A Novel Meal Detection Algorithm for an Artificial Pancreas

Charrise M. Ramkissoon¹, Pau Herrero², Jorge Bondia³, and Josep Vehí¹

¹Institut d'Informàtica i Aplicacions, Universitat de Girona, Spain
²Centre for Bio-Inspired Technology, Institute of Biomedical Engineering, Imperial College London, UK
³Instituto de Automática e Informática Industrial, Universitat Politènica de València, Spain

BACKGROUND

Postprandial glucose fluctuations are a challenge to daytime closed-loop control^{1,2} in type 1 diabetes (T1D).

It is predicted that the high number of missed meal boluses experienced during insulin pump therapy³ will carry over to artificial pancreas therapy.

Therefore, a means to reduce poor outcomes due to unannounced meals must be developed.

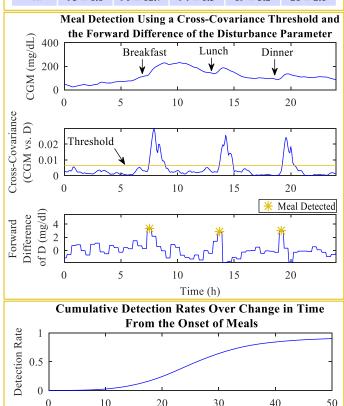
The aim of this study is to implement an algorithm to detect meals using data from a continuous glucose monitor (CGM) and the insulin delivered to the subject.

METHODOLOGY

This study utilizes a novel approach to meal detection, which uses a cross-covariance method to detect meals. Similar methods such as, normalized cross-correlation has been used extensively in many image based applications such as object recognition and pattern matching⁴.

The meal detection algorithm operates using these following steps:

1. The Unscented Kalman Filter (UKF) utilizes the following equations:


x(k+1) = f(x(k)) + w(k)y(k) = g(x(k)) + v(k)

where x(k) is the state vector, w(k) and v(k) are defined to be process and measurement noises respectively. $f(\cdot)$ and $g(\cdot)$ are nonlinear functions.

- The UKF is employed to predict the states of a composite Bergman-Hovorka model⁵ altered to include an auxiliary disturbance parameter, *D*.
- 3. An algorithm checks the cross-covariance between *D* and the CGM values.
- 4. A threshold is applied to detect an abnormal event.
- 5. If the threshold is crossed, the forward difference of *D* is checked at that time point.

6. A positive value indicates a rise in glucose due to a meal. This methodology was evaluated *in silico* using the UVA simulator⁶ with 10 adult T1D patients over a period of ten days (30 meals per subject) with insulin sensitivity, circadian and meal variations implemented.

RESULTS					
Performance Metrics of the Meal Detection Algorithm					
Subject	Specificity (%)	Sensitivity (%)	Accuracy (%)	Δ Glucose (mg/dl)	Detection Time (min)
1	95	97	95	21 ± 10.2	31 ± 8.4
2	93	93	97	14 ± 7.5	24 ± 8.5
3	96	100	97	24 ± 12.8	28 ± 9.4
4	93	100	94	16 ± 11.1	26 ± 8.1
5	99	67	93	24 ± 7.7	31 ± 7.9
6	95	97	95	20 ± 7.4	31 ± 9.9
7	96	67	92	27 ± 7.4	28 ± 6.4
8	94	97	94	15 ± 13.2	31 ± 8.3
9	95	90	94	10 ± 10.1	24 ± 10.6
10	95	93	95	14 ± 8.7	25 ± 7.2
Mean	95 ± 1.8	90 ± 12.7	94 ± 1.5	19 ± 5.2	28 ± 2.8

Time from Meal Onset (min)

DISCUSSION AND CONCLUSION

Results obtained in a very challenging scenario are comparable to other meal detection studies, which achieved sensitivities of $99.6\%^7$, $95\%^8$, $94\%^9$, and $86.9\%^{10}$. One study⁹ obtained a lower mean change in glucose of 16 ± 9.42 mg/dl and another¹¹ obtained a higher mean detection time of 30 min.

In conclusion, we have presented a novel meal detection algorithm that uses information that is readily available, is easy to implement, and is able to detect meals in a timely manner when the change to blood glucose values is minimal. Further work is required to assess its usability in AP applications to mitigate postprandial hyperglycemia due to unannounced meals.

REFERENCES 7.Chen S, Weimer J, Rickels M, et al. 6th Medical Cyber-Physical Systems 1. Thabit H, Tauschmann M, Allen JM, et al. N Engl J Med. 2015;373(22):2129-40 Workshop, April 2015. 2. Russell SJ, El-Khatib FH, Sinha M, et al. N Engl J Med. 2014;371(4):313-25. 8. Xie J, Wang Q. ASME Dynamic Systems and Controls Conference, 2015 3.Driscoll KA, Johnson SB, Hogan J, et al. J Diabetes Sci Technol. 9. Turksoy K, Samadi, S, Feng J, et al. IEEE J Biomed Health Infom. 2016; 20 2013;7(3):646-52. (1): 47-54. 4. Tsai DM, Lin CT. Pattern Recogn Lett. 2003;24(15):2625-31. 10. Weimer J, Chen S, Peleckis A, et al. Diabetes Technol Ther. 2016; 5. Herrero P, Calm R, Vehi J, et al. J Diabetes Sci Technol. 2012;6(5):1131-41. 18(10):610-24. 6. Kovatchev BP, Breton M, Dalla Man CD, et al. J Diabetes Sci Technol. 11. Dassau E, Bequette BW, Buckingham BA, et al. Diabetes Care. 2009:3(1):44-55. 2008:31(2):295-300. UNIVERSITAT Imperial College Universitat wellcome^{trust} POLITÈÇNICA London de Girona VALÈNCIA DE

Copyright © 2017 C. M. Ramkissoon, P. Herrero, J. Bondia, J. Vehí

Charrise.Ramkissoon@udg.edu

DPI2013-46982-1-R/2-R, R, Feder Funds