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The Dynamics of Productive Assets, Contract Duration and Holdup 
 

 
Abstract 

The owner of an asset often transfers the right to use or exploit that asset to an agent in 

exchange for a rent. A limited time of the license and the failure of the owner’s commitment 

to compensate the agent for any asset improvement are likely to lead to underinvestment 

(holdup). In this study, we analyze the optimal length a contract would need to have to 

maximize the owner’s income in the short- and long-run. We determine the design of a 

sequence of renegotiation-proof, overlapping, fixed time contracts that allows eliminating the 

hold-up problem. The obtained outcomes are tested and illustrated on a specific problem 

(land lease and soil quality). Numeric simulation demonstrates that the most severe version of 

the hold-up problem arises when the lease contract is not long enough for farmers to make 

any investment in the soil quality (less than 3 years on calibrated data).  
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Highlights 
  

• We study the optimal duration and renewal of fixed-time contracts if a hold-up 
problem is present 

• The agent’s investment and cooperative benefits are intertwined 
• We determine the minimum contract length for possible solutions of the hold-up 

problem 
• Overlapping fixed time contracts with advance notice provide a solution of the hold-

up problem 
• We define the optimal length of the contract and advance notice time 
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The Dynamics of Productive Assets, Contract Duration and Holdup 

 

1. Introduction  

Firms must decide which transactions will take place within the firm itself and which they 

will have to rely on the markets for. In other words, firms have to define their boundaries. 

Nobel prize winner Oliver Williamson (1979) considered transaction costs as a critical 

element in deciding where to draw the boundary between the firm and the market. A 

significant problem is that market partners often have to make a relationship-specific 

investment, which can only be recovered within the relationship. If one partner unilaterally 

decides to end the relationship, then market transactions may be very costly, since 

investments become sunk costs that cannot be recovered. As a remedy, one may suggest 

writing a complete contingent contract that safeguards the interests of both parties. However, 

as argued by Grossman and Hart (1986), the rationality of economic agents is bounded and, 

thus, prevents the agents from foreseeing all possible future contingencies. Moreover, certain 

future states cannot be included in a written contract because they cannot be verified by a 

third party (for example, intangible benefits such as the originality or trendiness of a product, 

reputation, friendly customer services, or improvements in human capital). Likewise, the 

non-investing partner has less incentive to renegotiate or accept any demands when the 

contract has ended if a third party (court) cannot verify the cooperative investment (Harstad 

2012, Segal and Whinston 2012). The risk that the non-investing partner will take advantage 

of this situation can result in underinvestment by the investing partner and thus lead to the 

hold-up problem.  

The existing literature on the hold-up problem has only considered time in a stylized manner. 

Normally, agents can invest in the first period and expect benefits in the second period. A 

standard model of a contract (Bolton and Dewatripont 2005) assumes that each period is of a 

given and identical length, but its duration is not specified. Moreover, investments are 

frequently modeled not as a stock, but rather as a flow variable. However, real-world 

examples, like franchise systems or concessions, show that periods of investments and 

benefits are interrelated and that the dynamics of the investment behavior and realization of 

the benefits are more complex than portrayed by the standard model. Given this observation, 

our point of departure is that the agent’s investment behavior depends on the length of the 
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period or duration of the contract, particularly if investment is not a one-time event, but rather 

a continuous process while the contract is in place. Moreover, the benefits of investments are 

often not immediate and can only be fully recovered over time. As an extension of the 

existing literature, our study focuses on the dynamic description of optimal investment 

behavior in order to determine the optimal design of contracts in terms of fixed-time duration 

and renewal in the presence of a hold-up problem.  

There are many real-world examples that underline the importance of fixed-time contracts 

and stock variables in a production process. Within this context, we find landlords who do 

not cultivate their land themselves, but rather lease it out to agricultural producers in the form 

of a fixed rent or sharecropping contract over a fixed time horizon. Such leasing contracts 

affect about 40% of all cultivated land in Europe and 60% in North America (Food and 

Agricultural Organization 2004). Farmers cultivating the land normally invest in the soil 

quality as this is important for agricultural productivity and farm output (Abdulai and Goetz, 

2014). Another common example is the franchise agreement. The franchiser is the owner of 

the asset which is often in the form of a brand and its associated reputation. A fixed-time 

contract authorizes the franchisee to exploit the brand while the contract is in place. The 

reputation of the brand actively contributes to its sales, while investments by the franchisee, 

such as training and developing personnel, can help improve the brand’s reputation and 

increase sales. Another example from the private sector is the concept of concessions. The 

concessionaire usually signs a fixed-time contract that allows them to operate within the 

premises of the concession grantor. As in the case of the franchisee, the overall reputation of 

the premises and the concessionaire’s investments contribute to the success of the business. 

Examples include business concessions within sports or cultural venues, concessions to 

retailers to operate in department stores, or concessions to chefs to run restaurants within 

hotel premises. Within the public sector, we find private companies that enter into 

agreements with local, regional or national governments to operate public utilities related to 

water or energy supply, or to provide transport or sanitation services (Worldbank 2011). A 

common feature of fixed-time contracts is that they give a company the right to exploit public 

infrastructure. To maintain and augment its returns, the company needs to invest in the 

infrastructure, as it forms an essential element in the provision of public services.   

The aforementioned examples are all similar in that the owner of an asset offers an agent a 

fixed-time contract, allowing the agent right to exploit the asset. The asset itself is a building 
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element for providing a service or producing goods. The duration of such contracts is 

generally limited and not open-ended. Investment by the agent improves the asset, while 

intensive production tends to degrade it. Open-end contracts can be found in industrial 

collaboration such as joint ventures, strategic alliances, or start-up businesses (Comino et al. 

2010, López-Bayón and González-Díaz 2010), while the fixed-time format is common for 

private and public contracts where an asset is involved. Fixed-time contracts frequently take 

the form of concessions, operating licenses or franchise agreements (Zylbersztajn and 

Lazzarini 2005, Brickley et al. 2006).1  

Our study focuses on the question of how an efficient long-run equilibrium can be achieved 

through a sequence of time-dependent contracts. These types of contracts often include an 

automatic renewal clause known as the Evergreen Clause. This allows an agreement to 

continue for a fixed time if the existing agreement is not renegotiated or properly cancelled 

with advance notice. Evergreen clauses can be found in both consumer and commercial 

contracts (Voorhees 2016) and examples of such can be found in the agricultural sector 

(Goodhue et al. 2003) or forest sector (Townsend and Young 2005) or in health care 

provision (Prives 2013). If the time-dependent contract does not include an evergreen clause 

it is either in form of an open-end contract, i.e., no renewal but the duration of the contract is 

open, or in form of a fixed-time contract.     

Guriev and Kvasov (2005) analyzed how the long-run equilibrium can be achieved by 

comparing fixed-time contracts and open-end contracts. As a result of their modelling 

approach, they find that fixed-time contracts cannot induce efficient investment and one has 

to resort to open-end contracts. In contrast, our study shows that under fairly general 

conditions even a sequence of renegotiation-proof fixed-time contracts can induce efficient 

investment. Moreover, fixed-time contracts seem to be employed more frequently than open-

end contracts. If the long-run equilibrium can be achieved while the first contract is in place, 

then the sequence of identical fixed-time contract is able to replicate the first-best solution. 

However, if the long-run equilibrium cannot be achieved during this time, then it is optimal 

to either employ a sequence of non-identical contracts or offer no contract at all.  

                                                              
1 Given that fixed-time contracts are normally assigned through a public procurement process based on the 

request for tenders or proposals we do not consider the possibilities of relational contracts. 
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2. Literature  

To overcome the hold-up problem, a number of solutions has been proposed in the literature, 

including, among others, the assignment of property rights and changes in the structure of 

governance to allow for the incentives of the partners involved in a transaction to be aligned 

(Grossman and Hart 1986, Aghion and Tirole 1997, Frascatore 1997). Alternatively, Aghion 

et al. (1994) or Wait (2005) suggest a contract design that can guide the ex-post renegotiation 

process, while Felli and Roberts (2015) and MacLeod and Malcomson (1993) discuss 

improving market contracts, and Baker et al. (2002) emphasize the value of future 

relationships (relational contracts). The basic idea behind all these theories is the 

understanding that, without these proposed safeguards, the hold-up problem will result in the 

contracting parties underinvesting in specific assets (see Felli and Roberts 2015). 

The hold-up problem is mostly examined in the context of a principal-agent model, where an 

agent makes a take-it-or-leave-it offer, or in the form of a bargaining game, where no ex-ante 

contract exists and the two partners are on equal terms. The common feature of both 

approaches is that the agent can only make a one-time investment at a pre-specified date, and 

exchange or bargain does not occur before all investments have been specified. In practice, 

however, the timing of the investment, duration of the relationship and sharing rule for the 

cooperative surplus are often negotiated before investments are completed.  

Within the context of a bargaining game, Che and Sákovics (2004) allow for a sequence of 

investments that ends once the partners decide to share the cooperative surplus. The authors 

find an asymptotically efficient equilibrium, where investments take place all at once. If the 

time horizon were not infinite, this equilibrium would not be supported. Likewise Gul (2001) 

shows that there is an asymptotic efficient equilibrium in a hold-up model without ex-ante 

contracts. However, the analysis does not consider repeated investment decisions, since the 

model only allows for investment in the first period. Evans (2008) establishes the existence of 

an efficient equilibrium in the case of a contract that relies on renegotiation with symmetric 

information as well as production and trade activities verifiable by a third party.  

A different strand of the literature is based on the multi-period principal-agent model. Rey 

and Salanie (1996) show that, under certain conditions and in the absence of a stock variable, 

renegotiable short-term contracts can be as efficient as long-term contracts, for instance, 

when agents have no incentives to renegotiate, and physical and monetary variables can be 
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transferred between the time periods. Another explanation of the advantages of long-term 

contracts is based on the emergence of trust in repeated games (Colombo and Merzoni 2006). 

In light of the available literature, the present study explores, within the principal-agent 

framework, the optimal trajectory of an agent’s investment behavior while the signed contract 

is in place. Given this new and realistic setting, we analyze if and when a hold-up problem 

arises. For this purpose, we determine both the socially and privately optimal solutions and 

analyze possible ways to eliminate the gap between the two, i.e., to overcome the hold-up 

problem (Lichtenberg 2007, Jacoby and Mansuri 2008). Our analysis extends the previous 

research by considering the dynamics of a productive asset in continuous time, where 

investment and benefit sharing are timewise intertwined, the contract duration is determined 

endogenously and investments affect cooperative benefits in a cumulative way. We extend 

the work by Yoder et al. (2008), who determine the optimal contract duration, but do not 

consider the interdependence production and investment decisions have. By allowing 

investment only at the beginning of the contract period, Yoder et al. (2008) follow a more 

static approach and do not analyze contract renewal in the form of a sequence of contracts. 

Our study also expands the work of Hritonenko et al. (2014), who analyze landlord-tenant 

relationships in a model with a single production input, and find that the hold-up problem 

does not emerge for certain ranges of model parameters. 

The work that is closest to our study is that of Guriev and Kvasov (2005). Like them we 

consider time not only as a dimension along which the contractual relationship unfolds, but 

also as a verifiable variable employed in designing the contract. However, unlike these 

authors, we take into account the explicit form of the production process and consider 

investment as a stock variable. As discussed above, the latter element is particularly 

important when the natural resource or asset is employed to produce goods or services. Our 

model describes production as a function that depends on an output-enhancing input and the 

quality of the asset. 

 

3. Statement of the principal-agent problem   

We assume that the principal2 is the owner of an asset and makes a take-it-or-leave-it offer to 

an agent. Within this setup, the principal receives a rent from the agent. In this respect, the                                                              
2 For clarity, we refer to the principal with female pronouns and use male pronouns for the agent.   
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agent is often considered as a residual claimant of the part of cooperative benefits that are not 

taken away with the payment of the rent. In the analysis that follows, we state the principal-

agent problem.  

 

Let us denote the continuous calendar time by t and assume that the contract length T is finite 

and endogenous. The principal’s objective is to maximize the income accrued from the rent 

payment. The magnitude of the rent is subject to the willingness of the agent to sign the 

contract and its compatibility with personal incentives. To avoid complications related to 

end-of-horizon effects, we consider the infinite-horizon optimization framework, assuming 

that the principal and agent (or heirs) live forever.  

The principal’s objective is to find the value 0T >  and the rent ( ) [ )0, ,R t ∈ ∞  that maximize 

the discounted revenue (income) I : 

max ∑ ∫
∞

=

−+ −

⎥⎦
⎤

⎢⎣
⎡ −=

0

)1(
)()(

j

rTjjT

Tj

rt TVedttReI .                                                                              (1)

For each contract renewal j = 0,1,…, the agent’s objective is to determine the productive 

input ( )m t  and the productivity enhancing investment ( )n t , [ ], ,t Tj Tj T∈ + that maximize his 

discounted profit  
( 1)

( ), ( )
 max [ ( ( ), ( )) ( ) ( ) ( )] ,

T j rt
j m nTjm t n t

I e B m t s t c m t c n t R t dt
+ −= − − −∫                                                (2)       

for a given rent ( )R t , subject to the participation constraint                                                                               

0( ( ), ( )) ( ) ( ) ( ) 0m nB m t s t c m t c n t R t u− − − ≥ > ,  0 ,n n≤ ≤ ( ) 0, m t ≥ ( ) 0, s t ≥                           (3) 

where the “asset quality” indicator s(t) satisfies the equation 
0( ) ( ( ), ( )) ( ( )),     (0)=s t h m t s t g n t s s= − + ,    ( ) 0, s t ≥   t∈[Tj, T(j +1)].                                          (4) 

Then, the principal-agent problem is represented as the two-player non-cooperative dynamic 

game, in which both players (the principal and agent) behave selfishly and maximize their 

own individual payoffs (1) and (2). We adopt the open-loop Nash equilibrium as the solution 

concept for this game. Note that the interaction between the players appears only via the rent, 

which will essentially be used in the qualitative analysis below. 

In the problem (1) - (4), the subscript j indicates the number of times the contract has been 

renewed, i.e., 0j =  is the initial contract and 1j =  is its first renewal, and r > 0 is the 

discount rate. The parameters mc  and nc  are the costs of the input m and the investment n 
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respectively, and s(t) is the asset quality with its initial condition 0(0)s s= . The agent’s 

reservation utility is denoted by 0u  in the participation constraint (3). The constants 

00, ,, ,m nc nc us  and bounded real-valued functions , ,B h g  are given. The agent’s revenue from 

production ( ),B m s  increases with the input m  and asset quality s . The changes in the asset 

quality over time are described by the equation (4). Deterioration of the asset is captured by 

the function ( ),h m s  and is greater for more intensive asset use, i.e., for larger m  and s . 

Hence, we assume that ( ),  >,  ., 0m sh m s h h ≥ 3 The agent has option to improve the quality of 

the asset by the investment n , which is described by the function ( )g n . 

The given function ( )V T  in (1) describes the principal’s costs and potential losses related to 

the frequency of signing a new contract. Naturally, such expenses and potential losses depend 

on the length T  of the contract. We consider that short-term contracts result in frequent 

incurrence of search and transaction costs4 such that the function ( )V T  decreases in T . 

However, the principal must take into account the tradeoff between commitment and 

flexibility (Gómez-Ibañez 2003). The longer the principal commits herself (long contract 

duration), the more circumstances are likely to change over the contract’s life. However, with 

a long-time contract, the principal loses flexibility to adjust the contract to new 

circumstances. Contingencies in the contract could be included, but identifying all the 

relevant risks and negotiating appropriate contingencies are time-consuming, costly, and 

impractical (Gómez-Ibañez 2003). Moreover, such uncertainties may be appraisable in the 

near future, but over time they are likely to increase and become more complex. Several 

studies focus on the costs and benefits of long-term contracts. Brickley et al. (2006) show that 

the length of franchise agreements increases if relationship-specific investments are                                                              
3 Here and thereafter, the subscript of a function with respect to a variable denotes the partial derivative of the 

function with respect to this variable. 4 Not only the principal, but also the agent incurs search costs. However, the principal makes a take-it-or-leave-

it offer, where she considers her search cost. Thus, the principal’s search costs are part of her offer, but the 

agent’s search costs do not. The agent’s search costs form a part of his reservation utility 0u , which is 

considered in the model but not formulated explicitly in order to concentrate on the design of the contract by the 

principal.  
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important, but tend to decrease with the need for more flexibility. Similarly, Crocker and 

Masten (1988) show that natural gas contracts are shorter if flexibility is emphasized. These 

studies are also in line with Pitchford (1995), who found historical evidence (1895-1927) that 

short forest tenure by the Victorian government (Australia) led to underinvestment in specific 

capital for timber management. Following this line of argument, we consider losses in 

flexibility as costs that increase with the length of the contract, therefore ( )V T  increases in 

T . To identify specifications of the function ( )V T , it is important to note that they are not 

related to the optimal contract length. The longer the principal commits herself, the better 

aligned the principal’s and agent’s interests are. Then, from the perspective of the principal, 

the agent invests more efficiently. The optimal commitment duration is independent of the 

specification of the function ( )V T  and is based on the solution of the agent’s problem in 

Section 4.1. This provides the efficient investment solution, when there are no incentives for 

the agent to hold up investments. Considering search and transaction costs together with the 

loss of flexibility costs, one can see that the function ( ) 0V T >  decreases initially in T  and 

increases later as T  gets larger. As a result, we can reasonably assume that the function 

( )V T  is U − shaped with a unique minimum at minT . 

Given the framework of a principal-agent contract, where the principal has all the bargaining 

power, we assume that the agent is not in a position to renegotiate the contract once it has 

expired. The agent can accept or reject the principal’s offer. This strong position of the 

principal is further reflected in the fact that she can easily find a replacement if the agent 

rejects the offer. For this reason, the function ( )V T  does not include any renegotiation costs. 

The principal and the agent can observe the state of the asset before and after the contract has 

been signed. However, the state of the asset cannot be verified by a third party (court) and, 

therefore, it cannot be part of the contract. The principal may renew the contract or not, with 

or without advance notice. Moreover, in accordance with the Nash equilibrium concept, the 

principal knows the agent’s production function. The contract length *T  that maximizes the 

principal’s income I  depends on the function ( )V T  and the solution of the agent’s optimal 

decision. 

Based on empirical data, we consider that 1r << . To simplify notations we omit the subscript 

j in (4) and use the notation 0(0)s s=  not only for the initial value of the first contract, but 
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also for the initial values in all consecutive renewals j of the sequence of contracts. The same 

notational simplification is also applied to the variable ( ) ( )0 , Tλ λ  that will be introduced 

later. Since the agent does not know whether the contract will be renewed or not, he 

maximizes his profit over the time horizon of the offered fixed-time contract. Consequently, 

the hold-up problem may arise and the optimal dynamics of the agent’s choices may include 

a decrease of ( ) ( ),m t n t  and ( )s t  near the end T  of the contract, which also affects the 

evolution of the optimal rent ( )R t .  

4. Efficient investment and the first-best solution 

In this section we analyze the principal’s and agent’s problems by determining the socially 

optimal outcome. In this case, the principal and agent maximize their incomes and there is no 

hold-up problem. For the sake of clarity, we focus on the sustainable dynamics of the 

optimization problem (1) - (4), assuming that the optimal value of T  is the same for all j . In 

other words, we assume that the contract duration T  is identical for all contracts in the 

sequence. The assumption is quite reasonable because of the autonomous nature of the 

problem (1), which does not depend explicitly on the time t. Consequently, we will look for a 

solution of the problem (1) that follows the same dynamics for all j . We start with the 

analysis of the agent’s problem. 

 

4.1 Analysis of the agent’s problem 

In this section, we study the dynamics of the optimization problem outlined in (2) - (4) at 

0j =  for a given function R . To allow for a qualitative analysis of optimal trajectories, we 

choose more specific forms of the functions of the model: 

( , ) ( , ) ,  with 0 1B m s Y m s Am sα α= = < < ,                                                                             (5)

0( , ) ( , ),    ( )h m s Y m s g n g nμ= = , 0 1μ< < ,                                                                                       (6) 

where Y  is the output, α  describes the nonlinearity (concavity) of a production process, and 

μ  represents the deterioration of the asset as a result of its use in production. Since the 

revenue B is measured in financial units, the output Y  is equal to earnings produced by the 

input m  (at a given level s  of the asset quality). Economically, the production function 

( , )Y m s  should be specified as a nonlinear concave function over the entire range of s, for 

example by sβ . However, the exploitation of the asset is often viable only within a limited 
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range of s . Given that this range is relatively small, we can assume that β  is equal to 1 over 

this range. The parameter g0 characterizes the improvement of asset quality by the investment 

n . We are aware that the choice of specific functions , ,B h g  restricts generality of the 

results, but, on the other hand, it allows us to obtain deeper analytic results, in particular, to 

find an approximate analytic solution of the agent’s problem (2) - (4). 

 

Structure of the optimal trajectories 

Let ,  m n  be bounded functions on [0, ]T  then the unknown state variable s  in (2) - (6) is 

almost everywhere differentiable on [0, ]T . Using (5)-(6) and applying standard optimality 

conditions (Hritonenko and Yatsenko 2013, Hritonenko et al. 2014) to the agent’s problem 

(2) - (6), we obtain an interior optimal solution of m , which satisfies the equality: 
1 ( ) ( )(1 ( )) / .mm t As t t cα α μλ− = −                                               (7)

where the so-called co-state variable λ  is determined by the equation (9) below. The optimal 

control n(t) has a bang-bang structure5  

0

0

0

0,   ( ) 0
( ) [0, ],   ( ) 0

,   ( ) 0

n

n

n

g t c
n t n g t c

n g t c

λ
λ

λ

− <⎧
⎪= − =⎨
⎪ − >⎩

.                                                                                                              (8) 

By (8), the structure of the optimal investment n is also determined by λ. The co-state 

variable λ indicates the future value (shadow price) of a marginal increase in the asset quality 

and is determined from the differential equation  

( ) ( ) ( ) ( ) ( )t Am t t r t Am tα αλ μ λ λ= + − ,                                                                                    (9)

with the transversality condition λ(T) = 0. By (5) and (6), the optimal trajectories (m, n, s) 

have to comply with the state equation (3) given by 

0 0( ) ( ) ( ) ( ), (0) .s t Am t s t g n t s sαμ= − + =                                 (10)

The future value λ is equal to zero once the contract expires, i.e., ( ) 0tλ = . Therefore, by (8), 

the optimal investment is zero at the end of the interval [ ]0, ,T  i.e., n(T)=0. More generally,                                                              
5 The assumption that the decision problem is linear in n  is motivated by the fact that agents have incentives to 
employ the asset most efficiently and investment costs are relatively small compared to rent. Another reason that 
also holds for the case of agricultural lease of land illustrated below is that investment costs are relatively small 
compared to obtained additional benefits so that agents have incentive to invest the maximum amount that is 
compatible with the use of the asset.      
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the solution (8) means that the agent does not invest, if the marginal costs of the investment 

nc  are higher than the resulting marginal benefits 0g λ . The marginal benefits are given by 

the improvement in the asset quality multiplied by the shadow price. Obviously, at 0nc g λ< , 

it is optimal to make the maximum possible investment n . 

The solutions for s and λ to the linear differential equations (9) and (10) for a given m  are 

( )( ) ( )( )
u

t

T
r Am d

t

t e Am u du
αμ ξ ξ αλ

− +∫= ∫                                                                                        (11)

0
( ) ( )

0 0
0

( ) ( )
t t

u

t
Am d Am d

s t g e n u du s e
α αμ ξ ξ μ ξ ξ− −∫ ∫= +∫ .                                                                     (12)

With the specifications (5) and (6), the agent’s optimization problem (2) - (4), still remain 

nonlinear and challenging to analyze. However, since we are left just with one nonlinear 

function, ( ),Y m s , we can estimate meaningful ranges of parameters, when the dynamics of 

the agent´s problem is nontrivial with non-zero investments.  

 

Observation 1 (maximum value of the shadow price) 

The shadow value of the asset quality, λ(t), is always smaller than 1 μ , i.e., 1λ μ< . The 

optimal input m(t) is always positive. The optimal investment in the asset quality, n(t), is zero 

if 0 /nc g μ> . However, it can be positive at some combinations of model parameters. 

The proof is provided in Appendix I.  

 

Observation 1 indicates that the upper bound of the shadow price is inversely proportional to 

the deterioration rate, i.e., the higher the deterioration rate is the lower the upper value of the 

shadow price will be. This makes sense because a high deterioration rate depreciates the 

future investment benefits. 

In the next section, we determine the efficient investment solution, i.e., a solution where the 

optimal behavior of the agent is aligned with optimal perspective of the principal. The 

derived efficient investment solution will be quite significant as a limiting asymptotic case 

for dynamic trajectories of the optimization problem (2) - (6). 

 

Efficient investment solution and steady-state analysis 
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If the agent´s contract is of infinite duration T = ∞, and the external conditions stay 

unchanged, the principal’s and agent’s interests are aligned, which characterizes the efficient 

investment solution (Bolton and Dewatripont 2005). In this situation, the principal and agent 

would have common interests, the principal indefinitely commits, and, consequently, the 

hold-up problem does not arise.  

Such sustainable infinite-horizon version of the optimization problem (2) - (6) is stated as 

0,

0 ,   ,  

max [ ]

0,    s 0 .0

rt
m nm n

e Am s c m c n R dt

s Am s g n m n n

α

αμ

∞ − − − −

= − + > > < <

∫                                                                               (13) 

To find a sustainable (steady-state) solution to (13), it is enough to disregard the initial 

condition 0(0)s s=  in (10). Then, the steady-state sustainable regime ˆˆ ˆ ˆ( , , , )m n s λ  is defined by 

the equations: 

,
ˆ)ˆ1(ˆ 1

mc
sAm λμαα −

=−                                                                                                                  (14)

,
0ˆ     ,

0ˆ     ],,0[
0ˆ     ,0

ˆ

0

0

0

⎪
⎩

⎪
⎨

⎧

>−
=−

<−
=

n

n

n

cgn
cgn

cg
n

λ
λ

λ

                                                                                        (15)

0 ˆˆ
ˆ

g ns
Amαμ

= ,                                                                                                              (16)

ˆ
ˆ ˆ1

rAmα λ
μλ

=
−

.                                                          (17)

The equations (14) - (17) follow from the equalities (7) - (10), although they can also be 

derived directly from analysis of the optimization problem (13). By (17), we have 

ˆ 1ˆ .
ˆ

Am
r Am

α

αλ
μ μ

= <
+                                                                   (18)

In (18), the term 
r

Amα  determines the difference between the steady-state shadow price λ̂  

and the upper bound 1
μ  of the shadow price. Hence, if the discount rate is small and/or the 

input m  is very productive, then the steady-state shadow price λ̂  is close to the maximal 

value of the shadow price, which is the inverse of the deterioration rate. In other words, the 
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steady-state shadow price decreases with an increase in the discount rate and /or with a 

decrease in the productivity of the input m . 

It is clear from the nonlinear system (14) - (17) that its positive solution exists only for 

particular ranges of the model parameters. For example, if 0 /nc g μ> , then 

0/ˆ
00 <−<− nn cgcg μλ , the optimal investment n̂  = 0 by (15) and asset quality ŝ = 0 by 

(16). Obviously, from an economic point of view, only a non-trivial case where 0n > , 

ˆ ˆ0,  0,  m s> > is interesting, and, thus, it makes sense to concentrate on the case 0 /nc g μ< .  

 

Theorem 1 (on efficient investment regime). 

If 0 /nc g μ> , then the nonlinear system (14) - (17) has a unique trivial solution 

ˆ ˆ ˆ 0.m n s= = =  The system (14) - (17) may have a unique positive solution ˆˆ ˆ ˆ( , , , )m n s λ  at some 

values of model parameters, for example, if 0 /nc g μ<  and 0 1.
m

g nAC
r c

α
αμ
μ

⎛ ⎞
= >>⎜ ⎟

⎝ ⎠
    

The proof and an approximate closed-form solution for ˆˆ ˆ ˆ( , , , )m n s λ  at 1C >>  are provided in 

Appendix II.  

We shall notice that the value of λ̂  is close to 1/ μ  under the condition 1C >> , and therefore, 

the condition 0 /nc g μ<  is “almost sufficient” for having the nontrivial dynamics ˆ 0n > . The 

condition 1C >>  holds at certain combinations of parameter values, namely, large enough 

maximum investment n , or small enough discount rate r, or large enough productivity A, or 

a combination of these conditions. 

Thus, the efficient investment solution of the equations (14) - (17) is constant over time. 

Guriev and Kvasov (2005) also obtain a constant efficient investment solution, but their 

reasons are quite different. The stationarity of their choice variable, investment, is the result 

of the chosen modeling approach, where investments are additively separable over time. In 

contrast, all our efficient variables are constant because our efficient investment solution 

coincides with the steady-state solution.  

 

4.2 Analysis of the principal’s problem 
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The problem of the principal is described by the equations (1) - (6) and consists of finding the 

optimal value 0T >  and the function ( ) ,R t [ )0, ,t ∈ ∞  that maximizes the principal’s net 

income I . Moreover, the principal knows the optimal behavior of the agent, so she can 

choose ( )R t  such that the entire cooperative benefits are extracted, and the agent is left only 

with the minimal possible net income equal to the reservation utility 0u . Therefore, the 

optimal R(t), t∈[0,∞), is a corner solution along the participation constraint. The optimal rent 

is then given as  

0( ) ( ) ( ) ( ) ( )m nR t Am t s t c m t c n t uα= − − − , [ )0,  .t ∈ ∞                                                               (19) 

 

First-best solution 

As shown in Theorem 1, the agent’s problem has a unique constant efficient investment 

trajectory ˆ ˆ ˆ( , , )m n s , which is positive if 0 /nc g μ<  (otherwise, there is no production). Then 

the optimal sustainable rent R̂  over [Tj,T(j+1)] is also constant and is the same for all periods 

j: 

0
ˆ ˆ ˆ ˆ ,  m nR Am s c m c n uα= − − − or                                                                                           (20)

1 11
1 1

0
ˆ ˆ ˆ ,m n

m

R A s c m c n u
c

α
α

α αα −
− −

⎛ ⎞
= − − −⎜ ⎟

⎝ ⎠
                                                                                 (21)

where m̂  and ŝ  are determined by Theorem 1. In this case, the total discounted principal’s 

net benefits (1) along the sustainable trajectory ˆ( )ˆ,m s  are 

( 1)

0
0 0

ˆ( ) ( )ˆ ˆ ˆ( ) ( )
1 1

T j rt rTj rt
rT rTTj

j j

V T R V TI T R e dt e V T R e dt
e r e

∞ ∞+ ∞− − −
− −

= =

= − = − = −
− −∑ ∑∫ ∫                         (22)

and the maximum of ˆ( )I T  is attained at the value minT  that delivers the minimum of the 

function ( ) ( )/ 1 rTV T e−− . Combining the efficient investment solution with the principal’s 

decision problem yields the formulation of the first-best solution.  

 

Observation 2 (the first-best solution and its implementation)  
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i) The first-best solution of the original principal-agent problem (1)-(6) is given by 

( ) ( )min argmin / 1   rTT V T e−= − , the investment ˆ ˆ ˆ( , , )m n s  is determined from (14)-(17), ˆR R=

is given by (21), and ( )minˆ 0I T >  is given by (22) . 

 ii) If the contract length is the only time-related term in the contract, then the first-best 

solution cannot be achieved.  

Proof: Part i) follows from Theorem 1 and equation (22). Part ii) is derived from the fact that 

the principal’s optimal contract length minT  is finite, so, the agents are not fully incentivized 

to invest over the full length of the contract. As a result, the agent holds up investments that 

cannot be fully recovered within the contract. On the other hand, an infinite contract length is 

not optimal for the principal because of the increase in the costs ( )V T . Thus, the first-best 

solution will not be achieved if the contract length is the only constituting time element in the 

contract. 

 

5. Efficient investment and advance notice 

Observation 2 demonstrates that the first-best solution cannot be achieved if the contract is 

defined only by its length. Our systematic analysis of the dynamics of the agent’s investment 

behavior in Section 4 indicates that another time-related control, namely, the advance notice 

for renewal or termination of the contract, can fully eliminate the hold-up problem.  

The consideration of this additional contract control parameter is supported by real world 

examples. For instance, concessions are often granted for a long-term period with the 

possibility of renewal. Gómez-Ibañez (2003) reports that Ferrocarriles Argentinos offered 

1980 ten-year concessions for six commuter rail lines with the possibility of a second ten-

year renewal. In the U.S., 18 jurisdictions have adopted statutes regulating franchise 

renewals. The period for providing the advance written notice varies, depending on the 

jurisdiction and the reason why the franchisor is providing the notice. In some jurisdictions, 

the franchisor is required to provide a written notice within a certain specified period for all 

non-renewals, including Arkansas (90 days), California (180 days), Iowa (6 months), and the 

Virgin Islands (120 days). Similarly, for the rent of agricultural land, the German Civil Law 

Code (§§ 585ff BGB) establishes that the advance notice time is approximately two years 

(third working day of the year for the end of the coming year). This advance notice time is 
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valid for the ordinary notice of termination. In the case when a contract is breached, the 

extraordinary notice of termination is 3 -12 months. 

 

5.1. Dynamics of the agent’s investment behavior 

The length of the advance notice is directly related to the point of time (switching point) 

when the agent changes his optimal investment behavior following the formulas (8) - (10). 

In order to concentrate on economic issues, we assume that a solution exists and focus on the 

qualitative analysis of its properties for different lengths T of the contract period. Then, the 

formulas (9) and (10) lead to    

( ) ( )

( ) ( ) ( )

( ) ( )

1( ) ( ) 1

1 1 .

u T u

t t t

T u

t t

T T
r Am d r Am d r Am d

t t

T
r Am d r Am d

t

rt e Am u du e e du

e r e du

α α α

α α

μ ξ ξ μ ξ ξ μ ξ ξα

μ ξ ξ μ ξ ξ

λ
μ μ

μ μ

− + − + − +

− + − +

⎡ ⎤∫ ∫ ∫= = − −⎢ ⎥
⎣ ⎦

⎡ ⎤∫ ∫= − +⎢ ⎥
⎣ ⎦

∫ ∫

∫
       (23)

0 0
( ) ( )

0 0 0
( ) ( ) .

t u
tA m d A m d

s t e s g e n u du
α αμ ξ ξ μ ξ ξ− ⎡ ⎤∫ ∫= +⎢ ⎥

⎣ ⎦
∫                                                    (24)

The dynamics of the dual variable λ(t) is crucial for revealing the structure of the optimal 

investment. It is obvious that ( )tλ  decreases from (0) 0λ >  to ( ) 0Tλ = , so, by (8), the 

investment n(t) is zero at the end of the interval [0, T]. To guarantee that the bang-bang 

investment n(t) has at most one switching point, we prove in Appendix III that ( )tλ  

decreases monotonically. 

Therefore, from (15), the optimal investment ( )n t  is bang-bang6 and is given by  

*

*

,  0
( )

0,  
n t t

n t
t t T

⎧ ≤ ≤
= ⎨

< <⎩
,                                                                                                            (25)

where the unique switching point, * 0t > , is determined from the equation *
0( ) /nt c gλ = .  

                                                             6 The linearity of g(n) with respect to the choice variable n is responsible for the bang-bang solution (25). Long 

et al. (2014) show that the choice variable may not only exhibit a monotonously increasing or decreasing 

behavior but can also change the sign over time. 
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Thus, the instant *t  depends on λ , which, in turn, depends on m  by (23). The optimal input 

( )m t  is always positive and derived from the equation (14) as 

[ ]1 ( ) ( ) 1 ( )
m

Am t s t t
c

α α μλ− = − .                                                                                   (26)

For the instant *t , *0 ,t T≤ < the equation *
0( ) /nt c gλ =  and the formulas (23) - (26) define 

the solution of the agent’s problem.  

For the qualitative analysis of the properties of the solution, we start with the case of short-

term contracts. 

 

5.2 The case of short-term contracts 

Intuitively, there exists a small value of the contract length T , that does not provide 

sufficient incentives for the agent to invest in the asset quality. This value obviously depends 

on values of other model parameters. In Appendix IV, we obtain the estimate  

( )
0

1
0

ln(1 / ) .
/

n

m

c gT
r A A s c

α
α

μ

μ α −

−
< −

+
                                                                                                              (27)

The estimate (27) is sufficient in the sense that the investment is always zero on an interval 

that satisfies (27). Equations (23) - (26) show that short-term or spot contracts in the absence 

of investment lead to an exponential deterioration of the stock and a decrease in the 

productive input. This pattern is repeated if the contract is renewed with the same short 

contract duration. In other words, a sequence of short-term or spot contracts leads to a 

continuous degradation of the stock. For the design of contracts, the condition (27) is of 

interest, as it provides guidance for the choice of the optimal contract duration that avoids a 

situation where agents do not invest at all. If the deterioration rate μ  is high, and/or the 

productivity ˆAmα  of the asset is low, it is more likely that the equation (27) holds and the 

agent does not invest during the period of the contract. Similarly, if the values of the 

parameters, 0nc gμ , are such that this term is close to 1, the absolute value of the logarithm 

is large. Hence, only very long-term contracts may avoid non-investment in the asset quality. 

However, if the values of the parameters, 0nc gμ , are such that the term is close to 0, then, 

even contracts that have short durations may avoid non-investment. Hence, the smaller the 
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investment lost through deterioration is, or the larger the increase in asset quality is, the 

higher the incentive to invest.  

 

5.3 The case of intermediate term contracts  

Let the contract length T be not too small, such that the condition (27) does not hold. In the 

general case, we cannot obtain explicit formulas for a solution of the agent’s problem. 

However, economic rationale allows us to narrow down the range of values for some of the 

parameters of the model. We can also rule out extreme cases, where the degradation rate of 

the asset is very high or the asset is very productive. Specifically, we focus on typical cases 

where 1Aμ << . Moreover, in line with economic rationale, we have assumed from the 

beginning that 1r << . These two conditions allow us to provide an approximate solution for 

( )tλ  and ( )s t .  

As shown in Appendix V, the solution of ( )tλ  to the equation (23) can be approximated by  

( )[ ])()(1
)(/

1)( tTtAmre
tAmr

t −+−−
+

≈
α

αμ
λ .                                                                                (28)

The equation (28) describes the dynamics of the shadow price and complies with the 

transversality condition, ( ) 0Tλ = , as t approaches T .7 Using the equation (8), we can show 

that switching from investment to no investment occurs at time t* when 

( )( )* *( )*
*

0

1( ) 1
( )

r Am t T tnc t e
g r Am t

αμ

αλ
μ

− + −⎡ ⎤= ≈ −⎢ ⎥⎣ ⎦+
,                                                              (29)

where the optimal switching time t* satisfies the approximate formula 

( )* *
*

0

1ln 1 ( )
( )

nct T r Am t
g r Am t

α
αμ

μ
⎛ ⎞

≈ + − +⎜ ⎟ +⎝ ⎠
.                                                              (30)

The evolution of the investment and the shadow price are depicted in Fig. 1, where t* 

indicates the optimal switching time. Equations (25) and (30) clarify the structure of the 

optimal investment given by (8) and clearly indicate the optimal change in the investment 

regime. However, the equation (30) still involves the unknown value m(t*). Even knowing 

that the function ( )m t  is slowly changing, we do not have any initial condition for it. In the 

                                                             
7 The approximate formula (28) matches the formula (51) for λ  in Appendix IV, when r is small but μ  is not 

small. 
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numerical analysis of Section 6, we provide an illustration of the evolution of m  for a 

specific problem of a nitrate application in agriculture. A more practical estimate for t* is 

obtained in the next section. 
 

Fig. 1 Evolution of the asset shadow price and the investment over time 

 
Analogously to (23), the equation (24) can be solved under the assumption 1Aμ << . The 

evolution of the asset quality s during the investment and non-investment periods, and of the 

input m  can be determined with approximate formulas provided in Appendix V. These 

calculations show that both variables are bounded, and their upper values do not depend on 

the contract length T . The bounds are given by 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<

)(
,max)( 0

0 tAm
ngsts αμ

, and                                                                                               (31)

1/(1 )

0 0( ) max , .
m m

As g nm t
c c

α
α α

μ

−⎛ ⎞⎛ ⎞
⎜ ⎟< ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

                                                                                                   (32)

The evolution of the stock of the asset over time is shown in Fig. 2. Our linear specification 

of the investment function 0( )g n g n=  leads to a kink of the trajectory of ( )s t . We conjecture 

that a nonlinear formulation of the investment function would lead to a smoother change of 

the trajectory of ( )s t , but would maintain its upward and downward sloping segments.   
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Fig. 2 Evolution of the asset quality over time 

 
The approximate formulas (28) - (30) are critical for revealing the asymptotic behavior of the 

agent’s problem when the contract duration is large. These results extend the previous 

literature by providing precise information about the length of the investing and non-

investing periods, beyond the commonly used two-period model. The asymptotic analysis of 

the following section relates the approximate dynamics of this section to the first-best 

solution of the agent’s problem described in Theorem 1. Moreover, it also serves as an 

additional validation of the formulas presented in this section.    

 

 

5.4. The case of long-term contracts 

Let us assume that the contract duration is large, i.e., 1T >> , and consider the instants

[0, ]t T∈  such that * 0t >>  and * 0.T t− >>  It is important to note that, by (30), the distance 

T− t* of the switching time t* from the contract-end T remains bounded and does not increase 

with T. Now let us assume that T →∞ . Then, for t → ∞  and T t− → ∞ , we obtain that8 

0( )
( )

g ns t
Am tαμ

→ ,                                                                                                                   (33)

and by the equation (33)  

))(1()( 01 t
c

ngtm
m

μλ
μ

αα −→− ,                                                                                                   (34)

and, by the equation (28) that 

                                                             
8 For a more detailed derivation, please read Appendix V, in particular, the equations (59) and (62). 
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( )( )
( )

Am tt
r Am t

α

αλ
μ

→
+

.                                                                                                            (35)

Recalling formulas (14) - (17) for the efficient investment solution ˆˆ ˆ ˆ( , , , )m n s λ , we observe 

that in the case of contracts that are long enough, the optimal trajectories approach the 

efficient investment solution 

ˆˆ ˆ ˆ( ) ,      ( ) ,       ( ) ,        ( ) .n t n m t m s t s tλ λ= ≈ ≈ ≈                                                                              (36)

However, the trajectories deviate from these values at the beginning and end of the contract 

interval.  

We provide an illustration of the qualitative dynamics of the optimal trajectories in two 

different cases: when the initial asset quality 0s  is smaller and when it is larger than the 

sustainable quality, ŝ . Let us consider two solutions denoted by 1( )s t  and 2( )s t , with the 

corresponding initial values for the asset, 1
0 ˆs s>  and 2

0 ˆs s< . 

The trajectories of ( )s t  and ( )tλ  are depicted in Fig. 3. If the initial asset quality 1
0s  is larger 

than the sustainable quality ŝ , the asset quality as well as the shadow price decrease over 

time. The agent’s investments until 
*1t are not sufficient to compensate the high production 

intensity, so that the asset quality declines. If the initial asset quality 0s  is smaller than the 

sustainable quality ŝ , then the asset quality increases over time. In this case, the agent’s 

investment is accompanied by modest production intensity, so that the asset quality increases. 

The mathematical justification of these trajectories is provided in Appendix VI. 
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Fig. 3 Evolution of the asset quality and corresponding shadow price over time in long-term 

contacts 

 
In addition to a new insight into optimal dynamics of the environmental system under study, 

one of the relevant practical outcomes of our theoretical analysis is that the optimal input m(t) 

is close to its efficient investment value m̂  for long-term contracts. In particular, it allows us 

to use m̂  in (30) to obtain a practically applicable estimate for the switching time *t  of the 

investment n at T >>1: 

0

1* ln 1 .
ˆ ˆ

nc rt T
g Am r Amα αμ

μ
⎡ ⎤⎛ ⎞≈ + − +⎢ ⎥⎜ ⎟ +⎝ ⎠⎣ ⎦

                                                                            (37)

The equation (37) reveals that a low investment cost nc , a large effect of the investment 0g  

on the asset quality, a high productivity of the input Amα , and a low value of deterioration 

rate μ  tend to moderate the hold-up problem. Further insights from the equation (37) are 

drawn in the sections that follow. 

 

 

6. Remedies for the hold-up problem 

In this section, we summarize the implications of our analytic results and provide meaningful 

and applicable recommendations for contract design and avoidance of the hold-up problem. 
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Although these results are obtained for a special case of production, deterioration and 

investment functions, they allow the identification of the fundamental factors that determine 

the severity of the hold-up problem and indicate central arguments for overcoming it. 

 

Theorem 2 (on avoiding the hold-up problem and renegotiation) 

The hold-up problem and incentives for renegotiation do not arise if the principal offers the 

agent a new contract at the time *t T<  and the stock has reached its steady-state value ŝ  

before this point in time. The new contract starts at *t  and lasts T . The length *T t−  of the 

advance notice does not depend on the length of the contact T  if the stock reaches its steady-

state value ŝ  while the contract is in place. 

Proof: An agent will not change his investment behavior at the time *t , if the contract is 

renewed at this point, because the time period *T t−  towards the end of the current contract is 

completely covered (overlapped) by the time period *0 t−  of the new contract. Thus, 

overcoming the hold-up problem requires the principal giving an advance notice of the 

renewal of the contract length *T t− . By (37), in the case of long contracts (T→ ∞), the 

length of the advance notice can be estimated as 

*

0

1 ln 1 .
ˆ ˆ

nc rT t
r Am g Amα αμ

μ
⎡ ⎤⎛ ⎞− ≈ − +⎢ ⎥⎜ ⎟+ ⎝ ⎠⎣ ⎦

                                                                           (38) 

The principal can calculate the advance notice period for a given T  or for a preferred 

renewal interval *t  of the contract by adjusting the contract length T . The result is a 

sequence of identical overlapping contracts with the renewal frequency *t  and advance notice 

time *T t− . The approximate formula (38) also shows that any increase in T  is accompanied 

by a corresponding increase in *t  in such a way that *T t−  is independent of the choice of T  

and ( )0s . For Theorem 2 to hold, it is required that the stock achieves the steady state value 

ŝ  while the contract is in effect. In other words, it requires that the initial value of the stock 

does not influence the non-investing period, i.e. the values T  and *t . Thus, Theorem 2 

covers the cases where the initial stock is equal to ŝ  or where the sequence of contracts 

allows reaching ŝ  while the first contract is in place. If ŝ  cannot be reached during the first 

contract, then the length of sequential contracts is not identical and is discussed in Section 7.  



 

 

26 

 

Finally, since the agents can fully recover the investments of all contracts, there are no 

incentives to renegotiate the sequence of contracts, i.e., the sequence of contracts is 

renegotiation-proof up to the final contract of the sequence.  

The formula (38) is highly policy relevant, because it provides a valuable advice for 

overcoming the hold-up problem as described in Observation 3 and Theorem 2. The hold-up 

problem arises because of the lack of commitment on the part of the principal to compensate 

the agent for his investment. The principal cannot honor any commitment because the 

investments of the agent are not verifiable by a third party. Changes in the asset quality may 

result from the agent’s investment or from external influences (for example, the weather, 

attitude of the personnel, or market variations). Hence, the principal cannot assess the 

investment behavior of the agent using only the evolution of the asset quality. For this reason, 

the asset quality, although ex post observable, is not contractible. The advance notice, 

however, is verifiable by both parties, and consequently the principal can commit to give an 

advance notice. The time dimension of the relationship may, therefore, form an integral part 

of a contract. 

 

Observation 3 (the substitution of the efficient investment solution by a sequence of 

fixed-time contracts) 

(i) If 
0

1 ln 1
ˆ ˆ

nc rT
r Am g Amα αμ

μ
⎡ ⎤− ⎛ ⎞< − +⎢ ⎥⎜ ⎟+ ⎝ ⎠⎣ ⎦

, then the long-run optimum cannot be achieved by 

a sequence of renewable contracts.  

(ii) Otherwise, it is possible to achieve the long-run optimum by a sequence of contracts that 

are renewed at the time *t < T.   

Proof: The second term of the sum in (37) is negative. Therefore, if the length of the contract 

T  is relatively short, then the value of *t  is less than or equal to zero in (37). Hence, it is 

optimal for the agent not to invest at all and, consequently, there would be no sequence of 

short-term contracts that approximate the optimal long-run contract. As soon as the value of 
*t  is strictly positive, the agent starts investing and a sequence of short-term contracts of the 

length T  renewed at time *t  can be employed to establish the long-run optimum.  

As a result of Observation 3, the minimal contract length T  that induces the agent’s 

investment is defined by 
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0

1 ln 1
ˆ ˆ

nc rT
r Am g Amα αμ

μ
⎡ ⎤− ⎛ ⎞= − +⎢ ⎥⎜ ⎟+ ⎝ ⎠⎣ ⎦

.                                                                                                   (39) 

Thus, the principal could induce the agent’s investment with any contract duration larger than 

T . However, the principal’s function ( )V T  of the costs and benefits of contract renewals 

limits the length of the offered contract duration. The offered contract time *T  by the 

principal is defined in Observation 4. 

 

Observation 4 (the length of the offered contract) 

The principal’s offered contract time *T is given by 

( )
( )
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⎭
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⎩

 .                                                                        (40)

Proof: Provided that the aggregate income stream is positive, the principal offers the contract 

length minT , since it minimizes the costs and benefits of renewal and induces the agent’s 

investment minT T> . Likewise, to ensure a positive income stream, the principal has to offer 

a contract of a larger length ,  0T ε ε+ > , since it induces the agent’s investment. If either 

( )Î T ε+  or ( )minÎ T  are negative, then the principal prefers not to make an offer, since the 

costs and benefits of renewal are higher than the aggregate income stream. This case could 

happen if uncertainty and/or the minimum contract length are large.  

Under different assumptions, Rey and Salanie (1990, 1996) obtain conclusions similar to part 

(i) of Observation 3 in the case of moral hazard (1990) and adverse selection (1996). 

However, our results cannot be compared directly, because they considered a case where 

neither the agent nor the principal invest. In our model, the principal and agent have identical 

information at the contracting date, but not as the contractual relationship unfolds. The 

principal may have information about the quality of the asset, but not about the agent’s 

investment behavior. The findings of this paper emphasize the importance of a minimum 

length of short-term contracts, so that the long-run optimum can be achieved. If the contract 

duration is too short, then no investment will take place. In other words, if investments are 
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important, only a sequence of “reasonably long short-term” contracts can serve as a substitute 

for the long-run optimum.  

The seminal paper by MacLeod and Malcomson (1993) analyzes three different situations 

when market contracts are incomplete but can induce efficient investment. One of them is 

when both market partners realize relationship-specific investments. As such, there are 

incentives for renegotiation once an external shock has occurred. The authors find that 

efficiency can be achieved in this situation if the terms of a contract are conditioned on the 

status of an external variable, such that the parties have no reason for renegotiation. MacLeod 

and Malcomson argue that these contract terms induce efficiency for the one- and multi-

period cases. The article differentiates between investments in the form of a flow variable 

that creates value only within the contractual relationship (specific investment) and one that 

creates value independent of the relationship (general investment). This distinction is crucial 

to derive the contract terms necessary to induce efficient investment. However, if investment 

is not a flow but a stock variable, then this distinction will be diluted. Although the 

investment is still relationship-specific, part of it continues to exist even after the termination 

of the contract and becomes a non-relationship specific investment. Consequently, the 

contract terms defined are no longer sufficient to induce efficient investment. Additionally, 

although the article is based on multi-periods, the length of these periods is not discussed. 

This is why we introduce the dynamics of the investment, so that we can determine the 

lengths of the investment and the non-investment periods. Moreover, we explicitly introduce 

time controls as external variables that are easily verifiable.  

Che and Sákovics (2004) postulate that dynamic investment after the signature of contracts 

can provide incentives for avoiding the hold-up problem, at least, asymptotically. Their 

model is based on “contribution games” and is difficult to compare with ours. Yet, our 

findings suggest that dynamic investment alone does not provide a solution to the hold-up 

problem and that modified contracts are necessary for overcoming it. Pitchford and Snyder 

(2004) show that dynamic investments may open a way to design contracts that can overcome 

the hold-up problem to a large extent. They propose that the non-investing party compensates 

the investing party for each installment of the investment while the contract is in force. The 

non-investing party’s incentive resides in the threat of the investing party not to realize 

further investments. A given installment should not exceed a certain size, otherwise the non-

investing party’s benefits from the investment would exceed the punishment given by the loss 
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of future investment. As pointed out by the authors, efficiency requires that the sequence of 

investments is not finite and the size of the installments should gradually decrease over time. 

This asymptotic efficiency seems particularly adequate for staged procurement processes 

where specific investments are the central part of the contractual relationship. In contrast, our 

research focuses on contracting on time as an alternative to overcoming the hold-up problem. 

Guriev and Kvasov (2005) propose establishing the first-best outcome by incorporating 

advance notice within an open-end contract. This result is obtained for the case where 

investments are additively separable over time and the expected value of the arrival of the 

outside option is memoryless and constant over time. The authors show that a sequence of 

fixed time contracts and advance notice is only efficient at the time the contract is signed. 

Every moment thereafter, the contract is not efficient anymore, so that it needs to be 

renegotiated for each moment that passes. The model of Guriev and Kvasov (2005) leads to 

first order conditions that are stationary, which in turn implies the necessity of renegotiation. 

Most likely continuous renegotiations cannot be an efficient solution in terms of associated 

costs. For this reason, the authors extend their Proposition 1 (sequence of continuously 

renegotiated fixed time contracts) to the case of open-end contracts (Proposition 2). Guriev 

and Kvasov (2005) show that open-end contracts with advance notice are efficient. In this 

respect, our study extends the current literature by showing that a sequence of fixed time 

contracts (except for the last contract) that are renegotiation-proof up to time *t  is already 

able to replicate the first-best outcome. Thus, the fixed time contracts are efficient over the 

entire time horizon of *T t−  and there is no need to offer open-end contracts in order to 

achieve efficiency.  

Observation 3 shows that the first-best outcome can only be achieved by taking into account 

the interrelations among the optimal contract duration, the minimal advance notice time, and 

the asset quality. The quality of the asset influences the optimal contract duration and 

minimum advance notice time. For instance, Brickley et al. (2006) analyzed the duration of 

franchise contract and found that it is positively related to the franchisee’s physical and 

human capital investments. Similarly, Joskow (1987, 1990) and von Hirschhausen and 

Neumann (2008) observed that agents make longer commitment when asset-specific 

investments are important. Obviously, the required investments for all cases depend on the 

asset quality at the beginning of the contract. 
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Observation 5 (the length of non-investment period) 

In the case of sufficiently long contracts, the length of the non-investment period practically 

does not depend on the contract length. The non-investment period is shorter for higher asset 

productivity A. 

Proof: The equation (38) shows that the difference *T t−  asymptotically does not depend on 

T when T→ ∞. Consequently, changes in the length of the contract lead to changes in the 

optimal switching time, but do not affect the length of the non-investment period. The 

equation (38) also shows that a higher productivity Amα  shortens the value *T t− .  

That is, the optimal switching time *t  is closer to T  and the non-investment period is shorter 

for a lower unit cost nc , a lower asset deterioration rate μ, or for a larger investment 

improvement effect 0g .  

 

Our results have been obtained under the assumption that the investment function is linear in 

n . Yet the validity of this assumption may be questioned and one may wonder under what 

conditions this assumption is justified. The most straightforward argument is given for the 

case where investment costs are relatively small compared to the additional benefits obtained. 

Thus, agents have incentives to invest the maximum amount that is compatible, or it may 

even be required if the agents operate with fixed proportion technology with respect to n . 

Hence, agents tend to choose the upper limit of the domain of the investment variable. Our 

empirical illustration (see Section 8), where agents lease agricultural land, is a typical 

example of this situation. Organic fertilizer is relatively cheap so agents apply the maximal 

amount permitted. If the marginal benefits of investment are equal to their marginal costs in 

the interior of its domain, the assumption of linearity in n  does not reflect the agents’ 

decision behavior well. In this case, the function ( )g n  had to be specified as a nonlinear 

function. As long as this function is monotonously increasing in n , we would expect that a 

sequence of fixed-time contracts is still able to replicate the first-best outcome although 

investment behavior adjusts more gradually over time and is not characterized by bang-bang 

behavior. The gradual investment behavior is likely to affect the minimal contract length T  

which in turn affects the optimal contract length *T  offered by the principal. Observation 4 

determines the optimal contract length as a function of the minimal contract length T  and the 
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principal’s minimum renewal costs or losses minT . If the gradual investment behavior 

requires a very long contract duration, it may be optimal for the principal not to offer any 

contract as reasoned in the proof of Observation 4. Although the consideration of nonlinearity 

in n  affects the minimal contract length, the structure for determining the optimal contract 

length (as stated in Observation 4) remains valid.  

 

7. Contract duration, switching time and non-investment period off the efficient 

investment path 

So far, we have assumed that the length T  of all sequential contracts is identical. However, 

the equations (23) - (26) show that trajectories of the state and control variables depend on 

the initial value 0s  of the asset quality s  and, thus, 0s  may also affect the choice of the 

optimal contract length. Strictly speaking, if the initial asset quality is not equal to ŝ , then a 

sequence of contracts with identical length cannot be optimal. The contract length of the 

sequence of contracts should be adjusted until the stock has reached the steady-state stock ŝ . 

Our model allows for a dynamic description of this process, because it considers the asset 

quality as a stock variable. The equation (27) describes the minimal contract length T  from 

which agents start investing up to time 0 < *t < T . It shows that the minimum contract length 

is larger for smaller initial values 0s  of asset quality stock. So, if the initial stock 0s  is below 

the steady- state stock, then the contract length of the initial contract should be larger than the 

long-run optimal contract length *T . The principal offers the agent a contract whose length 

depends on costs and benefits of the renewal. In the case when the initial contract does not 

allow achievement of ŝ , the principal offers a sequential contract shorter than the previous 

one but still longer than *T . Analogously, the length of the initial contract should be shorter 

than the long-run length *T  if the initial value of asset quality is above the steady-state ŝ . 

Our dynamic analysis in Section 5 demonstrates that, in both cases 0s  < ŝ  and 0s  > ŝ , the 

asset quality s(t) approaches its steady-state value ŝ  starting from an initial value 0s . If the 

stock reaches ŝ , the length of the contract in the offered sequence of contracts is equal to *T  

as formulated in Observation 4. The principal’s need to offer longer contracts may provoke 

( )I T  to become negative, in particular, if minT T . In this case it is optimal for the principal 
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not to offer any contract. Hence, if the initial asset quality is very distant from steady-state 

stock, the need to offer longer contracts may impede not offering any contract at all. 

When the contract length T  for all contracts j in (1) is identical, it is natural to raise the 

question whether a sustainable solution ( ),s t  [ ]0, ,t T∈  exists such that the initial value of the 

asset quality equals its terminal value, i.e., 0s = (0)s = ( )s T . Such solution is the same on all 

subsequent intervals and, correspondingly, guarantees a sustainable use of the asset. We refer 

to this type of solution as a periodic solution of the principal’s problem. An analysis reveals 

that a periodic solution does not replicate the first-best outcome. However, it preserves the 

asset quality and leads to efficient investment, though it is not first-best.9  

Following our game setup, the principal is the residual claimant of the variations of the net 

benefits over time. This result points at differences between findings related to the principal-

agent problem in some literature (Laffont and Martimort 2002). A standard result is that the 

agent is fully incentivized as a residual claimant, if the rent is a fixed amount and does not 

depend on the output or net benefits. This difference is explained by the fact that the existing 

literature does not consider a stock variable and the relationship between the actions taken by 

the agent and the resulting net benefits are normally assumed to be stochastic. Hence, one can 

find a variation of the net benefits at each moment in time that can be claimed by the agent, 

because he just needs to pay a fixed amount of rent for the asset. However, since our model 

considers the hold-up problem, but not a moral hazard, the stock variation over time is rather 

deterministic than stochastic, and the principal can adjust the rent over time in order to extract 

any additional benefit.  

 

8. Empirical illustration 

In this section, we apply the general model presented above to the important specific case of 

a lease contract for agricultural land. Correspondingly, we refer to the owner as a landlord 

and the agent as a farmer or tenant, as these terms are more common in agricultural problems. 

In particular, we focus on the production of corn as a function of nitrogen fertilizer – either in 

its mineral or organic form. The mineral form is denoted by m  and the organic form by n . 

The application of organic fertilizer does not only provide nitrogen but also augments the                                                              
9 To keep the presentation short, the analysis of periodic solutions is not presented, but it can be obtained from 

the authors upon request. 
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content of organic matter in the soil, which in turn, improves the texture, the structure, the 

field capacity (water retention), the ion-exchange capacity and the slow release of mineral 

nitrogen in the soil. All these factors increase corn production. While mineral nitrogen is 

readily available for uptake by the plant, nutrients from organic fertilizers are not 

immediately available for uptake. The organic matter needs to be decomposed by the soil 

organism to replenish the soil with mineral elements and humus. The complete 

decomposition of organic material may take several years. Although the release of mineral 

elements is slow, it adjusts the availability of plant nutrients to the nutrient requirements as 

the crop grows. If the lease contract is not long enough, farmers do not have sufficient 

incentives to apply organic fertilizer, resulting in a hold-up problem.  

 

8.1 Specifications of model parameters and functions 

The production function ( , )Y m s  is estimated based on data provided by Goetz and Martínez 

(2013), where the information about the productivity enhancing effect of organic matter is 

incorporated. Jenny (1980) reports that, for many types of soils, a minimum of 2% of organic 

matter is required in order to obtain average crop yields. This data is used to calibrate the 

specification of the production function. The most common mineral fertilizer is ammonium 

sulfate, which costs 0.3 €/kg. Considering a nitrogen content of 21% of ammonium sulfate, 

the overall costs of mineral fertilizer including transport and application are given by 1.578 

€/Kg N (Díez and Fernández Alcázar 2013). The application of organic fertilizer, mostly in 

the form of sludge or litter, is more costly due to its volume. Given a weight of 2.5 kg N/m3 

and application costs of 2.28 €/m3, the overall costs are given by 0.91 €/Kg N.  

The content of organic matter varies greatly between the different types of soil (Gallardo 

2016), and frequently does not even reach 0.8% in Spain. Therefore, a buildup of organic 

matter would lead to a significant increase in corn production. Moreover, the production of 

corn accelerates the decomposition of organic matter in the soil and the degradation of soil 

structure. Given an average corn production of 12 tons per year and an average annual 

decomposition of 3% of the organic matter in soil, we can estimate the relationship between 

crop yields and the extraction of organic matter through harvest. The estimate of this 

parameter is 0.00924μ = . The application of organic fertilizer builds up the content of 

organic matter in soil at a rate of 0.00075758 per kg of nitrogen. For the actual calculations, 
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we take into account that the 1991 European Nitrates Directive 91/676 limits the overall 

applications of organic fertilizer to 170 kg of N per year. 

The chosen units of variables and values of parameters are presented in Table 1. The revenue 

function B  is given by ( , ) .B m s pAm sα=   

 

 

Table 1. Units and parameter values 

s  organic matter (%) 
m kg N (ammonium sulfate) 
n kg N sludge or litter 
A 2.888 

( , )Y m s  0,13Am s  (t/ha) 
nc  0.91€/kg N 

mc  1.578 €/kg N 
p  168.6 €/t 

0g  0.00075758 (%/kg N) 
μ  0.00924 (%/t/ha) 
r  0.03 

                                                                                                                8.2 Numerical analysis 

We solve the problem (1) - (6) numerically, given a lease contract over 20 years and an initial 

content of organic soil matter of 0.8%. Fig. 4 shows the optimal trajectories of ( ) ,m t  ( )n t  

and ( ) ,s t and reveals that the pattern of the optimal trajectory of organic fertilizer is bang-

bang, with only one switching point. Fig. 4 also shows that the optimal trajectory of mineral 

fertilizer is always positive, which is consistent with Observation 1. From the 17th year 

onwards, the application of organic fertilizer, i.e., the investment in soil quality, is abandoned 

causing the hold-up problem to arise. It lasts until the end of the contract i.e., the non-

investment period persists for three years. Accordingly, the content of organic matter in soil 

increases up to year 17 and decreases thereafter, as shown in Fig. 4. 
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Fig. 4 Optimal evolution of nitrate application, organic matter and soil quality over time 

 
 

The calculations show that the choice of shorter or longer contract lengths T  has no 

influence on the length of the non-investment period *T t− .10 The independence of *T t−  on 

the contract length is in line with Observation 5. Specifically, if a contract lasts less than 3 

years, then the farmer will not invest at all. In addition, the simulation results demonstrate 

that the efficient investment solution of Theorem 1, where the agent´s contract is of infinite 

duration, exists and is given by ˆ 77.87m = , ˆ 170n = , ˆ 2.66s = . 

Moreover, we analyze the sensitivity of the model with respect to changes in the parameter 

values. A decrease in the costs of organic fertilizer tends to moderate the hold-up problem as 

shown in the equation (37). For instance, the non-investment period decreases to 1 year when 

the cost parameter nc  decreases by 50%, while an increase of this unit cost by 50% raises the 

hold-up problem ( *T t− ) to 4 years. Changing the mineral fertilizer cost affects the length of 

the non-investment period in the same way as changing the cost of organic fertilizer, though 

the effect is less pronounced. A decrease in cost leads to a shorter non-investment period in 

both cases, because mineral and organic fertilizers act complementarily. When the costs of 

mineral fertilizer decrease, it is optimal to increase its use, which in turn, leads to an increase 

in the extraction. Also, increasing application of organic fertilizer compensates the reduction 

of the organic matter in the soil. Since organic fertilizer is bounded from above, the non-

                                                             
10 These results are not portrayed graphically in order to keep the presentation short.   
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investment period begins at a later point in time. Variations of the parameters 0g , A, p, μ  

and 0s  also produce effects predicted above in Sections 4 - 6.  

Finally, the analysis shows that, when the initial level of organic matter in the soil equals the 

steady-state value of 2.66, the efficient solution coincides with the sustainable trajectory, with 

a constant rent and a contract length of * 13T = , which is consistent with Observation 2.   

 

8.3 Calibration and simulation of Guriev and Kvasov (2005) model 

Letting aside the necessity of continuous renegotiation, we calculate the optimal contract 

duration for the model proposed by Guriev and Kvasov (2005). We have calibrated their 

parameters based on the data of our numerical illustration (Table 1) and calculated the 

optimal time length of their fixed-time contract within their stationary setting. If we assume 

that the cooperative benefits accrue exclusively to the agent, we obtain that * 8.744T =  and, 

if the cooperative benefits are shared equally, we obtain * 20.636T = . Thus, the optimal time 

length depends largely on the share that each part receives. Apart from the share of 

cooperative benefits, the value of the arrival rate of outside option is fundamental in the 

determination of the optimal contract length. If the arrival rate is set to 0.5 (expected value of 

arrival 2 years) and the cooperative benefits accrue exclusively to the agent, the optimal 

contract length is reduced from 8.7 to 1.94 years.  

The empirical illustration of our model (1) - (6) shows that the optimal contract length at the 

steady state is 13 years. Assuming that 13 years is equivalent to the expected arrival of the 

outside option, our simulation of the Guriev and Kvasov model (2005) gives the optimal 

value of * 11.88T = . Thus, under comparable situations, it appears that the optimal contract 

length of both models does not differ significantly. Yet, as soon as the values of the 

parameters change or the initial soil stock diverges from the steady-state stock, the optimal 

contract duration in our model deviates substantially from the optimal contract duration of 

their paper.  

 

9. Conclusions 

This study analyzes the agent’s optimal investment behavior over time within a dynamic 

principal-agent framework. It assumes that the agent has rented a productive asset from the 

principal. Investing in the asset quality raises production and, at the same time, intensive 
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production degrades the asset quality. The present study extends the previous literature, by 

accounting for the fact that investment and sharing of benefits are timewise intertwined and 

that past investments tend to influence cooperative benefits during the contract period. As a 

result, the study offers the design of contracts, where different elements of time are building 

elements and the dynamics of the productive asset is taken into account.  

A mathematical analysis of the formulated dynamic principal-agent model with endogenous 

asset quality links its optimal dynamics to an efficient investment solution. It determines 

conditions under which the socially optimal and privately optimal solutions differ, with the 

difference resulting in the hold-up problem.  

We find that time-based contracts where the length of the contract is the only time-related 

element may reduce the severity of the hold-up problem, but cannot eliminate it. However, 

the consideration of additional time-related contract elements allows designing contracts that 

lead to efficient investments. In particular, a sequence of overlapping fixed-time contracts 

encourages agents to invest efficiently and allows for the first-best outcome to be replicated. 

If the initial asset quality is sufficiently close to the optimal long-run asset quality, the 

sequence of overlapping contracts consists of identical contracts. If not, the contract length 

should be extended. However, the principal’s need to offer longer contracts may result in her 

income becoming negative. In this case it is optimal for the principal not to offer any contract 

at all. In other words, the initial quality of the asset influences the principal’s choice of 

contract length offered to the extreme that it may be optimal not to offer any contract at all. 

Since agents can recover their investments while the contract is in effect, they have no 

incentives to renegotiate it. The contracts are renegotiation-proof up to the last contract of the 

sequence of contracts. The overlapping itself is implemented as the renewal of a contract with 

sufficient advance notice. The study determines three fundamental elements of the sequence 

of overlapping short-term contracts, namely: the minimal length of the short-term contract, 

the length of the overlapping periods (advance notice period), and the frequency of renewals. 

Then, to attain the first-best solution, the principal needs to offer a sequence of overlapping 

fixed-time contracts that minimizes her search and transaction costs.  
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Appendix   
I Proof of Observation 1 (maximum value of the shadow price). 

The analysis of the equation (11) for r > 0 yields the following estimate:  
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The positivity of m follows from (12). Next, we have 0/)( 00 <−<− nn cgctg μλ  at 

0 /nc g μ> , and, therefore, n(t) = 0 by (8).  

 

II Proof of Theorem 1 (on efficient investment regime).  

If 0 /nc g μ> , then n = 0 by (15), and, therefore, all other unknowns are zero by (14), (16) - 

(18). If 0 /nc g μ< , then nn =ˆ  by (15). Substituting the last equality into (14), (16) - (18) 
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, we determine a nontrivial positive solution to the 
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Indeed, substituting (16) into (14), we obtain that 
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( )0 ˆˆ 1 .
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Applying this result to (17), we obtain a single equation for λ̂  given by 
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By (18), the unknown λ̂  satisfies μλ /1ˆ < . Introducing the new variable x, ˆ0 1 1x μλ≤ = − < , 

the equation (45) can be represented as  

1 1Cx xα + = − , where 0
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μ μ
⎛ ⎞
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,  or                                                                           (46)

( ) .1 )1/(1)1/(1 ++ −= αα xxC                                                                                                            (47) 

Using clear geometric reasoning, the equation (47) has a unique solution 0 1x< <  given by 

the unique point of intersection of the graphs of the functions xC )1/(1 +α  and ( ) .1 )1/(1 +− αx

Finally, due to the condition 1C >> , the parameter C is large, therefore, x is small by (46):

 1x << , so that the equation (47) can be approximated as  
1/( 1) 1 / ( 1)C x xα α+ = − +                                                                    (48)

or ,)1/(1 +−≈ αCx  which is formula (41). The theorem is proven.  

 

III Monotonicity of the dual variable 

In the general case, it is difficult to estimate the sign of the derivative  
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As mentioned above, we assume that 1r << . Then, by (23) and (49),   
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And, hence, ( )tλ  decreases monotonically. 

 

IV Minimum contract duration  

Applying the mean value theorem to the integral in the left-hand side of the equation (50) 

results in the following approximate equation for the shadow price of the asset 
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where ( )t t Tζ< < and ( ) 0Tλ = . By (21), the optimal investment n(t) is zero if 0( ) nt c gλ < . 

Hence, the condition for no investment strategy n(t) = 0 is  
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The condition (52) holds for all 0< t < T if 
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Hence, when the condition (53) is valid, we obtain the following representation for the 

control and state variables of the agent’s problem  
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By (54) and (55), s(t) ≤ s0 and ( ) 0tλ > , and therefore by (56) 
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Using the upper estimate (57) in the equation (53), we obtain the following a priori condition 

for the small contact length T (such that the agent does not invest at all) in the terms of given 

model parameters: 

( )
0

1
0

ln(1 / )

/

n

m

c gT
r A A s c

α
α

μ

μ α −

−
< −

+
 as stated in the main text.  

 

V Approximate solution  

If we assume that 1Aμ <<  (while A is not necessarily small), the equations (26), (51) and 

(54) suggest that the functions ( ), ( ) and ( )m t s t tλ  are slowly changing with 

( ), ( ), ( ) 1s t t m tλ << . Therefore, we can assume that ( ) ( )m m tξ ≈  in the equations (26), (51) 
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and (54). Under these assumptions, the equations (23) and (24) can be solved analytically to 

obtain approximate solutions for ( )tλ  and ( )s t .  

Indeed, then the approximate solution of the equation (23) yields directly 

( )[ ])()(1
)(/

1)( tTtAmre
tAmr

t −+−−
+

≈
α

αμ
λ .                                                                               (58)

Under the assumption 1Aμ << , the solution of the equation (24) leads to the following 

approximate expressions for the evolution of the asset quality s(t) during the investment and 

non-investment periods: 

( ) ( ) *0
0( ) 1 ,   for 0

( )
Am t t Am t tg ns t s e e t t

Am t
α αμ μ

αμ
− ⎡ ⎤≈ + − < ≤⎣ ⎦                                                     (59)

( ) ( ) * ( )( *) *0
0( ) 1 ,   for .

( )
Am t t Am t t Am t t tg ns t s e e e t t T

Am t
α α αμ μ μ

αμ
− − − −⎡ ⎤≈ + − ≤ ≤⎣ ⎦                               (60)

By (59) and (60), the asset quality s(t) remains bounded on any finite interval [0, T] and 

satisfies the upper bound 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<

)(
,max)( 0

0 tAm
ngsts αμ

,                                                                                                      (61)

which does not depend on the length T of the contract.   

By (26) and (60), the trajectory of the input m  satisfies the nonlinear equation: 

( ) ( )( )( )1 ( ) ( )0
0( ) 1 ( ) 1 1

( )
r Am t T t Am t t Am t t

m m

g nA Am t s t e s e e
c c Am t

α α αμα μ μ
α

α αμλ
μ

− + −− −⎡ ⎤⎡ ⎤ ⎡ ⎤= − ≈ − + −⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦ ⎣ ⎦
     (62)

for 0 < t < t*. Assuming that m exists and using (31), we obtain the estimate for m 
1/(1 )

0 0( ) max , .
m m

As g nm t
c c

α
α α

μ

−⎛ ⎞⎛ ⎞
⎜ ⎟< ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

                                                                                       (63) 

So, the input m remains bounded and its upper bound is independent of the contract length T. 

 

VI Evolution of the asset quality and the shadow price  

It follows from (59) and (62) that 0 0

ˆ(0)
g n g n

Am Amα αμ μ
<  where 1

0 ˆs s> . Hence, the sum of two 

terms in (59) decreases with t. Moreover, as T → ∞  , we find that *t → ∞  by (30). Thus, 

( )*s t  approaches 0ˆ
ˆ

g ns
Amαμ

=  when the contract length T increases and (59) can be rewritten 

as 
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( )0 0
0( )

( ) ( )
Am t tg n g ns t e s

Am t Am t
αμ

α αμ μ
− ⎡ ⎤

≈ + −⎢ ⎥
⎣ ⎦

.                                                                         (64)

In the case where 2
0 ˆs s< , we observe that 0 0

ˆ(0)
g n g n

Am Amα αμ μ
>

 
, so that the sum of two terms 

in the equation (59) increases and s(t*) approaches 0ˆ
ˆ

g ns
Amαμ

=  from below, while *0 t t< < . 

Thus, in both cases, the corresponding trajectory of ( )s t  approaches asymptotically ŝ  at 
*t t→ , when *t  is large. At *t t T< < , the optimal asset quality ( )s t  is governed by (60) and 

decreases exponentially in both initial situations. The optimal n coincides with the efficient 

investment solution: ntn ˆ)( = , while *0 t t< < .  
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