand, 216 

doses that were reported to achieve up to 6–Log units of ARG reduction ranged between 217 

1–1000 mg/L (time and aqueous media varied) [34,36,37]. More detailed metrics on 218 

disinfection of ARGs and phages can be found in Table 1.  219 

3.3. Advanced Oxidative Processes (AOPs) 220 

AOPs present a promising technology for microbial reduction of viruses; however, they 221 

are not yet scalable for large applications [41]. Available both as a homogeneous (only 222 

aqueous phase reagents with or without a light source) and a heterogeneous phase (solid 223 

catalyst or semiconductor involved plus a light source) [42], the main downsides to AOPs 224 

include the likelihood of microbial or ARG repair and hydroxyl (or other) radical 225 

scavenging. General comments about AOPs are listed next (with detailed appraisals in 226 

Table 1). Both homogeneous and heterogeneous catalysts have been shown to be 227 

effective at removing phages, but less effective in removing ARGs. The ranges of 228 

disinfection reported of phage and ARGs, in various types of waters matrices (such as 229 

buffers or distilled water, or artificial wastewater) and in lab scale, were up to 10–Log 230 



reductions of PFU/ml (plaque forming units per mL) for phages and to 4–Log reduction 231 

for ARGs. Also, in the case of heterogeneous photocatalysis, immobilised catalysts 232 

provide lower quantum yield because of the reduced surface area. Although more 233 

efficient, suspended catalysts have been proved to not be feasible, thus far, for 234 

deployment at large-scale because of post treatment separations. Finally, various efforts 235 

to change the characteristic of catalysts [41], such as doping, to increase absorption of 236 

visible wavelengths and result in improved  quantum yield have been shown to contribute 237 

to improved disinfection [41–47]. Homogeneous photocatalysis, such as Fenton reaction, 238 

have gained traction in lab scale testing; however, ARG and phage inactivation by this 239 

method are still low or subject to recovery after post-treatment incubation (Table 1). 240 

More studies in the area of photo-Fenton disinfection are thus necessary [48]. 241 

3.4.Ozonation 242 

Less frequently employed than chlorination, ozonation has a lower risk of DBPs 243 

generation during disinfection in WWTPs. However, there are significant downsides to 244 

implementing this method in large-scale applications. These include high cost, technical 245 

difficulties with dosing, and no lasting disinfectant residual concentration [48]. Ozonation 246 

doses reported to achieve inactivation of ARGs (1–6 Log) ranged between 0.20–0.9 mg 247 

O3/mg DOC. On the other hand, inactivation of phages (4 –9 Log) required ozone doses 248 

between 0.25–0.6 mg O3/mg DOC [37,42,49–51]. From Table 1, it seems the method is 249 

highly efficient for disinfecting both phages and ARGs. However, while considering 250 

ozonation in the context of water reuse, one must monitor DBPs such bromates and N-251 

Nitrosodimethylamine (NDMA), as well as be aware of the need for downstream toxicity 252 

tests of treated water to avoid adverse health effects [42]. 253 



3.5. Peracetic acid and performic acid 254 

In the search to find alternatives that are more sustainable and possess a lower risk of 255 

DBP generation than chlorine disinfection, various alternative disinfectants are currently 256 

being investigated. Peracetic acid (PAA) (CH3CO3H) is a new sterilizing agent, which 257 

has been gaining attention in the water treatment sector. Efficient at inactivating both 258 

bacteria and viruses, PAA possesses a lower risk of generating DBPs [48]. In fact, this 259 

method has been shown to inactivate ARB in wastewater aquatic settings [52]; however, 260 

regrowth of bacteria was observed, and might be related to the formation of the easily 261 

assimilable acetic acid [53]. Rizzo et al. [42] advised that to target ARB, PAA is not 262 

efficient enough, and needs to be used with a coadjutant disinfection method. This 263 

approach may also be necessary to disinfect phages and ARGs, which are more 264 

problematic targets for disinfection [54]. Another disadvantage of PAA is its high cost. 265 

Alternatively, Performic Acid (PFA) (CH2O3) is up to 20 x faster and more efficient as a 266 

disinfectant than PAA, as evidenced by tests done on coliforms and murine norovirus in 267 

wastewater [55]. It has also been recently used for treating municipal wastewater and 268 

combined sewage overflows [54]. PFA is the strongest oxidising (oxidizing potential of 269 

2.70 V) disinfectant currently available and it has been shown to rapidly decompose into 270 

CO2 and water. It has been shown that this method will work more effectively at a pH of 271 

7 and its efficiency decreases with lower temperatures [53,54]. To the best of our 272 

knowledge, PFA has not been yet explored for the disinfection of phages and ARGs and 273 

this remain to be explored; thus, the method is not covered in Table 1. Also, a major 274 

concern with PFA is the feasibility of ensuring the safety of operators during its 275 

deployment in WWTPs. 276 



3.6. Monochloramine (NH2Cl) 277 

Monochloramine (NH2Cl) is a less efficient disinfectant than chlorine but also less prone 278 

to generate DBPs such as trihalomethanes. Although NH2Cl has an overall low reactivity 279 

towards carbohydrates, proteins, and nucleic acids [34] disinfection was still feasible. In 280 

fact, this method of disinfection has been applied to avoid microbial regrowth in 281 

membrane bioreactors that treat secondary wastewater effluent prior to reverse osmosis 282 

(see discussion on membrane methods below) [56]. Results were more promising in 283 

buffers than in wastewater, with doses ranging from 1228 mg × min/L for 1–Log removal 284 

of phages [57] to 1.5–3.0 ×105 mg × min/L for 4 to 6–Log removal of ARGs [33]. 285 

However, it should be noted that this method is not yet scalable for disinfection of phages 286 

and ARGs and further investigations are warranted. 287 

3.7. Filtration methods 288 

Our rationale for including filtration methods in the current discussion is that they have 289 

competitive removal rates when compared to chemical, UV and AOPs-mediated 290 

disinfection. The aim of filtration treatments is not inactivation of ARGs, phages or 291 

bacteria, but rather their physical removal from drinking and wastewater. Membrane-292 

based processes present a wide array of removal efficiencies, membrane setups, 293 

applications and materials, and costs. They are generally applied to complement other 294 

disinfection methods in the water treatment process chain.  295 

Filtration methods are typically classified according to their size-exclusion cutoffs, as 296 

follows: membrane filtration (MF) allows separation of particles greater than ~100 nm; 297 

ultrafiltration (UF) is the separation of macromolecules with molecular weight between 298 

~1 kDa to 1000 kDa; nanofiltration (NF) can remove both macromolecules and ions (~1 299 

kDa or less), while reverse osmosis (RO) can remove ions (~100 Da or less) [58]. As a 300 



matter of comparison, most phages range in size from  ~20 to 200 nm in length [59], 301 

which is a relatively low variability and might be unlikely to cause major effects on the 302 

exclusion response of phages to disinfection (although experimental data are lacking). On 303 

the other hand, phage genomes can vary from ~3.0 kb to over 500 kb [60], whereas ARGs 304 

range from ~200 bp to over 2000 bp [61]. As can be seen from Table 1, UF, NF and RO 305 

can achieve the highest removals for both phages and ARGs (4.4–7 Log for phages, and 306 

5.9–9.5 Log for ARGs) [62–64] when compared to all other methods. To be effective, 307 

these membranes however require pre-treatment of water to prevent clogging. Also, NF 308 

and RO treatments require post-treatment of membrane concentrate and high energy 309 

input, which means that careful feasibility assessments are necessary to remove phages 310 

and ARGs prior to implementing these solutions at a larger scale [42].  311 

 312 

 Knowledge gaps and outstanding questions 313 

From a precautionary point-of-view, stakeholders acting on global AMR stewardship 314 

should be informed about where to devote their efforts [65]. To date, the risk that phages 315 

pose to ARG spread in aquatic settings has not been established. Questions about the 316 

relationship between phages and ARGs in the context of AMR and disinfection are 317 

discussed in the Outstanding questions box. A few clues to address these questions are 318 

also presented as follows: 319 

I. In a disinfection system, it is not currently possible to specifically target phages 320 

containing ARGs. Methods of disinfection applied to reduce phage particles, if cost-321 

effective, could meet the criteria of the precautionary approach to mitigating AMR 322 

risks relating to phage particles in aquatic settings. 323 



II. It is not yet possible to distinguish between true phages and transducing particles. 324 

Advanced microscopy techniques such as Transmission Electron Microscope 325 

(TEM) could help in assessing alterations in the morphology of phage particles 326 

caused by disinfection treatments. Investigations on developing more accessible 327 

methodologies to assess the different ways in which disinfection methods affect 328 

various phages particles are needed.  329 

III. A clearer correlation between the decrease of AMR risk in aquatic settings and the 330 

disinfection of both phages and ARGs needs to be established so that AMR efforts 331 

can be best applied.  332 

IV. As faecal indicator bacteria (FIB) play a role in assessing the microbiological risks 333 

of water sources, future studies should examine the relationships between indicator 334 

phages, ARGs, and AMR risk. Our group is currently working to assess the efficacy 335 

of novel disinfection methods on the reduction of phages, ARGs and the overall 336 

HGT risk. We encourage other research groups to also pursue this effort, and to 337 

focus on removal or reduction of other MGEs from aquatic settings. 338 

V. The cost-effectiveness and feasibility of disinfection technologies to remove phages 339 

and ARGs should be carefully considered. Two case-studies in large-scale are 340 

briefly presented next in the treatment of hospital wastewaters [66] and toilet-to-tap 341 

reuse scenarios (https://www.ocsd.com/). While these studies resulted in a 342 

measurable reduction in ARB and ARGs, the deployment of such treatments 343 

requires high financial investment. The Grundfos BioBooster system [66] claimed 344 

reduction of pharmaceuticals and ARB using a combined point-of-use tertiary 345 

treatment to treat hospital wastewater (Herlev hospital, Denmark). Treatment 346 

included a membrane bioreactor/filters, ozone above 4 mg O3/ mg DOC-1, followed 347 

https://www.ocsd.com/


by granular activated carbon and UV, thus resulting in complete removal of ARB. 348 

In the BioBooster system, phages were not monitored; however, a 4–5 Log 349 

reduction in waterborne virus was achieved.  Investment necessary for the 350 

BioBooster system ranged between 3.3–4.7 million euros. Another example comes 351 

from California Orange County Sanitation District (https://www.ocsd.com/), which 352 

used an advanced water treatment facility to treat wastewater for both aquifer refill 353 

and potable reuse. In their case, treatment methods included chlorination, micro-354 

filtrations, reverse-osmosis, ultraviolet disinfection and advanced oxidation 355 

systems. Although ARGs were reduced to levels under the detection limit (<50 356 

copies per L) after treatment, they did increase back in the aquifer and in the 357 

distribution systems [67]. 358 

VI. It should be noted that the water sector does not assess the potential risk associated 359 

to phages carrying ARGs. Nanofiltration and reverse osmosis methods have been 360 

shown to reduce the amount of phages + transducing particles + ARGs and other 361 

MGEs. Subject to further feasibility studies, they might be the only current solution 362 

to target these various types of AMR contaminants. 363 

 Concluding remarks 364 

The role of phages in the acquisition and spread of ARGs in aquatic settings is now 365 

undisputable. Our opinion is that, from a precautionary viewpoint, the monitoring of 366 

phages and ARGs should be included when designing and developing new disinfection 367 

treatments aimed at removing possible AMR risks. Currently, such studies have proved 368 

more feasible with infectious phages, although transducing phage particles and other 369 

MGEs should also be considered. Our conclusion from the review is that in water 370 

disinfection and antimicrobial resistance research, bacteriophages really matter. 371 

https://www.ocsd.com/
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Table and Figure captions 582 

 583 

Table 1.  Responses of phages and ARGs to various disinfection treatments.  584 

 585 

Figure 1. A potential intersection between phages, antimicrobial resistance and 586 

disinfection practices. Aquatic settings (circle 1): these include urban water cycle 587 

wastewater treatment and drinking water systems. Phage–mediated HGT risks (circle 2): 588 

there are several unassessed AMR risks in aquatic settings. These include ARB, MGEs, 589 

ARGs (in the form of free DNA), true phages and transducing particles. Disinfection 590 

treatments (circle 3): the need and the feasibility of disinfection methods to remove 591 

phage–mediated HGT risks needs to be assessed further. Arrows indicate that, from a 592 

precautionary viewpoint, monitoring phages and ARGs should be included when 593 

designing and developing new disinfection treatments aimed at removing possible AMR 594 

risks from aquatic settings. All icons were obtained from The Noun Project 595 

(https://thenounproject.com). 596 
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s 
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MPa)  

<500 Da 

4.9–8.1 swine wastewater [62] 



15ꟷ300 or 400 Da,  

38-40 bar, 
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3–4 nm up to 23 

nm (100ꟷ160psi) 

 

3.5–4.4 

 

tryptic soya broth [75] 

A
RG

s 

polyamide 

(3.6MPa)  

(ARG increase 

after treatment in 

wetlands) 

5.2–9.5 
wastewater, 

wetlands 
[62] 

200 Da, 40 bars, 

polyamide 
4 

filtered secondary 

wastewater, 

distilled water 

[63] 

 599 

Table 1 shows the overall efficiency of removal of “true phages” (or “infectious phages”) 600 
and ARGs (primarily in extracellular form) through classic and novel disinfection 601 
treatments, in a range of aquatic settings. 602 
aLog reduction: ARG=Log gene copies, Phage=Log.  603 
bLog disinfection values lesser than 1 and greater than 0 Log are possible when the count 604 
of gene copies (in the case or ARGs) or PFU/ml (in the case of phage plaques) are between 605 
1 and 10 gene copies or PFU/ml, respectively. Note that while phage cultivation requires 606 
a cultivation method on agar through bacterial infection to quantify plaques, generally 607 
gene copies will be determined by a suitable molecular method, such as qPCR. 608 
Accessibility of working with molecular methods, however, is not straight-forward for 609 
most water monitoring microbiology labs. 610 
c Data were collected from studies in WWTPs, drinking water treatment, and lab-scale 611 
and buffered water matrices, with the latter being the most frequent source.  612 
d=iARG= intracellular ARGs 613 



NR=Not reported. 614 

Observation: Detailed reviews on the disinfection and removal treatment of ARB have 615 
been covered extensively elsewhere [22–24].  616 

 617 
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