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ARTICLE INFO ABSTRACT

Keywords: Somatic epigenetic inactivation of the DNA repair protein O6-methylguanine DNA methyltransferase (MGMT) is

MGMT frequent in colorectal cancer (CRC); however, its involvement in CRC predisposition remains unexplored. We

Hereditary cancer assessed the role and relevance of MGMT germline mutations and epimutations in familial and early-onset CRC.

ga‘f‘cer genetics Mutation and promoter methylation screenings were performed in 473 familial and/or early-onset mismatch
pimutation

repair-proficient nonpolyposis CRC cases. No constitutional MGMT inactivation by promoter methylation was
observed. Of six rare heterozygous germline variants identified, ¢.346C > T (p.H116Y) and c.476G > A
(p.R159Q), detected in three and one families respectively, affected highly conserved residues and showed
segregation with cancer in available family members. In vitro, neither p.H116Y nor p.R159Q caused statistically
significant reduction of MGMT repair activity. No evidence of somatic second hits was found in the studied
tumors. Case-control data showed over-representation of ¢.346C > T (p.H116Y) in familial CRC compared to
controls, but no overall association of MGMT mutations with CRC predisposition. In conclusion, germline mu-
tations and constitutional epimutations in MGMT are not major players in hereditary CRC. Nevertheless, the
over-representation of ¢.346C > T (p.H116Y) in our familial CRC cohort warrants further research.

Promoter hypermethylation

1. Introduction alkyl groups primarily from the O°-position of guanine molecules. This
type of DNA lesions can be caused both by endogenous [1] and/or

The activity of O%-methylguanine DNA methyltransferase (MGMT), exogenous alkylating agents [2]. MGMT activity is vital for genome

a DNA repair enzyme, consists in the removal of potentially mutagenic integrity given that it prevents mismatch, replication and transcription
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errors, which may lead to carcinogenic and apoptotic events [3,4].

Somatic alterations of MGMT have been reported in various tumor
types including head and neck, non-small cell lung, brain, stomach,
ovarian and colorectal tumors, being its inactivation mainly caused by
promoter hypermethylation [5-8]. In particular, somatic epigenetic
inactivation of MGMT has been reported as an early event in CRC
[9-12], where it is known to be associated with KRAS and TP53 mu-
tations [5,13]. The methylation status of MGMT is a key prognostic/
predictive factor for the treatment with alkylating drugs such as Te-
mozolomide and Carmustine, especially in gliomas and metastatic
colorectal cancer (CRC). In absence of methylation, MGMT is able to
repair the cellular damage produced by alkylating agents, resulting in
chemo-resistance. In contrast, MGMT silencing prevents the removal of
alkyl groups, making the tumors sensitive to alkylating therapies
[14-17].

The implication of MGMT germline mutations in hereditary cancer
remains unexplored. Due to its role in DNA repair and its relevance in
sporadic cancers, both features being characteristic of known heredi-
tary cancer genes [18], we hypothesized that inherited pathogenic
mutations and/or constitutional epimutations affecting MGMT might
contribute to cancer predisposition, especially to CRC, where DNA re-
pair genes are particularly relevant. We will focus our study on mis-
match repair (MMR)-proficient familial and early-onset nonpolyposis
CRC, whose genetic cause remains largely unknown [19].

2. Material and methods
2.1. Patients

With the aim of assessing the prevalence and effect of MGMT mu-
tations in hereditary nonpolyposis CRC, we obtained peripheral blood
DNA from 473 unexplained hereditary and/or early-onset nonpolyposis
CRC patients (1 proband per family). All cases were MMR-proficient,
i.e., their tumors showed microsatellite stability and/or expression of
the MMR proteins MLH1, MSH2, MSH6 and PMS2. All tested in-
dividuals were affected with cancer, 96.2% with CRC. The mean age at
cancer diagnosis was 49 (range: 16-82). Among the 473 studied fa-
milies, 58 (12.2%) fulfilled the Amsterdam criteria, 385 (81.4%) the
Bethesda guidelines, and 30 (6.3%), none of the established guidelines
for hereditary nonpolyposis CRC. Detailed description of the hereditary
nonpolyposis CRC cases included in this study is shown in
Supplementary Table S1.

All patients, of European origin, were assessed at the Hereditary
Cancer Program of the Catalan Institute of Oncology (Spain) between
1999 and 2017. Informed consent was obtained from the participants
and all methods were performed in accordance with relevant guidelines
and regulations. The study received the approval of the IDIBELL Ethics
Committee.

2.2. DNA and RNA extraction

Germline DNA from peripheral blood samples was extracted using
the FlexiGene DNA kit (Qiagen, Valencia, CA). Genomic DNA extraction
from FFPE samples was performed using the QIAamp DNA FFPE tissue
kit (Qiagen, Hilden, Germany), following the manufacturer's instruc-
tions. The RNA used for splicing analysis was extracted from peripheral
blood lymphocytes (PBLs) using a standard TRIzol’-based protocol
(Thermo Fisher Scientific, Waltham, MA, USA).

2.3. Mutational screening of MGMT

Mutational screening of the five MGMT protein-coding exons and
flanking sequences ( + 20 base pairs) was performed by direct auto-
mated (Sanger) sequencing. Data was analyzed with SeqMan Pro v.13
(DNASTAR, Madison, WI, USA). Primers used for amplification and
sequencing are shown in Supplementary Table S2.
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2.4. Computational analyses

The predicted impact of missense variants at the protein level was
analyzed using the in silico tool REVEL (variants with a score = 0.5
were considered damaging), based on its good performance [20]. Ad-
ditional predictions were provided by using SIFT [21] and PolyPhen-2
[22] (Supplementary Table S3). The potential effects on splicing were
evaluated using Human Splice Finder v.3.0. Conservation scores PhyloP
and PhastCons were obtained from the dbNSFP database (https://sites.
google.com/site/jpopgen/dbNSFP). The effects on protein stability
(Supplementary Table S4) were analyzed using PoPMuSiC v3.1 (http://
dezyme.com), ERIS (https://dokhlab.med.psu.edu/eris/login.php),
CUPSAT (http://cupsat.tu-bs.de), I-Mutant v2.0 (http://folding.biofold.
org/i-mutant/i-mutant2.0.html), MAESTRO (https://biwww.che.sbg.
ac.at/maestro/web/) and INPS-3D (http://inpsmd.biocomp.unibo.it/
inpsSuite/default/index3D).

2.5. Loss of heterozygosity (LOH)

The presence of LOH in the tumors was determined by using eight
different microsatellite markers: four sequence-tagged site (STS) mar-
kers, -D10S212, D10S1655, D10S217, and D10S1651,- spanning a re-
gion of 5.2 Mb, and four manually selected markers, two of which lie
within the second intron of MGMT (MS1, MS2) and the other two im-
mediately downstream of the gene (MS3, MS4). Fluorescently marked
primers were designed to amplify the regions of interest
(Supplementary Table S2). PCR amplification was performed in blood
(normal) and matched tumor DNA, followed by capillary electrophor-
esis on a 3130 Genetic Analyzer (Applied Biosystems, Foster City, Ca-
lifornia, USA). LOH was considered if the intensity of any allele was
reduced by 50% relative to the other allele after taking into account the
relative allelic intensities in paired non-tumor DNA.

2.6. Culture of lymphocytes and splicing analysis

The potential effect on splicing caused by MGMT (NM_002412)
c.333C > T (p.P111 =), ¢.346C > T (p.H116Y) and c.476G > A
(p.R159Q), was evaluated in RNA extracted from PBLs of the corre-
sponding carriers and controls cultured in presence and absence of
puromycin, as previously described [23]. Retrotranscription was per-
formed using the High Capacity RNA-to-cDNA Kit (Applied Biosystems,
Foster City, California, USA). RT-PCR was carried out to amplify the
cDNA-specific MGMT sequence that included the potentially affected
region (Primers in Supplementary Table S2). PCR products were run in
a 1.5% agarose gel, visualized in a UV transilluminator and subse-
quently sequenced to check for splicing alterations.

2.7. Determination of constitutional and somatic MGMT promoter
hypermethylation

Bisulfite conversion was carried out using the EZ-96 DNA
Methylation Kit (Zymo Research, Irvine, CA, USA) following the man-
ufacturer's recommended protocol. MGMT promoter hypermethylation
was determined by Methylation Specific Melting Curve Analysis (MS-
MCA) in a LightCycler® 480 II (Roche, Basel, Switzerland), as described
by Azuara et al. with slight modifications [24]. Samples were pre-
amplified by PCR for 15 cycles using external primers. The resulting
product was used as template for a 45-cycle PCR with internal primers,
followed by melting curve analysis in the LightCycler” 480 IL The
specific primers used are detailed in Supplementary Table S2. The
technique was optimized using two control samples: 1) A blood DNA
sample from a cancer-free control amplified by whole-genome ampli-
fication (GenomiPhi V2, GE Healthcare, Chicago, IL, USA), 0% me-
thylated and used as negative control; and 2) CpG Methylated Jurkat
Genomic DNA (New England Biolabs, Ipswich, MA, USA), 100% me-
thylated and used as positive control. The sensitivity of the assay was
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assessed by mixing known quantities of negative and positive controls
in order to obtain 0%, 1%, 5%, 10%, 25%, 50% and 100% methylated
samples (Supplementary Fig. S1). Methylation status was determined
by comparing the melting curves obtained from cases versus controls.
Direct bisulfite sequencing was used to confirm the MS-MCA results.
Somatic MGMT promoter methylation was assessed by using both MS-
MCA and direct bisulfite sequencing, including in the experiments the
corresponding carriers' tumor and blood DNAs, as well as seven control
DNAs obtained from FFPE normal colon tissue samples from MGMT
wildtype individuals.

2.8. MGMT expression plasmids and transduction

MGMT cDNA was obtained from the MGMT pCMV6-AC-GFP
plasmid (Origene, Rockville, MD, USA). The c.346C > T (p.H116Y)
and c.476G > A (p.R159Q) variants were introduced into the wildtype
sequence by Gibson Assembly [25], using the primers indicated in
Supplementary Table S2. The inserts, MGMT-WT, MGMT-p.H116Y and
MGMT-p.R159Q, were sub-cloned into the pLVX-ZsGreenl plasmid
(Clontech Laboratories, Mountain View, CA, USA), resulting in four
different constructs: pLVX-ZsGreenl (empty vector), pLVX-
ZsGreenl MGMT-WT, pLVX-ZsGreenl MGMT-p.H116Y and pLVX-
ZsGreenl MGMT-p.R159Q. Ten micrograms of each plasmid were
mixed with 7.5 pug of psPAX2 and 2.5 pug of pMD2.G plasmids in 1 ml of
JetPRIME buffer and 50l of JetPRIME (Polyplus-transfection S.A.,
Illkirch, France). After 10 min of room temperature incubation, the
transfection mix was added drop-wise to a 10-cm dish containing 10 ml
of DMEM and Lenti-X 293T cells (Clontech Laboratories, Mountain
View, CA, USA) at 80% confluence to produce lentivirus. After 72 h, the
supernatant with high-titer lentiviral particles was recovered and 0.45-
um filtered. SW48 cells were incubated with 1.5ml of concentrated
viral supernatant supplemented with 10 pg/ml of polybrene (Santa Cruz
Biotechnology, Inc., Dallas, TX, USA) in six-well plates for 24 h. Cells
high transduction efficiency was confirmed at the microscope by the
presence of green fluorescence (ZsGreenl) and guaranteed by FACS
sorting.

The SW48 cell line was purchased from the American Type Culture
Collection (ATCC, Manassas, VA, USA) and cultured in Dulbecco's
Modified Eagle Medium with 10% fetal bovine serum, 1% penicillin and
streptomycin, at 37 °C under a 5% CO2 atmosphere. MGMT protein
expression was confirmed by Western Blot using the MGMT Antibody
#2739 (Cell Signaling Technology, Danvers, MA, USA) at a con-
centration of 1:1000, following a standard protocol.

2.9. MGMT activity assay

The effect of p.H116Y and p.R159Q on MGMT repair activity was
studied in vitro using a modified version of the MGMT Assay Kit
MDO0100 (Sigma-Aldrich, St. Louis, MO, USA). The modification was
based on the use of fluorescently labelled oligonucleotides versus the
radioactive labelling of the original protocol. Two 5’-HEX labelled oli-
gonucleotides with identical genetic sequence, 5-GAACTGCAGCTCCG
TGCTGGCCC-3’, were used in this assay. The difference lay on the
presence of an O°methyl-dG that blocks the Pstl restriction site
(CTGCA’G) in one of the oligonucleotides, while the non-methylated
oligonucleotide served as positive control (unblocked Pstl site).
Incubation of the first (methylated) oligonucleotide with Pstl results in
no digestion and the presence of a unique 23-nt band when the product
is run in a denaturing urea polyacrylamide gel (Urea PAGE). Incubation
of the second (unmethylated) oligonucleotide results in two bands (8
and 23 nt).

The functional assay consisted of the incubation of the methylated
oligo with the total protein (500 g per reaction) extracted from the cell
lysates obtained from the SW48cell lines transfected with pLVX-
ZsGreenl (empty vector), pLVX-ZsGreenl MGMT-WT, pLVX-
ZsGreenl MGMT-p.H116Y and pLVX-ZsGreenl MGMT-p.R159Q.
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Subsequently, substrate extraction and precipitation was performed to
purify the oligonucleotides and eliminate the proteins. DNA quantifi-
cation using Nanodrop 2000 (Thermo Fisher Scientific, Waltham, MA,
USA) was carried out to ensure equal quantities of precipitated oligo-
nucleotide for each MGMT variant-specific assay. The purified oligo-
nucleotides were incubated with PstI (10 units per reaction) for 1 h at
37 °C, after which a digestion stop solution (90% Formamide, 20 mM
EDTA) was added and the products denatured at 95 °C for 5min. The
products were run in a denaturing urea polyacrylamide gel (6 g Urea,
6.25 mL acrylamide/bis-acrylamide 40% solution, 1.25 mL TBE 10x,
5 uL TEMED and 125 pL APS 10%). Image acquisition was performed
on a Typhoon FLA 9500 at 700V and the results processed using the
Image-Quant software (General Electric, Boston, MA, USA). Relative
MGMT repair activity was calculated by dividing the intensity of the 8-
nucleotide band by the sum of the intensities of the 23-nucleotide band
and the 8-nucleotide one.

2.10. Statistical analyses

The frequencies of variants in MGMT in familial CRC cases and
population controls were compared using Fisher's exact test. Bonferroni
correction was applied for the association tests performed for the
common variants. All tests were two-sided. The analyses were per-
formed using R statistical software. MGMT activity differences between
MGMT-WT and the different variants were compared using a t-test. The
analysis was performed with GraphPad Prism 7 (GraphPad Software
Inc., CA, USA), using data from three independent replicates. P-values
below 0.05 were considered statistically significant.

3. Results and discussion

Based on the fact that somatic MGMT inactivation is mostly epige-
netic [5-8], we hypothesized that constitutional MGMT promoter me-
thylation may cause increased cancer risk, mimicking the constitutional
MLH1 epimutations found in early-onset and familial CRC patients
[26,27]. However, no constitutional MGMT promoter methylation was
detected in any of the 473 patients analyzed.

MGMT mutational screening of 473 unrelated MMR-proficient
HNPCC cases identified 6 heterozygous rare (MAFgnomap < 0.1%)
variants -four missense (Supplementary Fig. S2) and two synonymous-
in 9 unrelated families (Table 1). In addition to the rare variants
(Supplementary Table S3), five common variants -two synonymous and
3 missense- were identified. No over-representation of these variants
was found in the hereditary CRC cohort compared to cancer-free con-
trols from the same geographical area (Supplementary Table S5).
Likewise, a CRC case-control study in Spanish population showed no
association with the disease (Supplementary Table S6).

No effect on splicing was predicted for c.471C > T (p.A157 =).
Despite the predicted effect for MGMT ¢.333C > T (p.P111 =)
(Human Splicing Finder v.3.0: New ESS, ESE disrupted), analysis of the
carrier's RNA did not reveal splicing alterations (data not shown), thus
discarding a deleterious effect.

Of the four identified missense variants, c.293A > C (p.N98T), lo-
cated at a non-conserved residue (Supplementary Fig. S3) and predicted
benign (REVEL score 0.062), was detected in an individual diagnosed
with CRC at age 37 in the context of an Amsterdam-positive family. The
microsatellite marker evaluation in search of tumor LOH revealed the
presence of microsatellite instability (Supplementary Fig. S2), which
led to the genetic analysis of a hereditary cancer multi-gene panel in the
proband [28]. This approach allowed the identification of a pathogenic
POLE mutation, ¢.881T > G (p.M294R), as the cause of the increased
CRC risk in the family. The POLE mutation had been previously iden-
tified by our group in another hereditary cancer family, where hy-
permutation and the POLE-associated mutational signature [29] were
detected in the carriers’ tumors (unpublished data).

The ¢.319A > G (p.I107V) variant was identified in a 51 year-old
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Fig. 1. Pedigrees of the families carrying MGMT p.R159Q and p.H116Y. Filled black symbol, affected with cancer; black arrow, index case. Ages at information
gathering or at death, when available, are indicated on the top-right corner, and ages at cancer diagnosis, after tumor type. Mutation carriers are indicated with the
corresponding variant, and non-carriers, as WT. Abbreviations: ca, cancer; CRC, colorectal cancer; HP, hyperplastic polyp; Ad., adenoma.

woman diagnosed with CRC at age 39, also from a family fulfilling the
Amsterdam I criteria. No biological material could be obtained from
either her mother or her maternal uncle; both diagnosed with CRC at
ages 67 and 52, respectively. The variant, predicted benign (REVEL
score: 0.02), was located at a non-conserved residue (Supplementary
Fig. S3). No somatic second hit was identified in the proband's colon
tumor (Table 1; Supplementary Fig. S2). These findings, together with
the fact that the proband also carried a functionally relevant mutation
in BRF1 (c.35C > T; p.T12M), a recently reported candidate hereditary
CRC gene [30], do not support a pathogenic effect for MGMT
c.319A > G (p.I107V).

The other two mutations, ¢.346C > T (p.H116Y) and c.476G > A
(p-R159Q), identified in three and one families, respectively (Fig. 1),
affected highly conserved residues (Supplementary Fig. S3). Both were
predicted benign by REVEL (scores: 0.304 for p.H116Y, and 0.447 for
p-R159Q) (Table 1). Despite this prediction, mutations affecting residue
159, the arginine finger located in the DNA binding domain, had been
reported in the literature as responsible of the loss of the DNA repair
activity (p.R159G) and the reduction of activity towards methylated
DNA by over 1000 fold (p.R159A and p.R159D) [31,32]. Likewise,
histidine 116 is located within the methyltransferase domain, being a
Zinc-binding residue (Supplementary Fig. S4).

The ¢.346C > T (p.H116Y) variant was found in three unrelated
CRC patients. All three families fulfilled the Bethesda guidelines for
hereditary nonpolyposis CRC (Fig. 1B, C and D). Cosegregation could be
performed in one family (Fig. 1B), where the proband's sister, affected
with breast cancer at age 49, and one of his three cancer-free descen-
dants (ages 38-43), resulted carriers. Second hit analyses could be
performed in the colon tumor samples of two ¢.346C > T carriers
(probands of the families represented in Fig. 1C and D); no MGMT so-
matic LOH or mutation were detected in any of them (Supplementary
Fig. S2). In vitro, no statistically significant reduction in MGMT activity
was detected for p.H116Y when compared to the wildtype control (p-
value = 0.2114) (Fig. 2). Of note, the results of the in vitro assay should
be nevertheless interpreted with caution, as we have no data about the
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sensitivity of the assay to detect incomplete reduction of MGMT ac-
tivity. The variant, present in 3 families in our study (0.63%), was not
found in 1006 exomes of familial/early onset CRC cases (CanVar;
https://canvar.icr.ac.uk/). Considering the two studies altogether, the
frequency of p.H116Y in (European) familial CRC is 3/1479 (0.20%);
significantly higher than the frequency observed in non-Finnish Eur-
opean cancer-free population (2/51,079; 0.0039%; source: GnomAD
v.2.1) (p = 0.0002131, Fisher's exact test). Although all (or most) cases
and controls are of European origin, they are not properly matched,
which may have caused the observed imbalance. When focused on
Spanish population, no carriers of p.H116Y were found among 1613
unrelated cancer-free Spanish individuals (CIBERER Spanish Variant
Server, cancer group excluded; http://csvs.babelomics.org/) compared
to the 3 carriers identified in the hereditary CRC cohort (3/473 cases vs.
0/1613 in controls; (p = 0.0116; Fisher's exact test).

The ¢.476G > A (p.R159Q) variant was identified in a 44 year-old
woman diagnosed with colon cancer at age 38, and in her mother and
maternal aunt, diagnosed with CRC at age 47 and endometrial cancer at
age 67, respectively (Fig. 1A). The proband's father, diagnosed with
skin and colon cancers at ages 69 and 74, and her brother, diagnosed
with lung cancer, were not carriers of the MGMT variant. No somatic
second hits were detected in the tumors from the three c.476G > A
carriers (Supplementary Fig. S2). The in vitro MGMT activity assay
showed no statistically significant differences for p.R159Q when com-
pared to wildtype MGMT (p-value = 0.6236) (Fig. 2), a priori sup-
porting the benign nature of the variant. In fact, p.R159Q was not found
at higher frequency in familial CRC cases (1/473 families from the
current study plus 0/1006 familial/early-onset CRC cases available at
https://canvar.icr.ac.uk/; total 1/1479 (0.067%)) compared to non-
Finish European Population (GnomAD) (27 heterozygotes (0.4%) and 1
homozygote in 63,353 individuals), confirming the lack of association
with CRC. This lack of association was also found when comparing only
Spanish individuals (1/473 cases vs. 1/1613 cancer-free controls;
source http://csvs.babelomics.org/; p = 0.4022).

Finally, we evaluated the overall presence of germline MGMT
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Fig. 2. MGMT repair activity assay. (A) Results from a single MGMT assay by
using protein extracts prepared from SW48 cell line transfected with the MGMT
missense variants (p.H116Y and p.R159Q), empty vector, and wildtype (WT).
The amount of non-repaired substrate migrates as a 23-nucleotide (nt) oligo-
nucleotide (upper band), while the repaired substrate migrates as an 8-nt oli-
gonucleotide (lower band). Relative activity is calculated for each sample by
dividing the intensities of the 8-nt band by 23-nt plus 8-nt bands. The indicated
value of relative activity corresponds to three independent experiments (mean
and range). (B) Graph showing the results of the MGMT activity assay, in-
cluding the mean (bars) and standard deviation (SD) from the three experi-
ments.

mutations in cancer-free population and familial CRC, in order to pro-
vide a definitive answer about the association of MGMT germline mu-
tations with CRC predisposition. To do that, we analyzed: i) the publicly
available data in the NHLBI GO Exome Sequencing Project, which in-
cludes data from 4300 Caucasians (ESP6500SI—V2 (not related to
cancer), European American population); ii) the 1006 exomes of fa-
milial/early onset CRC cases analyzed by Chubb et al. [33] and avail-
able at https://canvar.icr.ac.uk/; and iii) the results obtained from the
473 familial/early-onset CRC unrelated cases analyzed in our study. We
considered all variants with a population MAFg,omap < 1% that were
stop-gain, frameshift, affecting canonical splice sites (reference tran-
script NM_002412.3), or missense variants predicted deleterious by
REVEL (cutoff score: 0.50). Based on these criteria, three loss-of-func-
tion mutations in MGMT were identified among the 4300 Caucasians
included in NHLBI GO Exome Sequencing Project (0.07% controls), and
no germline (predicted) pathogenic MGMT mutations were identified
either in our study (0/473 familial CRC) or in the familial CRC cases
published by Chubb et al. (0/1006), suggesting no association of
germline MGMT mutations with CRC predisposition. These data should
be interpreted with caution because, although all from European po-
pulations, cases and controls are not properly matched.

4. Conclusions

Our findings suggest that, overall, germline mutations and epimu-
tations in MGMT are not major colorectal cancer predisposing factors.
Nevertheless, the over-representation of c¢.346C > T (p.H116Y) in
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familial CRC warrants further research to confirm or discard its asso-
ciation with cancer predisposition and if confirmed, estimate the as-
sociated risks to assess its value for genetic testing and counselling.
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