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Abstract: Halohydrin dehalogenases (HHDH) are industrially relevant biocatalysts exhibiting a
promiscuous epoxide-ring opening reactivity in the presence of small nucleophiles, thus giving
access to novel carbon–carbon, carbon–oxygen, carbon–nitrogen, and carbon–sulfur bonds. Recently,
the repertoire of HHDH has been expanded, providing access to some novel HHDH subclasses
exhibiting a broader epoxide substrate scope. In this work, we develop a computational approach
based on the application of linear and non-linear dimensionality reduction techniques to long
time-scale Molecular Dynamics (MD) simulations to study the HHDH conformational landscapes.
We couple the analysis of the conformational landscapes to CAVER calculations to assess their impact
on the active site tunnels and potential ability towards bulky epoxide ring opening reaction. Our study
indicates that the analyzed HHDHs subclasses share a common breathing motion of the halide binding
pocket, but present large deviations in the loops adjacent to the active site pocket and N-terminal
regions. Such conformational differences affect the available tunnels for epoxide binding to the active
site. The superior activity of the HHDH G subclass towards bulkier substrates is explained by the
additional structural elements delimiting the active site region, its rich conformational heterogeneity,
and the substantially wider and frequently observed active site tunnels. This study therefore provides
key information for HHDH promiscuity and engineering.

Keywords: Halohydrin dehalogenases; conformational dynamics; active site tunnels;
molecular dynamics simulations

1. Introduction

Enzymes are highly efficient in accelerating the chemical reactions under biologically controlled
conditions, and can provide synthetically useful building blocks with high selectivity and specificity.
The ability of enzymes of accelerating additional side reactions, i.e., they present catalytic promiscuity,
is thought to play a key role in the evolution of enzymes towards new functions [1,2]. The appearance
of novel enzyme functionalities through evolution has been attributed to the fine-tuning of the
conformational ensemble present in solution, whose relative stabilities can be tuned by mutations [3–7].
Many of these pre-existing conformations can play a key role in recognizing and binding the substrate
and/or releasing the product, in conferring the enzyme the catalytic promiscuity, and in some cases in
regulating the operating allosteric communication. These additional conformations of the enzyme
can present deviations in the available tunnels for accessing the active site, thus playing a role in the
enzyme catalytic activity. Indeed, the engineering of some flexible loops gating substrate access to
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the active site and contributing to product release were shown to be key for boosting the catalytic
activity of some enzymes [8,9]. The enzyme conformational landscape therefore plays a crucial role in
its function, promiscuity, regulation, and evolution.

Halohydrin dehalogenases (HHDHs) perform a cofactor independent dehalogenation reaction for
degrading halogenated compounds. They are highly valuable biocatalysts as they exhibit promiscuous
epoxide ring-opening catalytic activity in the presence of small nucleophiles, thus giving access to novel
carbon–carbon, carbon–oxygen, carbon–nitrogen, and carbon–sulfur bonds [10,11]. Some biocatalytic
examples of HHDH-catalyzed reactions include their application for obtaining statin side chains
precursors more efficiently, enantiopure epihalohydrins, oxazolidinones, tertiary and beta-substituted
alcohols [12–18]. As shown by the solved X-ray structures, the active site of HHDH is composed by
a binding site for the epoxide and a spacious halide binding pocket that can accommodate linear
monovalent anions as nucleophiles (see Figure 1) [19,20]. HHDHs feature a conserved catalytic triad
composed by Ser-Tyr-Arg, which catalyzes epoxide formation and subsequent halide release [19,20].
The promiscuous epoxide ring-opening reaction usually occurs at the less-hindered carbon via SN2
mechanism [20], and the range of epoxides accepted by HHDHs is usually limited to terminal
epoxides [21], although some recent examples of HHDH accepting sterically more demanding epoxides
have been reported [22] (see Scheme 1). In a recent paper by the Schallmey lab, novel HHDHs were
identified following a database mining approach, with six phylogenetic subtypes of HHDH ranging
from A through G characterized [23]. Particularly useful is HheG, as it represents the first example of
HHDH able to accept with synthetically useful activities bulky cyclic epoxides as substrates [22,23].
Interestingly, HheG has also been recently found to exhibit high activity towards sterically demanding
di-substituted epoxides, whereas the A-F subtypes present activity only towards methyl-disubstituted
epoxide substrates [24] (see Scheme 1). Unfortunately, structure (i.e., conformational dynamics)–activity
relationships are not available for this family of enzymes.
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Figure 1. Halohydrin dehalogenase (HHDH) distinct structural elements and zoom of the active site
and halide binding pockets based on the HheC structure. Active site residues are highlighted in
wheat color, halide-binding site in teal, N-terminal loop in light green, C-terminal loop in purple and
N-terminal 6–7 helices in salmon. In the active site zoom, potential residues blocking the accessible
active site tunnels are depicted using the same color scheme.
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epoxide-ring opening reaction by a nucleophile. Numbering of the residues is based on HheC. (B). 
Representative bulky epoxide substrates accepted by the HheG variant: cyclohexene oxide, limonene 
epoxide [22], and racemic di-substituted trans-epoxides [24]. Examples of epoxide substrates accepted 
by HheC are also displayed: epichlorohydrin and epibromohydrin [11]. 

Computational techniques and, in particular, molecular dynamics (MD) simulations are 
particularly useful in elucidating the ensemble of thermally accessible enzyme conformations by 
integrating Newton’s laws of motion [25]. This enables the reconstruction of the enzyme 
conformation landscape and assess how this is shifted by ligand binding, sequence differences 
between protein family members, and/or the introduction of mutations in the enzyme active site or 
at distal positions [7,26]. Recovery of time-dependent dynamical descriptors, such as volume cavities, 
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dimensionality reduction techniques for automatically identifying key enzymatic states from MD 
simulations and account for as much information as possible. These methods can be broadly classified 
into linear and non-linear dimensionality reduction techniques and have been successfully used to 
identify key states in MD simulations [28–33]. Combinations of linear and non-linear methods have 
also been proposed to take advantage of both approximations, with the time-lagged t-Distributed 
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previously developed a computational protocol based on the combination of the linear time-
Independent Component Analysis (tICA) [35] and t-SNE [33] for elucidating the conformational 

Scheme 1. (A). Reaction scheme of the two-step HHDH catalyzed enzymatic reaction: (1, left)
dehalogenation for epoxide formation, followed by the promiscuous (2, right) enantioselective
epoxide-ring opening reaction by a nucleophile. Numbering of the residues is based on HheC.
(B). Representative bulky epoxide substrates accepted by the HheG variant: cyclohexene oxide,
limonene epoxide [22], and racemic di-substituted trans-epoxides [24]. Examples of epoxide substrates
accepted by HheC are also displayed: epichlorohydrin and epibromohydrin [11].

Computational techniques and, in particular, molecular dynamics (MD) simulations are
particularly useful in elucidating the ensemble of thermally accessible enzyme conformations by
integrating Newton’s laws of motion [25]. This enables the reconstruction of the enzyme conformation
landscape and assess how this is shifted by ligand binding, sequence differences between protein family
members, and/or the introduction of mutations in the enzyme active site or at distal positions [7,26].
Recovery of time-dependent dynamical descriptors, such as volume cavities, solvent-accessible
surface area, or changes in internal tunnels/channels is also possible by post-processing the highly
dimensional MD datasets [4,27]. Particularly useful is the application of dimensionality reduction
techniques for automatically identifying key enzymatic states from MD simulations and account for
as much information as possible. These methods can be broadly classified into linear and non-linear
dimensionality reduction techniques and have been successfully used to identify key states in MD
simulations [28–33]. Combinations of linear and non-linear methods have also been proposed to take
advantage of both approximations, with the time-lagged t-Distributed Stochastic Neighbor Embedding
(t-SNE) [33] as a clear example [34]. In this direction, we have previously developed a computational
protocol based on the combination of the linear time-Independent Component Analysis (tICA) [35]
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and t-SNE [33] for elucidating the conformational ensemble of Candida rugosa lipase and its accessible
tunnels for substrate binding to the active site [27].

In this work, intrigued by the observed differences in the catalytic activity and substrate scope
of the different subclasses of HHDHs, we characterized the intrinsic conformational landscapes of
HHDHs and correlate them with changes in available tunnels for substrate binding and product release
in A2, B, C, D2, and G of HHDH subclasses. Extensive MD simulations, followed by dimensionality
reduction techniques and tunnel analysis with the CAVER package, provide a clear rationalization
of substrate preferences of the studied HHDH subclasses. Our protocol based on projecting MD
data into a linear and non-linear reduced space ensures an extensive characterization of the HHDH
dynamical ensemble and elucidates how it is modified in the different subclasses. This approach not
only provides clear insights of how the available tunnels for substrate binding and product release
are altered, but also derives interesting data for HHDH evolution and engineering. This is the first
comprehensive study that evaluates the conformational dynamics and associated changes in tunnel
accessibility to the active site in different phylogenetic subclasses of HHDH.

2. Results

2.1. Conformational Landscapes of Halohydrin Dehalogenases (HHDHs)

Our study starts with the evaluation of the conformational landscapes of the different Halohydrin
dehalogenase (HHDH) variants from the subclasses A2, B, C, D2, and G, followed by a rationalization
of how dynamics affect their promiscuity towards epoxide ring opening [22–24]. All analyzed HHDH
subclasses are tetrameric, they share the catalytic triad (Ser, Tyr and Arg) and present the halide binding
residues located in the loop that connects the 6th β-strand and 9th α-helix (see Figure 1). They also
exhibit some structural differences: two α-helices (2nd and 3rd, residues 32–55 according to HheC
numbering) are found near the N-terminal part of the protein, with the exception of B and D2; and in
G the 2nd α-helix is disordered. HheG also presents the distinctive feature of presenting an additional
α-helix in the halide binding site loop, which might potentially broaden the active site entrance tunnel.
In the particular case of HheC, the C-terminal part of the opposite monomer is positioned close to
the active site and halide binding pockets, which interacts with some halide binding site sidechain
residues. Such large structural differences among the subclasses studied might lead to substantial
deviations in the HHDH conformational landscapes.

We evaluated the conformational landscapes of A–D, G HHDHs by performing Molecular
Dynamics (MD) simulations with an accumulated simulation time of 1.25 microseconds for each
system, in explicit water solvent using AMBER (see Methods) [36]. The obtained high dimensional
MD dataset was then further analyzed by combining linear and non-linear dimensionality reduction
techniques (see Figure 2). We first applied the linear method time-Independent Component Analysis
(tICA) [35], which focuses on those motions that most rarely occur, i.e., the slowest kinetically relevant
processes. Similarly to the linear Principal Component Analysis (PCA) method [28], tICA allows for
a direct identification of relevant descriptors with limited complexity on the dynamics represented,
thus requiring more data dimensions to represent the same data variance. To capture more data variance
with a reduced number of descriptors, we combined tICA with the non-linear t-Distributed Stochastic
Neighbor Embedding (t-SNE) [33] method. This method is used to represent high dimensional data
into a 2D or 3D visually appealing low dimensional space by approximating the probability distribution
of points in the high dimensional data into the reduced space. In this way, similar data points are
placed together with high probability in the reduced space whereas dissimilar data is located distant.
By following this tICA-t-SNE methodology, the most relevant conformational states sampled along the
MD simulations for each HHDH subclass were revealed (see Figure 2 and Figure S1).
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linear time-Independent Component Analysis (tICA) [35], followed by the application of the non-linear
t-distributed Stochastic Neighbor Embedding (t-SNE) [33] method. In this fashion, the high dimensional
MD dataset is reduced into a 2D space, that is subsequently clustered using HDBScan [37].

The evaluation of the enzyme conformational dynamics by means of the mentioned tICA-t-SNE
methodology indicated that all HHDH subclasses have a moderate to high degree of flexibility,
exploring conformations outside the main energy minima (see Figure 3). This is especially true for
HheA2 and HheG, which display the most flexible behavior among variants. It is worth mentioning
that for all analyzed HHDH subclasses, the projection of the t-SNE most populated clusters onto
the corresponding tICA space agrees with well-defined energy minima, confirming that the t-SNE
dimensionality reduction method faithfully represents protein dynamics (Figure 3). For all HHDH
subclasses explored, the slowest conformational change corresponds to a ‘breathing’ motion of the
protein, involving a coordinated conformational change of both catalytic and halide binding sites.
The impact of this breathing motion into substrate binding or product release will be evaluated below.

Analysis of the structural differences observed for HheA2 clusters indicates that conformational
changes mainly occur in the halide binding site (Residues 170–210), and the loop located close to the
catalytic Tyr146 (Residues 80–95) (Figure 3). The slowest conformational changes (as represented
by tIC1, tIC2 and tIC3) correspond to different conformations of the α-helix contained in the halide
binding region, and loop motions within the active site (tIC2). The conformational changes observed in
the case of the HheD2 variant are similar to those observed for HheA2, however, the catalytic (130–150)
and halide binding (170–190) residues display a lower degree of flexibility compared to HheA2.

As mentioned earlier, a distinctive feature of HheC and HheG is the presence of a flexible region
close to the N-terminal part of the protein, comprised by an α-helix (Residues 32–36) in HheC and a
disordered loop (Residues 30–50) in HheG. The HheC most populated conformations mainly involve
coordinated motions of the N-terminal flexible α-helix and the halide binding pocket region. The HheG
disordered character of the loop region comprised by residues 30 to 50, which is close to the halide
binding residue Tyr13, is the slowest conformational change (as described by tIC0 and tIC1 dimensions).
The large structural variability of this protein region is likely involved in substrate accessibility and the
presence/absence of lateral access channels, which most likely confer the enzyme the ability to accept
bulkier epoxide substrates (see below). As explained before for the D2 and A2 subclasses, HheG also
presents a ‘breathing’ or coordinated motion of the catalytic and halide binding domains.

Contrary to the previous HHDH variants, our MD simulations indicate that HheB displays
a quite different conformational behavior, with a tight packing of the protein structure and only
minor rearrangements of the α-helix located above the halide binding site (residues 170–190).
Most populated conformations only display minor rearrangements on the halide binding region.
Interestingly, most visited t-SNE clusters for HheB fall into a narrow region of the tICA space,
thus explaining the observed conformational rigidity.
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Figure 3. Representation of the 10 most populated MD conformations as described by the t-SNE
technique for the different HHDH subclasses analyzed: HheA2, HheB, HheC, HheD2, and HheG.
The 10 different conformations (each one colored differently) are projected on the tICA conformational
landscapes. The most flexible parts of the enzymes are marked and numbered accordingly. The location
of the active site (AS) and halide binding pocket (HP) are marked with a green and blue discontinuous
circle, respectively.
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2.2. Active Site Accessibility Tunnels of Halohydrin Dehalogenases (HHDHs)

The analysis of the conformational landscapes of the A–D, G HHDHs has revealed major differences
among subclasses in the flexibility of the halide binding site region and loops located at the vicinity of
the active site pocket. Such conformational changes may impact the available tunnels for substrate
accessibility to the active site, thus regulating the enzyme ability to accept bulky epoxide substrates for
the industrially relevant promiscuous reactivity. Tunnel analysis with the CAVER software [38] was
performed for all t-SNE clusters of each HHDH studied system (see Figures 2 and 3). The average
bottleneck radius of the computed tunnel (BR, i.e., narrower region of the tunnel) for each cluster was
calculated (see Tables 1 and 2).

Table 1. Mean tunnel bottleneck radius (BR, in Å) for each HHDH system computed on a representative
structure of each cluster center (see Methods).

HHDH Tunnel T1 Tunnel T2 Tunnel T3

HheA2 1.8 ± 0.4 1.6 ± 0.6 n.d. 1

HheB 1.9 ± 0.6 1.8 ± 0.8 n.d. 1

HheC 2.0 ± 0.3 1.3 ± 0.2 1.0 ± 0.02
HheD2 1.8 ± 0.5 1.7 ± 0.4 n.d. 1

HheG 2.2 ± 0.4 1.9 ± 0.5 1.8 ± 0.5 Å
1 Not detected.

Table 2. Computed tunnel frequency for each HHDH subclass (see Methods).

HHDH Tunnel T1 Tunnel T2 Tunnel T3

HheA2 92.4% 12.3% n.d. 1

HheB 97.6% 25.7% n.d. 1

HheC 96.9% 77.5% 36.2%
HheD2 88.0% 71.1% n.d. 1

HheG 97.6% 91.8% 65.8%
1 Not detected.

One major tunnel (named T1) was identified in all analyzed HHDH variants (see Figure 4). In some
cases, two additional tunnels (T2–T3) were also found, although with different probabilities. T1 defines
the direct vertical path from the active site to the bulk solvent, and is shaped by the active and halide
binding sites. This tunnel was found in 92.4%, 97.6%, 96.9%, 88.0%, and 97.6% of the clustered MD
frames for HHDH subclasses A2, B, C, D2, and G, respectively. Contrary to what we initially expected,
the C-terminal part from the neighbor chain in HheC does not affect T1 formation, thus not blocking
substrate accessibility to the active site (see Figure S2). The analysis of the average bottleneck radius
(BR) of T1 in the different HHDH subclasses indicates that in A2, B, C, and D it is ca. 1.90 Å, whereas it
is slightly larger in the case of HheG (ca. 2.2 Å). This larger BR for T1 observed in G together with its
high frequency (98%) explains the higher catalytic activity of HheG with substantially bigger epoxide
substrates [22]. The BR of T1 is located close to the active site in all HHDHs, and thus contrary to what
one might have initially expected, T1 is not directly affected by the ‘breathing’ motions of the α-helix
contained in the halide binding region and the loop close to the catalytic residues described above.

T2 and T3 are lateral tunnels delimitated by the position of the sidechains of some blocking
residues (H11, F12, I84, Y185, F186 and the N-terminal loop mentioned above, numbering according to
HheC). Some deviations in the T2 exit to the bulk solvent can be found depending on the position of the
N-terminal part and the H11, and F12 sidechain conformations. If the N-terminal part is not blocking
the direct exit of T2, the shape and exit of T2 is regulated by the rotation of H11 and F12 sidechains.
Alternatively, the longer tunnel T2′ located under the halide binding site loop (residues 180–183 in
HheC) can be formed. Tunnel T2 was found in 12.3%, 25.7%, 77.5%, 71.1% and 91.8% of the MD frames
for HHDH subclasses A2, B, C, D2, and G, respectively. T2 is therefore hardly found in subclasses
A2 and B, more visited in C and D2, and highly frequent in HheG. The analysis of the mean BR
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reveals that in A2, T2 is hardly present and when formed has a narrow mean BR value of ca. 1.6 Å.
In B2, the average BR is expanded to ca. 1.8 Å although with a large variability and low frequency
(26%). In contrast, T2 is highly frequent in C (78%) but it is likely too narrow to allow the access of
bulky substrates (mean BR of 1.3 Å). The high frequency of T2 in HheD2 and HheG (72% and 92%,
see above), is combined with larger average BR values of ca. 1.7 Å in the case of D2, and ca. 1.9 Å in G.
These findings of a high frequency of T2 combined with wider BR are in line with the higher activity of
HheD2 and HheG with larger di-substituted epoxide substrates [24].Catalysts 2020, 10, x FOR PEER REVIEW 9 of 14

Figure 4. Representation of the three major tunnels that exist in (A) HheA2, (B) HheB, (C) HheC, (D) 
HheD2, and (E) HheG: T1 shown in raspberry, T2 in teal, and T3 in dark blue. The key elements that 
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Figure 4. Representation of the three major tunnels that exist in (A) HheA2, (B) HheB, (C) HheC,
(D) HheD2, and (E) HheG: T1 shown in raspberry, T2 in teal, and T3 in dark blue. The key elements
that determine T2 formation in the different subclasses are highlighted.
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We hypothesized that these large differences in the prevalence of T2 in the analyzed HHDH
classes might be related to its associated conformational changes and/or structural variations. To that
end, we relied on random forest classifiers [39] to elucidate the key heavy atom distances that modulate
T2 formation (see Figure 4, Figures S3–S8). In A2, T2 formation is directly affected by the side-chain
conformation of Tyr184 located at the halide binding loop (180–210) and Arg84 contained in the loop
close to the catalytic Tyr146 (Residues 80–95). As shown in Figure 3, these regions correspond to the
most flexible parts of HheA2, and thus T2 formation is directly related to the enzyme conformational
dynamics. In B, T2 formation depends on the side-chain conformation of Tyr166 located at the halide
binding loop (see Figure 4B). In fact, T2 is only observed when Tyr166 is displaced out of the active site
pocket (see Figure 4B). HheB is the most rigid HHDH analyzed (see Figure 3), and the halide binding
region containing Tyr166 does not exhibit a high flexibility, thus explaining the low frequency of T2
in B.

In HheC, T2 is substantially more frequently observed (78%), however, as shown in Figure 4C,
T2 follows a slightly different path. In C, T2 formation is dependent on the conformation of the
halide binding loop containing Pro183 (189–180) and the positioning of the N-terminal loop 5–14.
These regions also correspond to the most flexible parts of the enzyme (see Figure 3), and therefore
the formation of T2 in C is also related to its conformational dynamics. The high frequency of T2
in HheD2 is explained by its different location with respect to the previously mentioned cases (see
Figure 4D). T2 is rather short and depends on the side-chain conformation of Phe17 at the N-terminal
loop 12–18, and the adjacent loop close to the catalytic Tyr128 (65–80). The latter loop exhibits a quite
high flexibility (see Figure 3), however, the N-terminal loop is rather rigid. As observed in Figure 4D,
T2 in HheG is located between the halide binding loop 195–225, and the loop located close to the
catalytic Tyr160 (95–105). However, given the wider active site pocket of HheG a longer distance
between the latter loops is observed (this distance is 7.6 ± 2.3 Å in HheG, whereas 5.0 ± 2.4, 6.4 ± 3.2,
4.6 ± 1.4, 6.6 ± 2.3 for HheA2, HheB, HheC, HheD2, respectively), which makes T2 less dependent on
their adopted conformation thus explaining the high prevalence (92%) of this tunnel in G. Thanks to
the additional α-helix in the halide binding loop in HheG, T2 is not hampered by the N-terminal loop
as observed in the other HHDH subclasses.

Tunnel T3 is only observed in those HHDH subclasses with a rather flexible N-terminal region
(HheC and HheG, see Figures 3 and 4). The presence of T3 is therefore related to the positioning of
the N-terminal loop and its associated conformational dynamics. T3 was found only in 36.19% of the
HheC MD clusters, whereas it was found in 65.8% of the HheG MD dataset in line with the higher
flexibility of the N-terminal loop observed in the G subclass. The analysis of the average BR indicates
that although in HheC T3 is observed in 37% of the analyzed structures it is too narrow (ca. 1.0 Å)
to allow the access of the epoxide substrate to the active site. In contrast, T3 is highly frequent in
HheG and presents a substantially larger average BR of ca. 1.8 Å. This observation is again in line with
the higher ability of HheG to accommodate bulkier epoxide substrates for the industrially relevant
promiscuous reactivity [22].

3. Discussion

The repertoire of Halohydrin dehalogenases (HHDH) has been recently expanded, which provides
access to some novel HHDH subclasses. These novel enzymes present substantial structural similitudes,
although large differences especially in loops and alpha-helices located at the vicinity of the active site
of the enzyme are also present. The analysis of the conformational landscapes of HHDH by means of
linear and non-linear dimensionality reduction techniques has revealed that a common feature of all
analyzed HHDH is a high flexibility of the alpha-helix and loop containing the halide binding pocket,
i.e., ‘breathing motion’. Apart from this common motion, there are some conformational differences
among the analyzed subclasses: HheA2 and HheD2 exhibit a high flexibility of the loop located close
to the catalytic Tyr; HheC has instead a high mobility of the N-terminal loop, and HheG is the most
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conformationally rich HHDH displaying a large mobility of the N-terminal loop, the loop located
adjacent to the catalytic Tyr and the already mentioned halide binding pocket.

The characterization of the accessible tunnels at the ensemble of conformations explored by means
of CAVER has evidenced some relevant deviations in the available active site tunnels, some of them
clearly influenced by the conformational dynamics of the HHDH subclass. All analyzed enzymes
present a major tunnel (named T1) that vertically connects the active site pocket to the bulk solvent
through the cavity formed between the loop located close to the catalytic Tyr and the halide binding
pocket. In contrast to what we originally expected, the formation of T1 is independent from the
above-mentioned breathing motion of the halide binding pocket and has a high occurrence in all
HHDH (which ranges from ca. 88–98%). The bottleneck radius (BR) of T1 is located close to the
active site residues, thus not being substantially affected by the halide binding pocket conformation.
The computed BR for T1 is ca. 1.9 Å for all HHDH, except in HheG that is broadened to ca. 2.2 Å.
Interestingly, dramatic differences are observed in the case of the secondary tunnel T2. The length,
the exact positioning, BR values, and the frequency of T2 is subclass-dependent. In A2 and B, T2 is
hardly present and is mostly dependent on the conformation of a Tyr residue (185 in A2 and 167 in
B) contained in the halide binding pocket. In HheC, T2 has a high frequency and is located between
the halide binding pocket (179–190) and the N-terminal loops (5–14), which present a rather high
flexibility. T2 is substantially shorter in HheD2 and is situated between the rather rigid N-terminal and
the substantially more flexible loop situated close to the catalytic Tyr. Thanks to the additional α-helix
in the halide binding loop in HheG, T2 formation is less affected by the conformation of the halide
binding region, the N-terminal and the loop situated close to the catalytic Tyr. The BR of T2 ranges
from 1.3 Å for HheC to 1.9 Å for HheG. Finally, a third secondary tunnel (T3) is also present in the
case of HheC and HheG that present a substantially more flexible N-terminal region. T3 is, however,
less observed in HheC and exhibits a substantially narrower BR value (1.0 Å for C and 1.8Å for G).

4. Materials and Methods

Systems Set-Up. MD simulations were carried out on the structures of A2, B, C, and G HHDH
subclasses with protein database (PDB) codes 1ZMO, 4ZD6, 1ZMT, and 5O30, respectively, as initial
structures. The X-ray structure for D2 is not released yet (made available by the Schallmey lab).
Protonation states of enzyme residues were assigned based on pKa values provided by the H++ server
(http://biophysics.cs.vt.edu/H++) [40]. The enzymes were then solvated in a pre-equilibrated cubic box
with a 10 Å buffer of transferable intermolecular potential with 3 points (TIP3P) [41] water molecules,
resulting in the addition of approximately 27,000 solvent molecules per protein variant. The systems
were neutralized by the addition of approximately 32 explicit counter ions (Na+). All simulations were
done using the Amber 99SB force field (ff99SB-ildn) [42].

MD Simulations. The graphics processing unit (GPU) version of pmemd in Amber16 was used for
the MD simulations. A two-stage geometry optimization was performed, first minimizing the positions
of solvent molecules and ions, by imposing harmonic positional restraints of 500 kcal mol−1 Å−2

on solute molecules, followed by an unrestrained minimization. Afterwards, a gradual heating
of the systems was performed by increasing the temperature 50 K along six 20 ps sequential MD
simulations (0–300 K) under constant volume and periodic boundary conditions. Harmonic restraints
of 10 kcal/mol were applied to the solute, and the Langevin equilibration scheme was used to control
and equalize the temperature. The time step was kept at 1 fs during the heating stages, allowing
potential inhomogeneities to self-adjust. Each system was then equilibrated without restraints for 2 ns
with a 2 fs time step at a constant pressure of 1 atm and temperature of 300 K. After equilibration in the
isothermal-isobaric ensemble (NPT), 5 replicas of 250 ns were run for each system (i.e., 1.25 µs per
HHDH subclass) in the canonical ensemble (NVT) yielding a total MD simulation time for all systems
of 6.25 µs.

MD dimensionality reduction. MD simulation trajectories were post-process with the pyemma2
software package [43]. C-alpha coordinates of the aligned protein subclasses at each nanosecond of MD

http://biophysics.cs.vt.edu/H++
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simulation were used as initial features, resulting in 182,250,000, 168,000,000, 189,000,000, 168,000,000,
192,750,000 extracted values (features x frames x replicas) for the A2, B, C, D2, and G HHDH subclasses,
making the statistical analysis unfeasible. Subsequently, the time-lagged Independent Component
Analysis (t-ICA) [35], with a lag time τ set to obtain the minimum number of reduced dimensions,
was applied to reduce the dimensionality of the initial MD features. The linear method t-ICA focuses
on those motions that most rarely occur, i.e., the slowest kinetically relevant processes. Conversely to
linear methods, non-linear techniques have the advantage of capturing more data variance with less
descriptors, although at the cost making the biophysical interpretations of such reduced descriptors
challenging. These methods include the recently proposed variational autoencoders [31,32], and the
t-Distributed Stochastic Neighbor Embedding (t-SNE) [33], among others. After applying t-ICA,
we further reduced the dimensionality of the data by applying the t-SNE method to the 20 most
informative t-ICA dimensions. These 20 most informative t-ICA dimensions describe the 25% of the
total variance. The resulting 2D t-SNE space was clustered with the HDBSCAN algorithm [37], with a
minimum cluster size of 200 and other default parameters, resulting in 133, 126, 134, 124, 119 clusters
for the A2, B, C, D2, and G variants, respectively. By applying the t-SNE dimensionality reduction,
less than 75% of the variance was lost.

Tunnel analysis of MD simulation. CaverAnalyst [44] was used to compute substrate entry
channels for the 10 most populated HDBSCAN clusters of each HHDH variant. For each t-SNE cluster,
the nearest MD snapshot was extracted with the Mdtraj software [45] for the analysis of accession
tunnels, thus spanning the whole dynamical space of the enzyme. The parameters used for the tunnel
search were 4 Å shell depth, 2.5 Å shell radius, clustering threshold value of 3.5 and a 1 Å minimum
probe radius were used as tunnel search parameters.

Decision trees and feature importance. Decision trees are supervised learning methods and,
therefore, require a set of training examples for which the output or label is known. They infer
relations from training instances by asking a series of questions about the input in a tree-shaped
hierarchy. For categorical data, yes/no questions can be asked regarding the presence/absence of
a particular input, whereas for real-valued features, such as atomic distances, threshold values are
normally used. Here, we defined as input features all possible minimum distances between residues
defining the shape of the corresponding tunnel and the presence/absence of the studied tunnel as a
target feature. We used a Python pipeline to standardize the input data and select the best Random
Forest parameters for the classification. MD data was randomly split into a training set (80%) and test
set (20%). We used Python packages Numpy [46], Pandas, Scikit-Learn [47], and Matplotlib for data
manipulation, machine-learning, and visualization. Pyemma2 [43] was used for feature extraction
from MD simulations, PCA, and tICA dimensionality reduction.

Formula for computing the tunnel frequency (f) for each HHDH subclass (Table 2):

f =

∑n
i=1 δipi

M
·100 δi ⇒

0 i f tunnel not present
1 i f tunnel present

where M is the total number of frames, pi is the number of frames in the cluster and n is the number of
clusters of each system.

5. Conclusions

The exploration of the conformational landscape of the different HHDH subclasses coupled to the
active site tunnel calculations has indicated that the superior activity of HheG towards bulky epoxide
substrates is due to the presence of some additional structural elements adjacent to the active site
pocket, its higher conformational heterogeneity, and the presence of highly prevalent active site tunnels
that present bottleneck radius of ca. 1.9 Å. This is unique to the G subclass, as the rest of the analyzed
HHDH are conformationally more restricted and present a reduced number of narrower active site
tunnels. Altogether, our study has shown how the HHDH structural dissimilarities influence their
conformational landscape, thus impacting their associated active site tunnels, and in turn, their catalytic
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promiscuity. By means of extensive MD simulations and CAVER analysis, this work has provided key
information for rationalizing HHDH promiscuity and for further engineering.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/12/1403/s1,
Figure S1: tSNE and HDBSCAN representations, Figure S2: T1 representation as tetramer, Figures S3–S7:
Random Forest Classifier for HheA2, HheB, HheC, HheD2, and HheG, Figure S8: Most important contacts
computed using Random Forest Classifier.
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