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Appendix 1: ilr-coordinates and Bayesian-multiplicative treatment of zeros 

In our work, each vector represents the composition of species in both fossil and modern data assemblages. Such 

compositions can be formalised as a vector x = [x1,…,xD] of non-negative elements representing proportions with sum-

constraint x1+…+ xD = 1. Compositions belong to the simplex SD, the sample space: SD={x ∈ RD / xi>0, i=1..D; 

x1+...+xD= 1 }. Log-ratio coordinates are obtained by one-to-one correspondences between vectors of percentages from 

CoDa set X∈ SD and the log-ratio vectors from the coordinates dataset Y ∈ RD-1 in real space. This correspondence 

allows the use of standard multivariate techniques on the coordinates dataset Y. Typical log-ratios coordinates are the 

centered log-ratio coefficients (clrj):  

  clr x = clr1 x , …,clrD x   with  clrj x = ln xj

g x
,   

  
where g(x) is the geometric mean of the composition. Because ∑ clrj(x)D

j=1 =0, then (i.e. the centred log-ratio covariance 

matrix is singular) the dimension of the clr-space is D-1. One can construct an orthonormal basis in the clr-space to 

obtain orthonormal log-ratio coordinates. To do this one can calculate the isometric log-ratio coordinates (ilr) of the 

percentages of species. The ilr-coordinates’ vector is defined by 

ilr(x) = y = [y1,…, yD-1]∈R
D-1

, where  

From among the log-ratio coefficients, the orthornormal coordinates are preferred because of their advantageous 

theoretical and practical properties (Pawlowsky-Glahn et al., 2015). The log-ratio coordinates obviously cannot be 

obtained for CoDa with zero values. Consequently, before proceeding with the log-ratio coordinates, observations with 

zero values had to be pre-processed with appropriate compositional techniques. The zeros can be present for various 

reasons in a CoDa set. Martín-Fernández et al. (2011) presented a comprehensive description of this difficulty, known in 

the literature as the zero problem, and the several types of zeros and its recommended treatments. In our work we dealt 

with so-called count zeros, i.e. compositional count datasets that contain zero values resulting from insufficiently large 

samples. We modelled our observations with zero values by a replacement strategy following a Bayesian-multiplicative 

approach (Martín-Fernández et al., 2015). This approach preserves the true total number of counts per row and the 

ratios between the observed species. In this way, the distortion of the covariance structure for the observed part of the 

dataset is minimized. This property, firstly introduced in Martín-Fernández et al. (2003), is based on a “readjustment” of 

the non-zero values in a multiplicative way.   

In the Bayesian-multiplicative method we assume that the counts vector c of assemblages derives from a 

multinomial distribution with D categories, i.e., number of different species. Let N be the total count in c and let θ be 

the parameter vector of probabilities, where we assume that θk>0. This assumption is crucial because it indicates that 

the zero values observed in the vector x= c/N are due the sample size. Note that vector x is an estimate of vector θ. 

Using a Bayesian approach, the prior distribution for θ is the conjugate distribution of the multinomial: a Dirichlet 
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distribution of parameter vector α, where αk = stk, k=1,..., D. The parameter s is the scalar “strength” of the prior; and 

vector t is the “prior” expectation for θ. After one sample is collected, the posterior distribution for θ is a Dirichlet 

distribution of parameter vector α*, where αk*=ck+stk. Here ck is the observed counts in the category k of vector c. 

Therefore, Bayes theorem gives the posterior estimate for θk 

 

For each percentage vector x in X the replacement of the zeros transforms in a vector x*=(𝑥∗, … , 𝑥∗ ) where 

    𝑥∗ 𝑖𝑓 𝑥 0𝑥 1 ∑ 𝑥∗ 𝑖𝑓 𝑥 0. 

When one assumes a prior non-informative model, the value of tk is equal to 1/D. s is a parameter that controls for 

the effect (or weight) that the prior distribution of probability has on the posterior distribution of probability. Note that if 

s = 0, then the posterior is equal to ck/N and only depends on the observed data in the trial and the prior t has no effect 

on the posterior distribution. Following Palarea-Alabaldejo and Martín-Fernández (2015), in our work we selected the 

Jeffreys prior (JBZR), where s = D/2 and tk = 1/D. Other different priors were checked with no significant differences 

(Martín-Fernández et al., 2015) because the values of Pearson correlation coefficient between the results provided by 

different priors were all greater than 0.99. 

After the replacement a new dataset X* without zeros is available and one could also make the dataset C* (pseudo-

counts) without zeros if we multiply each row of X* by its total count. The ilr-coordinates can be obtained from the new 

dataset, X* or C*, obtaining the same coordinates dataset Y. Because these ilr-coordinates vectors y are equivalent to 

the coordinates of the composition x* from a particular orthonormal basis then any typical multivariate technique can be 

consistently applied. The unique requirement is that this technique should be invariant under change of orthonormal 

basis. The CoDa-MAT, based on Aitchison distances, verifies this requirement. 

  

θ̂k =
ck+ stk
N + s

.
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Appendix 2: Planktonic foraminifera taxonomical groups 

19 taxonomical groups dataset 
 

Globigerina bulloides d’Orbigny 1826 
Globigerina falconensis Blow, 1959 
Globigerinella siphoniphera (d’Orbigny 1839) 
Globigerinita glutinata (Egger 1893) 
Globigerinoides ruber (d’Orbigny 1839) var. alba 
Globigerinoides ruber (d’Orbigny 1839) var. rosea 
Globigerinoides sacculifer (Brady 1877) 
Globorotalia hirsuta (d’Orbigny 1839) 
Globorotalia inflata (d’Orbigny 1839) 
Globorotalia menardi-tumida group 
Globorotalia scitula (Brady 1882) 
Globorotalia truncatulinoides (d’Orbigny 1839) 
Globoturborotalita spp. 
Neogloboquadrina dutertrei (d'Orbigny 1839) 
Neogloboquadrina pachyderma (Ehremberg 1861) left-coiled 
Neogloboquadrina pachyderma (Ehremberg 1861) right-coiled 
Orbulina universa d’Orbigny 1839) 
Pulleniatina obliquiloculata (Parker & Jones, 1862) 
Turborotalita quinqueloba (Natland 1938) 

 
15 taxonomical groups dataset 
 

Globigerina bulloides d’Orbigny 1826 
Globigerina falconensis Blow, 1959 
Globigerinita glutinata (Egger 1893) 
Globigerinoides ruber (d’Orbigny 1839) 
Globigerinoides sacculifer (Brady 1877) 
Globorotalia hirsuta (d’Orbigny 1839) 
Globorotalia inflata (d’Orbigny 1839) 
Globorotalia menardi-tumida group 
Globorotalia scitula (Brady 1882) 
Globorotalia truncatulinoides (d’Orbigny 1839) 
Neogloboquadrina dutertrei (d'Orbigny 1839) 
Neogloboquadrina pachyderma (Ehremberg 1861) left -coiled 
Neogloboquadrina pachyderma (Ehremberg 1861) right-coiled 
Turborotalita quinqueloba (Natland 1938) 

 
AWS: includes Globigerinella siphoniphera (d’Orbigny 1839); Globoturborotalita rubescens (Hofker 1956); 

Globoturborotalita tenella (Parker 1958); Orbulina universa d’Orbigny 1839). 
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