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Purpose: Breast cancer (BC) risk prediction allows systematic
identification of individuals at highest and lowest risk. We extend
the Breast and Ovarian Analysis of Disease Incidence and Carrier
Estimation Algorithm (BOADICEA) risk model to incorporate the
effects of polygenic risk scores (PRS) and other risk factors (RFs).

Methods: BOADICEA incorporates the effects of truncating
variants in BRCA1, BRCA2, PALB2, CHEK2, and ATM; a PRS based
on 313 single-nucleotide polymorphisms (SNPs) explaining 20% of
BC polygenic variance; a residual polygenic component accounting
for other genetic/familial effects; known lifestyle/hormonal/repro-
ductive RFs; and mammographic density, while allowing for
missing information.

Results: Among all factors considered, the predicted UK BC risk
distribution is widest for the PRS, followed by mammographic
density. The highest BC risk stratification is achieved when all
genetic and lifestyle/hormonal/reproductive/anthropomorphic

factors are considered jointly. With all factors, the predicted
lifetime risks for women in the UK population vary from 2.8% for
the 1st percentile to 30.6% for the 99th percentile, with 14.7% of
women predicted to have a lifetime risk of ≥17–<30% (moderate
risk according to National Institute for Health and Care Excellence
[NICE] guidelines) and 1.1% a lifetime risk of ≥30% (high risk).

Conclusion: This comprehensive model should enable high levels
of BC risk stratification in the general population and women with
family history, and facilitate individualized, informed decision-
making on prevention therapies and screening.
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INTRODUCTION
Breast cancer (BC) is the most common cancer among
females in the Western world. However, a large proportion of
BCs occur in a minority of the population who are at
increased risk.1,2 Screening and prevention options are
available to reduce morbidity and mortality, including more
frequent mammograms and other screening modalities (e.g.,
magnetic resonance imaging [MRI]) and the use of chemo-
prevention (e.g., tamoxifen). In the United Kingdom3 such
strategies are only recommended for women at increased BC
risk, who are currently identified through family history (FH)

of cancer or through screening for pathogenic variants in
high-risk genes, such as BRCA1 and BRCA2. Susceptibility to
BC is, however, multifactorial and many genetic variants and
reproductive, hormonal, anthropomorphic, lifestyle, and
imaging factors are known to be associated with the risk of
developing the disease. Comprehensive risk models that
incorporate all known factors would improve the ability to
identify those at increased risk, and thus those most likely to
benefit.4

Genetic susceptibility to BC is conferred by rare, high-
penetrance variants in BRCA1 and BRCA2;5 rare,
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intermediate-risk variants (e.g., in PALB2, ATM, and
CHEK2);6 and by commoner variants (mostly single-
nucleotide polymorphisms [SNPs]) conferring lower risks.7,8

It has been shown that the BC risks associated with SNPs
combine multiplicatively and hence that their joint effect can
be conveniently represented as a polygenic risk score (PRS).7,9

PRSs have been shown to result in substantial levels of BC risk
stratification in the population.2,7,10,11 However, the known
genetic factors explain only about 45% of the observed
familial aggregation.
Several other risk factors are also associated with increased

BC risk, including mammographic density12 (MD), repro-
ductive factors (e.g., age at menarche,13 age at menopause,13

parity,14 and age at first live birth14), exogenous hormonal
factors (e.g., use of oral contraceptive [OC]15 and use of
postmenopausal hormone replacement therapy [HRT]16),
anthropometric factors (e.g., height17 and body mass index
[BMI]12,16), and lifestyle factors (e.g., alcohol intake18)
(collectively referred to as risk factors [RFs]; we refer to the
set of RFs excluding MD as questionnaire-based risk factors
[QRFs]). Each of these RFs has only a modest effect on cancer
risk, but in combination and with FH and known genetic
factors, they can improve risk stratification.2,10,19 Moreover,
as some of these factors can be modified, they can be used in
the counseling process to guide at-risk women on possible
risk-reducing options through changes in behavior or lifestyle
(e.g., reduction in BMI, alcohol intake, or HRT use).
Genetic data and data on other RFs are now becoming

easily available in clinical practice through electronic health
records, cost-effective sequencing technologies, and efforts
such as the 100,000 Genomes Project. Therefore, there is a
growing need for BC risk prediction to be made available
more widely than specialist cancer family clinics. Risk
prediction models that incorporate all known genetic and
other RFs allow for the objective and systematic identification
of those at increased risk in front-line health care and enable
their referral to the most appropriate health-care pathway.3

They can also transform the current genetic testing and
counseling processes at the clinical genetics level.
The Breast and Ovarian Analysis of Disease Incidence and

Carrier Estimation Algorithm (BOADICEA)20–23 is a risk
prediction model that is used to compute the probabilities of
carrying rare loss-of-function variants in the breast or ovarian
cancer susceptibility genes BRCA1, BRCA2, PALB2, CHEK2,
and ATM (referred to as the “major genes”), and to estimate
the future risks of developing breast or ovarian cancer.
BOADICEA uses information on cancer FH, screening for
variants in the high-risk genes, tumor pathology, and basic
demographic factors (such as year of birth and country).
BOADICEA accounts for the residual familial aggregation of
BC through a polygenic component that models the multi-
plicative effects of a large number of variants, each having a
small contribution to the familial risk.22

In this work, we have extended the BOADICEA BC risk
prediction model to incorporate the explicit effects of
common BC susceptibility loci, MD, and other QRFs. This

is the first comprehensive model of its kind that allows for
consistent prediction of personal BC for unaffected women on
the basis of their rare (high risk and moderate risk) BC genetic
susceptibility variants, common genetic variants, explicit FH
and other known RFs.

MATERIALS AND METHODS
Breast cancer incidence in BOADICEA
BOADICEA models cancer incidence explicitly as a function
of genotypes for rare susceptibility variants together with a
polygenic component.20–24 By using an explicit genetic model,
BOADICEA can account for both measured genotypes and
FH. Specifically, BOADICEA assumes that the BC incidence,
λ(i)(t), for individual i at age t, depends on their underlying
genotype through:

λðiÞ tð Þ ¼ λ0 tð Þexp
X5

μ¼1

βMGμ tð Þ
Yμ�1

ν¼1

1� G ið Þ
ν

� �
G ið Þ
μ þ βPG tð Þx ið Þ

P

 !
:

(1)

λ0(t) is the baseline incidence (applicable to a nonpatho-
genic variant carrier with a zero polygenotype, xðiÞP ¼ 0);
GðiÞ
μ are indicator variables for the presence/absence of a

pathogenic variant in a major gene, taking values 1 if a
pathogenic variant is present and 0 otherwise with μ= 1,…,5
representing BRCA1, BRCA2, PALB2, CHEK2, and ATM
respectively; and βMGμ(t) represents the age-specific log-
relative risks (log-RRs) associated with the major genes,
relative to the baseline incidence (for a person with more than
one rare pathogenic variant, the risks are determined by the
lowest μ). These parameter estimates are identical to those
previously published,20 with the exception of CHEK2 for
which the estimates have been updated based on a recent
large-scale association analysis25 (Supplementary Material).
xðiÞP is the polygenotype for individual i, assumed normally
distributed in the general population with mean 0 and
variance 1, and βPG(t) is the age-specific log-RR associated
with the polygene, relative to the baseline incidence. The
baseline incidence is chosen such that the overall incidence
agrees with the population incidence.22 The population
incidence is birth cohort and country specific, but for
simplicity this is ignored here. We have previously adapted
the model based on incidence for a number of geographic
regions23 and have extended it to utilize Spanish cancer inci-
dences (Supplementary Material). The absolute risks pre-
sented here are based on UK incidences.
BOADICEA also models the incidence of ovarian cancer,

assumed independent of the BC incidence given the major
genotype, and not dependent on the polygenotype. The
ovarian cancer component of the model is identical to that
published previously22 and not considered further here.

Including the effects of risk factors and mammographic
density
To incorporate the effects of RFs into the BOADICEA model
we extended Eq. 1 such that the BC incidence is:
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λ ið Þ tð Þ ¼ λ0 tð Þ
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:

(2)

where μ ¼ 6 corresponds to a noncarrier of pathogenic
variants in the major genes, with βMG6 tð Þ ¼ 0, and G ið Þ

6 ¼ 1 for
noncarriers of pathogenic variants, and 0 otherwise.

Here ρ indexes the RFs that are present in the model, which
are modeled as categorical factors and hence define a
(potentially very large) set of possible RF combinations;
βRFρμðtÞ is the vector (length κρ − 1 where κρ is the number of
categories for RF ρ, with one category being the baseline) of
the log-RRs associated with RF ρ at age t, which may depend
on the major genotype, μ; and zðiÞRFρ is the corresponding
vector of indicator variables (0 or 1) that indicate the category
of RF ρ for individual i (1 for the observed category, 0
otherwise, with all elements 0 for the baseline).
As above, the baseline incidence λ0(t) is determined so that

the total age-specific incidences, summed over all possible RFs
and genotypes, agree with the population incidence (given the
assumed population distributions and RRs for each RF).26 To
allow appropriately for missing RF information, only those
RFs measured on a given individual are considered (thus, the
baseline incidence, λ0(t), is determined for each individual
dependent on their measured RFs).
Note that the RF categories for an individual are assumed

not to change with age, because otherwise the model would
involve the joint distributions of RFs over ages and become
intractable. However, the log-RRs can be age-dependent. In
cases where there are nonmultiplicative interactions between
RFs, the RFs are considered as a single factor in Eq. 2, using
estimates of their joint effect.
The RR estimates and population distributions for each

RF were obtained from large-scale external studies and
from national surveillance data sources or large-scale
population-based studies, using a synthetic approach as
previously described.2 Where possible we used RR esti-
mates that were adjusted for the other RFs included in the
model, and distributions from the UK. We incorporated
the RFs included in the synthetic empirical model of
Garcia-Closas2 with updated estimates derived by Pal
Choudhury (unpublished data). For the current imple-
mentation we assumed that the RF distributions do not
vary by birth cohort. We assumed that the effects of the
RFs on BC risk were independent (i.e., log additive, as in
Eq. 2). The RFs incorporated in the model were MD, age at
menarche, age at menopause, parity, age at first live birth,
OC use, HRT use, height, BMI, and alcohol intake. Details
of their categories, RRs, and population distributions are
given in the Supplementary Tables s2.1–s2.10.
The time required to calculate the age-specific baseline

incidence in Eq. 2 is proportional to the product of the
number of categories for each RF. For the full set of RFs

described above, this leads to lengthy runtimes, which
would compromise real-time calculations in clinical prac-
tice. To reduce the runtime of the code we combined a
number of factors (age at menarche, parity, height, and
alcohol intake) into a single factor with fewer categories
(Supplementary Material). This approximation resulted in
almost no change in the predicted risks (differences in the
fourth significant figure), and achieved a significant (160-fold)
speed up.

Including the effects of common breast cancer susceptibility
variants
BOADICEA accounts for the residual familial aggregation of
BC not due to rare variants in the major genes via a polygenic
component, xP (Eqs. 1 and 2). In previous versions, the
polygenic component was treated as unmeasured. To
incorporate the effects of known common variants, the
polygenic component is decomposed into a measured and an
unmeasured component:

xP ¼ xPRS þ xR: (3)

xPRS is the (observed) PRS, summarizing the effects of
multiple SNPs, which is assumed normally distributed with
mean 0 and variance α2 in the general population, with 0 ≤
α ≤ 1. The parameter α2 is interpreted as the proportion of the
overall polygene explained by the PRS. The residual
component, xR, representing other unmeasured genetic and
familial effects, is then normally distributed with mean 0 and
variance 1−α2.
BOADICEA defines the absolute BC risks and the

probabilities of being a carrier of a rare pathogenic variant
as ratios of pedigree likelihoods.21,22,27 Calculating pedigree
likelihoods involves taking the joint sum/integration over all
possible genotypic values for each person in the pedigree, of
the probability that they exhibit their observed phenotypes
given their genotype (penetrance27). In principle, the PRS
could be incorporated using separate polygenes as described
in Eq. 3, however this can lead to very large numbers of
possible genotypes and hence runtimes that are impractically
long. Instead, under the assumption that α is age-indepen-
dent, it was incorporated by expressing the penetrance as a
function of the conditional probability of observing the PRS
given the total polygenotype:

f xPRSjxPð Þ; (4)

which follows a normal distribution (Supplementary Material,
Eq. s1.12).
BOADICEA evaluates likelihoods using the MENDEL

software.28 Because MENDEL considers only finite
discrete genotypes, the polygenotype is approximated via
the hypergeometric polygenic model (HPM).26,27 Under
the HPM, the continuous polygenotype is discretized
according to:

xP ! x HPMð Þ
P RjNð Þ ¼ R� Nffiffiffiffiffiffiffiffiffi

N=2
p ; (5)

ARTICLE LEE et al

1710 Volume 21 | Number 8 | August 2019 | GENETICS in MEDICINE



where R can take values 0,…,2N and has a binomial
distribution, B 2N; 12

� �
, in the general population. For

BOADICEA26 N was taken to be 3. The conditional
probability in Eq. 4 needs to account for the discrete
distribution of xP assumed in Eq. 5 (Supplementary Material).

Implementation of the PRS
For the current implementation, we used the BC PRS based
on 313 SNPs.9 The overall polygenic log-RR in BOADICEA
varies with age22 (Eqs. 1 and 2), but the proportion of the
variance explained by the PRS (denoted as α2 above) is
assumed to be constant with age. This assumption induces a
specific form to the age-specific RRs conferred by the PRS.
The proportion α2 was estimated by Mavaddat et al.9 using
logistic regression applied to data from the Breast Cancer
Association Consortium, in which the age-specific log-relative
risk was constrained to be a function of the age-dependent
polygenic relative risk in BOADICEA. The latter had been
estimated previously using complex segregation analysis.22

Using this approach α was estimated to be 0.45 (95%
confidence interval [CI]: 0.43–0.46). The PRS implemented
here is therefore assumed to explain 20% of the total
polygenic variance (α2= 0.20).

RESULTS
Breast cancer risk distributions defined by combinations of
risk factors
Figs. 1–3, Table 1, and Supplementary Figures s6.1–4 show
the BC risk distributions predicted by BOADICEA as defined
by different RFs. Due to BOADICEA using explicit FH
configurations, risks are shown conditional on FH. The
distributions of 10-year risk at age 40 and lifetime (defined
here as risk from age 20 to 80 years) BC risks in the
population (i.e., a woman with unknown FH) are shown in
Fig. 1 and Table 1. The backgrounds of the graphs are shaded
indicating National Institute for Health and Care Excellence
(NICE) risk categories for women with a FH of BC:3 (1) near-
population risk (pink: 10-year risk of <3%, lifetime risks of
<17%), (2) moderate risk (yellow: 10-year risk of ≥3% but
<8%, lifetime risks of ≥17% but <30%), and (3) high risk
(blue: 10-year risk of ≥8%, lifetime risks of ≥30%). We also
consider a low risk category, corresponding to a risk of less
than 30% of the population risk (i.e. a 10-year risk <0.5%,
lifetime risk <3.6%). For simplicity we discuss these results in
terms of the 10-year risks, but results based on lifetime risks
are similar.
As expected, the variation in risk is greatest when

including all RFs in the model (light blue line labeled
“QRFs, MD and PRS,” Fig. 1a). When considered sepa-
rately, the distribution is widest for the PRS, followed by
MD, and narrowest for the QRFs only. Using the full set of
RFs (i.e., combined effects of the PRS, MD, and QRFs), the
predicted 10-year risks at age 40 vary from 0.2% for the
women in the 1st percentile to 7.0% for the 99th.
Approximately 86.4% of women in the population are
predicted to be at near-population risk of developing BC,

including 12.1% who are at low risk, with 13.6% at moderate
or high risk (Table 1). Supplementary Figures s6.1 and s6.2
show the reclassification of women with unknown FH
between risk categories, as the different factors are considered
in the risk prediction.
Figure 2, Table 1, and Supplementary Figures s6.3 and s6.4

show the corresponding distributions of risk for a woman
whose mother has been diagnosed with BC at age 50 years
and the reclassification into different risk categories. On the
basis of FH alone these women would be in the NICE
moderate risk category. Using the full set of RFs (light blue
line labeled “QRFs, MD and PRS,” Fig. 2a), the predicted 10-
year risks at age 40 vary from 0.5% for women in the 1st
percentile to 11.0% for those in the 99th. Of women with this
FH, 60.1% will be at near-population risk, 36.2% at moderate
risk, and 3.7% at high risk. As in Fig. 1, the variation in risk is
largest for the PRS and smallest for the QRFs only. However,
the overall variation in log-risk by PRS is somewhat smaller,
because some of the effect of the PRS is accounted for by
knowledge of the explicit FH. The joint effect of FH and PRS
on predicted BC risks is further demonstrated in Figure s5.1
and Table s5.1. With unmeasured PRS (green circles) a
woman’s risk increases with increasing FH. Although the
variance of the log-risk decreases with the number of affected
relatives, the difference in absolute risk between women in the
top (brown squares) and bottom (red crosses) percentiles
increases with the number of affected relatives. Further, the
difference between the risks with unmeasured PRS and a
woman on the 50th percentile (orange triangles) increases
with FH, showing that an increased FH implies a higher PRS.
Figure 3 shows the distribution of risks for a woman who

carries a moderate risk CHEK2 1100delC, ATM pathogenic
variant, or a rare moderate- to high-risk pathogenic variant in
PALB2. In the absence of other data, a CHEK2 pathogenic
variant carrier with unknown FH (Fig. 3a, c) would fall in the
moderate risk category (lifetime risk of 22.1%). However, on
the basis of the full set of RFs (light blue line labeled “QRFs,
MD and PRS,” Fig. 3a), 35.2% of CHEK2 1100delC carriers
would be reclassified as at near-population risk and 20.1% as
at high risk. On the other hand, a CHEK2 1100delc carrier
with a mother affected with BC at age 50 would be categorized
as high risk (lifetime risk of 32.2%) on the basis of FH alone
(Fig. 3b, d), whereas on the basis of the full set of RFs (light
blue line labeled “QRFs, MD and PRS,” Fig. 3b), 54.2% of
such women would be reclassified as moderate or near-
population risk. Similar patterns are seen for ATM and
PALB2 pathogenic variant carriers (Fig. 3e, f).

DISCUSSION
Over the past decade, there have been significant advances
in our understanding of susceptibility to BC. Reliable
estimates of the effects of deleterious variants in suscept-
ibility genes, and of multiple common low-risk variants, on
cancer risk have become available. These estimates can be
used to counsel women and inform targeted screening and
prevention, but an important challenge is to combine these
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effects with other RFs. Incorporating the effects of all known
factors together in a single model should provide a more
consistent approach to risk prediction and improve risk
stratification. We have presented a methodological frame-
work for incorporating the effects of lifestyle, hormonal and
reproductive RFs, of MD, and of the common BC
susceptibility genetic variants into the BOADICEA BC risk
prediction model. This is the first comprehensive BC risk
model of its kind to incorporate the effects of these RFs
together with complete information on the FH of cancer
(Table 2).
The results demonstrate that by incorporating the effects of

all known RFs into the model, much greater levels of BC risk
stratification can be achieved both in the general population

and in women with a FH of BC. Ignoring FH, the combined
QRFs, MD, and PRS effects can identify ~13% of the women
in the population who would be classified at moderate or high
risk of developing BC (Table 1). On the other hand, ~12% will
be at low risk. Similarly, on the basis of the BOADICEA-
predicted risk, given FH alone, women with an affected first-
degree relative at age 50 would classified as being at moderate
risk of developing BC (Table 1). However, the addition of the
RFs and PRS can identify 60.7% of those women who would
be recategorized as near-population risk and 3.5% who would
be recategorized as high risk of developing BC (Table 1). The
PRS gives the biggest contribution to risk stratification,
followed by MD. The results also show that significant levels
of risk recategorization can occur for carriers of rare
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Fig. 1 Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA)-predicted breast cancer risk for a
female with unknown family history (equivalent to the distribution of risk in the population) and untested for rare pathogenic variants on
the basis of the different predictors of risk (questionnaire-based risk factors [QRFs], mammographic density [MD], and polygenic risk scores
[PRS]). Variability due to residual family history of cancer is not taken into account. (a, c) Ten-year risk from age 40 to age 50 years; (b, d) lifetime risk (from
age 20 to 80 years). (a, b) Probability density function against absolute risk for 10-year and lifetime risks respectively; (c, d) absolute risk against cumulative
distribution. The backgrounds of the graphs are shaded to indicate the familial breast cancer risk categories based on the National Institute for Health and
Care Excellence (NICE) guidelines:3 (1) near-population risk shaded in pink (<17% for lifetime risk and <3% for 10-year risk), (2) moderate risk shaded in
yellow (≥17% and <30% for lifetime risk and ≥3% and <8% for 10-year risk), and (3) high risk, shaded in blue (≥30% for lifetime risk and ≥8% for 10-year
risk). Specific values are given in Table 1. The vertical lines in (a, b) and horizontal lines in (c, d) (labeled “No QRFs, MD or PRS”) correspond to the population
risk of breast cancer. Predictions based on UK breast cancer incidence.
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pathogenic variants in the moderate- and high-risk genes
included in BOADICEA; Fig. 3. The results are in line with
the expected risk stratification levels suggested by other
theoretical studies.2,29

Several assumptions were made in the development of this
model. In incorporating the effects of the common SNPs, we
assumed that the polygenic component in BOADICEA,22

which models the residual familial aggregation not due to the
effects of rare pathogenic variants in the major genes, could be
decomposed into the sum of a known component, measured
by the PRS, and an unknown component. While the RRs
associated with the overall polygene can vary with age, the
age-specific RR conferred by the PRS is constrained to decline
with age according to the same pattern as the overall
polygenic component. This assumption allows computations
in pedigrees to be tractable, ensures compatibility with the
existing validated model,22 and ensures that the same
algorithm can be used whether or not PRS data are available.
The analyses of Mavaddat et al.9 indicate an age-specific effect
of the PRS, but it may be that some modification will be
required to allow the age-specific components of the PRS and
residual polygenic component to be modeled separately. Note
that the model implies that the effect of the residual FH (or
residual familial RR) is attenuated by the PRS, as expected on
theoretical grounds and as has been observed empirically in
case–control studies.7,9 This is a unique aspect of the model
that ensures that the overall predicted familial relative risk
(over all known and unknown genetic effects) remains
constant and there is no “double counting” of the effect of
the SNPs.
We also assumed that the joint effects of the PRS with the

RFs incorporated in the model are multiplicative. Although
no studies have yet evaluated the joint effects of the 313-SNP
PRS used here and other RFs, analyses of large case–control
studies that have assessed the joint effects of an earlier 77-SNP
PRS indicate that the joint effects are well described by a

multiplicative model.10,30,31 The modeling framework is,
however, sufficiently flexible to incorporate interactions, if
they are identified.
Our implementation also assumes that the effect of the

PRS is multiplicative with the effects of rare pathogenic
variants in the major genes. Published data on the effect of
SNPs as risk modifiers for rare pathogenic variant carriers
suggest that this is a reasonable assumption in the case of
BRCA2 and CHEK2 (refs. 32,33). The fit is less good for
BRCA1 rare pathogenic variant carriers;32 however, better
discrimination can be obtained by using a PRS that is
optimized for estrogen receptor (ER)-negative BC (consis-
tent with the observation that the majority of breast tumors
in BRCA1 carriers are ER-negative).34 To allow for this in
the model, it would be necessary to extend BOADICEA
such that it models ER-positive and ER-negative disease
simultaneously and allows for a separate PRS for each
disease. This is computationally more complex but would
allow prediction of subtype-specific risks, and would be of
potential relevance to prevention programs based on risk-
reducing medication. Data on the joint effects of the PRS
with PALB2 or ATM rare pathogenic variants are currently
sparse, but given that risks for carriers of such variants are
modified by FH,35–37 the multiplicative assumption seems a
reasonable approximation.
We have developed a flexible modeling framework that

allows for the RRs of the lifestyle/hormonal/reproductive
RFs and MD to be different for rare pathogenic variant
carriers in each of the major genes and nonpathogenic
variant carriers. Although some evidence from studies in
BRCA1 and BRCA2 suggests that effects may be different,
their precise effects in rare pathogenic variant carriers are
not well estimated.38 Therefore, for the current implemen-
tation we have assumed the same effect sizes in rare
pathogenic variant carriers and noncarriers. As future
studies, in particular prospective studies, report on these

Table 1 Predicted distributions of women in the population in different risk categories (based on NICE guidelines3)

Based on 10-year risk (between

ages 40–50 years)

Based on lifetime risk (between

ages 20–80 years)

Family history QRF

only

QRF

and

MD

PRS

only

QRF,

MD, and

PRS

QRF

only

QRF

and

MD

PRS

only

QRF,

MD, and

PRS

Unknown

family history:

Fig. 1

Average population risk (%) 1.7 11.5

% Women at near-population risk 98.2 90.7 90.0 86.4 97.0 90.5 89.2 84.2

% Women at moderate risk 1.8 9.2 10.0 13.0 3.0 9.5 10.6 14.7

% Women at high risk 0.0 0.0 0.0 0.6 0.0 0.0 0.2 1.1

Breast cancer risk for women with a combination of risk factors

equivalent to a RR=0.3, relative to the population risk (%)

0.5 3.6

% of women with risk less than RR=0.3 (low risk) 0.0 3.0 3.6 12.1 0.0 0.7 0.1 2.9

Mother

affected at age

50: Fig. 2

% Women at near-population risk 36.6 47.5 55.0 60.1 35.1 42.3 52.3 55.1

% Women at moderate risk 63.4 50.5 44.4 36.2 64.4 53.6 45.6 38.0

% Women at high risk 0.1 2.0 0.6 3.7 0.5 4.1 2.1 6.8
Critical values corresponding to the graphs in Figs. 1 and 2.
MD mammographic density, NICE National Institute for Health and Care Excellence, PRS polygenic risk score, QRF questionnaire-based risk factors, RR relative risk.
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associations, the model can be easily adjusted to allow for
potential differences.
This is the first BC risk model to include the effects of most

well-known BC RFs, including the effects of both common
and rare genetic variants and FH. However, a key limitation
arises from the fact that no single study that includes
information on all the factors is currently available. Therefore,
a synthetic approach was used to develop the model by using
RR estimates from large well-designed studies and RF
distributions from national surveillance data sources, or
large-scale population-based studies in the case of genetic
factors. Although we have included estimates based on
analyses adjusted for the other RFs included in the model,
we cannot rule out that some biases may affect the RR
estimates and their joint effects. Our modeling assumptions
and any other possible biases will therefore need to be
assessed through validations using prospective cohort data.

One of the most important tests will be the accuracy of the
risk predictions in the tails of the distribution, where the
predictions are most likely to affect clinical decisions. The
current model is based on UK RF distributions, several of the
other model parameters were estimated using UK data,22 and
the PRS is based on samples of European ancestry. A key
question in validation studies will be how well the model
performs in other populations. It may be necessary to use
population-specific RF parameters and PRS, and refit the
model parameters for use in other populations, particularly
for women of non-European ancestry.
A number of other risk factors that are not included in the

model have been reported to be associated with breast cancer
risk: these include duration of oral contraceptive and duration
of hormone replacement therapy use.15,16 Considering the
reported effect sizes and the results from the current study,
the effect on risk stratification by adding these factors in the
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Fig. 2 Predicted Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA) breast cancer risk for a
female with a mother affected at age 50 and untested for rare pathogenic variants on the basis of the different predictors of risk (ques-
tionnaire-based risk factors (QRFs), mammographic density (MD), and polygenic risk scores [PRS]). (a, c) Ten-year risk from age 40 to age 50 years;
(b, d) lifetime risk (age 20 to 80 years). The backgrounds of the graphs are shaded to indicate the familial breast cancer risk categories based on the National
Institute for Health and Care Excellence (NICE) guidelines:3 (1) near-population risk, shaded in pink (<17% for lifetime risk and <3% for 10-year risk); (2)
moderate risk, shaded in yellow (≥17% and <30% for lifetime risk and ≥3% and <8% for 10-year risk); and (3) high risk, shaded in blue (≥30% for lifetime
risk and ≥8% for 10-year risk). Predictions based on UK breast cancer incidence.
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Fig. 3 Predicted Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA) breast cancer risk for a
female intermediate-risk rare pathogenic variant carrier, on the basis of the different predictors of risk (questionnaire-based risk factors
[QRFs], mammographic density [MD], and polygenic risk scores [PRS]). (a, c) Lifetime risk (age 20 to 80 years) for a CHEK2 1100delC carrier with
unknown family history; (b, d) lifetime risk for a CHEK2 1100delC carrier with her mother affected at age 50. (e, f) Risk for a PALB2 and an ATM rare
pathogenic variant carrier respectively, both with unknown family history. The backgrounds of the graphs are shaded to indicate the familial breast cancer
risk categories based on the National Institute for Health and Care Excellence (NICE) guidelines:3 (1) near-population risk shaded in pink (<17%), (2)
moderate risk shaded in yellow (≥17% and <30%), and (3) high risk shaded in blue (≥30%). Predictions based on UK breast cancer incidence.
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model is likely to be small. The model also does not
incorporate the known increased risk in the immediate period
after birth and, while this is unlikely to change the model
discrimination, the absolute risks are expected to be under-
estimated in this period.39 Our implementation also assumed
that the RF distributions are independent of birth cohort.
Some risk factor distributions (e.g., reproductive factors) do
change, and our modeling framework allows for cohort-
specific effects, but cohort-specific distributions are not
readily available for all RFs. For the current implementation
we have therefore used the RF distributions from recent birth
cohorts, which are most relevant for the majority of women
undergoing breast cancer risk prediction.

A major strength of our model is that it incorporates known
genetic and other RFs, and full FH, into a single coherent
model. As such, once validated, the model should be suitable
for counseling women consistently across different levels of
clinical care, even though information available to populate
the model may vary. To facilitate this, a new user-friendly
interface (CanRisk.org) is being developed, including graphi-
cal pedigree construction.40 The model should enable more
individualized informed decision-making around prevention
options, screening, or RF modification. It can also be used
to inform population-based approaches by identifying
groups in the population for targeted screening or prevention
approaches.

Table 2 Summary of components of the BOADICEA breast cancer risk model

Risk factor group Risk factor category Comments

Family history Explicit family history of breast and other cancers

(ovarian, prostate, male breast, pancreatic)

Considers families of arbitrary size or structure, including affected and

unaffected relatives

Sex Sex of all family members

Age Ages at cancer diagnosis or current ages/age at death of all family

members

Genetic factors

Rare truncating/

pathogenic

variants

BRCA1

BRCA2

PALB2

CHEK2

ATM

Common genetic

variants

Polygenic risk score 313-SNP polygenic risk score, explaining 20% of the polygenic variance

Unobserved

genetic effects

Residual polygenic component Accounts for the residual familial aggregation of breast cancer

Lifestyle/hormonal/reproductive

Height Measured in cm (5 categories)

Body mass index Measured in kg/m2 (4 categories)

Parity Number of live births (4 categories)

Age at first birth Measured in years (4 categories)

Age at menarche Measured in years (7 categories)

Age at menopause Measured in years (5 categories)

Use of oral contraceptive Never/former/current

Use of hormone replacement therapy Never/former any type/current estrogen only type/current other type

Alcohol intake Measured in grams per day (7 categories)

Mammographic

density

Measured using the BI-RADS breast composition categories (4 categories)

Breast tumor

pathology

Estrogen receptor status

Progesterone receptor status

HER2 receptor status

CK14 status Basal subtype status

CK5/6 status Basal subtype status

Demographic factors

Country of origin Country Defines the underlying incidences used

Birth cohort Defined by the person’s year of birth 8 calendar year–specific sets of incidences

Family ethnicity Ashkenazi Jewish origin
BI-RADS Breast Imaging Reporting and Data System, BOADICEA Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm, SNP single-nucleotide
polymorphism.
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