

Treatment and Resource Recovery

Effect-based identification of hazardous antibiotic transformation products after water chlorination

Adrian Jaen-Gil, Maria Jose Jose Farre Olalla, Alexandre Sànchez-Melsió, Albert Serra-Compte, Damià Barceló, and Sara Rodriguez-Mozaz

Environ. Sci. Technol., Just Accepted Manuscript • DOI: 10.1021/acs.est.0c00944 • Publication Date (Web): 26 Jun 2020 Downloaded from pubs.acs.org on June 29, 2020

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Effect-based identification of hazardous antibiotic
transformation products after water chlorination
Adrián Jaén-Gil ^{a,b*} , María-José Farré ^{a,b} , Alexandre Sànchez-Melsió ^{a,b} , Albert
Serra-Compte ^{a,b} , Damià Barceló ^{a,b,c} , Sara Rodríguez-Mozaz ^{a,b*}
^a Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003
Girona, Spain
^b Universitat de Girona, Girona, Spain
^c Water and Soil Quality Research Group, Department of Environmental Chemistry,
(IDAEA-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain

13 KEYWORDS: Effect-directed analysis, suspect screening, antibiotic activity, acute

14 toxicity.

- 15
- 16

17 ABSTRACT

18	Antibiotic transformation products (TPs) generated during water treatment can be
19	considered of environmental concern, since they can retain part of the bioactivity of
20	the parent compound. Effect-directed analysis (EDA) was applied for the
21	identification of bioactive intermediates of azithromycin (AZI) and ciprofloxacin
22	(CFC) after water chlorination. Fractionation of samples allowed the identification of
23	bioactive intermediates by measuring the antibiotic activity and acute toxicity,
24	combined with an automated suspect screening approach for chemical analysis.

25	While the removal of AZI was in line with the decrease of bioactivity in chlorinated
26	samples, an increase of bioactivity after complete removal of CFC was observed (at
27	> 0.5 mgCl ₂ /L). Principal component analysis (PCA) revealed that some of the CFC
28	intermediates could contribute to the overall toxicity of the chlorinated samples.
29	Fractionation of bioactive samples identified that the chlorinated TP296 (generated
30	from the destruction of the CFC piperazine ring) maintained 41%, 44% and 30% of
31	the antibiotic activity of the parent compound in chlorinated samples at 2.0, 3.0 and
32	$4.0 \text{ mgCl}_2/L$, respectively. These results indicate the spectrum of antibacterial activity
33	can be altered by controlling the chemical substituents and configuration
34	of CFC structure with chlorine. On the other hand, the potential presence of volatile
35	DBPs and fractionation losses do not allow to tentatively confirm the main
36	intermediates contributing to the acute toxic effects measured in chlorinated
37	samples. Our results encourage further development of new and advanced
38	methodologies to study the bioactivity of isolated unknown TPs to understand their
39	hazardous effects in treated effluents.

40 1. INTRODUCTION

41 During the past decades, misuse and overuse of antibiotics have contributed to 42 continuous discharges of these contaminants into the aquatic environment ¹. After 43 human consumption, antibiotics are metabolised and excreted into sewage systems 44 as pharmaceutically active forms ^{2,3}. While their administration clearly provides 45 benefits for human health, the overuse of these substances in animal husbandry 46 may also undergo serious potential risks ^{4,5}. In this sense, these substances are also 47 widely applied for the treatment, prevention and prophylaxis in animals ⁶. In most 48 cases, conventional wastewater treatment plants (WWTPs) are not specifically 49 designed for antibiotic removal and these contaminants are released into the 50 receiving aquatic environment ^{7,8}. The presence of these pollutants in water bodies 51 raises concern since they are associated with hazardous toxic effects and antibiotic resistance ^{1,9,10}. This is especially important in areas where treated effluents are 52 53 used for water reuse activities and drinking water production ¹¹. Due to its low cost, 54 good disinfection and oxidation capacity, chlorine (Cl_2) has been widely applied as a

55	post-treatment in WWTPs (and/or to maintain a residual chlorine in the distribution
56	system) to protect public health by controlling microbial pathogens ¹² . Even so, the
57	presence of chlorine may lead to the formation of halogenated anthropogenic
58	compounds and disinfection by-products (DBPs) which may have potential
59	hazardous effects on the environment and to humans.
60	Among the antibiotics found in treated wastewater effluents, azithromycin (AZI)
61	represented a breakthrough in the antibiotic era and became one of the best-selling
62	branded antibiotics worldwide in 1980 ^{13,14} . Up to now, AZI was reported in raw urban
63	wastewater up to 1 μ g/L ⁷ . This antibiotic is characterised by its bioactivity against
64	Gram-positive bacteria and greatly increase against Gram-negative bacteria to treat
65	some respiratory tract and soft-tissue infections ¹³ . On the other hand, ciprofloxacin
66	(CFC) has been the centre of considerable scientific interest since its discovery in
67	the early 1980s ¹⁵ . Up to now, CFC was reported in raw urban wastewater up to 14
68	μ g/L ⁷ . This pollutant represents one of the most common drugs in the treatment of
69	bacterial infections from urinary tract, upper and low respiratory tract, skin, bone soft

70 tissue as well as pneumonia with increased potency against Gram-negative bacteria 71 16 72 Although many efforts have been made to remove these antibiotic drugs from 73 contaminated water, much less attention has been paid to the chlorinated and non-74 chlorinated intermediates generated after water disinfection. These unknown 75 chemicals might retain part of the bioactivity of the parent compound and entail 76 relevant concerns for the environment and public health even at low concentration 77 levels ¹⁷. In contact with aqueous chlorine, antibiotics may also undergo 78 oxidation/substitution reactions yielding intermediates with high toxicity than their

79 parent compounds ¹⁸. Since reference standards are not commercially available for

80 most of these unknown transformation products (TPs), the evaluation of their

81 presence and hazardous effects cannot be performed. In this sense, effect-directed

82 analysis (EDA) has overcome this challenge through the identification of bioactive

83 chemicals in complex mixtures applying bioanalysis, separation and chemical

84 analysis ^{19–22}. When potential effects are measured in collected samples, their

85	complexity is gradually reduced using fractionation liquid chromatography (LC) to
86	further discard those fractions attaining low or absence of bioactivity ¹⁹ . In most of
87	the cases, several fractionation steps are required until the isolated toxic fractions
88	are ready for toxicant identification ¹⁹ . Final confirmation to assign their contribution
89	effects is required using analytical approaches for structural identification, effect
90	confirmation of artificial mixtures and hazard evaluation at different biological
91	organisation levels ²³ .
92	For compound identification, many non-target and suspect screening
93	methodologies have been developed for the identification of these substances by
94	using databases or spectral information ^{24–27} . Since a broad variety of compounds
95	(up to several thousands of features) can share a given molecular formula, the
96	application of automated suspect screening methodologies by using prediction tools
97	(such as prediction of TP exact masses, MS/MS fragmentation and retention times)
98	may represent an important advance for rapid prioritisation of suspected chemicals
99	present in samples ^{28,29} . Different commercial software and open-source programs

100	are available to optimise LC-MS data processing workflows for detection and
101	prioritisation of tentative chemical structures such as XCMS ³⁰ , enviMass ³¹ , MZmine
102	2 ³² , and Compound Discoverer ²⁸ . Final confirmation of identified structures is
103	performed using e.g. reference standards and databases. In almost all cases, these
104	EDA approaches have been applied to real polluted waters but not for the
105	assessment of TPs. Only in a few cases, EDA has been applied to study the
106	bioactivity or ecotoxicity to unknown TPs generated in treatment processes when
107	references are not commercially available for confirmation ^{33–35} .
108	In this study, an EDA methodology was developed for the identification and
109	elucidation of the bioactive TPs generated after AZI and CFC chlorination
110	experiments. The tentative TPs generated were isolated using a liquid-
111	chromatography system coupled to an automatic sample collector. The elucidation
112	of the generated intermediates was performed using a liquid-chromatography
113	system coupled to high-resolution mass spectrometry with an advanced and
114	automatic suspect screening methodology based on literature information and

- 115 compound prediction strategies. Antibacterial inhibition (i.e., antibiotic activity) and
- 116 acute toxicity tests were employed to assess the ecotoxicological implications of the
- 117 isolated unknown chemicals in chlorinated samples.
- 118 2. MATERIALS AND METHODS
- 119 *2.1 Chemicals and reagents*

120 Azithromycin (AZI) and ciprofloxacin (CFC) were purchased at high purity grade

121 (> 95%) from Sigma-Aldrich (Steinheim, Germany). Ultra-pure water, acetonitrile and

122 methanol LiChrosolv grade were supplied from Merck (Darmstadt, Germany). For

123 antibiotic inhibition test, Micrococcus luteus ATCC 9341 and Yersinia ruckeri NCIMB

124 13282 were used in iso-sensitest agar (Oxid) and 2/3 Plate Count Agar (Difco)

- 125 medium, respectively. Vibrio fischeri bacteria used for Microtox bioassay was
- 126 purchased from Modern Water (Guildford, United Kingdom). Sodium hypochlorite
- 127 solution (reagent grade, available chlorine ≥4%, Sigma-Aldrich) was used for the
- 128 chlorination experiments. For all principal component analysis (PCA) calculations,
- 129 the R Software version 3.5.3 was used.

130 2.2 Experimental set-up

131	Target pollutants (AZI and CFC) were spiked separately at an initial concentration
132	of 2.0 mg/L in ultra-pure water (buffered at pH 7.3 with sodium phosphate buffer (10
133	mM)) for a total working volume of 65 mL in triplicate experiments. Then, a proper
134	volume of chlorine (hypochlorite) was added to achieve the selected initial
135	concentrations of free available chlorine of 0.0, 0.1, 0.5, 1.0, 2.0, 3.0, 4.0 and 6.0
136	mgCl ₂ /L. In addition, a control experiment in ultra-pure water without spiking the
137	parent compounds was also performed. Batch flasks reactors were sealed avoiding
138	head space and introduced in an incubator at a constant temperature of 25 °C. All
139	samples were collected after 24 h of treatment and the free available chlorine of
140	treated water was measured using commercial DPD (N, N-diethyl-p-
141	phenylenediamine) test kits (LCK310, Hach Lange) with a Hach DR2800
142	spectrophotometer (Düsseldorf, Germany). The final experimental time of 24h was
143	selected to maximise chlorination by-products formation while minimising hydrolysis
144	of the TPs. Experiments containing a concentration higher than 0.05 mgCl ₂ /L after

145 24 h were discarded for further analysis (actually only those samples with an initial 146 dose of 6.0 mgCl₂/L were finally discarded). 147 2.3 Effect-directed analysis approach 148 An adapted effect-directed analysis (EDA) methodology was applied for the 149 identification of the bioactive intermediates generated after water chlorination (Fig. 150 1) ³⁶. Briefly, samples collected after 24h of chlorination were biologically (antibiotic 151 activity and acute toxicity) and chemically (chromatographic and mass spectrometry 152 analysis) analysed. Then, computational assessment was performed for 153 identification of the chemicals present in samples. The bioactivity of each chlorinated 154 sample was plotted together with the presence of each identified intermediate 155 (chromatographic area of the TPs identified divided by the area of the 156 chromatographic peak of the parent compound at initial time) by principal component 157 analysis (PCA). With this information, the suspect hazardous intermediates present 158 in chlorinated samples were tentatively pointed out and the most representative bioactive sample was selected for fractionation and further isolation of the TPs. 159

160	Sample fractions were again biologically and chemically analysed as well as
161	computationally assessed in duplicate to unravel their contribution as hazardous
162	chemicals in chlorinated treated samples.
163	2.3.1 Biological analysis
164	The antibiotic activity and acute toxicity endpoints were selected to evaluate the
165	hazardous effects of the antibiotics selected and TPs in chlorinated samples and
166	fractions. The antibiotic activity was chosen since it is related to the specific mode of
167	action (MoA) of these pollutants. In parallel, the acute toxicity was selected since it
168	is classified as a conventional endpoint measured in the environment.
169	To evaluate the antibiotic activity ³⁷ , the iso-sensitest agar (Oxid) medium with an
170	addition of 7.5 µg/L of tylosine (adjusted to pH 8.0) and inoculated with <i>M. luteus</i>
171	ATCC 9341 bacteria was used for samples collected from AZI experiments. In the
172	case of CFC experiments, 2/3 Plate Count Agar (Difco) 5% of 1M phosphate buffer
173	with an addition of 8,000 μ g/L of cloxacilline (adjusted to pH 6.5) and inoculated with
174	Y. ruckeri NCIMB 13282 bacteria was used. In both cases, 35 mL of the inoculated

175	agar was poured into a 120 x 120 mm bioassay plate containing 9 holes per plate.
176	A volume of 250 μL of samples was transferred to individual holes with the addition
177	of 50 μL of 1M phosphate buffer. Then, sample plates were incubated at 30 $^\circ C$ for
178	16 hours. Antibiotic activity of samples was determined by observing the growth
179	inhibition of the bacterial culture and measuring the diameter of the non-bacterial cell
180	density corresponding to the absence of bacterial growth. All the values were
181	calculated related to the antibiotic activity of the parent compound before
182	chlorination.
183	Additionally, the ISO 11348-3 protocol for testing bacterial bioluminescence of
184	wastewater matrices was used to assess acute toxicity throughout Microtox® Model
185	500 Toxicity Analyser (Strategic Diagnostics Inc., Newark, DE, US) ³⁸ . Stain of
186	luminescent bacteria Vibrio fischeri NRRL B-11177 were prepared from
187	commercially available freeze-dried reagents stored at -20 $^\circ\text{C}$. A volume of 2 mL was
188	required for sample analysis. Then, the percentage of decay on emitted light was

190 *V. fischeri*. The data expressed as EC_{50} was transformed into toxicity units (TU =

191 $100/EC_{50}$)³⁹, where a higher TU indicates a greater effect ⁴⁰.

192 2.3.2 *Chemical analysis*

193 A liquid chromatography system coupled to a high-resolution mass spectrometer 194 LC-LTQ-Orbitrap-MS/MS was used as described previously ⁴¹. Briefly, 20 µL of 195 samples were injected and separated in a ZORBAX Eclipse XDB-C18 (150 mm × 196 4.6 mm, 5 µm; Agilent Technologies, Santa Clara, CA). The mobile phases were (A) 197 10 mM ammonium formate in water at pH 3.0 and (B) acetonitrile. The optimised 198 chromatographic gradient was performed as follows ⁴¹: initial mobile phase 199 composition (95% A) held for 1 min, followed by a decrease in composition A to 5% 200 within 9 min, then to 0% in 3 min, held for 2 min, and up to 95% in 1 min and held 201 for 1 min. 202 The high-resolution mass spectrometer LTQ-OrbitrapVelos[™] (Thermo Fisher 203 Scientific) was equipped with a heated electrospray ionisation source (HESI-II). The analysis was performed in positive and negative ionisation modes. As no peaks 204

205	attributed to TPs were found in negative ion mode chromatograms, further data
206	processing was carried out only with that acquired in positive ion mode. Samples
207	were acquired in full scan data acquisition from m/z 100 to 1,000 range at a resolving
208	power of 60,000 FWHM. For structural elucidation of TPs, MS/MS fragmentation was
209	performed in data dependent acquisition mode (DDA) at 30,000 FWHM from m/z
210	100 to 1,000 range, for the three most intense ions from a selected list of 16 exact
211	masses corresponding to potential AZI (Table S1) and 13 exact masses for CFC
212	collected from literature (Table S2), (pre-acquisition suspect screening approach). If
213	selected masses were not found, the three most intense ions detected in a full-scan
214	MS spectra were automatically selected for fragmentation. All data were further
215	processed with a post-acquisition suspect screening approach (Section 2.3.3).
216	Additionally, isotopic data-dependent (IDD) was performed for the expected isotopic
217	ratios of 0.32 and 0.64 comprising a mass difference of 1.9971 Da. All MS/MS
218	experiments were performed applying a dynamic mass exclusion mode to
219	discriminate co-eluted compounds: ions fragmented more than three times during

220	25 seconds were further ignored for fragmentation during the following 30 seconds
221	(corresponding to peak plus tailing). Mass spectrometry conditions were designed
222	as follows: spray voltage, 3.5 kV; source heated at 300 °C; capillary temperature,
223	350 °C; sheath gas flow, 40 (arbitrary units); and auxiliary gas flow; 20 (arbitrary
224	units) ⁴¹ . Fragmentation techniques selected were: collision-induced dissociation
225	(CID) at a normalised collision energy of 30 eV (activation Q of 0.250 and an
226	activation time of 30 ms) and higher-energy collisional dissociation (HCD) at a
227	normalised collision energy of 55 eV (activation time of 0.100 ms) with isolation width
228	of 2 Da. The entire system was controlled via Aria software under Xcalibur 2.1.
229	2.3.3 Computational analysis
230	An advanced post-acquisition suspect screening approach for identification of the
231	TPs generated in chlorination experiments and collected in the corresponding
232	fractions was applied using Compound Discoverer 3.0 (Thermo Fisher Scientific Inc.,
233	Waltham, MA). The adapted methodology is presented in Fig. S1 and Table S3 42 .
234	Briefly, input files containing the chromatograms and mass spectra files from

235	analysed samples were loaded separately into the software. In addition, chemical
236	structures of AZI and CFC were also loaded to further create a list of tentative TPs
237	predicted by the software after applying the following chemical reactions to the
238	parent compound structures (a maximum combination of three): dehydration,
239	desaturation, reduction, oxidative deamination to ketone, oxidative deamination to
240	alcohol, chlorination, hydration, oxidation, reductive defluorination and dealkylation.
241	A number of 1655 and 497 exact masses were predicted from AZI and CFC chemical
242	structures, respectively. Automatic data processing starts with filtering MS data
243	between 100 and 1000 Da and from 1 to 12 min with a S/N ratio of 3. To compensate
244	for small differences in retention times, chromatographic alignment was performed
245	by using a mass tolerance error of ± 5 ppm and a maximum retention time shift of 0.3
246	min. Immediately after, data processing was performed by searching the predicted
247	list of TP exact masses in sample files. Then, the fragments present in collected
248	MS/MS data were automatically matched with the predicted fragments generated
249	using in silico fragmentation with a mass tolerance error of ± 5 ppm. Those

250 compounds with FISh (Fragment Ion Search) coverages higher than 65% were selected for data evaluation ⁴². 251 252 2.3.4 Statistical analysis for the estimation of hazardous TPs 253 Additionally, principal component analysis (PCA) was used to evaluate the 254 correlations between the bioactivity measured (antibiotic activity and acute toxicity, 255 separately) and the TPs identified in chlorinated samples, following the approach 256 previously reported ⁴³. Relative areas in percentage values (area of the peaks 257 detected in chromatogram divided by the area of the chromatographic peak of CFC 258 before the treatment) were used as input value using the FactoMineR included in 259 the Rcmdr environment (RcmdrPlugin.FactoMineR interface) for automatic data 260 processing. For all calculations, the R Software version 3.5.3 was used. 261 2.3.5 Sample fractionation 262 Taking into account the PCA results of the suspected bioactive intermediates present in chlorinated samples, the most representative bioactive sample containing 263 264 all the TPs identified was selected for sample fractionation (2 mgCl₂/L vs 2 mg/L of

265	CFC at an initial time). To achieve a proper concentration of the isolated TPs in one
266	fractionation cycle, this experiment was repeated at a higher concentration adding
267	the corresponding proportion of reactants (10 mgCl ₂ /L vs 10 mg/L CFC at an initial
268	time). This is considered a critical step since a minimal concentration of the TPs
269	(normally present at low concentration levels) is required to further reach detection
270	limits during LC-MS/MS analysis and the selected bioassays. Then, fractionation
271	was performed by using a preparative HPLC Agilent 1260 Infinity high-pressure
272	liquid-chromatography system coupled to a diode array detector (HPLC-DAD). The
273	fraction collection was automatically carried out in a 1100/1200 fraction collector
274	G1364C using a diverter valve to switch from waste to the collector position. A
275	volume of 100 μL of samples was injected in a ZORBAX Eclipse XDB-C18 column
276	(150 mm × 4.6 mm, 5 $\mu\text{m};$ Agilent Technologies, Santa Clara, CA) at a flow rate of 1
277	mL/min and column temperature of 25°C. Pure mobile phases selected were (A)
278	pure water and (B) acetonitrile to avoid the presence of any residual interference
279	affecting to bioassay measurements. The chromatographic gradient was carried out

280	as follows: initial mobile phase composition (90% A) held for 5 min; to 40% in 1 min
281	and held for 7 min; to 30% in 1 min and held for 6 min; to 20% in 1 min and held for
282	6 min; to 10% in 1 min and held for 6 min; and to 90% in 1 min held for 5 min.
283	Detection was monitored at the maximum absorption wavelength of 271 nm
284	measured in a UV-1800 UV-VIS spectrophotometer (Shimadzu Inc., Kyoto, Japan).
285	The total volume collected for each fraction was approximately 2 mL. Since
286	reference standards of TPs are not available to quantify recoveries in solid-phase
287	extraction and pharmaceutical TPs are not usually volatile, fractions were collected
288	in glass collectors, evaporated to dryness with nitrogen and reconstituted in 0.5 mL
289	of pure water. Reconstitution in pure water was carried out to prevent the presence
290	of organic solvents interfering on bacteria integrity on the bioanalysis of fractions ^{44–}
291	⁴⁶ . In addition, since pure water was the solvent used in chlorination experiments, a
292	better comparison with the fractions collected is assured. All fractions collected were
293	evaluated using biological (by antibiotic activity and acute toxicity measurement as
294	explained in biological analysis section) and chemical (using the LTQ-Orbitrap for

295	MS/MS compound identification, as explained in chemical analysis section)
296	analyses. Finally, computational assessment (using Compound Discoverer, as
297	presented in the computational analysis section) was performed for compound
298	identification.
299	3. RESULTS AND DISCUSSION
300	3.1 Biological and chemical analyses of chlorinated samples
301	Chemical analyses revealed an AZI removal up to 88% after 24h of the addition of
302	the highest chlorine dose (4 mgCl ₂ /L) (Fig. 2a). This percentage of elimination is in
303	line with the decrease in the initial antibiotic activity up to 85% (Fig. 2b). As observed
304	in other oxidation treatment processes reported in the literature ⁴⁷ , the decrease on
305	the measured antibiotic activity is due to the elimination of the parent compound as
306	none of the intermediates generated had any relevant contribution to the overall
307	antibiotic activity. In terms of acute toxicity, no effects were observed after any of the
308	chlorination experiments performed (Fig. 2c). These results are in accordance with
309	those reported in the literature about oxidation treatment processes, where the

310	absence or reduction of the toxicity of the intermediates generated after AZI
311	degradation was observed ^{48,49} .
312	On the other hand, chlorination promoted complete CFC elimination (ca.100%)
313	after 24h of treatment adding an initial chlorine dose of 0.5 mgCl ₂ /L (Fig. 2a). These
314	results are in line with the negligible antibiotic activity at 0.5 mgCl ₂ /L (Fig. 2b). The
315	antibiotic activity exceeded 41%, 44%, and 30% of the initial effect of the parent
316	compound in the experiments performed at 2, 3, and 4 mgCl ₂ /L, respectively (Fig.
317	2b). This fact suggests that some of the CFC intermediates generated might retain
318	part of the antibiotic activity of the parent compound. Controversial data about the
319	antibiotic activity of the intermediates generated during CFC degradation have been
320	reported in the literature. A reduction on antibacterial activity regarding the
321	elimination of CFC was generally observed after photolytic, photocatalytic,
322	electrochemical and Fe (VI) oxidation ⁵⁰⁻⁵⁴ . In some cases, it was reported a
323	negligible antibacterial potency of the TPs generated in those water treatments ⁵⁴ .
324	On the contrary, the bioactivity of the intermediates generated was sometimes

325	detected after ozonation treatment ⁵⁵ , in line with the results obtained in this study in
326	chlorination experiments.
327	Negligible acute toxicity was measured in the absence of chlorine in CFC
328	experiments (Fig. 2c). The maximum increase up to 4.1 TU was observed after
329	adding 2 mgCl ₂ /L (Fig. 2c). Also, in this case, controversial data about acute toxicity
330	of the intermediates generated during CFC degradation have been reported in the
331	literature. For instance, a decrease in acute toxicity was observed after sonolysis
332	and UV treatment experiments spiked at 15 mg/L of CFC ^{56,57} . On the contrary, an
333	increase in acute toxicity of about 18% was observed from the TPs generated after
334	1 hour of CFC chlorination at 10 molar equivalents of chlorine dose ⁵⁸ , and up to
335	26% after radiation-induced experiments at 33 mg/L of CFC ⁵⁹ .
336	As shown in this study, the potential intermediates generated during chlorination
337	of AZI did not show any effect in the biological tests applied. The intermediates
338	generated during CFC experiments were pinpointed as concerning TPs since acute
339	toxicity and antibiotic activity were measured after chlorination experiments.

3.2 Computational analysis of chlorinated samples and elucidation of

340

341 transformation pathways 342 Thirteen TPs were tentatively identified in AZI chlorinated samples (Table S4), and 343 the transformation pathway and their relative presence are presented in Fig. 3. As 344 previously reported, the elimination of the parent compound was mainly led by O-345 dealkylation of L-cladinose moiety (TP590) suggested from the instability of 346 macrolides in aqueous solution ⁴², and confirmed by its presence at the initial time 347 up to 80%. However, the increase of initial chlorine concentration led to its further 348 elimination reaching a presence of 12% in treated samples when 4 mgCl₂/L was 349 added at the initial time. This intermediate was mainly transformed into TP576 after 350 demethylation of the dimethylamine group in D-desosamine moiety ⁴². As reported 351 previously ⁶⁰, both hydrolysis of D-desosamine moiety and demethylation were also 352 observed directly from AZI parent compound being transformed into TP591 and 353 TP734A (and found in this study up to 132% and 65% at 4 mgCl₂/L, respectively). It 354 is important to mention that none of the most intense compounds elucidated contains

355	a chlorine substituent in their chemical structures after the experiments performed.
356	As previously reported 60, the pseudo-first order kinetic constants at different pH
357	values showed that the reactivity of AZI with free available chlorine was favoured at
358	higher pH within the range of 7.5 and 8.5 (optimal pH value was 8.0). Therefore, the
359	use of a pure water pH at 7.3 may explain the low presence of halogenated TPs after
360	chlorination experiments. As explained previously and in Fig. 2, none of these
361	elucidated intermediate structures from AZI presented hazardous effects in treated
362	effluents.
363	Seven TPs were tentatively identified in CFC chlorinated samples (Table S5). The
364	transformation pathway and their relative presence are presented in Fig. 4. As
365	previously reported ⁶¹ , initial chlorination of CFC structure induced the destruction of
366	the piperazine ring moiety into TP365 (not detected in this study). The instability of
367	TP365 probably led to the opening of the piperazine ring and rapidly transformed
368	(though imine hydrolysis and the loss of CH_2O) into TP305 $^{61-63}$, which was detected
369	in this study at high percentage values (32% relative area to the initial area of CFC)

370	when 0.5 mgCl ₂ /L of chlorine was added. However, the increase of initial chlorine
371	concentration led to its further elimination reaching low levels (4%) at 2 mgCl ₂ /L of
372	chlorine dose. In fact, TP305 was most likely transformed by N-chlorination, and
373	further elimination of the $C_2H_3NCI_2$ moiety generating the compound TP262. In
374	comparison to TP305, TP262 attained the highest concentration when chlorine was
375	added at 2.0 mgCl ₂ /L at an initial time (up to 95% from the initial presence of CFC).
376	These results are in accordance with the previous data reported in the literature
377	where TP262 formation was observed from 12.4% (after 2h of chlorination treatment)
378	to 54.4% (after 50h) ⁶¹ . Additionally, TP262 was also found as the main intermediate
379	generated in photo-Fenton degradation experiments after 30 min of treatment, 1.5
380	times-fold higher when compared with the other generated TPs ⁵¹ . Finally, the
381	presence of additional intermediates in samples with an excess of chlorine indicates
382	that TP305 may generate further chlorinated compounds in treated samples: the
383	chlorinated TP296 was observed up to 39% when decreasing the presence of TP262
384	to 5% at an initial chlorine concentration of 4.0 mgCl ₂ /L. This fact indicated that the

385	highest extent on transformation pathway was achieved when increasing the
386	chlorine concentration ⁶² . The most significant concentration of TP296 was detected
387	at 3.0 mgCl ₂ /L of chlorine up to 44%. Otherwise, other oxidation intermediates (e.g.
388	TP333) were also identified from CFC ⁶¹ at a lower concentration than 10% after
389	chlorination experiments (Fig. 4). As explained previously and in Fig. 2, some of the
390	elucidated intermediate structures for CFC presented hazardous effects in treated
391	effluents.
392	3.3 Estimation of the hazardous TPs generated in CFC chlorinated samples
393	Estimation of the tentative hazardous TPs identified in CFC experiments (in terms
394	of antibiotic activity and acute toxicity) was evaluated using PCA plots (Fig. 5), which
395	allowed correlating bioactivity measured with the presence of individual TPs
396	identified in chlorinated samples (Table S6 and Table S7). Since variables were
397	measured on different scales (relative percentages and toxic units), both PCAs were
398	normalised to the specific range of [-1, +1]. The direct correlation of an intermediate
399	with a given effect estimates its tentative hazardous contribution in chlorinated

Page 28 of 64

400	samples. The two first principal components (PCs) pointed out the TP296 (Fig. 5a)
401	as the key intermediate contributing to the increase of 41%, 44%, and 30% in the
402	antibiotic activity in treated samples of the experiments performed at 2, 3, and 4
403	mgCl ₂ /L, respectively (Fig. 2b). This may be due to the different chemical
404	substituents of this intermediate which may govern antibacterial efficacy and
405	influence the side-effect profile 64. On the contrary, an inverse correlation was
406	observed for TP339, TP305 and TP333. Otherwise, PCA loadings pointed out a
407	direct correlation between acute toxicity of chlorinated samples and the presence of
408	TP262, TP290 and TP292 (Fig. 5b). Since TP262 was found in chlorinated samples
409	at the major relative presence of 95% at 2.0 mgCl ₂ /L (Fig. 4), it might be classified
410	as the key intermediate contributing to the increase of 4.1 TU in the acute toxicity in
411	chlorinated samples (Fig. 2c). The contribution of TP290 and TP292 may also exhibit
412	higher toxicity of these intermediates compared to the rest of TPs, and therefore,
413	despite their apparently low relative presence (Fig. 4), they may also contribute to
414	the total toxicity of the samples. In addition, the synergic effects of these compounds

415	cannot be discarded. Otherwise, an inverse correlation was observed for TP339 and
416	TP296. These intermediates may result in lower steric resistance and easier
417	penetration into a cell of luminescent bacteria 65, which subsequently might lead to
418	an increase in toxicity. Additionally, as expected the electronegative atoms
419	contained in quinolone molecules (such as F, N, and O atoms) may donate electrons
420	to photo-bacterium and thus inhibited the luminance emission ⁵⁸ .
421	In both statistical experiments (Fig. 5a and Fig. 5b), the generation of low
422	molecular mass DBPs, not considered in this study, might have also contributed to
423	the hazardous effects measured in treated samples. In this context, it was previously
424	reported that monochloroacetic acid was the main DBP formed during chlorination
425	of CFC and detected at a concentration around 100 $\mu\text{g/L}$ after 24 hours (when CFC
426	was spiked at 16 mg/L adding a chlorine dose of 1 mM) 66 . In our conditions selected,
427	the formation of monochloracetic acid was expected to be minimal since CFC was
428	spiked at a much lower concentration of CFC (2 mg/L) and chlorine dose (0.056
429	mM). Taking into account the PCA results, which tentatively pointed out TP296 and

430 TP262 as hazardous intermediates, fractionation and further chemical and biological

- 431 analyses, as well as computational assessment, were needed to confirm or rule out
- 432 the risk of these intermediates in chlorinated samples.
- 433 *3.4 Confirmation of the hazardous TPs generated in chlorinated samples*
- 434 Taking into account the PCA results, the most representative sample containing
- 435 all the TPs identified was selected for sample fractionation (2 mgCl₂/L vs 2 mg/L of
- 436 CFC at an initial time). To achieve a proper concentration of the isolated TPs without
- 437 launching several sample fractionation cycles, the experiment was repeated at a
- 438 higher concentration adding the same proportion of reactants (10 mgCl₂/L vs 10
- 439 mg/L CFC at initial time). After sample fractionation (Fig. 6a), measurements on
- 440 antibiotic activity and acute toxicity indicated no toxic effects (in comparison to
- 441 control samples) when no chromatographic peaks were detected in the fractions
- 442 collected (every 2 min approximately) at the beginning and the end of the
- 443 chromatogram (Fig. 6b). Chromatographic and mass spectra data from LC-MS/MS
- 444 (Orbitrap Velos[™]) system of fractions showed that TP333 was found in fraction 2

445	but at low concentration values (Fig. 6c). Two intense peaks in fractions 3 and 4
446	were assigned to TP262 (generated after the elimination of the piperazine ring
447	moiety), and TP296 (a further chlorinated intermediate of the transformation
448	pathway), respectively (Fig. 4). Conversely, no compound assignment was possible
449	for fraction 5 (Fig. 6c).
450	Biological analysis showed a relative antibiotic activity of around 1% in fraction 2,
451	4% in fraction 3, 52% in fraction 4, and 3% in fraction 5 (Fig. 6b). The significant
452	presence of TP296 in fraction 4 was in agreement with the 52% of antibiotic activity
453	measured in this fraction. For this intermediate, the fractionation process allowed to
454	recover the 78% of the chromatographic area from the initial chlorinated sample.
455	Therefore, TP296 (the chlorinated molecule generated from TP305, Fig. 4) was
456	tentatively identified to retain the antibiotic activity of its parent compound CFC in
457	chlorinated samples. Nonetheless, despite 22% of compound losses were observed
458	during fractionation, synergistic and antagonistic effects cannot be discarded. These
459	results are in accordance with the reported literature indicating that the spectrum of

460	antibacterial activity can be altered by controlling the substitution and configuration
461	of position 8 on CFC structure with C-F, C-Cl and N substituents (Fig. 6a), and
462	expanding the antibacterial spectrum against anaerobes ^{15,64,67,68} . Additionally, these
463	results confirm the suitability of PCA estimations to identify the most hazardous
464	intermediates generated during water treatment in terms of antibiotic activity (Fig. 5).
465	On the other hand, while chlorinated samples were toxic at an initial concentration
466	of 2 mgCl ₂ /L (Fig 2c), no acute toxicity was observed in any of the fractions collected
467	exceeding EC_{50} values. In this context, calculations of EC_{10} were performed from the
468	slope of the linear regression of concentration vs. % effect and converted in TU
469	values as reported previously 69,70 (Fig. S3). In particular, the most abundant
470	intermediate highlighted by chlorination experiments TP262 (Fig. 4) was found at the
471	highest acute toxic value of 4.6 TU in fractions collected (Fig. 6b and Fig. 6c). Yet,
472	the fractionation process allowed to recover only 42% of the TP based on the
473	chromatographic areas before and after fractionation. Therefore, partial loss of this
474	TP along sample evaporation and fractionation might also contribute to the reduction

475	of acute toxicity measured in the fractions. It is important to mention that other
476	estimated toxic intermediates (such as TP290 and TP292), present at low
477	concentration levels were also affected by fractionation losses since they were not
478	detected in fractions collected.
479	The identification of the most relevant intermediates in terms of antibiotic activity
480	generated from chlorination experiments with CFC was successfully achieved using
481	an EDA approach, which includes fractionation of bioactive samples in combination
482	with biological, chemical and computational assessment using an automated
483	suspect screening methodology. The TP296 (generated from the destruction of the
484	piperazine ring moiety and its further chlorination) was identified to maintain 41%,
485	44% and 30% of the antibiotic activity of the parent compound in chlorinated samples
486	at 2.0, 3.0 and 4.0 mgCl ₂ /L, respectively (Fig. 2) being classified as a potentially
487	concerning intermediate after water chlorination. Therefore, the use of EDA
488	approaches in combination with PCA evaluation represents a potential approach for
489	the identification and confirmation of hazardous TPs in treated samples. Although

490 the complete elimination of antibiotics should eventually be the objective of water

491 treatment processes, the elimination of the potential bioactive TPs generated is also

492 required, even when complete elimination of the parent compound is attained.

493 ASSOCIATED CONTENT

494 **Supporting Information**. The post-acquisition data processing workflow and

495 parameters selected, the exact mass list of the most common azithromycin and

496 ciprofloxacin TPs found in literature, the detected and identified a list of AZI and CFC

497 TPs in chlorination experiment, the UV spectra of ciprofloxacin intermediates

- 498 identified, the R-Scripts and acute toxicity measurements of fractions are provided
- in the Supporting Information.

500 AUTHOR INFORMATION

501 Corresponding Authors

502	*Sara Rodriguez-Mozaz (srodriquez@icra.cat), Catalan Institute for Water
503	Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain, Tel: (+34) 972 18
504	33 80
505	*Adrián Jaén-Gil (ajaen@icra.cat), Catalan Institute for Water Research (ICRA),
506	Carrer Emili Grahit 101, 17003 Girona, Spain, Tel: (+34) 972 18 33 80

- 507 Author Contributions
- 508 The manuscript was written through the contributions of all authors. All authors
- 509 have given approval to the final version of the manuscript.

510 ACKNOWLEDGEMENTS

511 This work was funded by the Spanish State Research Agency of the Spanish 512 Ministry of Science, Innovation and Universities AEI-MICIU and the Fondo Europeo 513 de Desarrollo Regional under the National Program for Research Aimed at the 514 Challenges of Society (CTM2017-85335-R). Authors acknowledge the support from 515 the Economy and Knowledge Department of the Catalan Government through the

516	Consolidated Research Group (ICRA-ENV 2017 SGR 1124 and 2017-SGR-1404).
517	ICRA researchers thank funding from CERCA program. M.J.F and S.R.M.
518	acknowledge the Ramon y Cajal research fellowships RyC-2015-17108 and RYC-
519	2014-16707 from the Spanish Ministry of Economy and Competitiveness. A.J.G. and
520	A.S.C acknowledges the predoctoral grants 2019FI_B2_00202 and
521	2018FI_B2_00170 from AGAUR and co-financed by the European Social Fund. The
522	authors would like to Wageningen Food Safety Research for their help with the
523	antibiotic inhibition tests.
E04	DEFEDENCES

524 **REFERENCES**

525	(1)	Rodriguez-Mozaz, S.; Chamorro, S.; Marti, E.; Huerta, B.; Gros, M.; Sànchez-
526		Melsió, A.; Borrego, C. M.; Barceló, D.; Balcázar, J. L. Occurrence of
527		antibiotics and antibiotic resistance genes in hospital and urban wastewaters
528		and their impact on the receiving river. Water Res. 2015, 69, 234–242.
529	(2)	Yang, Y.; Ok, Y. S.; Kim, K. H.; Kwon, E. E.; Tsang, Y. F. Occurrences and

530		removal of pharmaceuticals and personal care products (PPCPs) in drinking
531		water and water/sewage treatment plants: A review. Sci. Total Environ. 2017,
532		<i>596–597</i> , 303–320.
533	(3)	aus der Beek, T.; Weber, F. A.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein,
534		A.; Küster, A. Pharmaceuticals in the environment-Global occurrences and
535		perspectives. <i>Environ. Toxicol. Chem.</i> 2016 , <i>35</i> (4), 823–835.
536	(4)	Lees, K.; Fitzsimons, M.; Snape, J.; Tappin, A.; Comber, S. Pharmaceuticals
537		in soils of lower income countries: Physico-chemical fate and risks from
538		wastewater irrigation. Environ. Int. 2016, 94, 712–723.
539	(5)	Durso, L. M.; Cook, K. L. Impacts of antibiotic use in agriculture: What are the
540		benefits and risks? Curr. Opin. Microbiol. 2014, 19(1), 37–44.
541	(6)	Wegener, H. C. Antibiotics in animal feed and their role in resistance
542		development. <i>Curr. Opin. Microbiol.</i> 2003 , <i>6</i> (5), 439–445.
543	(7)	Verlicchi, P.; Al Aukidy, M.; Zambello, E. Occurrence of pharmaceutical

544		compounds in urban wastewater: Removal, mass load and environmental risk
545		after a secondary treatment-A review. Sci. Total Environ. 2012, 429, 123–155.
546	(8)	Grenni, P.; Ancona, V.; Barra Caracciolo, A. Ecological effects of antibiotics
547		on natural ecosystems: A review. <i>Microchem. J.</i> 2018, 136, 25–39.
548	(9)	Martinez, J. L. Environmental pollution by antibiotics and by antibiotic
549		resistance determinants. Environ. Pollut. 2009, 157 (11), 2893–2902.
550	(10)	Chartier, Y.; Emmanuel, J.; Pieper, U.; Prüss, A.; Rushbrook, P.; Stringer, R.;
551		Townend, W.; Wilburn, S.; Zghondi, R. Safe Management of Wastes from
552		Health-Care Activities; World Heal. Organ.: Geneva Switz, 2014.
553	(11)	Huerta-Fontela, M.; Galceran, M. T.; Ventura, F. Occurrence and removal of
554		pharmaceuticals and hormones through drinking water treatment. Water Res.
555		2011 , <i>45</i> (3), 1432–1442.
556	(12)	Diana, M.; Felipe-Sotelo, M.; Bond, T. Disinfection byproducts potentially
557		responsible for the association between chlorinated drinking water and

558		bladder cancer: A review. <i>Water Res.</i> 2019, <i>162</i> , 492–504.
559	(13)	Jeli, D.; Antolovic, R. From Erythromycin to Azithromycin and New Potential
560		Ribosome-Binding Antimicrobials. Antibiotics 2016, 5 (29), 1–13.
561	(14)	Kagkelaris, K. A.; Makri, O. E.; Georgakopoulos, C. D.; Panayiotakopoulos, G.
562		D. An eye for azithromycin: review of the literature. Ther. Adv. Ophthalmol.
563		2018 , <i>10</i> , 251584141878362.
564	(15)	Andersson, M. I.; Macgowan, A. P. Development of the quinolones. J.
565		Antimicrob. Chemother. 2003, 51, 1–11.
566	(16)	Ezelarab, H. A. A.; Abbas, S. H.; Hassan, H. A.; Abuo-Rahma, G. ED. A.
567		Recent updates of fluoroquinolones as antibacterial agents. Arch. der
568		<i>Parmazie</i> 2018 , No. May, 1–13.
569	(17)	Escher, B. I.; Fenner, K. Recent Advances in Environmental Risk Assessment
570		of Transformation Products. <i>Environ. Sci. Technol.</i> 2011, 45 (9), 3835–3847.

571	(18)	Postigo, C.; Richardson, S. D. Transformation of pharmaceuticals during
572		oxidation/disinfection processes in drinking water treatment. Journal of
573		Hazardous Materials. 2014, pp 461–475.
574	(19)	Brack, W.; Ait-Aissa, S.; Burgess, R. M.; Busch, W.; Creusot, N.; Di Paolo, C.;
575		Escher, B. I.; Mark Hewitt, L.; Hilscherova, K.; Hollender, J.; Hollert, H.; Jonker,
576		W.; Kool, J.; Lamoree, M.; Muschket, M.; Neumann, S.; Rostkowski, P.;
577		Ruttkies, C.; Schollee, J.; Schymanski, E L.; Schulze, T.; Seiler, T B.; Tindall,
578		A J.; De Aragão Umbuzeiro, G.; Vrana, B.; Krauss, M. Effect-directed analysis
579		supporting monitoring of aquatic environments - An in-depth overview. Sci.
580		<i>Total Environ.</i> 2016 , <i>544</i> , 1073–1118.
581	(20)	Brack, W. Effect-directed analysis: a promising tool for the identification of
582		organic toxicants in complex mixtures? Anal. Bioanal. Chem. 2003, 377, 397-
583		407.
584	(21)	Schymanski, E. L.; Bataineh, M.; Goss, K. U.; Brack, W. Integrated analytical

585		and computer tools for structure elucidation in effect-directed analysis. TrAC -
586		<i>Trends Anal. Chem.</i> 2009 , <i>28</i> (5), 550–561.
587	(22)	Escher, B. I.; Stapleton, H. M.; Schymanski, E. L. Tracking complex mixtures
588		of chemicals in our changing environment. <i>Science</i> . 2020 , <i>367</i> , 388–392.
589	(23)	Brack, W.; Schmitt-Jansen, M.; MacHala, M.; Brix, R.; Barceló, D.;
590		Schymanski, E.; Streck, G.; Schulze, T. How to confirm identified toxicants in
591		effect-directed analysis. Anal. Bioanal. Chem. 2008, 390 (8), 1959–1973.
592	(24)	Bletsou, A. A.; Jeon, J.; Hollender, J.; Archontaki, E.; Thomaidis, N. S.
593		Targeted and non-targeted liquid chromatography-mass spectrometric
594		workflows for identification of transformation products of emerging pollutants
595		in the aquatic environment. <i>TrAC - Trends Anal. Chem.</i> 2015 , <i>66</i> , 32–44.
596	(25)	Díaz, R.; Ibáñez, M.; Sancho, J. V.; Hernández, F. Target and non-target
597		screening strategies for organic contaminants, residues and illicit substances
598		in food, environmental and human biological samples by UHPLC-QTOF-MS.

599 *Anal. Methods* **2012**, *4*(1), 196–209.

- 600 (26) Li, Z.; Kaserzon, S. L.; Plassmann, M. M.; Sobek, A.; Gómez Ramos, M. J.;
- 601 Radke, M. A strategic screening approach to identify transformation products
- 602 of organic micropollutants formed in natural waters. *Environ. Sci. Process.*
- 603 *Impacts* **2017**, *19*(4), 488–498.
- 604 (27) Schymanski, E. L.; Singer, H. P.; Slobodnik, J.; Ipolyi, I. M.; Oswald, P.;
- 605 Krauss, M.; Schulze, T.; Haglund, P.; Letzel, T.; Grosse, S.; Thomaidis, N S.;
- Bletsou, A.; Zwiener, C.; Ibáñez, M.; Portolés, T.; De Boer, R.; Reid, M J.;
- 607 Onghena, M.; Kunkel, U.; Schulz, W.; Guillon, A.; Noyon, N.; Leroy, G.; Bados,
- 608 P.; Bogialli, S.; Stipaničev, D.; Rostkowski, P.; Hollender, J. Non-target
- 609 screening with high-resolution mass spectrometry: Critical review using a
- 610 collaborative trial on water analysis. *Anal. Bioanal. Chem.* **2015**, *407* (21),
- 611 6237–6255.
- 612 (28) Avagyan, R.; Åberg, M.; Westerholm, R. Suspect screening of OH-PAHs and

613		non-target screening of other organic compounds in wood smoke particles
614		using HR-Orbitrap-MS. Chemosphere 2016, 163, 313–321.
615	(29)	Gago-Ferrero, P.; Krettek, A.; Fischer, S.; Wiberg, K.; Ahrens, L. Suspect
616		Screening and Regulatory Databases: A Powerful Combination to Identify
617		Emerging Micropollutants. Environ. Sci. Technol. 2018, 52 (12), 6881–6894.
618	(30)	Smith, C. A.; Want, E. J.; O'Maille, G.; Abagyan, R.; Siuzdak, G. XCMS:
619		Processing mass spectrometry data for metabolite profiling using nonlinear
620		peak alignment, matching, and identification. Anal. Chem. 2006, 78 (3), 779-
621		787.
622	(31)	Albergamo, V.; Schollée, J. E.; Schymanski, E. L.; Helmus, R.; Timmer, H.;
623		Hollender, J.; De Voogt, P. Nontarget screening reveals time trends of polar
624		micropollutants in a riverbank filtration system. Environ. Sci. Technol. 2019,
625		<i>53</i> (13), 7584–7594.
626	(32)	Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: Modular

- 627 framework for processing, visualizing, and analyzing mass spectrometry-
- based molecular profile data. *BMC Bioinformatics* **2010**, *11*.
- 629 (33) Schulze, T.; Weiss, S.; Schymanski, E.; von der Ohe, P. C.; Schmitt-Jansen,
- 630 M.; Altenburger, R.; Streck, G.; Brack, W. Identification of a phytotoxic photo-
- 631 transformation product of diclofenac using effect-directed analysis. *Environ.*
- 632 *Pollut.* **2010**, *158* (5), 1461–1466.
- 633 (34) Brack, W.; Altenburger, R.; Küster, E.; Meissner, B.; Wenzel, K. D.;
- 634 Schüürmann, G. Identification of toxic products of anthracene
- 635 photomodification in simulated sunlight. *Environ. Toxicol. Chem.* 2003, 22
- 636 (10), 2228–2237.
- 637 (35) Romanucci, V.; Siciliano, A.; Guida, M.; Libralato, G.; Saviano, L.; Luongo, G.;
- 638 Previtera, L.; Di Fabio, G.; Zarrelli, A. Disinfection by-products and ecotoxic
- 639 risk associated with hypochlorite treatment of irbesartan. *Sci. Total Environ.*
- 640 **2020**, *712*, 135625.

641	(36)	Schymanski, E. L.; Meinert, C.; Meringer, M.; Brack, W. The use of MS
642		classifiers and structure generation to assist in the identification of unknowns
643		in effect-directed analysis. Anal. Chim. Acta 2008, 615 (2), 136–147.
644	(37)	Pikkemaat, M. G.; Dijk, S. O. van; Schouten, J.; Rapallini, M.; van Egmond, H.
645		J. A new microbial screening method for the detection of antimicrobial residues
646		in slaughter animals: The Nouws antibiotic test (NAT-screening). Food Control
647		2008 , <i>19</i> (8), 781–789.
648	(38)	ISO. ISO 11348-3:1998 - Water quality Determination of the inhibitory effect
649		of water samples on the light emission of Vibrio fischeri (Luminescent bacteria
650		test), 1998.
651	(39)	Terasaki, M.; Makino, M.; Tatarazako, N. Acute toxicity of parabens and their
652		chlorinated by-products with Daphnia magna and Vibrio fischeri bioassays. J.
653		<i>Appl. Toxicol.</i> 2009 , <i>29</i> (3), 242–247.
654	(40)	Leusch, F. D. L.; Neale, P. A.; Busetti, F.; Card, M.; Humpage, A.; Orbell, J.

	D.; Ridgway, H. F.; Stewart, M. B.; van de Merwe, J. P.; Escher, B. I.
	Transformation of endocrine disrupting chemicals, pharmaceutical and
	personal care products during drinking water disinfection. Sci. Total Environ.
	2019 , <i>657</i> , 1480–1490.
41)	Jaén-Gil, A.; Castellet-Rovira, F.; Llorca, M.; Villagrasa, M.; Sarrà, M.;
	Rodríguez-Mozaz, S.; Barceló, D. Fungal treatment of metoprolol and its
	recalcitrant metabolite metoprolol acid in hospital wastewater:
	Biotransformation, sorption and ecotoxicological impact. Water Res. 2019,
	<i>152</i> , 171–180.
42)	Jaén-Gil, A.; Hom-Diaz, A.; Llorca, M.; Vicent, T.; Blánquez, P.; Barceló, D.;
	Rodríguez-Mozaz, S. An automated on-line turbulent flow liquid-
	chromatography technology coupled to a high resolution mass spectrometer
	LTQ-Orbitrap for suspect screening of antibiotic transformation products
	during microalgae wastewater treatment. J. Chromatogr. A 2018, 1568, 57-
	41)

669		68.
670	(43)	Ferrando-Climent, L.; Gonzalez-Olmos, R.; Anfruns, A.; Aymerich, I.;
671		Corominas, L.; Barceló, D.; Rodriguez-Mozaz, S. Elimination study of the
672		chemotherapy drug tamoxifen by different advanced oxidation processes:
673		Transformation products and toxicity assessment. Chemosphere 2017, 168,
674		284–292.
675	(44)	Sardessai, Y.; Bhosle, S. Tolerance of bacteria to organic solvents. Res.
676		<i>Microbiol.</i> 2002 , <i>153</i> (5), 263–268.
677	(45)	Sardessai, Y. N.; Bhosle, S. Industrial potential of organic solvent tolerant
678		bacteria. <i>Biotechnol. Prog.</i> 2004, <i>20</i> (3), 655–660.
679	(46)	Reemtsma, T.; Fiehn, O.; Jekel, M. A modified method for the analysis of
680		organics in industrial wastewater as directed by their toxicity to Vibrio fischeri.
681		<i>Fresenius. J. Anal. Chem.</i> 1999 , <i>363</i> (8), 771–776.
682	(47)	Dodd, M. C.; Kohler, H. P. E.; Gunten, U. Von. Oxidation of antibacterial

- 683 compounds by ozone and hydroxyl radical: Elimination of biological activity
- 684 during aqueous ozonation processes. *Environ. Sci. Technol.* 2009, 43 (7),

685 2498–2504.

- 686 (48) Čizmić, M.; Ljubas, D.; Rožman, M.; Ašperger, D.; Ćurković, L.; Babíc, S.
- 687 Photocatalytic degradation of azithromycin by nanostructured TiO 2 film:
- 688 Kinetics, degradation products, and toxicity. *Materials (Basel).* **2019**, *16* (6).
- 689 (49) Radosavljević, K. D.; Lović, J. D.; Mijin, D.; Petrović, S. D.; Jadranin, M. B.;
- 690 Mladenović, A. R.; Avramov Ivić, M. L. Degradation of azithromycin using
- 691 Ti/RuO2 anode as catalyst followed by DPV, HPLC-UV and MS analysis.
- 692 *Chem. Pap.* **2017**, *71*(7), 1217–1224.
- 693 (50) Paul, T.; Dodd, M. C.; Strathmann, T. J. Photolytic and photocatalytic
- 694 decomposition of aqueous ciprofloxacin: Transformation products and residual
- 695 antibacterial activity. *Water Res.* **2010**, *44* (10), 3121–3132.
- 696 (51) Gomes Júnior, O.; Silva, V. M.; Machado, A. E. H.; Sirtori, C.; Lemos, C. R.;

697		Freitas, A. M.; Trovó, A. G. Correlation between pH and molar iron/ligand ratio
698		during ciprofloxacin degradation by photo-Fenton process: Identification of the
699		main transformation products. J. Environ. Manage. 2018, 213, 20–26.
700	(52)	Zhu, L.; Santiago-Schübel, B.; Xiao, H.; Hollert, H.; Kueppers, S.
701		Electrochemical oxidation of fluoroquinolone antibiotics: Mechanism, residual
702		antibacterial activity and toxicity change. Water Res. 2016, 102, 52–62.
703	(53)	Ou, H. se; Ye, J. shao; Ma, S.; Wei, C. hai; Gao, N. yun; He, J. zhao.
704		Degradation of ciprofloxacin by UV and UV/H2O2 via multiple-wavelength
705		ultraviolet light-emitting diodes: Effectiveness, intermediates and antibacterial
706		activity. <i>Chem. Eng. J.</i> 2016 , <i>289</i> , 391–401.
707	(54)	Yang, B.; Kookana, R. S.; Williams, M.; Ying, G. G.; Du, J.; Doan, H.; Kumar,
708		A. Oxidation of ciprofloxacin and enrofloxacin by ferrate(VI): Products
709		identification, and toxicity evaluation. J. Hazard. Mater. 2016, 320, 296–303.
710	(55)	De Witte, B.; Van Langenhove, H.; Demeestere, K.; Saerens, K.; De

711		Wispelaere, P.; Dewulf, J. Ciprofloxacin ozonation in hospital wastewater
712		treatment plant effluent: Effect of pH and H2O2. Chemosphere 2010, 78 (9),
713		1142–1147.
714	(56)	De Bel, E.; Dewulf, J.; Witte, B. De; Van Langenhove, H.; Janssen, C.
715		Influence of pH on the sonolysis of ciprofloxacin: Biodegradability, ecotoxicity
716		and antibiotic activity of its degradation products. <i>Chemosphere</i> 2009, 77(2),
717		291–295.
718	(57)	Yuan, F.; Hu, C.; Hu, X.; Wei, D.; Chen, Y.; Qu, J. Photodegradation and
719		toxicity changes of antibiotics in UV and UV/H2O2 process. J. Hazard. Mater.
720		2011 , <i>185</i> (2–3), 1256–1263.
721	(58)	Li, M.; Wei, D.; Du, Y. Acute toxicity evaluation for quinolone antibiotics and
722		their chlorination disinfection processes. J. Environ. Sci. 2014, 26 (9), 1837-
723		1842.
724	(59)	Tegze, A.; Sági, G.; Kovács, K.; Homlok, R.; Tóth, T.; Mohácsi-Farkas, C.;

725		Wojnárovits, L.; Takács, E. Degradation of fluoroquinolone antibiotics during
726		ionizing radiation treatment and assessment of antibacterial activity, toxicity
727		and biodegradability of the products. Radiat. Phys. Chem. 2018, 147
728		(February), 101–105.
729	(60)	Guo, Q.; Du, Z.; Shao, B. Simulation and experimental study on the
730		mechanism of the chlorination of azithromycin. J. Hazard. Mater. 2018, 359
731		(July), 31–39.
732	(61)	Wang, H.; Hu, C.; Liu, L.; Xing, X. Interaction of ciprofloxacin chlorination
733		products with bacteria in drinking water distribution systems. J. Hazard. Mater.
734		2017 , <i>339</i> , 174–181.
735	(62)	Dodd, M. C.; Shah, A. D.; Von Gunten, U.; Huang, C. H. Interactions of
736		fluoroquinolone antibacterial agents with aqueous chlorine: Reaction kinetics,
737		mechanisms, and transformation pathways. Environ. Sci. Technol. 2005, 39
738		(18), 7065–7076.

(63) Wang, P.; He, Y. L.; Huang, C. H. Oxidation of fluoroquinolone antibiotics and

739

740		structurally related amines by chlorine dioxide: Reaction kinetics, product and
741		pathway evaluation. <i>Water Res.</i> 2010, <i>44</i> (20), 5989–5998.
742	(64)	Domagala, J. M. Structure-activity and structure-side-effect relationships for
743		the quinolone antibacterials. J. Antimicrob. chemoterapy 1994, No. 33, 685-
744		706.
745	(65)	Jiao, S.; Zheng, S.; Yin, D.; Wang, L.; Chen, L. Aqueous photolysis of
746		tetracycline and toxicity of photolytic products to luminescent bacteria.
747		<i>Chemosphere</i> 2008 , <i>73</i> (3), 377–382.
748	(66)	Wang, H.; Shi, W.; Ma, D.; Shang, Y.; Wang, Y.; Gao, B. Formation of DBPs
749		during chlorination of antibiotics and control with permanganate / bisulfite
750		pretreatment. <i>Chem. Eng. J.</i> 2020 , <i>392</i> (October 2019), 123701.
751	(67)	Sanchez, J. P.; Domagala, J. M.; Hagen, S. E.; Heifetz, C. L.; Hutt, M. P.;
752		Nichols, J. B.; Trehan, A. K. Quinolone Antibacterial Agents. Synthesis and

753		Structure-Activity Relationships of 8-Substituted Quinoline-3-carboxylic Acids
754		and 1,8-Naphthyridine-3-carboxylic Acids. J. Med. Chem. 1988, 31 (5), 983-
755		991.
756	(68)	Higgins, P.; Fluit, A.; Schmitz, FJ. Fluoroquinolones: Structure and Target
757		Sites. <i>Curr. Drug Targets</i> 2005 , <i>4</i> (2), 181–190.
758	(69)	Escher, B. I.; Neale, P. A.; Villeneuve, D. L. The advantages of linear
759		concentration-response curves for in vitro bioassays with environmental
760		samples. <i>Environ. Toxicol. Chem.</i> 2018 , <i>37</i> (9), 2273–2280.
761	(70)	Müller, M. E.; Vikstrom, S.; König, M.; Schlichting, R.; Zarfl, C.; Zwiener, C.;
762		Escher, B. I. Mitochondrial Toxicity of Selected Micropollutants, Their
763		Mixtures, and Surface Water Samples Measured by the Oxygen Consumption
764		Rate in Cells. <i>Environ. Toxicol. Chem.</i> 2019 , <i>38</i> (5), 1000–1011.
765		

767			
768			
769			
770			
771			

773 Graphical Abstract

775

776

778	
779	
780	
781	
782	
783	
784	
785	
786	
787	
	Biological Analysis Chlorination experiments Bioactive Computational Analysis Computational Analysis
788	Chemical Analysis Non-bioactive samples Chemical Analysis Non-bioactive TPs

Figure 1. Adapted effect-directed analysis workflow used in this study.

790			
791			
792			
793			
794			
795			
796			
797			
798			

799

789

802

805 ciprofloxacin), (b) antibiotic activity and (c) acute toxicity after 24h of treatment in

806	chlorination	experiments	at different	initial chlor	rine dose.	Relative	values of p	presence
-----	--------------	-------------	--------------	---------------	------------	----------	-------------	----------

- 807 and antibiotic activity were calculated with respect to the values measured at the
- 808 initial time. In the case of acute toxicity is calculated in toxic units (TU). The red
- square indicates the sample selected for further sample fractionation.

814 The relative presence of the most representative intermediates identified after 815 chlorination experiments at different chlorine dose.

816

0.0

0.5

1.0

1.5

2.0

Initial chlorine concentration (mgCl₂/L)

2.5

3.0

3.5

4.0

Figure 4. a) Suggested transformation mechanism of ciprofloxacin in chlorination experiments. In yellow, tentatively identified intermediates detected in this study. b) The relative presence of the intermediates identified after chlorination experiments at different chlorine dose. The red square indicates the sample selected for further sample fractionation.

Figure 5. PCA loadings of the presence of the intermediates identified regarding the

a) antibiotic activity and b) acute toxicity tested in chlorination samples.

825

826

828			
829			
830			
831			
832			
833			

836 CFC at the initial time); b) acute toxicity (calculated as EC₁₀ and expressed in TU)

- 837 and relative antibiotic activity of fractions collected and control samples; and c)
- 838 chemical analysis (chromatographic area) of fractions and control samples.