
COMPUTER AIDED DETECTION FOR BREAST 
LESIONS IN ULTRASOUND AND 

MAMMOGRAPHY 

Richa Agarwal 

Per citar o enllaçar aquest document:  
Para citar o enlazar este documento: 
Use this url to cite or link to this publication: 
http://hdl.handle.net/10803/670295

http://creativecommons.org/licenses/by-nc/4.0/deed.ca 

Aquesta obra està subjecta a una llicència Creative Commons Reconeixement-
NoComercial  

Esta obra está bajo una licencia Creative Commons Reconocimiento-NoComercial 

This work is licensed under a Creative Commons Attribution-NonCommercial licence 

 

http://creativecommons.org/licenses/by-nc/4.0/deed.ca
http://hdl.handle.net/10803/670295


DOCTORAL THESIS

Computer Aided Detection for Breast Lesion in Ultrasound
and Mammography

Richa Agarwal

2019





DOCTORAL THESIS

Computer Aided Detection for Breast Lesion in Ultrasound
and Mammography

Richa Agarwal

2019

DOCTORAL PROGRAM IN TECHNOLOGY

Supervisors:
Dr. Robert Martı́,

Dr. Oliver Dı́az and Prof. Xavier Lladó
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[2] R. Agarwal, O. Diaz, X. Lladó, M. H. Yap, and R. Martı́, “Automatic
mass detection in mammograms using deep convolutional neural networks”,
Journal of Medical Imaging, vol. 6, no. 3, 2019. DOI: 10.1117/1.JMI.
6.3.031409.
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Abstract

In the field of breast cancer imaging, traditional Computer Aided Detection (CAD)
systems were designed using limited computing resources and used scanned films
(poor image quality), resulting in less robust application process. Currently, with
the advancements in technologies, it is possible to perform 3D imaging and also
acquire high quality Full-Field Digital Mammogram (FFDM).

Automated Breast Ultrasound (ABUS) has been proposed to produce a full
3D scan of the breast automatically with reduced operator dependency. When
using ABUS, lesion segmentation and tracking changes over time are challenging
tasks, as the 3D nature of the images make the analysis difficult and tedious for
radiologists. One of the goals of this thesis is to develop a framework for breast
lesion segmentation in ABUS volumes. The 3D lesion volume in combination
with texture and contour analysis, could provide valuable information to assist
radiologists in the diagnosis.

Although ABUS volumes are of great interest, x-ray mammography is still the
gold standard imaging modality used for breast cancer screening due to its fast
acquisition and cost-effectiveness. Moreover, with the advent of deep learning
methods based on Convolutional Neural Network (CNN), the modern CAD systems
are able to learn automatically which imaging features are more relevant to perform
a diagnosis, boosting the usefulness of these systems. One of the limitations of
CNNs is that they require large training datasets, which are very limited in the field
of medical imaging.

In this thesis, the issue of limited amount of dataset is addressed using two
strategies: (i) by using image patches as inputs rather than full sized image,
and (ii) use the concept of transfer learning, in which the knowledge obtained
by training for one task is used for another related task (also known as domain
adaptation). In this regard, firstly the CNN trained on a very large dataset of natural
images is adapted to classify between mass and non-mass image patches in the
Screen-Film Mammogram (SFM), and secondly the newly trained CNN model

xxiii
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is adapted to detect masses in FFDM. The prospects of using transfer learning
between natural images and FFDM is also investigated. Two public datasets
CBIS-DDSM and INbreast have been used for the purpose. In the final phase
of research, a fully automatic mass detection framework is proposed which uses
the whole mammogram as the input (instead of image patches) and provides the
localisation of the lesion within this mammogram as the output. For this purpose,
OPTIMAM Mammography Image Database (OMI-DB) is used.

The results obtained as part of this thesis showed higher performances
compared to state-of-the-art methods, indicating that the proposed methods and
frameworks have the potential to be implemented within an advanced CAD systems,
which can be used by radiologists in the breast cancer screening.



Resumen

En el campo de las imágenes de cáncer de mama, los sistemas tradicionales de
detección asistido por ordenador (del inglés CAD) se diseñaron utilizando recursos
informáticos limitados y pelı́culas de mamografı́a escaneadas (del inglés SFM) de
calidad de imagen deficiente, lo que dió como resultado aplicaciones poco robustas.
Actualmente, con los avances de las tecnologı́as, es posible realizar imágenes
médicas en 3D y adquirir mamografı́a digital (del inglés FFDM) de alta calidad.

El ultrasonido automático de la mama (del inglés ABUS) ha sido propuesto para
adquirir imágenes 3D de la mama con escasa dependencia del operador. Cuando
se usa ABUS, la segmentación y seguimiento de lesiones en el tiempo son tareas
complicadas, ya que la naturaleza 3D de las imágenes hace que el análisis sea difı́cil
y tedioso para los radiólogos. Uno de los objetivos de esta tesis es desarrollar un
marco para la segmentación semi-automática de lesiones mamarias en volúmenes
ABUS. El volumen de la lesión 3D, en combinación con el análisis de la textura
y el contorno, podrı́a proporcionar información valiosa para realizar el diagnóstico
radiológico.

Aunque los volúmenes de ABUS son de gran interés, la mamografı́a de rayos
x sigue siendo la modalidad de imagen estándar utilizada para la detección precoz
del cáncer de mama, debido principalmente a su rápida adquisición y rentabilidad.
Además, con la llegada de los métodos de aprendizaje profundo basados en redes
neuronales convolucionales (del inglés CNN), los sistemas modernos CAD pueden
aprender automáticamente que caracterı́sticas de la imagen son más relevantes para
realizar un diagnóstico, lo que aumenta la utilidad de estos sistemas. Una de
las limitaciones de la CNN es que requiere de grandes conjuntos de datos para
entrenamiento, los cuales son muy limitados en el campo de la imagen médica.

En esta tesis, el tema de la poca disponibilidad de imágenes médicas se
aborda mediante dos estrategias: (i) utilizando trozos de imagen como entradas en
lugar de imágenes de tamaño original, y (ii) mediante técnicas de aprendizaje por
transferencia, en el que el conocimiento obtenido mediante la capacitación para una
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tarea se transfiere a otra tarea relacionada (también conocido como adaptación de
dominio). En primer lugar la CNN entrenada en un conjunto de datos muy grandes
de imágenes naturales es adaptada para clasificar entre trozos de imagen de tumores
y no tumores en SFM, y en segundo lugar, la CNN entrenada es adaptada para
detectar tumores en FFDM. También se investigó el aprendizaje por transferencia
entre imágenes naturales y FFDM. Se han utilizado dos conjuntos de datos públicos
(CBIS-DDSM e INbreast) para este propósito. En la fase final de la investigación,
se propone un marco de detección automática de tumores utilizando la mamografı́a
original como entrada (en lugar de trozos de imagen) y proporciona la localización
de la lesión dentro de esta mamografı́a como salida. Para este propósito, se utiliza
otra base de datos (OMI-DB).

Los resultados obtenidos como parte de esta tesis mostraron mejores
rendimientos en comparación con el estado del arte, lo que indica que los métodos y
marcos propuestos tienen el potencial de ser implementados dentro de los sistemas
CAD avanzados, que pueden ser utilizados por radiólogos en el cribado del cáncer
de mama.



Resum

En el camp de les imatges de cáncer de mama, els sistemes tradicionals de detecció
assistida per ordinador (del anglès CAD) es van dissenyar utilitzant recursos
informàtics limitats i pel·lı́cules de mamografia escanejades (del anglès SFM)
de qualitat d’imatge deficient, fet que va resultar en aplicacions poc robustes.
Actualment, amb els avanços de les tecnologies, és possible realitzar imatges
mèdiques en 3D i adquirir mamografies digitals (de l’anglès FFDM) d’alta qualitat.

L’ultrasò automàtic de la mama (del anglès ABUS) ha estat proposat per
adquirir imatges 3D de la mama amb escassa dependència del operador. Quan
s’utilitza ABUS, la segmentació i seguiment de les lesions en el temps són tasques
complicades ja que la naturalesa 3D de les imatges fa que l’anàlisi sigui difı́cil
i feixuc per els radiòlegs. Un dels objectius d’aquesta tesi és desenvolupar un
marc per la segmentació semi-automàtica de lesions mamàries en volums ABUS.
El volum de lesió 3D, en combinació amb l’anàlisi de la textura i el contorn, podria
proporcionar informació valuosa per realitzar el diagnòstic radiològic.

Tot i que els volums de ABUS són de gran interès, la mamografia de raigs X
continua essent la modalitat d’imatge estàndard utilitzada per la detecció precoç
del cáncer de mama, degut principalment a la seva ràpida adquisició i rentabilitat.
A més, amb l’arribada dels mètodes d’aprenentatge profund basats en xarxes
neuronals convolucionals (del anglès CNN), els sistemes CAD moderns poden
aprendre automàticament quines caracterı́stiques de la imatge són més rellevants
per realitzar un diagnòstic, fet que augmenta la utilitat d’aquests sistemes. Una
de les limitacions de les CNN es que requereixen de grans conjunts de dades per
entrenar, els quals són molt limitats en el camp de la imatge mèdica.

En aquesta tesi, el tema de la poca disponibilitat d’imatges mèdiques s’aborda
mitjançant dues estratègies: (i) utilitzant regions de la imatge com a entrada en
comptes de les imatges de mida original, i (ii) mitjançant tècniques d’aprenentatge
per transferència, en el que el coneixement après per a una determinada tasca
es transfereix a una altra tasca relacionada (també conegut com a adaptació de
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domini). En primer lloc la CNN entrenada en un conjunt de dades molt gran
d’imatges naturals és adaptada per classificar regions de la imatge en tumor i no
tumor de SFM i, en segon lloc, la CNN entrenada és adaptada per detectar tumors
en FFDM. També s’ha investigat l’aprenentatge per transferència entre imatges
naturals i FFDM. S’han utilitzat dos conjunts de dades públiques (CBIS-DDSM
i INbreast) per aquest propòsit. En la fase final de la investigació, es proposa
un marc de detecció automàtica de tumors utilitzant la mamografia original com
entrada (en lloc de regions de la imatge) i que proporciona la localització de la lesió
dins d’aquesta mamografia com a sortida. Per aquest propòsit s’utilitza una altra
base de dades (OMI-DB).

Els resultats obtinguts com a part d’aquesta tesi mostren millors rendiments en
comparació amb l’estat de l’art, el que indica que els mètodes i marcs proposats
tenen el potencial de ser implementats dins de sistemes CAD avançats, que poden
ser utilitzats per radiòlegs en el cribatge del càncer de mama.



Chapter 1

Introduction

The aim of this PhD thesis is the development of Computer Aided Detection (CAD)
tools for breast lesions in ultrasound and mammography images. This initial
chapter is an introduction to breast cancer, and the different imaging techniques
for detecting it. An introductory explanation about the breast abnormalities and
CAD systems is also provided, followed by the aims and objectives of this thesis.

1.1 Breast Cancer

Breast cancer is the most common form of cancer in the female population. In the
United State of America, it is estimated that approximately 12% of women will be
diagnosed with breast cancer at some point during their lifetime [1]. According
to other studies, breast cancer has the highest incidence and death rates among all
other cancers (excluding Melanoma skin cancer) [2]. An overview of breast cancer
cases in the world is shown in Fig. 1.1.

In the European Union (EU), breast cancer is also the leading cause of death
among the female population. In 2015, deaths from breast cancer made up around
7.2% of all deaths from cancer; among women breast cancer accounted for 15.6%
of all deaths from cancer (see Fig. 1.2) [4]. The standardised death rate from breast
cancer in EU was 32.7 deaths per 100,000 female inhabitants. Among the EU
Member States, the highest standardised death rate for breast cancer among women
was recorded in Croatia (43.1 per 100,000 inhabitants), followed by Slovakia and

1
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(a)

(b)

Figure 1.1: Estimate of breast cancer cases in the World, (a) incidence, and (b)
mortality [3].

Hungary, just surpassing 40 per 100,000 inhabitants in the former while remaining
slightly below this level in the latter. Five EU member states recorded standardised
death rates for breast cancer that were below 30 per 100,000 inhabitants: the Czech
Republic, Sweden, Portugal and Finland, with the lowest rate recorded in Spain
(23.4 per 100,000 inhabitants) [5].

Breast cancer incidence has increased in the past decade. This can be attributed
to the introduction of screening programs which results in an early detection of
cancers. Extensive efforts are being made to reduce the mortality rate due to breast
cancer. It is a known fact that the survival rate is dependent on the stage at which
cancer is diagnosed, therefore it is necessary to detect the cancer in early stage
rather than detecting at the later stages when it becomes difficult to cure.
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Figure 1.2: Breast cancer mortality statistics from European Union [4].

According to European Breast Cancer guidelines, it is highly recommended
that women between 50 and 69 years old have mammography screening for breast
cancer [6]. The risk of dying from breast cancer is reduced by between 10 (low risk
population) and 50 (high risk population) per 10,000 women offered screening. This
corresponds to a reduction of 10 to 60 breast cancer deaths per 10,000 in women
actually screened.

1.2 Breast Anatomy

The beast is a highly complex structure, consisting of around 15 to 20 sections
called lobes. Each lobe consists of many smaller structures called lobules. The
lobules are arranged in clusters, and at the end of each lobule, there are tiny “bulbs”
that produce milk. The lobes, lobules and bulbs are connected together by small
tubes called ducts. The ducts carry milk to the nipples, which is located in the
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Figure 1.3: Illustration showing the breast anatomy [7].

middle of the areola (the darker area surrounding the nipple). The spaces between
the lobes and ducts are filled with fats. In Fig. 1.3 the breast anatomy is illustrated
depicting the inside structure of the breast. The female breasts contain different
types of fatty, fibrous, and glandular tissue:

• glandular tissue includes the breast lobes and breast ducts.

• fibrous tissues include ligaments, supportive tissues (dense breast tissue) and
scar tissues.

• fatty tissue (non-dense breast tissue) fills in the spaces between glandular and
fibrous tissue and largely determines the breast size.

In general, all non-fatty tissue are called as fibroglandular tissue. In addition, there
are also bands of supportive, flexible connective tissue called ligaments, which
stretch from the skin to the chest wall to hold the breast tissue in place. The
pectoral muscle lies against the chest wall underneath both breasts, giving them
support. Moreover, no two women’s breasts are the same as each contain a specific
combination of fatty and dense tissue. Some women’s breasts are almost all fatty,
whereas others have varying proportions of fatty and fibroglandular tissue. As the
age of women increases, the proportion of fatty tissue gradually increases, so that
by the age of 70 approximately 80% of all women have breasts that are composed of
mostly fatty tissues. The cancer can form in any part of the breast, and appropriate
imaging techniques are required for breast cancer screening in women.
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1.3 Breast Cancer Imaging Techniques

The conventional imaging modality used for breast cancer screening is x-ray
mammography, as it is a fast and cost effective way for screening large population.
The diagnosis process becomes more difficult for women with dense breasts, who
are at a higher risk (4-6 times) of having cancerous tumour than a women with
fatty or non-dense breast [8]. Since, traditional mammography is a 2D imaging
technique, the tissue superposition in the dense breasts leads to a poor diagnosis
performance [9, 10]. A possible solution to improve cancer detection in dense
breasts is so called, personalized breast cancer screening where different breast
imaging technologies are recommended to each individual based on its breast
cancer risk [11]. Potential 3D imaging technologies include Automated Breast
Ultrasound (ABUS), Digital Breast Tomosynthesis (DBT) and Magnetic Resonance
Imaging (MRI).

1.3.1 Mammography

Mammography is a modality used for detecting breast cancer at an early stage
using low dose x-ray to project the inner tissues of the breast. This way, signs
of malignancy (masses, micro-calcifications, asymmetries and distortions) could be
visualised. A sample diagram of a mammography system is shown in Fig. 1.4,
where the breast is placed between the compression plate and breast support, and
then exposed to low intensity x-ray beams from the top (x-ray tube). An image
receptor is placed under the breast support to capture the x-ray photons generated
in the tube. In addition, an anti-scatter grid is typically located between the breast
support and the detector to reduce the scattered radiation signal, which reduces the
contrast in the image. The scanners produces raw (“for processing”) and processed
(“for presentation”) mammograms as shown in Fig. 1.5, and in this thesis “for
presentation” images are used.

The mammography-based breast cancer screening is the most commonly used
technique as it is fast, less expensive and do not require a highly skilled operator.
However, there are a number of limitations linked with this technique. In certain
female population groups (with dense breasts), it has a high rate of False Negatives
(FN: detection shows that there is no cancer but there is a cancer) and False Positives
(FP: detection shows some symptoms of cancer (tumour or micro-calcifications) but
there is no cancer). In the later, a women with no disease is biopsied, whereas in
the former a women with disease is untreated and can lead to a casualty.

In mammography-based screening programmes, each breast is acquired using
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Figure 1.4: An overview of mammography setup, where a women’s breast is
placed on the breast support and a x-ray beam projection is generated in the x-ray
tube. (courtesy: Wikipedia).

Figure 1.5: Illustration showing the raw and processed mammogram in FFDM.

two different view points (CC and MLO) as shown in Fig. 1.6a. In Fig. 1.6b
and Fig. 1.6c the sample mammograms from these two view points are shown.
Additional image projections (e.g. magnified views, medio-lateral views) can
be performed if the radiologist has observed suspicious regions. Traditionally,
Screen-Film Mammogram (SFM) used photographic films to capture the scan of
the breast. With the advancements in imaging techniques, currently the high quality
Full-Field Digital Mammogram (FFDM) are used which can be directly visualised
using computers.

To overcome the problems associated with traditional 2D mammography,
pseudo-3D DBT has rapidly developed in the last few years as a new imaging tool to
reduce the masking effect of overlapping fibro-glandular tissue, thereby improving
breast cancer detection [14–16]. In DBT, images are acquired as the x-ray tube
travels across a limited arc above the breast (Fig. 1.7) and multiple low-dose x-ray

https://en.wikipedia.org/wiki/Mammography
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Figure 1.6: Mammography projection views used in breast cancer screening
studies: (a) shows the direction of two mostly used view points to produce
mammograms, (b) CC view, and (c) MLO view [12].

Figure 1.7: Schematic procedure of DBT, showing the movement of the x-ray
tube to acquire images at different angles [13]. Note that the geometry differs
between manufacturers.

exposures are obtained, which are then post-processed to create pseudo-3D volumes
of the breasts. Each slice of such pseudo-3D volume represent a depth of the
breast. Slices are typically separated 1 mm between each other, thus producing a
better visualisation of the internal breast tissue, and reduces the overlapping effects
observed in mammography. Different DBT geometries and acquisition parameters
(e.g. narrow vs wide angle) are available, each of which has different detection
performance in masses and micro calcifications [17]. Fig. 1.8 shows an example of
breast DBT volume with different slices.

Although DBT is gradually being adopted, x-ray mammography is still the
gold standard imaging modality used for breast cancer screening due to its fast
acquisition and cost-effectiveness. Moreover, DBT is relatively new and its
availability at the hospitals is limited. So, it is not yet considered to be a standard
method for breast cancer screening.
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Figure 1.8: Sample DBT volume: Different slices of DBT volume traversing from
left to right.

(a) (b)

Figure 1.9: (a) A hand-held probe (transducer) used for ultrasound [18], (b)
Ultrasound visualization system (source: google)

.

1.3.2 Ultrasound Imaging

Ultrasound Imaging or Sonography can be used as an additional modality for the
screening examinations. Breast ultrasound imaging uses sound waves to produce
a visualization of the breast structure and have been very effective for cancer
detection. Since Ultrasound (US) examinations are non-invasive and do not use
ionizing radiations (as used in x-ray mammography), it can be considered as a
safe procedure. Moreover, US imaging allows operator/radiologist to observe the
structure and movement of the body’s internal organs in real time.

Conventional US or Hand-Held Ultrasound (HHUS) is performed by a skilled
operator using a hand-held probe called transducer (Fig. 1.9a) on top of the skin
with aid of a gel (gel reduces the air interference between the transducer and skin
and act as a conductive medium for sound waves). High-frequency sound waves
are then transmitted through probe to the body. The transducer collects the sound
that bounce back, which is then used to create an image on the visualization unit
(Fig. 1.9b). Fig. 1.10 shows a sample image obtained from HHUS.
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Figure 1.10: Sample breast ultrasound scan [19].

(a) (b)

Figure 1.11: (a) ABUS acquisition set-up, (b) Conventional HHUS.

Automated Breast Ultrasound (ABUS) is the latest technology proposed for
breast screening and is getting popular especially in the population with the dense
breast. ABUS produces a full scan of breast tissues as 3D volume compared to 2D
images obtained using HHUS. Currently, there is a lot of focus and development
in ABUS technology both clinically as well as in the field of CAD. ABUS follows
a process in which the ultrasound gel is applied to the breast and then the scanner,
with a much larger transducer (Fig. 1.11a), is placed on the breast to scan the whole
breast in slices. Later all the slices are combined to generate a 3D volume of the
breast. The transducer is in contact with the skin through a thin membrane which
adapts itself with the shape of the breast to capture a full 3D view, overcoming the
limitation of HHUS i.e. scanning only the suspected area (Fig. 1.11b).

ABUS volumes are visualised using anatomical planes which transect the breast
(for reference human body is used in Fig. 1.12a) using three basic reference planes:
the Sagittal plane, the Coronal plane, and the Axial/Transverse plane as shown in
Fig. 1.12(a). A volumetric visualisation of a ABUS volume in these three planes
are shown in Fig. 1.12(b-d).
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Figure 1.12: Visualization of ABUS volume in three different planes, (a)
Anatomical plane depicting 3 different planes: (b) Coronal plane view, (c) Sagittal
plane view and (d) Axial plane view of a 3D ABUS volume.

1.3.3 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a radiological technique in which magnetic
field and radio waves are used to generate detailed images of the inside of the
body. An MRI scan can be used to examine almost any part of the body including
heart, brain, bones, spinal cords, breasts etc. Breast MRI is primarily used
as a supplemental tool to breast screening with mammography or ultrasound.
It may be used to screen women at high risk for breast cancer, evaluate the
extent of cancer following diagnosis, or further evaluate abnormalities seen on
mammography. Typical breast MRI is performed on a 1.5 Tesla magnet with a
dedicated multichannel breast coil. In breast imaging, dynamic contrast-enhanced
MRI (DCE-MRI) is used, and is a noninvasive process. Contrast agents play a
crucial role in DCE-MRI and should be carefully selected in order to improve
accuracy in DCE-MRI examination [20]. There are different image acquisition
protocols (sequences) used in breast imaging. The most common ones are T1-,
T2-weighted, each of which has been obtained with different acquisition parameters
(relaxation time (TR), echo time (TE)).

During the breast MRI scan, the women lies down in prone position on a
narrow, flat table such that the breasts hang down into an opening in the table
so they can be scanned without being compressed. The table then slides into a
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Figure 1.13: Schematic of Breast MRI scan performed, where the patient is lying
in prone position.

Figure 1.14: Sample of MRI volume showing (a) Axial, (b) Sagittal, and (c)
Coronal views [19].

long, narrow cylinder opening of the machine to scan the specific body parts. The
machine generates strong magnetic field around the person and radio waves are
directed at the body to obtain the scan. A typical breast MRI scanner is shown
in Fig. 1.13, and sample of 3D MRI volume with different views are shown in
Fig. 1.14.

MRI is not recommended for screening general population because it can miss
some cancers that a mammogram would find. Moreover, MRI is a expensive process
and is used for young women who are at higher risk of developing cancer. They
might be at higher risk due to having family members with cancer or because they
have certain gene abnormalities.

1.4 Breast Abnormalities

When a radiologist interprets a mammogram in terms of abnormalities, he or
she assigns a score to it which is used to communicate with doctors about how
concerned he or she is about the findings. These informations are summed up
in one number, called as Breast Imaging Reporting and Data System (BI-RADS)
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Figure 1.15: Examples of masses in mammograms from OMI-DB dataset [22]

score [21]. The BI-RADS score range from 0 to 6. The category 0 or BI-RADS
0 is utilized when further imaging evaluation (e.g. additional views or ultrasound)
or retrieval of prior examinations is required. BI-RADS 1 signifies that there are
no abnormalities in the breast, while BI-RADS 2, 3 signify that the findings are
considered to be benign. BI-RADS 4 shows suspicious malignancy and BI-RADS
5, 6 signify confirmed malignancy.

In addition, according to BI-RADS there are four other important findings
in mammograms: masses or lesions, calcifications, architectural distortions
and asymmetries. The architectural distortions and asymmetries are similar in
appearance to masses, and can often be confused by the radiologists to be masses.

Masses or Lesions

The mass is a lump that develops in the breast. Most of the masses are
non-cancerous (or benign), while some of them could be cancerous in nature (or
malignant) and can have life threatening effect if left untreated. In mammography
screening, the lesions are usually analysed on two different projections (CC and
MLO) and have completely or partially convex-outward borders and radiologically
appears denser in the centre than at the periphery. Some examples of masses in a
mammogram are shown in Fig. 1.15. If a potential mass is seen only on a single
projection, it could be called an asymmetry. Masses can be classified by shape,
margin or density.

Calcifications

Breast calcifications are calcium deposits within the breast that appear in
mammograms as white spots similar to grains of salt. There are two types of breast
calcifications according to their size: macro-calcifications and micro-calcifications.
Macro-calcifications look like large white dots or dashes and are almost always
non-cancerous. On the contrary, micro-calcifications are very fine white specks
and their irregular clustering is usually a sign of cancer. Some examples of
calcifications in mammograms are shown in Fig. 1.16.
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Figure 1.16: Examples of calcifications in mammograms from OMI-DB
dataset [22]

Figure 1.17: Examples of architectural distortion in a mammogram [23]

Architectural Distortions
Architectural distortions are characterised by the distortion of the parenchyma with
no definite mass visible. For mammography, this includes thin straight lines or
spiculations radiating from a point, and focal retraction, distortion, or straightening
at the anterior or posterior edge of the parenchyma. Architectural distortions
may also be associated with asymmetry or calcifications. In the absence of an
appropriate history of trauma or surgery, architectural distortions are suspicious for
malignancy. An example of architectural distortion in the mammogram is shown in
Fig. 1.17.

Asymmetries
The internal structure of the two breasts are very similar, so the fact of detecting
an asymmetry of the breast parenchyma between left and right breasts may be
indicative of the presence of a lesion or the development of a cancer. Depending on
the type of asymmetry, this is visible on only one mammographic projection or more
than one projections. Focal asymmetry is visible on two projections (Fig. 1.18),
while global asymmetry consists of an asymmetry over at least one quarter of the
breast (Fig. 1.19).
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Figure 1.18: Examples of focal asymmetry in a mammogram [23]

Figure 1.19: Examples of global asymmetry in a mammogram [23]

1.5 Computer Aided Detection

A Computer Aided Detection (CAD) system can be described as the use of
computers to evaluate the medical images in an automatic or semi-automatic
manner. In the field of breast imaging, availability of accurate CAD methods can
make a real impact in improving the current breast screening procedures. Reading
and understanding breast images requires a well trained and experienced radiologist,
and the CAD systems can be effectively used as the “second opinion” and assist
radiologists in screening programs [24, 25].

CAD employs computer vision techniques and/or artificial intelligence to deal
with radiological and pathology images. In recent years, with the advancement
in technology there has been an increase in the use of different imaging
modalities (section 1.3) for detection and diagnosis of cancers/tumours. Reading
and understanding the images from these different modalities require highly
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experienced and well-trained doctors/radiologists. Moreover, even with well trained
experts, there exists high possibilities of intra- and inter-variabilities between the
readers [26, 27]. This motivated the use of computers to support radiologists
to make accurate diagnosis. The advantage of using a CAD systems is that it
can reduce the diagnostic time, reduce inter-observer variations, and can act as a
supplementary tool for the radiologists [28–30].

In recent years, with the advancements in computer technology and data
sciences, there has been a lot of interest in exploring deep learning methods for
various tasks. In this regard, deep learning methods based on Convolutional
Neural Network (CNN) have also gained importance in the field of medical image
analysis and the efforts are laid to develop modern CAD systems based on the
these newly developed CNN algorithms [31, 32]. This thesis is also a effort in
this direction, exploring recent advancements in CNN to facilitate the development
of an automated CAD system to assist radiologist in fast and accurate detection of
lesions during breast cancer screening.

1.6 Thesis Aims and Objectives

The research presented in this thesis is partially supported by SMARTER Spanish
project [33]. This research project aims to develop and evaluate novel imaging
tools that can be integrated into the screening workflow to steer image acquisition
and guide the selection of appropriate personalised screening protocols; and to
process imaging data in an intelligent way to minimise interpretation time. The
research herein aims to contribute to the overall aim of the SMARTER project by
developing efficient methodologies to facilitate the use of CAD systems for breast
cancer screening. The objectives of this research are summarized as:

• Propose a semi-automatic framework to perform an assessment of ABUS
lesion volumes, as well as quantify the volumetric changes during lesions
diagnosis and follow-up.

• Develop a patch-based mass detection framework on FFDM using CNNs,
where small regions of images, i.e. patches are used for training and testing
the CNNs.

• Propose a mass detection framework based on Faster R-CNN which takes
whole FFDM as the input and provides the localisation of the lesions within
this mammogram as an output.
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1.7 Thesis Outline

In chapter 1, an overview of the breast cancer is provided along with different
imaging modalities used in breast cancer screening, followed by the aims and
objectives of this thesis. In the following chapter 2, a description of the traditional
CAD systems is provided. In addition, a description of the datasets used in this
thesis is presented, along with a comprehensive overview of the state-of-the-art
methods in 3D ultrasound and mammography.

Segmentation is widely used in breast imaging to discriminate between normal
and abnormal tissues (lesion) based on certain image properties. In chapter 3, a
semi-automatic lesion segmentation framework for 3D ABUS volumes is presented.
The localisation of lesion is done by radiologist by selecting a seed point (pixel)
inside the 3D volume, and thereafter the 3D lesion volume is segmented around the
seed point.

Following on from the works in 3D ultrasound images, the focus is shifted
on 2D mammography images (using public datasets). This is done to facilitate
the development of automated CAD systems based on emerging deep learning
technology. In chapter 4 a particular class of deep learning i.e. CNN is used
for developing an automated CAD system for lesion detection using two available
public mammography datasets. As the first step, a patch-based methodology
is employed which uses small regions of the images (patch) to train the CNN.
Later, in chapter 5, a lesion detection framework is presented which uses the
whole mammogram for the training and testing of the CNN. This proposed
framework overcomes one of the main limitations of the patch based approach i.e.
computational efficiency. The chapter 6 concludes research done in this thesis,
highlights the contributions and outlines the areas of future research.



Chapter 2

Computer Aided Detection: Datasets
and State of the Art

In the previous chapter, an overview of breast cancer, anatomy and different imaging
modalities was provided. This chapter provides a description of the traditional
CAD systems, the datasets used in this thesis and the state-of-the-art methods in
3D ultrasound and mammography.

2.1 Computer Aided Detection

In the last two decades, several Computer Aided Detection (CAD) systems
have been developed to support radiologists for an early detection of masses in
mammograms. However, these systems have limited effectiveness in terms of
accuracy and are prone to reduce the number of False Positives (FP) and False
Negatives (FN) [34, 35]. CAD systems have been an integral part of screening
mammograms [36], despite questions about its effectiveness in the current form.

The CAD Systems can be divided into two main categories: Computer
Aided Detection (CADe) and Computer Aided Diagnosis (CADx) mammographic
systems. CADe systems indicate the presence of possible abnormalities whereas
CADx systems classify potential lesions into malignant or benign in terms of
malignancy likelihood. The CADe systems are used to search for abnormalities
in the breast such as masses, micro-calcifications, architectural distortions or

17
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Figure 2.1: Flow chart showing different steps involved in CAD system and their
characterisation into CADe and CADx.

asymmetries. A typical flow chart of the CAD system is shown in Fig. 2.1.

In previous research it has been shown that the early CADe systems had
high sensitivity for macro-calcifications (up to 99%) [37], comparatively lower for
masses (75-89%) [38] and least for architectural distortions (38%) [39]. The CADx
systems are used to help radiologists to discriminate between benign and malignant
lesions, and assist in the interpretation of positive mammograms (biopsy proven
cancers). This task is usually a two-class classification problem. Current research
is focused on the development of semi-automatic or fully automatic CADe/CADx
systems for the detection and diagnosis of the breast lesions.

The images acquired using Ultrasound (US) Imaging technique contains
speckle noise resulting in artefacts, thus limiting the accuracy of the CAD system.
Automated Breast Ultrasound (ABUS) is the latest technology in US imaging
modality, which produces the 3D scan of the breast. Since, in ABUS, the radiologist
have to read large number of 2D slices, the main focus of CAD tools developed
for ABUS, has been the effective reading of large ABUS volumes, and reducing
the inter and intra-reader variability on manual evaluation [40–44]. In this thesis,
efforts are made to develop a semi-automatic CAD tool to facilitate the reading of
ABUS volumes by the radiologist.

Traditionally, CAD systems for mammography used Screen-Film Mammogram
(SFM) with poor image quality, resulting in less robust application process.
Moreover, they also relied on hand-engineered features like Hog, SIFT [45], which
are not always consistent with respect to the Ground-Truth (GT), and have a human
bias factor. In this thesis, efforts are also made to develop an automated CAD
systems for detecting lesions in mammograms.
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Table 2.1: Summary of the ABUS dataset.

ABUS Dataset

No of volumes 56 (28 temporal pairs)
Malignant cases 26 (13 temporal pairs)

Benign cases 30 (15 temporal pairs)
Bit depth 8

Resolution 0.11×0.22×0.53 mm3

2.2 Datasets

In this section, description of the 3D Ultrasound and mammography datasets used
in this thesis are presented.

2.2.1 3D Ultrasound

The 3D Automated Breast Ultrasound (ABUS) dataset used in this thesis is
collected from the high-risk ABUS screening trials at Radboud University Medical
Centre, Nijmegen, Netherlands between 2011 and 2014 using a Siemens ACUSON
S2000 ABVS (Siemens Medical Solutions, Mountain View, CA, USA). This
retrospective study was approved by the local institutional review board and the
requirement for informed consent is waived.

The ABUS volumes were acquired from 15 patients (average age 48±15 years)
in three to five different views: anterior-posterior, medial and lateral (left and right),
resulting in a total of 28 volumes. For these patients, depending on the nature
of lesion i.e. benign (BI-RADS 2/3) and malignant (BI-RADS 4/5), another set
of 28 ABUS volumes were acquired within a minimum time interval of 17 days
to a maximum 2 years and 6 months. For a particular patient, based on the time
of acquisition, different sets of temporal volumes were considered (one for each
view) and referred in the text as prior and current. The obtained dataset contained
all high-resolution anisotropic ABUS volumes and the details are summarised in
Table 2.1. In Fig. 2.2 a sample of ABUS volume from the dataset is shown, with
the GT rendered in 3D.

2.2.2 Mammography

Some of the publicly available mammography datasets include DDSM [47],
CBIS-DDSM [48], INbreast [49], mini-MIAS [50], BCDR [51] etc. In this thesis,
the two most popular and commonly used datasets: CBIS-DDSM and INbreast,
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Figure 2.2: Sample of ABUS volume with ground-truth rendered using
ITK-Snap [46], (a) coronal view, (b) sagittal view, (c) axial view, and (d) GT
in 3D.

along with a large scale private dataset OMI-DB are used. Note that all the
mammograms are available as “for presentation”.

2.2.2.1 CBIS-DDSM

The DDSM [47] dataset contains approximately 2,500 studies. It contains SFM
compressed with lossless JPEG encoding. In this thesis, a newer version of the
dataset is used, i.e. CBIS-DDSM [48], containing a subset of the original DDSM
images in the standard DICOM format. The dataset was downloaded on October
10, 2017 from CBIS-DDSM website [52] containing 3,061 mammograms of 1,597
cases. In total there are 1,698 masses in 1,592 images from 891 cases which
includes both Cranio-Caudal (CC) and Medio-Lateral Oblique (MLO) views for
most of the screened breasts. Figure 2.3 shows two mammographic views of the
same case (CC and MLO) from the dataset.

2.2.2.2 INbreast

The INbreast [49] dataset is composed of Full-Field Digital Mammogram (FFDM)
acquired using a Siemens MammoNovation mammography system (Siemens
Healthineers, Erlangen, Germany). The images were acquired from 115 cases with
CC and MLO breast views, leading to a total of 410 images available in DICOM
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Figure 2.3: Sample SFM from CBIS-DDSM [48] showing two different views of
the same case, left: CC and right: MLO.

Figure 2.4: Sample FFDM from INbreast [49] showing two different views of the
same case, left: CC and right: MLO.

format. From these, a total of 116 masses can be found in 107 mammograms from
50 cases. Figure 2.4 shows two views of the FFDM (CC and MLO) of the same
case in the dataset.

2.2.2.3 OPTIMAM Mammography Image Database (OMI-DB)

The OMI-DB [22] is an extensive mammography image database of over 145,000
cases (over 2.4 million images) comprised of unprocessed and processed FFDM
from the NHS Breast Screening Programme of the United Kingdom, which also
contains expert’s determined GT and associated clinical data linked to the images.
We obtained a subset of this database comprising of 4750 cases. In this dataset there
are images from fours different manufacturer including Hologic, Philips, General
Electric (GE) and Siemens, containing a total of 2,419 cases with 4,217 masses and
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Figure 2.5: Sample FFDM from OMI-DB dataset from different manufacturers.
Here mammograms are from (a) Hologic, (b) GE, (c) Siemens and (d) Philips.

Table 2.2: Summary of the mammography datasets including the details of
scanner used for image acquisition, image sizes, resolution, bit depth and the total
number of cases.

Dataset Type Scanner Size Resolution µm Cases Bit depth

CBIS-DDSM SFM Multi-Scanner 3000 × 4800 42, 43.5, 50 1597 8

INbreast FFDM Siemens
3328 × 4084

70 115 14
2560 × 3326

OMI-DB FFDM

Hologic
3328 × 2560

60, 70 2884 12
4096 × 3328

GE
2294 × 1914

100 207 12
3062 × 2394

Philips 5355 × 4915 50, 83 242 12

Siemens 4084 × 3328 70 32 12

946 cases without any mass. Figure 2.5 shows sample FFDMs from the scanners of
different manufacturers in the OMI-DB dataset.
The summary of mammography datasets used in this thesis are shown in Table 2.2.

2.3 State of the Art

2.3.1 Automated Breast Ultrasound

Although many CAD algorithms have been explored in 2D Hand-Held Ultrasound
(HHUS) [53–59], only a few studies have been proposed for 3D ABUS volumes.
For instance, Chen et al. [40] used an active contour model to segment breast
tumours in 3D images reconstructed from 2D ultrasound, while Moon et al. [42]
used speckle and morphological features to classify breast masses in ABUS
volumes showing a classification accuracy of 84.4%. One of the previous studies
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on ABUS for breast cancer detection showed an increase in the diagnostic yield
from 3.6 per 1000 with mammography alone to 7.2 per 1000 women screened with
automated ultrasound [60].

Tao et al. [61] developed a breast lesion segmentation approach directly
for ABUS using dynamic programming in combination with a spiral scanning
technique (Dice Similarity Coefficient (DSC)= 0.70± 0.16) and was extended
for malignant lesion using a depth-guided dynamic programming method (DSC=
0.73±0.14) [62]. Later, Diaz et al. [63] extended the segmented method developed
by Pons et al. [56] for 2D HHUS based on Markov Random Field-Maximum a
Posteriori to 3D volumes, showing a decrease in performance from 0.75 to 0.55, in
terms of DSC.

In recent years, there have been a lot of development in ABUS technology, both
clinically and also in the field of CAD systems [64]. The main focus of CAD tools
developed for ABUS has been to improve reading efficiency of large breast volumes
reducing the inter and intra-reader variability. During diagnosis, when scans over
time are available (temporal studies), it is also possible to track the lesion changes
and see the effect of biopsy (if performed). However, this comes at the cost of longer
reading and evaluation times, given the larger amount of images to be interpreted.

In breast imaging, segmentation is widely used to discriminate between
normal and abnormal tissues based on certain image properties (e.g. intensity
variation, texture). However, due to inherent speckle noise and low contrast of
breast ultrasound images, automatic lesion segmentation is still a challenging task.
Traditionally, the common segmentation algorithms described in the literature are
based on: edge detection [65], Otsu threshold [66], region-based segmentation [67],
morphological watersheds [67] etc. Each of these methods are based on different
imaging principles, which might be effective for one particular application but may
not be accurate for other.

In 2014, Lo et al. [68] used a specific type of Watershed (WAT) called
Toboggan Watershed for whole ABUS image segmentation. In the author’s previous
work completed in 2016 [69], a semi-automatic framework was presented for the
applicability of different segmentation algorithms from state-of-the-art on the lesion
segmentation of ABUS volumes. The framework was semi-automatic in a way that
the expert (radiologist) selects a point in the suspected region. Results suggested
the use of WAT algorithm for ABUS lesion segmentation obtaining the best results
with an average DSC of 0.70±0.13 on a dataset of 56 ABUS volumes (30 benign
and 26 malignant lesions).
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2.3.2 Mammography

Following the recent developments in computer technology and data sciences, there
has been a lot of interest in exploring deep learning methods for mammography [31,
70–74]. The term “Deep Learning” can be defined as any one of a set of
methods that learn data representations using multiple levels of representation [75].
They are obtained by composing simple but non-linear models that transform the
representation from one level (starting with the raw input) into increasing levels
of representation. Deep learning strategies have recently gained a lot of interest
in various fields including object detection [75–79], image recognition [77–83],
natural language processing [84, 85] and speech recognition [86, 87]. In Deep
Learning, Convolutional Neural Network (CNN) is most commonly used to analyse
images.

Several authors have proposed the use of traditional machine learning
and content based image feature retrieval techniques to classify masses and
micro-calcifications [88, 89]. The feature exploitation of deep learning frameworks
in the field of breast imaging has been limited, as only a small number of public
datasets are available (e.g. DDSM [47], INbreast [49]). In the early paper of
Kozegar et al. [90] in 2013, the authors used an iterative breast segmentation
approach to subsequently classify the regions using traditional feature selection and
machine learning paradigms.

In 2015, Dhungel et al. [70] proposed a multi-scale deep belief network
(m-DBN) classifier, followed by a cascade of Region-Based CNN (R-CNN) and
cascades of random forest classifiers for mass detection, obtaining True Positive
Rate (TPR) of 0.96± 0.03 at 1.2 False Positives per Image (FPI) on INbreast and
0.75 at 4.8 FPI on DDSM-BCRP dataset [47]. Later, Carneiro et al. [71] proposed
the use of CNN models pre-trained using a computer vision database (ImageNet)
for classifying benign and malignant lesions obtaining an Area Under Receiver
Operating Curve (AUROC) of 0.91± 0.05 on INbreast and 0.97± 0.03 on DDSM
dataset.

More recently in 2017, Lotter et al. [72] trained a patch-based CNN to classify
lesions in the DDSM dataset and subsequently used a scanning-window approach
to provide full mammogram classification achieving an AUROC of 0.92 on the
DDSM dataset. In scanning-window approach, the image is partitioned into set
of patches (with minimal overlap), such that each patch is contained completely
within the image and the entire image is completely tiled. Later, Dhungel et al. [31]
used a deep learning methodology to develop an approach for mass detection,
segmentation and classification in mammograms and tested the approach on the
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INbreast dataset. Detection results had a TPR of 0.90± 0.02 at 1.3 FPI on testing
data.

Regarding the use of private mammography datasets, Becker et al. [91] used a
multi-purpose image analysis software and an internal database from 3,228 patients
to train the Artificial Neural Network (ANN). The model was then tested on the
BCDR dataset [51] of 35 patients to obtain AUROC of 0.79. In other works, Kooi
et al. [73] used a larger private database of≈45,000 FFDM to provide a comparison
between traditional mammography CAD systems relying on hand-crafted features
and the CNN methods. It was shown that the CNN model trained on a patch
level with a large database outperformed state-of-the-art CAD systems, obtaining
an AUROC of 0.929 compared to 0.906 obtained for the CAD system.

Researchers have used Faster R-CNN in medical imaging [92, 93], but a
very small amount of literature is available in the field of breast imaging. For
instance, Akselrod-Ballin et al. [94] used a modified version of Faster R-CNN
model to include informations from the finer bottom levels during classification
stage. Results were then evaluated on an internal database of 850 images to obtain
AUROC of 0.78. Later, in [95], the results were evaluated on a subset of the
INbreast dataset (with masses) obtaining a TPR of 0.93 at 0.56 FPI. Ribli et al. [74]
trained a Faster R-CNN on the DDSM database composed of 2,620 SFM, and then
evaluated the performance of the network on the INbreast database of malignant
lesions, obtaining a TPR of 0.90 at 0.3 FPI and AUROC of 0.95.

Jung et al. [98] proposed a mass detection model based on RetinaNet [101] and
used a new loss function called focal loss to address the problem of extreme class
imbalance between foreground and background. The performance of the network
was evaluated on the INbreast to obtain the best TPR of 0.97± 0.05 at 3.0 FPI
and 0.94±0.02 at 1.3 FPI. Morrel et al. [99] presented a neural network based on
region-based fully convolutional network (R-FCN) and deformable convolutional
nets. The network was trained using the OMI-DB [22] dataset, achieving AUROC
of 0.867 for breast-wise detection in the DREAM challenge on 13,000 images from
Group Health.

Al-masni et al. [100] adopted the You Only Look Once (YOLO) deep learning
method [102] for the detection and classification of masses in mammograms. The
results showed an overall mass detection accuracy of 96.33% and the classification
accuracy of 85.52% on the DDSM dataset. Although, authors showed that
enhanced accuracies were obtained when using an augmented DDSM database
created by rotating each mammogram multiple times. Authors used images of the
same patient for both training and testing instead of splitting training and testing
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Table 2.3: Summary of other works on mass detection in mammography using
deep learning methods.

Author (Year) Dataset (Images) Method Mammogram
size AUROC TPR at FPI

Kozegar et al. [90]
(2013)

mini-MIAS (330)
Iterated segmention 512×512 n/a

0.91 at 4.8

INbreast (116) 0.87 at 3.67

Carneiro et al. [71]
(2015)

INbreast (410)
Fast CNN (CNN-F) [96] 264 × 264

0.91±0.05
n/a

DDSM (680) 0.97±0.03

Dhungel et al. [70]
(2015)

INbreast (410)
m-DBN+R-CNN+RF 264×264 n/a

0.96±0.03 at 1.2

DDSM-BCRP (316) 0.75 at 4.8

Lotter et al. [72]
(2017)

DDSM (10480)
InceptionV3 patch

(256×256)
0.77±0.03

n/a
wide ResNet [97] 0.92±0.02

Dhungel et al. [31]
(2017) INbreast (410)

cascade R-CNN+RF
with hypothesis refinement 264×264 n/a 0.90±0.02 at 1.3

Becker et al. [91]
(2017) BCDR (70) ANN using ViDi software high resolution 0.79 n/a

Kooi et al. [73]
(2017) internal(45000) downscaled VGG

patch
(250×250) 0.929 n/a

Akselrod-Ballin et al. [94]
(2017) internal (850)

modified
Faster R-CNN

grid
(800×800) 0.78 n/a

Akselrod-Ballin et al. [95]
(2017)

internal (750) modified
Faster R-CNN

grid
(800×800)

n/a
0.9 at 1.0

INbreast (100) 0.93 at 0.56

Ribli et al. [74]
(2018) INbreast (n/a) Faster R-CNN 2100 × 1700 0.95 0.90 at 0.3

Jung et al. [98]
(2018)

GURO (222)
RetinaNet n/a n/a

0.98±0.02 at 1.3

INbreast (410) 0.94±0.05 at 1.3

Morrel et al. [99]
(2018)

Dream challenge
(13,000) R-FCN/DCN 2,545 × 2,545 0.8667 n/a

Al-masni et al. [100]
(2018) DDSM (600) YOLO 448×448 0.877 n/a

Al-antari et al. [32]
(2018) INbreast (410) YOLO 448×448 0.948 n/a

datasets at a patient level. This type of the distribution of training and testing
images would result in mammograms from the same patient to be present in both
training and testing, thus giving potentially biased results. In other works, Al-antari
et al. [32] presented a fully integrated CAD system adding lesion segmentation
to the framework proposed in [100]. The results were presented on the INbreast
dataset, but again the augmented dataset is used and the distribution is made based
only on the images raising issue on overlap between training and testing patients.

A summary of the works performing mass detection in mammography are
summarized in Table 2.3.



Chapter 3

Lesion Segmentation in Automated
Breast Ultrasound

In the previous chapter, an overview of the Computer Aided Detection (CAD)
systems was provided along with the datasets and state-of-the-art methods. This
chapter deals with one of the steps in the CAD systems i.e. lesion segmentation (see
Fig. 2.1). Segmentation is widely used in breast imaging to discriminate between
normal and abnormal tissues (lesion) based on certain image properties (e.g.
intensity variation, texture, etc.). Herein, a semi-automatic lesion segmentation
framework for 3D Automated Breast Ultrasound (ABUS) volumes is presented.

3.1 Introduction

Ultrasound imaging is the standard technology used for cancer screening in dense
breast. The conventional Ultrasound (US) or Hand-Held Ultrasound (HHUS) have
a major disadvantage: poor quality because of multiplicative speckle noise that
results in artefacts and requires highly skilled operators to detect lesions [103].
Moreover, due to the disturbances during scans (patients movement, breathing
effects), sometimes multiple scans are required to be done which makes it a
time-consuming process and is also prone to human error.

ABUS is an alternative procedure to perform ultrasound of the breast using
an automated procedure to overcome the time-consuming process and operator

27
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dependence nature of hand-held procedure [104]. Using ABUS, an exhaustive scan
of the whole breast is produced using 3D technology, and only requires the basic
knowledge of the set-up to obtain a good scan of the breast. One of the limitations
of ABUS is that the radiologists have to analyse each slice of the 3D volume to
identify suspicious lesions.

Lesion change is typically analysed by measuring the longest lesion axis in
three dimensions and the lesion volume is estimated using this information, without
accounting for more accurate volumetric calculation [105]. The lesion volume
analysis has been used in other areas of medical imaging such as Multiple Sclerosis
lesion in brain [106–108] and lung CT images [109]. It has been also shown in the
literature that the lesion volume measurements can be used to quantify the disease
progression [109, 110].

Image segmentation plays an important role in Medical Image Analysis as it is
one of the crucial steps in many clinical applications such as detection of tumours,
veins, organs etc. Selection of a segmentation algorithm, truly depends on the
type of images, application and requirements. In addition, accurate segmentation
of lesions is a challenging problem for many reasons such as: lesions have
considerable variation in shape, have an overlapping area with normal tissues which
is difficult to differentiate and distribution of intensities in the lesions are very high.

In this chapter, investigations are done to analyse the impact of different
de-noising algorithms on segmentation results. Moreover, a temporal volumetric
assessment of breast lesion changes using a temporal dataset is presented. From
the clinical perspective, this could be used to provide valuable information to
radiologists about the changes in lesions before and after a surgery or therapy is
performed.

3.2 Methodology

The lesion segmentation framework proposed here is described in Fig. 3.1. The
input to the framework is the 3D ABUS volume and a seed point (in Cartesian
coordinates) which corresponds to a voxel within the lesion region. Herein, the seed
points are located manually by selecting one of the most inner pixels in the central
slice of the lesion following expert’s annotations. The output of the framework
is the binary 3D lesion segmentation and its estimated volume. In the following
sub-sections, details of the steps of the proposed framework are presented.
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Figure 3.1: The proposed segmentation framework, the corresponding seed point
is shown with a ’x’ marker. Analysed de-noising methods are listed under the
de-noising block.

3.2.1 Masking

The acquired ABUS images are high-resolution 3D volumes which makes the
segmentation process computationally expensive. Hence, all ABUS volumes
are down-sampled from their original resolution 0.11×0.22×0.53 mm3 (2.1) to
0.6×0.6×0.6 mm3 isotropic voxels (uniform size in all the three directions).
Since the new voxel resolution is not a multiple of the original resolution, linear
interpolation is used to estimate the new voxel’s intensity values.

As the volume of the lesion is small compared to the entire ABUS volume, a
masking step is added to speed-up the processing algorithms. This is performed to
include enough distance from the lesion’s border to the edge of the mask to avoid
edge artefacts in the volume of interest. Assuming an oval or elliptical shape of
lesion [111, 112], the central slice of the prior and current lesion showed an average
major axis of 10.68±5.23 mm and 10.0±4.53 mm, respectively. Thus to include
all the lesions within the chosen dataset, the volumes are masked using a sphere of
75 mm radius centred at the seed point. A sample case of the masking process is
illustrated in Fig. 3.2.

3.2.2 De-noising

Similar to conventional US, ABUS volumes suffer from low contrast and speckle
noise patterns which limits the efficacy of posterior analysis steps. Therefore, it
would be advantageous to perform suitable de-noising of ABUS volumes before
applying any segmentation algorithm. In this thesis, investigations are made to
analyse the impact of different de-noising algorithms including median filtering,
Gaussian filtering, Anisotropic Diffusion (AD) and Anisotropic Diffusion-Lattice
based Reduction (AD-LBR). Herein, all the de-noising algorithms in 3D are
analysed using implementations in Insight ToolKit (ITK) [113]. A brief description
of these methods are as follows:
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Coronal 

Sagittal

Axial

Figure 3.2: ABUS volume (0.6 mm3 pixel spacing) with dimensions: 254×278×
74 pixels and seed point inside the lesion as shown with the cross-hair on the left
and the masked volume with the centre of the sphere at the seed point, with a
diameter of 75 mm on the right. Three different views are shown as Coronal (top),
Sagittal (middle) and Axial (bottom).

Median filtering: It is a non-linear digital filter particularly used for salt and
pepper noise. The ITK implementation with a 3D filter of radius 3× 3× 3
pixels is used in this chapter [114].

Gaussian filtering: In this filter it is assumed that the noise present in the image
follows a Gaussian distribution and hence a Gaussian Kernel is used to
perform de-noising in three directions [115, 116]. In this work a Gaussian
Kernel of standard deviation σx = σy = σz = 0.6 mm is used.

AD: The motivation for AD also called non-uniform or variable conductance
diffusion is that a Gaussian smoothed image is a single-time slice of the
solution to the heat equation, and the idea is to diffuse the pixel intensities
preserving the sharp boundaries (details) of the image. In here, the 3D
extension of the classic Perona-Malik anisotropic diffusion equation for
scalar-valued images [117] is used, with the conductance (c = 3) and
iterations (i = 20) controlling the extent of de-noising.

AD-LBR: Weickert [118] showed that a filter can be locally adapted such that it
is truly anisotropic close to linear structures like edges or lines and also is
elongated along the structure and narrow across. These methods are classified
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as Edge Enhancing Diffusion (EED) or Coherence Enhancing Diffusion
(CED). Later, Fehrenbach et al. [119] introduced AD-LBR to discretize
AD based on Lattice Basis Reduction (LBR). CED heuristically smooths
across all image except contours, while EED smooths only at image locations
which are tangential to the image contours. A detailed description of the
mathematical formulation is given by Mirebeau et al. [120]. In the non-linear
diffusion algorithm, a structure tensor S is used as an estimator of the gradient
direction of an image u, which depends on two parameters i.e. the noise scale
σ , and the feature scale ρ .

Su := Kρ ∗ (∇uσ ∇uT
σ ) where uσ := Kσ ∗u (3.1)

where K is the Gaussian convolution. Weickert’s diffusion tensor D =

Du(x, t), is defined in terms of the eigen analysis of the structure tensor
S = Su(x, t) as:

D = ∑
1≤i≤d

µiei⊗ ei where S = ∑
1≤i≤d

λiei⊗ ei (3.2)

where d ∈ {2,3} is the image dimension, λi are the eigenvalues of the
structure tensor, with 0 ≤ i < d. The diffusion tensor D is defined by the
same eigenvectors, but with modified eigenvalues µi. EED and CED can now
be defined by Eq. 3.3 and Eq. 3.4.

µi = 1− (1−α)exp
(
−
(

λ

λi−λ1

)m)
, (3.3)

µi = α +(1−α)exp
(
−
(

λ

λd−λi

)m)
(3.4)

In this work the feature scale ρ is set at 2, while the range of other parameters
were empirically selected to maximise signal to noise ratio [121] for each
image as: diffusion time∈ [1,2], lambda(λ ) ∈ [0.001,0.1] noise-scale(σ) ∈
[0.1,1].

The results for different de-noising methods are shown in Fig. 3.3.

3.2.3 Segmentation

Following on from the author’s previous work [69], in this thesis Watershed (WAT)
algorithm is used for ABUS lesion segmentation. WAT is a morphological method



Chapter 3. Lesion Segmentation in Automated Breast Ultrasound 32

(a) (b) (c)

(d) (e)

Figure 3.3: A qualitative example of the different image de-noising methods. a)
original image without de-noising, b) Median filter (r=3x3x3 pixels), c) Gaussian
smoothing (σx = σy = σz = 0.6mm), d) AD (C = 3, i = 20,δ t = 0.0624), e)
AD-LBR (t = 1.5,λ = 0.005,σ = 0.8,ρ = 2).

used extensively in the field of image processing. The underlying theory of
the approach is well documented in literature [121–123] and a brief overview is
provided here. The implementation of WAT includes creation of a topological map
based on the pixel’s grey level value, e.g. a white pixel represents peak, black pixel
represents valley and all other intermediate pixels can be distributed accordingly.
As a result, several ‘catchment basins’ are formed corresponding to different local
minima. The two adjacent basins are separated by rigid lines to form two separate
regions in the image called watershed regions as shown in Fig. 3.4.
In this chapter, ITK implementation of WAT segmentation is used with the
following parameters:

Level: It controls the watershed depth (0-1 of the maximum depth of the input
image). The level parameter is dynamically controlled, by moving from the
highest level to the lowest level in small increment of 0.1.

Threshold: It is specified as a fraction (0-1) of the maximum height of the image.
Thresholding the minimum values in the image decreases the number of local
minima and produces an initial segmentation with fewer segments. Empirical
experiments found the threshold parameter of the filter does not play a very
significant role in the output, and is fixed to a typical value of 0.005, as stated
in the literature [63].

The final 3D segmentation volume corresponds to the binary region of the WAT
algorithm which contains the seed point.
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Figure 3.4: A schematic overview of watershed in 1D.

3.2.4 Evaluation Metrics

In order to evaluate the performance of the proposed framework, an experienced
radiologist with more than 4 years of experience in ABUS, performed localisation
and manual segmentation on a coronal 2D slice containing the lesion. This initial
segmentation is expanded to a 3D volume using the open source ITK-Snap [124]
software by medical imaging experts. Furthermore, the 3D volumes are verified
(and modified when needed) by another experienced radiologist (25 years in breast
imaging) to produce the final Ground-Truth (GT) volume. All the lesions are
histologically proven from the biopsy and the categorisation is used to evaluate
the performance of WAT segmentation algorithm.

Dice Similarity Coefficient (DSC) is a commonly used measure to provide
information regarding the extent of overlap between two areas or volumes [125,
126] and is typically measured on the scale of [0-1], where 1 represents complete
overlap. Herein, DSC is measured as

DSC =
2T P

2T P+FP+FN
(3.5)

Figure 3.5 illustrates the definitions used in evaluation measures.

• False Positives (FP): Voxels belonging to the lesion in the segmentation but
not part of lesion in GT volume.

• True Positives (TP): Voxels corresponding to lesion in both segmentation and
GT volume.
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Figure 3.5: In the top left, the original image with lesion is shown (pointed lesion
area). In the top right image, the volume is shown to overlay with GT (grey) and
segmentation (red). In the lower image, segmentation results overlay with GT is
shown, where TP is the intersection of grey and red region.

• False Negatives (FN): Voxels belonging to the lesion in GT but not included
in the segmented volume.

• True Negatives (TN): All the voxels outside the lesion in GT and
segmentation output.

The volumetric measure is another metric used to analyse the performance of the
proposed segmentation framework. Since during the acquisition of ABUS volumes
a small compression is used to stabilise the breast, it is assumed that the lesion
volumes remain fairly constant during this process. This makes the lesion volume
an important parameter from the radiologist point of view, especially for analysing
the temporal evolution of the lesion.

The lesion volumes (in mm3) for both GT (VGT ) and segmentation (VSeg)

are computed and a regression analysis is performed using Pearson correlation
coefficient to evaluate the extent of similarity between the two volumes. Temporal
analysis of the change in volumes (∆V t) is evaluated using the relative volume
difference between prior and current ABUS acquisitions of the same case (Eq. 3.6).

∆V t
i =

∣∣∣V c
i −V p

i
V p

i

∣∣∣×100 [%], (3.6)

where t, p,c represent temporal, prior and current volumes and i represent either
Seg or GT . The proposed framework is developed using the open source ITK
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segmentation and registration toolkit [113] libraries, and all the image processing
routines are implemented in C++. All the statistical analysis is performed using
one-pair sample test (ttest) in Matlab 2016a (MathWorks, MA, USA).

3.3 Experimental Results

In chapter 2, an overview of the ABUS dataset has been provided. In this chapter,
the lesion segmentation is performed on 56 ABUS volumes of 0.6 mm3 isotropic
voxel spacing.

3.3.1 Lesion Segmentation

As the first step, the performance of different de-noising algorithms is evaluated by
comparing WAT segmentation outputs (in terms of DSC, FP, FN). The obtained
results are shown in Table 3.1, where µ and σ refer to the mean and standard
deviation respectively, for all the volumes in the dataset. It is observed that AD-LBR
outperforms other de-noising algorithms based on the evaluation measures used.
This can be explained by the fact that AD-LBR performs smoothing over the volume
considering the structure tensor i.e. location and direction of the gradient value,
resulting in optimum smoothing and also preserving the edge information. These
edge informations complement the WAT algorithm in segmenting 3D volumes.
WAT segmentation with AD-LBR also resulted in lower FPs and FNs compared
to other de-noising algorithms. These differences are statistically significant
(p < 0.05) compared to no de-noising, median, Gaussian and conventional AD
de-noising.

The box-plot in Fig. 3.6 shows that the DSC values obtained for the majority
of cases using AD-LBR are in the range 0.69± 0.11, whereas other de-noising
algorithms show a wider range of values. Moreover, there are many outliers in
the results for AD de-noising, while using AD-LBR there are almost no outliers.
Hence, all further analysis is performed using AD-LBR (for de-noising) with WAT
segmentation.

3.3.1.1 Seed Point Selection

Since the proposed tool is semi-automatic, it requires a manual selection of a voxel
within the lesion (i.e. seed point) prior to the WAT segmentation. For this reason, an
additional analysis was performed to check the sensitivity of the seed point selection
with the proposed method (AD-LBR + WAT). Segmentation results in terms of
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Table 3.1: Results for different de-noising methods with WAT segmentation
where µ and σ refer to the mean and standard deviation respectively.

Filters DSC (µ±σ ) FP (µ±σ ) FN (µ±σ )

No filter 0.55±0.22 0.41±0.24 0.39±0.25
Median 0.64±0.16 0.39±0.19 0.25±0.20

Gaussian 0.61±0.19 0.40±0.19 0.28±0.24
AD 0.64±0.20 0.38±0.20 0.28±0.24

AD-LBR 0.69 ± 0.11 0.35 ± 0.14 0.23 ± 0.15

Figure 3.6: Box Plot summarising the performance of different de-noising
algorithms on lesion segmentation.

DSC were evaluated for 15 different seed points randomly located within the lesion
area, avoiding the boundaries for all the volumes. The resulting average DSC was
0.64± 0.10, showing a small variability of the proposed segmentation framework
when selecting the seed point location randomly. So it could be concluded that the
results obtained using the formulated framework are less sensitive to the selection
of seed point. This helps to limit the operator dependency, as different radiologists
may select different seed points.

3.3.2 Qualitative Analysis

As a qualitative result, lesion segmentation performed using the proposed
framework for benign and malignant ABUS cases (coronal view) are shown in
Fig. 3.7. Since all lesions are rated by an expert radiologist according to the
BI-RADS classification, a separate analysis for benign (30 volumes) and malignant
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Lesion Ground Truth Segmentation Lesion Ground Truth Segmentation

(a) (b)

Figure 3.7: Lesion segmentation: (a) Benign (DSC = 0.90; FP = 0.04; FN=0.14),
(b) Malign (DSC = 0.85; FP = 0.11; FN=0.18).

(26 volumes) cases is also performed to see if there is any segmentation limitation
based on the malignancy of the lesions in the segmentation results. For benign
cases the DSC= 0.71±0.11, while for malignant cases a slight decrease in DSC=
0.66± 0.11 is observed. This could be due to the fact that the boundaries of
the benign lesion are well defined and generally had uniform growth, while the
boundaries of malignant lesions are irregular and mostly grow in speculated and
non-uniform manner.

3.3.3 Volumetric Analysis

The volumetric analysis of the output of the proposed segmentation framework is
performed, with the VGT compared to the Vseg, including all the prior and current
cases. The volumetric correlation plot is shown in Fig. 3.8, where a high correlation
between VGT and Vseg (r2 = 0.960, p < 0.05) is obtained. This substantiates
the applicability of the implemented framework for volumetric assessment in the
used dataset. In order to quantify the agreement between the VGT and Vseg,
the Bland-Altman plot is shown in Fig. 3.9, where one can better perceive the
correlation between the two results. Here the mean difference is 38 mm3 with 95%
confidence interval -151 to 230 mm3, the variability of the volume differences can
also be noticed.

A volumetric temporal analysis is then performed on the temporal ABUS
volumes (28 prior and 28 current) to evaluate the changes in volume for both
VGT and VSeg for prior and current cases respectively. The VGT for prior cases
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Figure 3.8: Volumetric correlation between Segmentation (VSeg) results and
Ground-Truth (VGT ).

Figure 3.9: Bland Altman Plot of VGT and VSeg (in mm3).

ranged from 18 mm3 to 1148 mm3, while for current cases VGT ranged from
13 mm3 to 1676 mm3. In the same context, Vseg ranged from 16 mm3 to 1109
mm3 for prior cases and from 14 mm3 to 1872 mm3 for current cases. This
showed that both GT and segmentation volumes follow a similar trend, which is
complemented by the correlation result for both prior (r2 = 0.967, p < 0.05) and
current (r2 = 0.956, p < 0.05) volumes as shown in Fig. 3.10.

It can be observed that for some lesions the framework showed a decrease in
volume in the temporal study. These cases are individually analysed and it is found
that these are malignant cases where a biopsy was performed between the two scans.
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Therefore, the framework is able to capture the decrease in lesion volume from
prior to current, but due to unavailability of the pathological biopsy information,
the volumetric differences could not be verified.

Finally, applicability of the proposed framework for the temporal analysis of
breast lesion segmentation is substantiated by performing an error analysis. The
obtained results showed that the temporal variation between the changes in GT and
segmented volumes is not statistically significant (p> 0.05), indicating the potential
of the framework to be used for temporal analysis.

3.4 Discussions and Conclusions

In this chapter, a breast lesion segmentation framework was proposed for ABUS
volumes which provides support for radiologist’s diagnosis in breast cancer
examinations. The main contribution of this chapter is the development of a
semi-automatic framework to segment lesion in ABUS, that could also be used
for temporal analysis of breast volumes. This is clearly shown by the fact that the
temporal variation in the segmented volumes (∆V t

Seg) is not significantly different
(p > 0.05) to the variation in the GT volumes (∆V t

GT ) and the segmented volumes
have good correlation with the GT volumes (r2 = 0.960).

Although lesion volume is used as a measure of the accuracy of the
proposed segmentation algorithms, the potential applications of knowing such 3D
information of the lesion are large: volumetric analysis for accurate knowledge of
temporal lesion changes, feature extraction (e.g. texture) for lesion characterisation,
etc. The effect of different de-noising algorithms on lesion segmentation for
ABUS volumes was also explored. The results showed a significant difference
in the segmentation output when WAT segmentation algorithm was used with
different de-noising algorithms, in which AD-LBR outperformed (p < 0.05) all
other methods for ABUS volumes with respect to evaluation measure (DSC, FP,
FN) used.

In section 3.3.3, the lesion was segmented to estimate its volume, and
subsequently compared with GT volume to measure the accuracy using Pearson
correlation coefficient. The results of this volumetric analysis of the lesions showed
a high correlation between GT and segmented volumes (r2 = 0.960, p < 0.05).
The average DSC obtained was 0.72 for benign lesion and 0.66 for malignant
lesion, with a maximum of 0.90 (benign lesion) and minimum of 0.44 (malignant
lesion), showing the challenging task of the segmentation algorithm. It was also
seen from Fig. 3.8 that for very few cases the segmented lesion volumes was
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(a)

(b)

Figure 3.10: Volumetric correlation between the VSeg and VGT for temporal study,
(a) prior studies, (b) current studies. The numeric labels signify the same case
in prior and current studies. The scale for the plots is different for the better
visualisation.

greater than the GT volume, signifying that the proposed framework does not result
in over segmentation of the lesions. These results demonstrate the potential of
the framework to be used clinically for breast lesion segmentation and volume
estimation.

In general, the temporal lesion volume change was similar for both the GT
and the segmentation. In 2 out of 28 volume pairs, the trend between prior and
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current cases for GT and segmentation was different and it was found that the
segmentation showed a decrease in the volume, whereas the GT showed an increase
in the volume. This issue requires further analysis but could be attributed to specific
lesion properties which could not be captured by the used segmentation algorithm.

One of the limitations of this work is the lack of a large ABUS dataset to test the
repeatability of the proposed segmentation tool. ABUS is a relatively new technique
and its clinical use is still not widely spread. Thus, there is lack of a good public
dataset. Furthermore, inter and intra-reader variability is a well known issue in
ultrasound imaging that can influence the performance evaluation of the automatic
segmentation frameworks. Considering all these issues, the analysis presented here
may not be fully extrapolated to clinical practice in its current state. However, this
work presents an important step towards the development of an automatic tool for
breast lesion quantification in ABUS.

Despite the developments in ABUS for screening dense breasts, one of the
major limitations is the non-availability of large public ABUS dataset, which
hinders the use of emerging deep learning methods based on Convolutional Neural
Network (CNN), as it requires large amount of data for training the CNNs. For
instance, one of the recent attempts to use deep learning approaches in ABUS
volumes was made by Wang et al. [127], where authors used a 3D U-Net as the CNN
architecture, and fine-tune the hyper-parameters of a pre-trained network [128].
More recently, Chiang et al. [129] designed a three stage method for tumor detection
in ABUS, using a sliding window detector to detect volumes of interest.

In contrast to 3D ultrasound, mammography is widely used for breast cancer
screening, especially in women with non-dense breast. Some of the mammography
datasets are publicly available, in which the most popular are DDSM [47],
CBIS-DDSM [48] and INbreast [49] datasets. The DDSM contains Screen-Film
Mammogram (SFM) from ≈2500 cases, while INbreast consists of Full-Field
Digital Mammogram (FFDM) from 115 cases. In the following chapter, deep
learning methods are used to develop automatic CAD system for lesion detection
using the two available public mammography datasets.





Chapter 4

Patch-Based Lesion Detection on
Mammograms Using Deep Learning
Methods

In the previous chapter, a semi-automatic lesion detection framework was presented
for 3D Automated Breast Ultrasound (ABUS) volumes, and was used for temporal
analysis of breast volumes. This was the first step towards the development of a
semi automatic tool for breast lesion quantification in ABUS volumes. Following
on from the works in previous chapter, the focus is shifted on 2D mammography
images (using public datasets). This is done owing to facilitate the development
of automated Computer Aided Detection (CAD) systems based on emerging deep
learning technology. In this chapter, a particular class of deep learning i.e.
Convolutional Neural Network (CNN) is used to develop automatic CAD system
for lesion detection using the two available public mammography datasets.

4.1 Introduction

Since the past decade, research in breast image analysis has mainly focused on
the development of CAD systems in order to assist radiologists in the diagnosis.
Traditionally, mammographic CAD systems relied on hand-engineered features,
which showed limited accuracy in complex scenarios. More recently, with

43
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the advent of deep learning methods, CAD systems learn automatically which
image features are more relevant to be used to perform a diagnosis, boosting the
performance of these systems.

One of the limitations of deep learning is that it requires large training datasets,
and in the field of medical imaging compiling such a large image database to extract
relevant features from different diseases can be a tedious task. Thus, while deep
learning strategies based on CNN are promising in terms of diagnosis of a number
of diseases, there are still significant constraints due to limited training data that
must be overcome. To this effect, the researchers have devised some strategies,
such as (i) use image patches as inputs rather than full sized image [130–132], (ii)
to expand the data artificially by using data augmentation, (iii) to use deep models
trained over large databases of natural images and then fine-tune the network with
the medical images (referred as transfer learning) [133, 134].

Transfer learning (also known as domain adaptation) is considered to be an
efficient methodology, in which the knowledge from one image domain can be
transferred to another image domain. Here, the aim is to fine-tune a pre-trained
model (trained on a larger database) on a smaller dataset [135]. Azizpour et al. [136]
suggested that the success of any transfer learning approach highly depends on the
extent of similarity between the databases on which a CNN is pre-trained and the
database to which the image features are transferred. Tajbakhsh et al. [137] debated
if the use of pre-trained deep CNNs with sufficient fine-tuning could eliminate the
need for training a deep CNN from scratch. The authors also analysed the influence
of the choice of the training samples on the performance of CNNs, and concluded
that there is a no set rule to say if a shallow tuning or deep tuning is beneficial and
that optimal method is dependent on the type of application.

In this chapter, an automated framework is proposed which uses image patches
for training and testing the CNNs. The concept of transfer learning is used
to perform a domain adaptation between the images of different characteristics
i.e. natural images, Screen-Film Mammogram (SFM) and Full-Field Digital
Mammogram (FFDM). The training of CNNs is based on the image patches
extracted from the SFM and FFDM.

4.2 Convolution Neural Networks: CNNs

Convolutional Neural Network (CNN) is a deep learning algorithm especially
designed to work with two dimensional image data. It is capable to assign
weightings to different image features in order to differentiate one from another.
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Figure 4.1: A simple CNN architecture with 1-convolutional layer is shown. The
convolutional block can be repeated multiple times to increase the depth of the
network.

Figure 4.1 shows a simple CNN architecture. The CNN consists of an input and
output layer, multiple convolutional layers, batch normalisation (BN) layer, rectified
linear unit (ReLU) or activation function, pooling layers and Fully Connected (FC)
layer.

• Input layer contains the raw pixel values of the image along with the colour
information.

• Convolutional layer performs an operation called convolution. It is a linear
operation involving multiplication of a set of weights (filters or kernels) with
the input, resulting in a two dimensional output array called feature map.

• BN layer normalises the output of the previous activation layer by subtracting
the batch mean and dividing by batch standard deviation.

• ReLU is a piecewise linear function that outputs the input directly if it is
positive otherwise outputs zero.

• Pooling layer performs a downsampling operation along the spatial
dimensions (width, height). Two common functions used in pooling operation
are average pooling and maximum pooling.

• FC layer have full connections to all activations in the previous layers.

• The last FC layer is called the Output layer which computes the class scores.

In this thesis, three widely used CNN architectures (VGG16, ResNet50 and
InceptionV3) are evaluated. These CNNs have already proven to be excellent for
image classification using the ImageNet dataset.
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Figure 4.2: VGG16 CNN architecture showing the convolution, max-pooling, FC
dense layers. Dashed line represents the fine-tuned layers.

Figure 4.3: ResNet50 CNN showing the overall architecture and the bottleneck
block. Dashed line represents the fine-tuned layers.

4.2.0.1 VGG

The VGG [138] network is the contribution from the Visual Geometry Group,
University of Oxford, United Kingdom and consists of very small convolutional
filters (3×3) with a depth of 16-19 weight layers, resulting in a simple architecture.
The potential applications of the VGG based CNN model for breast cancer
diagnosis have been shown in [139–144].

Herein, the VGG16 CNN (shown in Fig. 4.2) is used. The VGG16 consists of
13 convolutional layers and 2 fully connected or dense layers, followed by an output
dense layer with a softmax activation function. There are also 5 max pool layers in
the network. The maximum allowed input size to the VGG16 network is 224×224,
and the total number of trainable parameters are 138,357,544.

4.2.0.2 ResNet50

The residual network (ResNet) [145] architecture consists of convolutional layers,
pooling layers and multiple residual layers, each containing several bottleneck
blocks: a stack of three convolutional layers followed by batch normalisation (BN)
layers. Fig. 4.3 shows the ResNet50 structure consisting of 4 residual layers each
comprising of 3, 4, 6 and 3 bottleneck blocks from bottom to top, followed by a
dense layer and the output layer with softmax activation function. In total there are
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Figure 4.4: InceptionV3 CNN showing the overall architecture and the inception
module. Dashed line represents the fine-tuned layers.

179 layers in ResNet50 architecture. In literature, the ResNet50 CNN model has
been particularly used for breast cancer diagnosis in [142, 144, 146, 147].

4.2.0.3 InceptionV3

The InceptionV3 [148] model has been developed by Google and is also known
as GoogleNet. The computational cost and memory requirement of Inception
network is much lower than VGG and ResNet50, which makes it a prominent
network to be used in big data scenarios. Inception network consists of a collection
of Inception modules, each of which uses sets of 3x3 kernels to represent larger
kernels in a computationally efficient manner. The network implemented here has 5
convolutional layers each followed by a BN layer, 2 pooling layers and 11 inception
modules as shown in Fig. 4.4. The InceptionV3 CNN model has been used for
breast cancer diagnosis in [72, 99, 149–151].
A summary of the three CNN networks used in this chapter is shown in Table 4.1.

4.3 Methodology

The proposed fully automated framework for mass detection is depicted in Fig. 4.5.
The developed framework is initialised by extracting small regions of the image
(referred to as patches) for training the CNN. The model obtained after the
CNN training is firstly used to classify the unseen testing patches as mass and
non-mass patches (with different probabilities). The patches are then recombined
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Table 4.1: Summary of CNN architectures: including input size, number of layers,
and total number of trainable parameters.

Network Minimum Input
size

Maximum Input
size No. of layers Year Trainable

parameters

VGG16 32 × 32 224 × 224 16 2013 138,357,544

Resnet50 32 × 32 224 × 224 179 2015 25,636,712

InceptionV3 75 × 75 299 × 299 159 2016 23,851,784

Figure 4.5: The proposed framework for automated detection of masses in
mammograms. The first block shows the patch extraction strategy using sliding
window for negative (non-mass candidates) and positive (mass candidates)
mammograms, followed by CNN training in block 2 to obtain a trained model.
The third block shows the patch extraction from a test image followed by patch
classification using the trained model (shown in block 4). The block 5 shows the
MPM and the detection on the original image (with the green bounding box).

to reconstruct the whole mammogram and subsequently use the classification
probabilities for each patch to obtain the Mass Probability Map (MPM) for the
mammogram. Finally, the probable mass region is defined by a bounding box. The
complete automated framework is described in following sections.

4.3.1 Input Patch Extraction

A sliding window approach is used to scan the whole breast and extract all the
possible patches from the image (see Fig. 4.5 Step 1). The total number of patches
generated is controlled by the stride (s× s) in both vertical and horizontal direction,
which also defines the minimum overlap between the two consecutive patches. All
the patches are then classified based on the annotations provided in the dataset. For
example, a patch is labelled as positive (mass candidate) if the central pixel of the



49 4.3. Methodology

patch lies inside the mass, otherwise it is assigned as a negative (no mass) label.

Since all images of the CBIS-DDSM dataset contains a lesion, an equal number
of positive and negative patches are extracted from mass images. All the positive
patches are firstly extracted from the annotated ROIs and then an equal number
of negative patches are randomly selected from the normal region of the breast
(excluding the border area patches due to high contrast difference). This provides
a balanced dataset for the purpose of training. The INbreast dataset contains
mammograms with and without masses, so positive patches (Pos) are extracted
only from the mammograms with masses. In order to maintain a balance between
positive and negative samples for the CNN training, the negative patches (Neg) are
extracted from the mammograms without masses using the following formulation:

PNeg = ceil
( n

N

)
, (4.1)

where n is the number of positive patches, N is the total number of non-mass
mammograms in the training or validation set, and PNeg is the required number
of patches to be randomly selected from each of the non-mass mammograms.

4.3.2 CNN Training

The CNNs described in section 4.2 are initially trained on the ImageNet dataset with
input dimensions 224× 224× 3, where the three dimensions represent red, green
and blue colour channels. Since extracted patches from mammograms contains
only one channel (grey level), each patch (224×224×1) has been replicated onto
the three-colour channels to make the input patches compatible with the input of
the pre-trained CNNs as done in other works [142, 146]. Normalisation also called
zero centring is a standard step in medical image classification. In this work, Global
Contrast Normalisation (GCN) is used. It computes the mean of intensities for each
image patch, and subtracts it from each pixel of the image [142].

For CNN training, the dataset is split into training, validation and test sets.
The training set is used to train the network and update its weights, while the
validation set is used to measure how well the trained model is performing after
each epoch. An epoch here describes the number of times the algorithm processes
the entire dataset. Further, data augmentation is used to generate more samples from
already existing training data. In this chapter, the negative and positive patches are
augmented on-the-fly using horizontal flipping, rotation of up to 30◦, and re-scaling
by a factor chosen between 0.75 and 1.25, as commonly used in the literature [31,
95, 137, 142]. The optimizer used is Adam [152] and the batch size is 128 (for a



Chapter 4. Patch-based lesion detection on mammograms 50

GPU of 12 GB). The cross-entropy loss function is used as the validation loss, which
measures the performance of a classification model whose output is a probability
value between 0 and 1. For a binary classification problem (number of classes is 2),
cross entropy is calculated as

L =−(ylog(p)+(1− y)log(1− p)) (4.2)

where L is the loss, y is the class label (0 or 1) and p is the predicted probability.
Early-stopping can be used as regularisation technique in order to avoid over-fitting
during the training. Herein, early-stopping is used as the monitor on the validation
loss, such that if the loss does not improve for 10 epochs, the training process is
stopped.

Firstly, the performance of different CNNs are analysed for classifying mass
and non-mass regions in CBIS-DDSM dataset. For the purpose, two different
training approaches are compared. Firstly, the CNNs are trained from scratch using
the random weight initialization. The training is done for 100 epochs (maximum)
using a learning rate of 10−3. Further, the extent of transfer learning is analysed by
transferring the domain from natural images to SFM. This is carried out by using the
pre-trained ImageNet weights to initialize the CNNs and fine-tune all the layers of
the CNN (without freezing any layer) for 100 epochs (maximum) using a learning
rate of 10−6. A higher learning rate is used while training the models initialized
using random weights owing to the fact that training the CNN from scratch would
need more time to learn the features pertaining to the images being analysed. In
contrast, when the CNN is initialized using pre-trained weights (where the model
has already been trained on millions of images) the features learned during initial
training are sensitive to the extent of training, so a smaller learning rate is used to
preserve pre-trained features while fine-tuning.

4.3.3 Mass Detection

The best performing CNN model is subsequently fine-tuned to transfer the feature
domain from SFMs in CBIS-DDSM to FFDMs in the INbreast dataset. After
fine-tuning the CNNs using the INbreast training and validation dataset (using a
learning rate of 10−6), mass detection is performed in a fully automated manner
without any human intervention. This is achieved using the following steps (see
blocks 3-5 in Fig. 4.5):

1. Firstly all the possible patches are extracted from each image using sliding
window approach.
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2. The patches are analysed using the trained CNN to obtain the mass probability
of each patch. The image is then reconstructed by stacking the patches in
sequence from left to right and top to bottom (similar to a patch extraction
using sliding window approach), with the stride value (s× s) defining the
overlap between the patches. The MPM is then generated using the linear
interpolation of the mass probabilities (on each patch) as

Mass probability =
∑mass probability o f overlaping patches

number o f overlaping patches
(4.3)

3. The MPM is then thresholded at different probability levels. This step results
in the creation of different regions (each region represents a probable mass)
in the mammogram such that each pixel in these regions have the probability
greater than the chosen threshold value.

4. A bounding box is created to enclose each probable region using connected
component analysis. A mass is considered detected if the Intersection over
Union (IoU) between the bounding box and the annotated ground truth is
greater than 0.2, as suggested in earlier works [31, 90, 153, 154].

4.3.4 Evaluation Metrics

The evaluation metrics used in this chapter are: (a) the testing accuracy of the
model, (b) Area Under Receiver Operating Curve (AUROC), (c) Free-Response
Operating Curve (FROC) curve, and (d) Intersection over Union (IoU). The FROC
curve is used to evaluate the performance of the detection tool on the INbreast
dataset and is plotted between the fraction of correctly identified lesions as True
Positive Rate (TPR) and the number of False Positives per Image (FPI) for all
decision thresholds. The TPR is evaluated as µ ± σ where µ and σ refer to the
mean and standard deviation.

IoU is an evaluation metric used to measure the accuracy of an object detector
on a particular dataset. Any algorithm that provides predicted bounding boxes as
output can be evaluated using IoU. The IoU between the detection and ground truth
bounding box is computed as

IoU =
Area of overlap
Area of union

. (4.4)

The detection is considered as a False Positives (FP), True Positives (TP) or False
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Negatives (FN) if the IoU< 0.2, IoU> 0.2 or IoU= 0 respectively, as depicted in
Fig. 4.6.

4.4 Experimental Results

This section presents the different training and transfer learning experiments
performed in order to evaluate the CNN models. Firstly, a description of the
processing applied to the datasets used in this chapter is presented in section 4.4.1.
Secondly, the domain of convolutional features are transferred from natural images
to SFM, i.e. section 4.4.2, and is achieved by training the CNNs on the
CBIS-DDSM dataset. Later, in section 4.4.3 the transfer learning is performed
between SFM and FFDM, and compared with the results obtained when transferring
the CNN domains directly from natural images to FFDM. Lastly, in section 4.4.4
the framework proposed in section 4.3.3 for detection masses in whole mammogram
is used to analyse the INbreast dataset.

4.4.1 Processing of Datasets

In this chapter, the CBIS-DDSM [48] and INbreast [49] datasets are used. The
descriptions of these datasets have been provided in chapter 2. Herein, details
regarding the processing of these datasets specific to this chapter are provided.

The CBIS-DDSM dataset contains pixel-wise annotations for the Region of
Interest (ROI), e.g. masses, calcifications, as well as lesion’s pathology i.e benign
or malignant from 1,597 cases. The CBIS-DDSM dataset is composed of SFM
images which implies a non-homogeneous intensity distribution in the background
as shown in Fig. 4.7a. Therefore, Otsu segmentation [66] is used to segment the
breast region and the background region (as shown in Fig. 4.7b). The mammograms
are then cropped to the breast profile as shown in Fig. 4.7c.

The INbreast dataset is composed of FFDMs acquired from 115 cases leading
to a total of 410 images. From these, a total of 116 masses can be found in
107 mammograms from 50 cases. Herein, the cases with follow-up studies are
not considered (different acquisition times) as different cases, and thus resulting
in a total of 108 cases. The dataset contains pixel-level mass annotations and
histological information about the type of cancers. The dataset also contains some
mammograms with multiple masses. It is found that in four mammograms the
lesions are very close and their bounding-boxes overlap, so these lesions are as one
single lesion. Thus the total number of masses is considered to be 112 instead of
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Figure 4.6: Schematic for the computation of IoU, and representation of FP, TP
and FN in terms of IoU (used in this thesis).

116. Regarding pre-processing of these FFDMs, global thresholding is performed
to segment the breast region from the background (see Fig. 4.8) and all right breasts
are mirrored horizontally in order to keep the left orientation of all mammograms.
Note that in all cases the original resolution of the processed DICOM mammograms
is used. In both the datasets, the patches of size 224×224 pixels are generated using
a stride of 56×56 pixels, and are used as the input to the CNNs.

4.4.2 Transfer Learning from Natural Images to SFM

In this experiment a domain adaption of the CNN is performed from the natural
images to mammography dataset. For the purpose, a CNN model pre-trained using
a large database of natural images (i.e. ImageNet) is fine-tuned on a dataset of SFM
(i.e. CBIS-DDSM). The standard training and test splits is used as provided in the
CBIS-DDSM dataset. The stride value is selected to obtain a trade-off between the
computational requirements and the number of training samples. Table 4.2 provides
the details of the number of patches (≈65,000) extracted from the CBIS-DDSM
dataset.

The three CNNs previously described, i.e. VGG16, ResNet50 and InceptionV3
pre-trained using ImageNet are fine-tuned on the training dataset of CBIS-DDSM.
The classification results are then compared against those obtained when the CNNs
are randomly initialized and used for the purpose of classifying masses. To
demonstrate the potential of transfer learning for lesion classification, the CNN
training was repeated five times (owing to the randomness of training process).
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Figure 4.7: Sample mammogram from CBIS-DDSM, (a) original, (b) segmented,
and (c) mammogram cropped to breast profile.

Figure 4.8: Sample mammogram from INbreast, (a) original, (b) segmented, and
(c) mammogram cropped to breast profile.

Table 4.3 compares the testing results between the random and ImageNet weight
initialization. Note that in all cases, the initialisation with ImageNet weights
obtained a better accuracy compared to random initialization, and InceptionV3
CNN obtained the highest testing accuracy 84.16%± 0.19 and AUROC of 0.93±
0.01. Moreover, as shown in Fig. 4.9, the randomly initialized CNN required a large
number of epochs to converge than the pre-trained InceptionV3 demonstrating the
benefits of pre-training on ImageNet.

The obtained results showed that the difference in performance (testing
accuracy) of the pre-trained InceptionV3 with pre-trained ResNet50 and VGG16
respectively is statistically significant (p � 0.01). Also, for each CNN, the
difference in performance between the random and ImageNet initialization is found
to be statistically significant (p� 0.01). For the rest of the chapter, all experiments
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Table 4.2: Description of CBIS-DDSM dataset used for training the CNN

Dataset Splits Cases Images Patches Stride
Pos Neg Pos (mass) Neg Pos Neg

CBIS-DDSM
Train 553 - 985 (1055) - 25979 25979 56

Validation 138 - 246 (263) - 6210 6210 56
Test 201 - 361 (378) - 8694 8694 56

Table 4.3: Mass classification performance (testing accuracy) for mass and
non-mass region in CBIS-DDSM dataset for VGG16, ResNet50 and InceptionV3
where µ and σ refer to the mean and standard deviation for five independent
training results.

Model Pre-trained Time per Epoch (s) Testing accuracy (µ ± σ ) AUROC

VGG16
No 518 82.39%±0.52 0.90±0.01
Yes 465 83.69%±0.24 0.92±0.01

Resnet50
No 483 82.30%±0.70 0.91±0.01
Yes 438 83.69%±0.15 0.92±0.01

InceptionV3
No 338 82.10%±0.58 0.90±0.01
Yes 310 84.16%±0.19 0.93±0.01

are performed using the pre-trained InceptionV3 CNN model which provides the
best mass classification results on the CBIS-DDSM dataset.

4.4.3 Transfer Learning from SFM to FFDM

Since both the INbreast and CBIS-DDSM are mammography datasets, with the only
difference being the mode of acquisition (SFM and FFDMs), the feature space of the
CNN for one is assumed to be very likely to be relevant to the other dataset. So, in
this experiment the performance of transfer learning is analysed between the images
of similar domains. A 5-fold cross validation is used to analyse the performance on
the whole dataset. The dataset is divided into training (60%), validation (20%) and
testing (20%) sets on the case level per fold. The distribution is performed in an
stratified manner to ascertain equal ratios of normal and abnormal cases. Table 4.4
provides the details of the distribution of images into training, validation and test
set (along with the number of patches) in the INbreast dataset.

The best model obtained from section 4.4.2 (CBIS-DDSM pre-trained
InceptionV3 model) is fine-tuned (using 10−6 learning rate) on the INbreast dataset.
Table 4.5 shows the impact of transfer learning on InceptionV3 CNN. The
results indicate that using the transfer learning between the images of similar
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Figure 4.9: Validation loss for random and Imagenet initialisation of InceptionV3.

Table 4.4: Description of INbreast dataset used for training the CNN

Dataset Splits Cases Images Patches Stride
Pos Neg Pos (mass) Neg Pos Neg

INbreast
Train 30 35 66 (68) 191 2020 2101 56

Validation 10 11 20 (21) 61 539 549 56
Test 10 12 21 (23) 51 882 918 56

domains, the testing accuracy improves from 85.29%±4.29 (ImageNet→INbreast)
to 88.86%±2.96 (ImageNet→CBIS-DDSM→INbreast).

4.4.4 Automated Mass Detection in FFDM

In this section, the training cascade: ImageNet→CBIS-DDSM→INbreast with
InceptionV3 is used to automatically detect masses in the test set FFDM without
any human intervention. Here, mass detection is performed on the INbreast dataset
using a 5-fold cross validation strategy. The full mammogram from the test set
of each fold is divided into small patches using a sliding window approach with
stride of 56× 56, and the trained CNN model (per fold) is then used to classify
these patches into mass and non-mass regions and generate the MPM images (see
Fig. 4.5 block 5). The mass detection is then performed following the methodology
described in Step 3 and 4 of section 4.3.3.

The detection performance on the full INbreast dataset is analysed using FROC
curves as shown in Fig. 4.10, where the upper and lower bounds are presented
in 95% confidence interval. Note that ImageNet→INbreast configuration is also
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Table 4.5: Testing accuracy for classifying mass and non-mass region in INbreast
dataset, where µ and σ refer to the mean and standard deviation for five fold cross
validation.

Model Pre-trained weights Training cascade Testing accuracy

InceptionV3 ImageNet ImageNet→ INbreast 85.29%±4.29

InceptionV3 CBIS-DDSM ImageNet→ CBIS-DDSM→ INbreast 88.86%±2.96

Figure 4.10: FROC curve for mass detection on INbreast dataset: testing
performance of InceptionV3 pre-trained on CBIS-DDSM and fine-tuned on
INbreast are plotted using 5-fold cross-validation strategy. The operating points
from the literature are shown for direct comparison with the proposed framework.

included in Fig. 4.10 for the purpose of comparison. It is observed that for the
same evaluation measure of IoU ≥ 0.2, the performance of CNN is substantially
higher when the transfer learning is performed between the images of similar
domains (i.e. ImageNet → CBIS-DDSM → INbreast) with TPR of 0.98± 0.02
at 1.67 FPI, compared to that obtained when using database of natural images
(ImageNet→INbreast) with TPR of 0.91± 0.07 at 2.1 FPI. Results reported in
the literature for the same task using INbreast dataset are also included in Fig. 4.10
for further comparison.

To analyse the performance across different mass sizes, the lesions are divided
in three categories following radiological criteria, i.e. small lesions of area<1 cm2

(25 images), medium size lesions ranging 1 cm2 <area<4 cm2 (42 images), and
large lesions with area>4 cm2 (38 images), and analysed the performance of the
proposed detection framework for each case. Fig. 4.11 shows that the small lesions
have a TPR of 0.89 at 0.5 FPI, while the medium and large lesions have the same
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Figure 4.11: FROC curve showing the performance of the
proposed framework on INbreast dataset for different lesion sizes
(ImageNet→ CBIS-DDSM→ INbreast).

TPR of 0.97 at 0.5 FPI. Consequently, the detection performance is inferior for
small lesions below 1 cm2, which are more challenging to detect.

4.4.5 Qualitative Analysis

Fig. 4.12 illustrates examples of mass detection on few testing images
(unseen during training) performed using the best model obtained from
CBIS-DDSM→ INbreast fine-tuning. Fig. 4.12 (a-h) show examples of correctly
detected masses in Cranio-Caudal (CC) and Medio-Lateral Oblique (MLO) views
with variable lesion size and lesion contrast. In addition, Fig. 4.12 (i, j) show
examples of FP detections (red squares), where dense tissue area and a nodule in
the pectoral region mimic the appearance of lesion like structure. Note that the
proposed method is unable to detect only 2 masses (very small size) out of the total
of 112 lesions within the INbreast dataset, and these are shown in Fig. 4.12 (k, l).

4.5 Discussions and Conclusions

In this chapter, an end-to-end mass detection framework was presented using the
CNN-based patch classification approach. To generalize the applicability of the
proposed framework, three different CNN architectures were analysed using two
public datasets containing SFMs and FFDMs.

The interesting aspect of the transfer learning is to reuse the CNN model
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Figure 4.12: Mass detection examples from INbreast using the
ImageNet → CBIS-DDSM → INbreast strategy. (a-h) illustrate correct
detections, (i, j) represent FP cases and (k, l) correspond to missed mass cases.
Blue contours represent the GT (masses), green bounding boxes correspond to
the automated detection (TP), and red squares show missing lesions (FP).
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pre-trained for a completely different problem, and improve the accuracy of a given
task using less complex algorithms and also the training time is shorter. In this
regard, firstly the benefit of transfer learning was analysed between two entirely
different image domains, i.e. natural images and mammograms (SFM). In this
context, a comparison was done between the performance of CNNs with randomly
initialized weights vs. pre-trained (ImageNet) weight initialization for the purpose
of mass classification in SFM, showing higher performances for the pre-trained
models.

As shown in Table 4.3, it can be seen that despite the differences in two image
domains, the pre-trained CNNs performed substantially better than the randomly
initialized CNNs. These results gave confidence on the applicability of transfer
learning in the context of mammograms. This is supported by the fact that the
pre-trained CNN is able to efficiently use the information of universal features and
patterns learned from the ImageNet. In section 4.4.3, transfer learning was done
between SFM and FFDM, and compared with the results obtained by transferring
the CNN domains from natural images to FFDM. The results in Table 4.5 indicated
that substantially higher classification accuracy can be obtained by performing
transfer learning between the images of similar domains i.e. SFM→FFDM.

In section 4.4.4, the proposed detection framework produced the best TPR of
0.98± 0.02 at 1.67 FPI and a TPR of 0.92± 0.04 at 0.5 FPI with IoU of 0.2. A
higher detection threshold (IoU ≥ 0.5) was also analysed and resulted in TPR of
0.82± 0.2 at 1.7 FPI, compared to TPR of 0.98± 0.02 for IoU ≥ 0.2. Thus, the
FPI is dominated by the number of negative images; which are∼4 times larger than
the positive images in the INbreast dataset, so changing the IoU does not have a
large effect on the FPIs. The detection performance of the proposed framework was
superior in terms of TPR when compared with other state-of-the-art methods using
the INbreast dataset (see Table 4.6 and Fig. 4.10) on various other operating points.

For the purpose of pre-processing two different approaches were investigated:
(i) the image intensities were scaled between 0-255 before extracting the patches,
and (ii) GCN normalisation was applied to obtain the zero mean over the input
patches. Both approaches showed different impact on the fine-tuning process,
with the GCN approach showing higher performance compared to the scaling
approach. Thus, the results in section 4.4.2 and 4.4.3 were performed using GCN
pre-processing.

There are some important things to note about training the CNN: (i) the CNNs
were also fine-tuned by training only the last few layers (also referred as shallow
tuning) as discussed in the literature [137, 142], with no significant improvement
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Table 4.6: Comparison between proposed framework and results published in the
literature using INbreast dataset, where µ and σ refer to the mean and standard
deviation for five fold cross validation.

Methods TPR (µ±σ ) at FPI (IoU) # Images (INbreast)

Kozegar et al. [90] 0.87 at 3.67 (0.2) 107

Dhungel et al. [70] 0.96±0.03 at 1.2 (0.2) 410

Dhungel et al. [31] 0.90±0.02 at 1.3 (0.5) 410

Proposed framework

0.87±0.07 at 0.25 (0.2)

410
0.90±0.06 at 0.44 (0.2)
0.95±0.04 at 0.79 (0.2)
0.98±0.02 at 1.67 (0.2)

in the classification results on the CBIS-DDSM and INbreast dataset [155]. Finally
fine-tuned the CNNs by training all the layers at a small learning rate; (ii) It was
also observed that the random weight initialization took a larger number of epochs
to converge than initializing using ImageNet weights (see Fig. 4.9).

It is to be noted that the mass detection framework proposed in this chapter
used small regions of the mammograms (patches) for training the CNN. These
patches were extracted using a sliding window approach and required a selection
of appropriate stride value which is used to slide a fixed size patch window to map
the full image. The network predicts the probability on each patch, which was then
used to obtain the MPM for the whole mammogram (see Fig.4.5). To analyse the
performance of network with respect to the stride used, varying patch strides were
analysed (for testing), which results in smaller or larger number of patches than
those presented in section 4.4. Increasing the stride also increases the similarity
in the input data (owing to higher overlap), and vice-versa. This step demanded a
trade off between the accuracy and the computational cost (for stride of 56×56 the
average detection time per image was ≈ 30−50 seconds depending on size of the
image). Very large strides resulted in a poor localized predictions, whereas very
small strides required very high computational cost (≈ 70−100 seconds for stride
of 28×28).

An alternative approach to overcome the high computational cost associated
with selection of smaller strides (which results is very large number of patches) is
to use an efficient methodology to select the most desirable candidates (patches)
to compute the probabilities or predictions, and subsequently use them for the
detection process. In the following chapter, a mass detection framework will be
presented which uses the full mammogram as the input (instead of patches) and
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is based on the “recognition using regions” paradigm [156], which has been very
successful in the field of object detection in natural images [157].



Chapter 5

Lesion Detection in Whole
Mammogram using Faster R-CNN

In the previous chapter, a patch-based breast lesion detection framework using
Convolutional Neural Network (CNN) was presented to detect masses in publicly
available mammogram datasets. In this chapter, a lesion detection framework is
presented which uses the whole mammogram for the training and testing of CNN.
For the purpose, Faster R-CNN model is used which has InceptionV2 [148] as the
base CNN model, and is pre-trained on the MS-COCO dataset [158]. This selection
is done based on a trade-off between the speed and accuracy. In the final phase
of research, subset of a large scale mammographic dataset OMI-DB was collected
in collaboration with Royal Surrey County Hospital (UK). This database was not
accessible during the work done in chapter 4, and has been used for the training and
testing of Faster R-CNN model presented in following sections.

5.1 Faster R-CNN

The Region-Based CNN (R-CNN) are usually characterised by deep CNN
architectures with an enhanced capability to learn more complex features than the
shallow ones. The R-CNN was proposed originally by Ross Girshick [159] in 2014,
and achieves excellent object detection accuracy by using a deep convolutional
network to perform object detection. The R-CNN is a three-stage process: (1)

63
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region proposal generation, (2) feature extraction using CNN, and (3) object
classification and localisation. In spite of advancements over traditional methods,
the training process in the R-CNN is slow, as the features are extracted for each
object proposal without sharing the computation.

In R-CNN the region proposals are generated using a selective search
method [157] as an alternative to the exhaustive search approach to capture the
object location. In selective search, firstly the image is over-segmented based on
the intensity of the pixels using the fast segmentation method of Felzenszwalb and
Huttenlocher [160]. Thereafter, bounding boxes are generated corresponding to
each segments and added to the region proposals. Secondly, a similarity factor is
calculated between neighbouring regions, and two most similar regions are grouped
together. The process of grouping the most similar regions is repeated until the
whole image becomes one region. At each step, larger segments are formed and
added to the list of region proposals. Hence the region proposals are created from
smaller regions to larger regions in a bottom-up approach. This methodology
efficiently reduces the search space for the object detection task, but also results
in a large number of redundant proposals.

Later in 2015, Girshick proposed an improved R-CNN method referred to as
Fast-RCNN [161]. In Fast-RCNN, the input image is directly fed to the CNN
to generate a convolutional feature map. From the convolutional feature map,
the region of proposals are identified and extracted using the ROI pooling layer
and fed into the fully connected layer. Thus this method was faster compared to
R-CNN, as it did not require to feed large number of region proposals to CNN every
time, instead the convolution operation is done only once per image to extract the
feature map. A multi-task loss function based on training classification accuracy
and bounding box regression was introduced. It resulted in saving the additional
expense on storage space, and improved both accuracy and efficiency with more
reasonable training schemes.

Faster R-CNN [79] is the modified version of Fast-RCNN. The main difference
between the two approaches is that Fast-RCNN uses computationally expensive
selective search method to generate the regions of interest, while Faster R-CNN uses
Region Proposal Network (RPN) for this purpose, which is much faster compared
to the selective search approach. In this work, the implemented version of the Faster
R-CNN within the Tensorflow [162] object detection Application Programming
Interface (API) [163] is used. The Faster R-CNN has been widely used for detecting
objects particularly in natural image datasets, for example, PASCAL VOC [164],
MS-COCO [158] etc. In this API [163] a collection of pre-trained detection models
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Figure 5.1: RPN in Faster R-CNN [79], showing the anchors obtained at different
scales and aspect ratios in the intermediate layers.

is provided which includes: 21 models pre-trained on MS-COCO dataset [158], 1
model on KITTI dataset [165], 6 models on Open Images [166] and 2 models on
iNaturalist species [167]. In the field of medical imaging, the use of object detection
techniques has been limited because of limited availability of labelled datasets.

5.2 Methodology

As the first step, an image (mammogram) is used as the input and then forwarded
through the CNN (InceptionV2 [148]) to produce feature map of the image. A RPN
is then created on the top of extracted features of the CNN, which is then trained
to detect and localize objects on the image. The architecture of RPN is shown in
Fig. 5.1. The CNN model takes as input the entire image and produces the conv
feature maps. A window of size n× n slides over the feature maps and outputs a
features vector linked to two Fully Connected (FC) layers i.e. box-regression layer
(reg) and box-classification layer (cls). K number of rectangular boxes (called as
anchors) are convoluted with each sliding window.

At this step, anchors or bounding boxes are created using different scales
and aspect ratios to detect objects with varying shapes and sizes. The anchors
are given an objectness score about how good they are in terms of enclosing a
lesion on the mammogram. Now, the highest scoring anchors (different sizes) are
passed to the second stage of the network, where a classification and regression
problem is solved to accurately detect the presence of lesions and at the same time
refine the coordinates of the anchors to precisely detect the lesions. Then, the
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Figure 5.2: Flow chart of the Faster R-CNN, showing the RPN and overall
pipeline. The convolutional layer of the InceptionV2 are used as feature extractor
which shares the feature map with the RPN, generating the region proposals. The
classification and regression problem are solved on these proposals to generate the
final bounding box informations.

best predictions are obtained by using non-maximum suppression on the detected
overlapping objects.

In this chapter, the Faster R-CNN model proposed by Ren et al. [79] is
adapted to generate region proposals for varying shapes and sizes, and are
labelled as positives (representing masses) and negatives (representing background
or non-mass region) for all the mammograms. More precisely, as it has been
implemented in Tensorflow, the input to the model is the Tfrecords of training and
validation data (containing the mammograms along with class definitions, bounding
box coordinates etc.). Tfrecord is an efficient way of storing the data in binary
format, and is very helpful when dealing with large datasets. Binary data take less
disk space, are faster to copy, and can be read efficiently and fastly through the
disk, speeding up the training process. The flowchart of the overall methodology is
shown in Fig. 5.2.

5.2.1 Training and Hyperparameter Tuning

In Faster R-CNN, the training is performed using the hyperparameter “keep aspect
ratio” with the maximum height and width of the mammograms in the entire dataset.
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Here, the model training is performed using stochastic gradient descent optimizer
with momentum with a batch size of 1 (as model is trained with different size
mammograms). The learning rate is heuristically decreased in steps after every
25,000 iterations in the configuration file.

The anchors are created with a base size of 256 pixels, three aspect ratios (0.5,
1.0 and 2.0) and five different scales (0.1, 0.2, 0.5, 1.0 and 2.0). The different aspect
rations and scales are empirically selected. A total of 15 anchors are generated at
a defined pixel location. At the second stage, the detections are processed with
non-max separation using an Intersection over Union (IoU) threshold of 0.05. This
is done to avoid overlapping detection boxes, as in mammograms it is less likely to
have overlapping masses.

5.2.2 Evaluation Metric

In this work, the objectness score (measure of closeness of the detected object
to a certain class of object) is used to evaluate the performance, so for the
assessment of classification and detection framework only the bounding boxes with
confidence probability greater than a particular threshold are considered. Herein,
the confidence threshold is varied between 0.01-0.99 to plot the Free-Response
Operating Curve (FROC) curve. For the detection framework, a lesion is considered
to be properly detected (a True Positives (TP)) if the IoU defining the overlapping
area between the predicted box and the Ground-Truth (GT) box is greater than a
certain threshold. The higher the IoU, the better the predicted location of the box
for a given object.

The qualitative assessment is made using the confusion matrix to compute the
sensitivity, specificity and the accuracy of the classification framework as

sensitivity =
T P

T P+FN
, speci f icity =

T N
T N +FP

(5.1)

where, TP, TN, FP and FN are the true positives, true negatives, false positives
and false negatives per mammograms respectively. Also the Area Under Receiver
Operating Curve (AUROC) is used to evaluate mass classification results. The
accuracy of the detection problem is assessed using the FROC curve which is plotted
as the function of sensitivity versus the False Positives per Image (FPI).
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Table 5.1: Data description of OMI-DB: Pos refers to positives (masses) and Neg
refers to negatives (non-masses). Hologic and Philips scanners have two different
resolutions.

Scanners
Hologic
(OPT-H)

GE
(OPT-G)

Siemens
(OPT-S)

Philips
(OPT-P)

Resolution µm 70, 60 100 70 50, 83

Cases
Pos 2042 103 32 242

Neg 842 104 - -

Images
Pos 3856 195 63 455

Neg 3478 406 - -

Masses
Benign 390 9 2 19

Malign 2294 112 48 397

Unknown 502 38 0 33

other
abnormalities

Benign 95 2 2 5

Malign 754 31 11 47

Unknown 182 14 0 5

5.3 Experimental Results

5.3.1 Dataset: OMI-DB

In chapter 2, an overview of the OMI-DB [22] has been provided. In this chapter,
the images acquired from the scanners of different manufacturer in the OMI-DB
dataset (Table 5.1) are used for evaluating the proposed mass detection framework.
In Table 5.1, it can be seen that there are a very few cases from the Siemens (only
32), which are not enough for training the network and thus these cases are not
used in this thesis. Further, as per the author’s knowledge, Philips has stopped
to commercialise their scanners, so images from Philips are also not investigated.
In this chapter, the mammograms obtained from the two manufacturer: Hologic
(OPT-H) and GE (OPT-G) are used for the training and testing of the CNN.

There are several abnormalities in the dataset as masses, calcifications,
architectural distortions, focal asymmetries, and combination of masses with
calcifications, distortions or asymmetries, or masses with architectural distortion or
masses with focal asymmetry. As an illustration, some abnormalities in the dataset
are shown in Fig. 5.3. Since, the aim of this thesis is to focus on the detection of
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Figure 5.3: Sample mammograms with abnormalities in the OMI-DB dataset
(Hologic scanner).
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masses (or mass like abnormality) in mammograms, so the mammograms with only
calcifications are not considered in any case as positives. Furthermore, the dataset
contained some cases with implants, and several mammograms show non-standard
views i.e. magnified view of the abnormality [168], these cases are also not
considered. The architectural distortion and focal asymmetry are together referred
as other abnormalities in the later text.

The masses are categorised into benign and malignant based on the BI-RADS
ratings listed in the dataset. Note that the BI-RADS ratings are obtained after
biopsy, confirming the nature of abnormality. The details of complete dataset
is shown in Table 5.1. In the dataset, some masses are present whose Breast
Imaging Reporting and Data System (BI-RADS) ratings are not available (referred
as unknown in the text), so these cases are only used for the training, and not
for the testing purpose. The OPT-H and OPT-G respectively contained 2042 and
103 positive cases with abnormalities in either one of the views of mammograms,
842 and 104 normal cases i.e. without any abnormalities. In addition, the
dataset contained mammograms of different sizes and resolutions, so firstly the
mammograms are cropped to the breast profile, and subsequently down-sampled
to 200µm.

5.3.2 Lesion Detection on Large Mammography Dataset

In this section, firstly the scope of transfer learning is analysed to perform a domain
transfer from natural images to mammograms. This is done by adapting the Faster
R-CNN model pre-trained on a large dataset of natural images (MS-COCO) to
detect masses in the mammograms specially taking into account that they can
be acquired from different scanners. The pre-trained Faster R-CNN model is
fine-tuned using a dataset of 7,334 mammograms acquired using the Hologic
scanner. The dataset consists of 3,856 positive and 3,478 normal mammograms,
and are divided into training, validation and test sets in the ratio of 70%, 10%
and 20% respectively. The division of images is done on case basis such that all
the mammograms from an individual case belongs exclusively in either training or
testing set.

The model obtained after training is evaluated on 1,344 unseen mammograms
in the testing set (655 with masses). The predictions are made on each mammogram
and compared against the available GT bounding box annotations. Fig. 5.4 shows a
plot of the TPR versus IoU between the GT and detection results. It can be seen that
TPR only reduces very slightly (0.93→0.88) for 0.1<IoU<=0.3, and starts to fall
sharply for IoU>= 0.6. This demonstrates that the mass detection model accurately
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Figure 5.4: Comparison of TPR vs IoU for the detection of masses in OPT-H
dataset

Figure 5.5: Classification performance on OPT-H dataset using ROC curve are
shown for malign and benign masses and other abnormalities.

detects masses up to a value of IoU= 0.3, which is higher than the value of 0.2
which is commonly used in the current state-of-the-art mass detection models [90,
169–171]. In this chapter, an IoU threshold of 0.1 is used to compare the predicted
and GT results (also used by Ribli et al. [74]). The performance of network is
analysed on different abnormalities in the dataset, with the ROC curve plotted in
Fig. 5.5 showing the TPR as a function of FPR. As expected the majority of lesions
in the OPT-H dataset are malignant, the model’s performance is better for malignant
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Figure 5.6: FROC curve for mass detection on OPT-H dataset shown for malign
and benign masses and other abnormalities.

masses (AUROC= 0.90) compared to the benign masses (AUROC= 0.77).
In order to test the performance of the model to accurately localise the lesions,

the FROC curve is plotted in Fig. 5.6 showing the sensitivity as a function of the
number of false positives detected per image. As seen in Fig. 5.6, the proposed
framework is able to detect malignant masses with a sensitivity of 0.94 at 1.20 FPI
and 0.90 at 0.52 FPI. For the benign masses, the model results in a sensitivity of
0.80 at 0.92 FPI and 0.74 at 0.33 FPI. In addition, the model obtains a sensitivity of
0.84 at 1.20 FPI and 0.79 at 0.98 FPI for other malignant and benign abnormalities
respectively. The performance of the proposed mass detection framework is
summarized in Table 5.2.

5.3.3 Lesion Detection on Small Mammography Dataset

The limited availability of large annotated dataset has been a limiting factor for the
success of deep learning methodologies in the field of breast cancer imaging. In
this regards, here the transfer learning methodology is used to fine-tune the Faster
R-CNN model pre-trained on a large mammography dataset to detect masses in
small mammography datasets obtained using different scanners.

5.3.3.1 Mammograms from GE scanner

The model trained in section 5.3.2 is tested on a small dataset of 150 positive (with
masses) and 406 negative mammograms (without masses) obtained using a GE
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Table 5.2: Sensitivity, Specificity, AUROC results are shown separately for
malign and benign abnormalities in OPT-H dataset. Note that the two operating
points on the FROC curve are also shown; the first is TPR at 0.3 FPI and second
is the best TPR result obtained.

Evaluation metric sensitivity specificity AUROC TPR at FPI

Masses
Malign 0.84 0.8 0.9 0.87 at 0.3, 0.94 at 1.20

Benign 0.68 0.8 0.77 0.72 at 0.3, 0.80 at 0.92

All 0.82 0.8 0.88 0.84 at 0.3, 0.93 at 1.23

Other
abnormalities

Malign 0.6 0.8 0.73 0.59 at 0.3, 0.84 at 1.20

Benign 0.43 0.8 0.63 0.43 at 0.3, 0.79 at 0.98

All 0.57 0.8 0.71 0.64 at 0.3; 0.82 at 1.24

Figure 5.7: Normalization applied to images from the GE scanner, (a,c) are the
original and (b,d) represent the normalised mammograms.

scanner referred as OPT-G. The images in the OPT-G dataset have very different
contrast compared to the images in the OPT-H dataset, so a window width (WW)
and a window center (WC) normalization are applied to the GE images [172] as
shown in Fig. 5.7. The WW and WC information is obtained from the DICOM
header of mammograms.

The performance of the model trained on the OPT-H dataset is firstly used
directly to detect and localise masses in the mammograms in the OPT-G dataset,
resulting in a sensitivity of 0.70 at 0.43 FPI and AUROC= 0.77. Thereafter,
fine-tuning strategy is used to further adapt the feature domain of the trained Faster
R-CNN to detect masses. For this purpose, the dataset is divided based on individual
cases into the training (60%), validation (20%) and test sets (20%), and a 5-fold
cross-validation strategy is used to test all the mammograms in the OPT-G dataset
obtaining a sensitivity of 0.91± 0.06 at 1.7 FPI and mean AUROC= 0.87. The
results are summarised in Table 5.3, and the ROC and FROC curves are shown in
Fig. 5.8 and 5.9 respectively.
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Table 5.3: Sensitivity, Specificity, AUROC results shown for OPT-H model
tested directly on OPT-G dataset, and OPT-H model fine-tuned on OPT-G dataset.
Note that the two operating points on the FROC curve are shown to establish a
comparison between the performance of different trainings.

Model Trained on OPT-H Fine tuned on OPT-G

Sensitivity 0.70 0.85±0.06

Specificity 0.73 0.73±0.02

AUROC 0.77 0.87±0.05

TPR at FPI 0.70 at 0.43
0.83±0.07 at 0.43

0.91±0.06 at 1.69

Figure 5.8: ROC curve for mass classification: OPT-H model tested directly on
OPT-G dataset, and OPT-H model fine-tuned on OPT-G dataset.

5.3.3.2 Mammograms from INbreast

Dataset Processing

The INbreast dataset is composed of Full-Field Digital Mammogram (FFDM) from
108 cases, from which only 50 cases have cancer (details presented in chapter 2).
Since, the mammograms in INbreast dataset have a lower contrast compared to the
images in the OPT-H dataset, an adjustment is made on the windows of the pixel
levels. The images are normalised (similar to Ribli et al. [74]) such that the pixel
values are clipped to be minimum 500 pixel lower and maximum 800 pixels higher
than the mode of the pixel value distribution (excluding the background) and were
rescaled to the 0–255 range (see Fig. 5.10). The mammograms were also cropped
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Figure 5.9: FROC curve for mass detection on OPT-G dataset: OPT-H model
tested directly on OPT-G, and OPT-H model fine-tuned on OPT-G.

Figure 5.10: Normalization applied to INbreast, (a,c) are the original and (b,d)
represent the normalised mammograms.

to the breast profile to reduce storage.

The dataset is divided into training (60%), validation (20%) and testing (20%)
sets on the case level per fold. Thereafter, an augmented INbreast training dataset
is created by rotating only the positive mammograms five times i.e. 0◦,±5◦,±10◦

for the purpose of training the model (as stated later in Table 5.4). A 5-fold cross
validation strategy is employed to test the detection framework, so that each of the
mammogram (without augmentation) is tested at least once. The distribution of the
mammograms across the folds is shown in Table. 5.4.

Mass detection
In this section, firstly the performance of the model pre-trained on OPT-H dataset is
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Table 5.4: Image distribution in augmented INbreast dataset for training,
validation and test sets for 5-folds. Note that augmentation is only applied on
the Pos training images.

fold 0 fold 1 fold 2 fold 3 fold 4

Training
Pos 350 350 320 325 380

Neg 183 183 185 190 176

Validation
Pos 20 25 20 31 19

Neg 70 58 62 56 57

Test
Pos 25 20 31 19 20

Neg 58 62 56 57 70

Figure 5.11: ROC curve for mass classification on INbreast dataset: Three curves
are shown to compare the performances on malign, benign and all masses.

analysed to directly detect the masses in the INbreast dataset, obtaining AUROC=
0.89 for the malignant masses and AUROC= 0.67 for the benign masses. The
FROC analysis resulted in a sensitivity of 0.87 at 0.32 FPI for the malignant masses
and 0.55 at 0.32 FPI for the benign masses.

Secondly, the pre-trained Faster R-CNN model is fine-tuned on the augmented
INbreast dataset. The detection performance is analysed using the ROC and FROC
curves as shown in Fig. 5.11 and Fig. 5.12 respectively. For the malignant, benign
and all masses: AUROC= 0.95, AUROC= 0.79 and AUROC= 0.90 are obtained
using the ROC curve. The detection framework obtains a sensitivity of 0.99±0.03
at 1.17 FPI for the malignant masses, 0.85±0.08 at 1.0 FPI for the benign masses,
and 0.95± 0.03 at 1.14 FPI for all masses. Comparing the results obtained here,
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Figure 5.12: FROC curve for mass detection on INbreast dataset. Three curves
are shown to compare the performances on malign, benign and all masses.

Table 5.5: Sensitivity, Specificity and AUROC for OPT-H model tested directly
on INbreast dataset, and OPT-H model fine-tuned on INbreast dataset. Note
that the results are shown separately for malign and benign masses, and the two
operating points on the FROC curve are shown to establish a comparison between
the performance of two different trainings.

Model
Trained on OPT-H Fine-tuned on INbreast

Malignant Benign Malignant Benign

Sensitivity 0.87 0.55 0.95±0.18 0.71±0.18

Specificity 0.73 0.73 0.70±0.07 0.70±0.08

AUROC 0.89 0.67 0.95 0.79

TPR at FPI 0.87 at 0.32 0.55 at 0.32
0.92±0.08 at 0.32 0.71±0.18 at 0.32

0.99±0.03 at 1.17 0.85±0.08 at 1.0

with the ones presented in chapter 4, an improved performance is obtained in terms
of substantial reduction in the number of false positives. The results are summarised
in Table 5.5.

5.3.4 Qualitative Analysis

In Fig. 5.13 some examples of mass detection results are visualised on the
mammograms in the OPT-H datasets. Several prediction results are shown: the top
two rows show mammograms with precise predictions of masses; GT annotations
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are displayed in green and the predicted boxes with their confidence scores are
displayed in yellow. In Fig. 5.13 (i,j) FP detections are shown (in red) along with
TP, Fig. 5.13 (k,l) show undetected masses.

Several mass detection results in the OPT-G and INbreast datasets are visualised
in Fig. 5.14 and Fig. 5.15 respectively. Fig. 5.14 (a-h) and Fig. 5.15 (a-d) show a
single mass detection result at the precise position with high confidence score in
each mammogram, and Fig. 5.15 (e,h) shows detection of several masses in the
same mammogram. Some of the undetected masses are shown in Fig. 5.14 (i) and
Fig. 5.15(k,l).

5.4 Discussions and Conclusions

In this chapter, a lesion detection framework was presented which is based on a
large scale dataset using Faster R-CNN. The model was trained and tested on a large
dataset of FFDM and the lesions (or masses) were localised using the bounding box
annotations. The automatic framework takes a full mammogram as the input and is
able to provide the localisation of the lesion within this mammogram as the output.

The concept of transfer learning was used and a base model pre-trained for
detecting objects in natural images was re-trained with the mammography dataset.
For this purpose, a large private dataset of ≈ 7400 FFDM (OPT-H) was used to
train a Faster R-CNN model (pre-trained on MS-COCO database). Mammograms
in the OPT-H dataset contained both malignant and benign masses, and also normal
cases (without a finding). The dataset contained the BI-RADS ratings and also
the biopsy proven results. As using only the BI-RADS rating for classifying
into malignant and benign might not be very accurate, so the testing results were
presented on the masses which were biopsy proven to be malignant or benign.
As shown in Fig. 5.5 the performance on the malignant masses (AUROC= 0.90)
was substantially higher than on benign masses (AUROC= 0.77), which can be
attributed to the fact that more than 70% of the total masses were malignant and
thus model would be trained more efficiently to detect the malignant masses. Also,
a separate analysis was presented for the detection of other abnormalities (focal
asymmetry and architectural distortions).

The impact of transfer learning to adapt the Faster R-CNN model trained on a
large dataset of mammograms to a smaller mammography dataset was evaluated
using a small private dataset (OPT-G) and also the public dataset INbreast. In
section 5.3.3.1, it was shown that images in the OPT-G had low contrast compared
to the OPT-H dataset mammograms, hence normalization of the images was
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Figure 5.13: Mass detection results in OPT-H dataset, (a-h) demonstrate
detections with high objectness score, (i,j) shows some detections with FPs, and
(k,l) shows the undetected masses. (green: GT box, yellow and red: detection
box)
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Figure 5.14: Mass detection results in OMI-G dataset, (a-h) shows detections with
high confidence score, (i-k) shows detections with FPs, and (l) shows undetected
mass (green: GT box, yellow and red: detection box). The numbers shown in
images corresponds to the confidence of being mass.
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Figure 5.15: Mass detection results on INbreast dataset, (a-d,g) shows
detections with high confidence score, (e,h) show multiple detections in the same
mammogram, (f,i,j) shows detections with FPs, and (k,l) shows undetected masses
(green: GT box, yellow and red: detection box). The numbers shown in images
corresponds to the confidence of being mass.
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Table 5.6: Comparison between proposed framework and results published in the
literature using INbreast dataset, where µ and σ refer to the mean and standard
deviation for five fold cross validation.

Methods TPR (µ±σ ) at FPI # Images (INbreast)

Kozegar et al. [90] 0.87 at 3.67 107/410

Akselrod et al. [95] 0.93 at 0.56 100/410

Dhungel et al. [31] 0.90±0.02 at 1.3 410

Ribli et al. [74] 0.90 at 0.3 Malignant only

Jung et al. [98] 0.94±0.05 at 1.3 410

Agarwal et al. [171] 0.98±0.02 at 1.67 410

Proposed framework

0.92±0.08 at 0.3
Malignant

0.99±0.03 at 1.17

0.71±0.18 at 0.32
Benign

0.85±0.08 at 1.0

0.87±0.05 at 0.30
All

0.95±0.03 at 1.14

performed. A preliminary experiment was performed to detect lesions in the
original mammograms in the OPT-G dataset (without normalization) to obtain
AUROC= 0.76, which is substantially lower compared to that obtained for the
normalised images (AUROC= 0.87). This can be justified as the Faster R-CNN
model was pre-trained on the OPT-H images, which are similar in contrast to the
normalised images in the OPT-G dataset. This contrast enhancement benefits the
fine-tuning process, and as expected the system was able to detect approximately
83% of masses in the OPT-G dataset with only 0.43 FPIs, and more than 90% of
masses were detected with 1.7 FPIs.

A comparison was established between the mass detection model proposed in
this chapter, and the other state-of-the-art methods using the INbreast dataset as
shown in Table 5.6. The mass detection model of Akselrod-Ballin et al. [95] used
a modified version of the Faster R-CNN model and trained using in-house dataset
containing 750 mammograms with masses. The authors obtained a TPR of 0.93 at
0.56 FPI on a subset of INbreast dataset. The model proposed by Dhungel et al. [31]
consisted of a cascade of deep learning methods aimed to reduce the false positive
detections and subsequently improve the precision of bounding box predictions,
obtaining TPR of 0.95±0.02 at 5 FPI.

Ribli et al. [74] used the Faster R-CNN model with VGG16 and used the
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mammograms consisting not only the masses but also the calcifications for training
and testing the model. They evaluated the performance only on the malignant
lesions to obtain a TPR of 0.90 at 0.3 FPI. Jung et al. [98] used an in-house
dataset (222 FFDMs) of malignant lesions along with INbreast dataset for training
the RetinaNet model, obtaining a TPR of 0.94± 0.05 at 1.3 FPI. In the work
presented in chapter 4, and also published in [171], the detection model used the
mass probability map generated on each mammogram using the predictions on
smaller regions (patches). The results showed superior performance with a TPR
of 0.98±0.02 at 1.67 FPI.

The mass detection method proposed in this chapter showed higher
performance on INbreast dataset, compared to other methods in the literature
detecting approximately 99% of the malignant masses with only 1.17 FPIs. These
results indicate that superior performances are obtained by performing mass
detection in mammograms using the recently developed deep learning based, open
source object detection systems. In terms of computational efficiency, the method
proposed in this chapter takes ≈ 3− 5 seconds compared to ≈ 30− 50 seconds
for the traditional CNN based method in chapter 4. This shows the potential of
proposed method in the development of Computer Aided Detection (CAD) systems,
which could help radiologists to detect more cancers.





Chapter 6

Conclusions and Future Works

This chapter summarizes the results obtained, the main contributions and also
discusses the possible future works.

6.1 Summary

The research in chapter 3 was focussed on the problem of lesion segmentation
in ABUS volumes. A lesion segmentation framework was proposed for breast
cancer screening in Automated Breast Ultrasound (ABUS) volumes, with the aim
of supporting radiologists in breast cancer diagnosis. It was shown that the results
obtained using the presented framework were less sensitive to the selection of initial
seed point by the radiologist, showing the robustness of the methodology.

A volumetric analysis of the 3D segmented lesions was performed, and the
results showed a high correlation between the GT and segmented volumes. For
very few cases, the segmented lesion volume was greater than the GT volume,
signifying that the proposed framework does not result in over segmentation of the
lesions. Since, there are no publicly available ABUS dataset, after the developments
in chapter 3, the further research was focussed on mammography datasets. This
was done owing to the fact that still mammography is the most commonly used
technique for breast cancer diagnosis in large population.

With the advent of deep learning methods, an automated methodology for
detecting lesions (based on CNNs) was presented in chapter 4. In this methodology,

85
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small regions of mammograms (patches) were used to train the CNNs. The
results of training on the SFM (CBIS-DDSM) dataset demonstrated that the feature
domain of the CNN can be well adapted from natural images to classify masses in
mammograms.

Later, it was shown that the performance of CNN (in terms of mass
detection) can be substantially enhanced by using the transfer learning between
the images of similar domain (i.e. SFM→FFDM), compared to the images of
different domains (natural images→mammogram). The automated mass detection
framework developed in chapter 4 had shown to obtain the best results based on TPR
and FPI, outperforming current state-of-the-art approaches using the same INbreast
dataset.

In chapter 5, it was showed that the Faster R-CNN model pre-trained on
an entirely different dataset of natural images can be adapted to efficiently
detect masses in whole mammograms. Thereafter, it was shown that enhanced
performances can be obtained when the Faster R-CNN model was trained on
large database of mammogram and fine-tuned using the mammograms in smaller
databases (OPT-G and INbreast). Compared to the other works in the literature,
the proposed lesion detection framework showed improved performance in terms
of higher TPR with lower FPI.

6.1.1 Contributions

The goal of this thesis was to develop efficient Computer Aided Detection (CAD)
tools that can be used in clinical environment to assist radiologists in the challenging
task of breast cancer detection. In this regards, the main accomplishments of this
thesis can be summarized as:

1. The development of a semi-automatic framework which uses the seed point
selected by the radiologists as the input and produces the segmented lesion
volume as the output.

2. A volumetric temporal analysis of the breast lesions in ABUS is presented,
which can be efficiently used to track the growth of lesions over time.
To the best of the author’s knowledge, this is the first study until
November 2017 [173], presenting the volumetric temporal analysis on lesion
segmentation of 3D ABUS volumes.

3. The use of CNNs in the field of breast mammography imaging has been
inhibited by the limited availability of the data. In this study, it is shown that
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the concept of transfer learning can be efficiently used to create automated
CAD systems for analysing lesions in mammograms.

4. An efficient methodology is presented that uses only the small regions of
mammograms (patches) to train the Convolutional Neural Network (CNN)
and then use these predictions for detecting lesions in whole mammograms.
This approach is efficient and addresses the issue of no publicly available
large datasets in breast mammography imaging.

5. The successful implementation of Faster R-CNN model for detecting lesions
in a large-scale dataset of breast mammograms is presented. This approach
has the potential to be used within the clinical environment as it takes whole
mammogram as the input and outputs the suspicious lesions within the same
mammogram.

6. The presented Faster R-CNN framework has been used to detected lesions in
two different small mammography datasets obtained using different scanners.
This shows the potential of the detection framework to be used for analysing
mammograms from different scanners, which is a peculiar requirement to be
successful in different clinical environments.

6.1.2 International Research Stay

During this PhD thesis, I had the opportunity to spend 9 months (09/2018 to
06/2019) on a research stay at the Visual Computing Lab, at the Manchester
Metropolitan University, Manchester, UK, under the supervision of Dr. Moi Hoon
Yap. The work presented in chapter 5 has been completed during this research
period, and a journal publication is in progress.

6.2 Future Works

In this thesis, automation strategies have been proposed to develop an advanced
CAD systems, which could assist radiologists in the breast cancer screening. As
future work, the following extensions to the work in this thesis are proposed:

The lesion segmentation framework presented in chapter 3 was limited by the
small amount of ABUS images. As part of future work, it would be interesting
to work with larger datasets in order to test the repeatability of the developed
framework. Another advantage of having a large dataset would be the possible
use of machine learning approaches on ABUS volumes. It would be beneficial to



Chapter 6. Conclusions and Future Works 88

develop a fully automated lesion segmentation process which could be done either
by using another detection tool on the top of the framework proposed in chapter 4
or to improve the current framework for automatic lesion detection. An application
of this tool in a CAD workstation can be developed by combining the registration
of the temporal volumes with this tool to perform segmentation of the lesion.

The patch classification discussed in chapter 4 was based on the classification
of the central pixel. In the future research, it would be beneficial to analyse the effect
of training the CNN using the volume (i.e. no. of pixels) of lesion within each patch.
Analysing the lesion detection results for Full-Field Digital Mammogram (FFDM)
in chapter 4, it is consider that this methodology has the potential to be deployed
in the hospital and can be used to assist radiologist in the breast cancer screening.

It is also consider that the methodology proposed in chapter 5 has the potential
to be adapted to detect lesions in 3D volumes such as ABUS and DBT, which
are currently being adopted in the clinical practise. In this regard, an extensively
large database composed of slices of 3D volumes would be required for training
and testing of the CNN. This would require higher computing resources and may
require using multiple GPUs for the purpose of training the CNN.
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