
Endogenous Changes in Public Opinion
Dynamics
Francisco J. León-Medina1

1Department of Business (Sociology Unit), Faculty of Economics, University of Girona, Girona 17003, Spain
Correspondence should be addressed to francisco.leon@udg.edu

Journal of Artificial Societies and Social Simulation 22(1) 4, 2019
Doi: 10.18564/jasss.3901 Url: http://jasss.soc.surrey.ac.uk/22/1/4.html

Received: 07-06-2018 Accepted: 01-02-2019 Published: 31-03-2019

Abstract: Opinion dynamics models usually center on explaining how macro-level regularities in public opin-
ion (uniformity, polarization or clusterization) emerge as the e�ect of local interactions of a population with
an initial random distribution of opinions. However, with only a few exceptions, the understanding of patterns
of public opinion change has generally been dismissed in this literature. To address this theoretical gap in our
understanding of opinion dynamics, we built a multi-agent simulation model that could help to identify some
mechanisms underlying changes in public opinion. Our goal was to build a model whose behavior could show
di�erent types of endogenously (not induced by the researcher) triggered transitions (rapid or slow, radical or
so�). The paper formalizes a situation where agents embedded in di�erent types of networks (random, small
world and scale free networks) interact with their neighbors and express an opinion that is the result of di�er-
ent mechanisms: a coherence mechanism, in which agents try to stick to their previously expressed opinions;
an assessment mechanism, in which agents consider available external information on the topic; and a social
influence mechanism, in which agents tend to approach their neighbor’s opinions. According to our findings,
only scale-free networks show fluctuations in public opinion. Public opinion changes in this model appear as
a di�usion process of individual opinion shi�s that is triggered by an opinion change of a highly connected
agent. The frequency, rapidity and radicalness of the di�usion, and hence of public opinion fluctuations, posi-
tively depends on how influential external information is in individual opinions and negatively depends on how
homophilic social interactions are.

Keywords: Opinion Dynamics, Mechanism Explanation, Agent-Based Modeling, Homophily, Social Influence,
Social Network

Introduction

1.1 Opinions are a relevant ingredient in the explanation of social behavior, and public opinion dynamics should
be a relevant ingredient in the explanation of social regularities and social change. In addition, public opinion
is sometimes considered a key in shaping political decisions and, therefore, in the design of our institutions and
public policies (for some reviews on the topic see, for example, Burstein 2003; Manza & Cook 2002; Wlezien &
Soroka 2007).

1.2 For all these reasons, public opinion has been one of the classical objects of study in sociology. Social science is
leaving the traditional descriptive approachbehindand is now turning to the constructionof generativemodels
that allow us to better understand howandwhy opinions change as a result of personal experiences, individual
cognitive processes and social interaction. Sociophysics has taken the lead of this new causal and generative
agenda and is currently o�ering opinion dynamics models at an overwhelming pace (for some reviews on so-
ciophysic models see, for example, Castellano et al. 2009; Galam 2008; Lorenz 2007; Sîrbu et al. 2017). It is no
surprise thatmathematicians, computer scientists andphysicists have turned their attention to this issue. Their
tools not only seem to be useful for causally explaining opinion dynamics, but they have also found a crucial
issue le� unexplored by traditional social scientists.

1.3 To the best of our knowledge, however, there is an important limitation of sociophysic models that has not
been addressed so far. A review of statistical physics models of opinion dynamics clearly shows a bias in their
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focus. The general idea of explaining macroscopic phenomena as the e�ect of interacting microscopic entities
seems to have been interpreted in a very limited way, merely as a concern in the explanation of the emergence
of regularities. Reflecting this bias, these opinion dynamics models usually describe how interactions bring
about order out of disorder; consensus, polarization or fragmentation out of randomness (for a review, see
Castellano et al. 2009; Sîrbu et al. 2017). But what about change? While the main concern of opinion dynamics
models seems to be whether the initial disorder generates uniformity, clusterization or polarization, other in-
teresting and relevant social dynamics, such as the process behind slow changes, equilibrium shi�s or abrupt
fluctuations, are less understood. The study of changes in public opinion regularities is generally dismissed in
sociophysic models (some exceptions are Acemoğlu et al. 2013; Galam 1986, 1990, 1999, 2000), as if changes in
macro-regularities would not also be macro-phenomena to be explained as the e�ect of microscopic interac-
tions. But they are. In fact, these changes are relevant features of natural opinion dynamics without which we
cannot achieve a truly and comprehensive understanding of this phenomenon.

1.4 Outside the field of sociophysics, the classicalworkof TimurKuran (1987a; 1987b; 1989; 1990; 1991a; 1991b; 1997)
highlightedpreference falsification as oneof thepossiblemechanismsbehindabrupt changes inpublic opinion
that seem to explain unexpected revolutions. Butwe do not knowmuch about other possiblemechanisms that
could explain these and other types of shi�s in public opinion.

1.5 This is a serious gap in our knowledge of public opinion. Public opinion is not static; it undergoes all kinds of
changes. The variety of those changes is so huge that we need some classification of types to cope with the
phenomenon. Since constructing a typology of changes in public opinion is not the goal of this paper, we just
assume a quite simple typology based on how radical the change is and how rapid it unfolds. An illustration of
the four types of changes in this typology is shown in Figure 1.

Figure 1: Illustration of four types of changes in public opinion according to how radical the change is and how
rapidly it unfolds.

1.6 According to our typology, public opinion sometimes slowly experiences a radical change that is almost unper-
ceived in the short term (a slow-radical change); it sometimes experiences a so� change that takes a longperiod
of time to unfold (a slow-so� change); public opinion sometimes changesmoderately but in a very short period
of time (a rapid-so� change); and sometimes it radically changes in an abrupt way (a rapid-radical change). But
what we do know about the microfoundations of those changes?

1.7 Our goal was to build a multi-agent model whose dynamics were, at least under certain conditions, character-
ized by di�erent types of endogenously (that is, not induced by the researcher) triggered changes: constant
and moderate fluctuations, radical changes a�er long periods of stability, slow transitions, etc. If our model
could show this kind of behavior, thenwe could unravel the generative processes behind those changes, there-
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fore adding new candidates to the set of causal hypotheses to be considered when tackling the explanation of
natural changes in public opinion.

1.8 This paper is organized as follows. First, we present themodel, specifying the algorithms for network construc-
tions and the formalization of the di�erent cognitive and social interaction mechanisms behind the actualiza-
tion of opinions at the individual level. Second, we present some results of the model in a descriptive way,
showing how the output and dynamics of the model vary depending on its initial conditions. Third, we try to
shed light on the micro-level generative process that explains these outputs. The last section concludes.

The Model

Network formation

2.1 Wehave runourmodel1 in three di�erent network structures to test if these topographies have a role in the gen-
eration of di�erent public opinion dynamics. Before running the model, we trigger a network morphogenesis
that generates either a random, a small-world or a scale-free network. To make these di�erent network struc-
tures comparable, we kept the number of agents and links constant: all networks have 500 nodes and≈1000
undirected links, that is, ki ≈ 4, where ki refers to the mean degrees of all nodes, that is, the mean size of all
agents’ neighborhoods.

2.2 Random network. According to the G(n, p) variant of the Erdős-Rényi model (Erdős & Rényi 1959), the algo-
rithm that we used to generate random networks (RNs herea�er) is as follows:

a) A set of 500 disconnected nodes is created.

b) Every pair of nodes is connected with a probability of p.

c) Since the number of expected edges isE(n) = p
[
n(n−1)

2

]
, and considering that we want 500 nodes and

≈1000 edges, p is set to 0.008.

2.3 Small-world network.Weused theWatts-Strogatzmodel (Watts & Strogatz 1998) to generate small-world net-
works (SWNs herea�er). The algorithm of this model is as follows:

a) A set of 500 nodes is created forming a ring.

b) Each node is connected to its 2 nearest neighbors to the le� and its 2 nearest neighbors to the right, so
we obtain a network with 1000 undirected links.

c) Each edge is randomly rewired with probability p (self-connections and duplicate edges are excluded).
We set p = 0.5.2

2.4 Scale-free network. To generate scale-free networks (SFNs herea�er) our algorithm is based on the Barabási-
Albert model (Barabási & Albert 1999):

a) A set of 5 nodes is created in a fully connected network.

b) A new node is created. This new node chooses two pre-existing nodes to connect with using a roulette-
wheel selection process based on agents’ probabilities of being selected. These probabilities are deter-
mined by a preferential attachment mechanism: a fitness function that depends on the degree of each
existing node (k) represents its probability of being chosen. Specifically, the probability of a node i being
chosen is equal to i’s degree over the sum of all the degrees of the already existing nodes.

c) Step b) is repeated 495 times to get a n = 500. The preferential attachment mechanism represents the
situation where more connected nodes are more likely to attract new connections. The result is a scale-
free network with a power-law degree distribution.
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Opinion dynamics

2.5 In this model, opinion expression is the result of several cognitive and social mechanisms: a coherence mech-
anism, in which agents try to stick to their previously expressed opinions, an assessmentmechanism, in which
agents consider the available external information regarding the issue at hand, and a social influence mecha-
nism, in which agents tend to approach their neighbor’s opinions.

2.6 One of the traditional critiques of sociophysic models is that they achieve parsimony bymeans of an excessive
unrealism of the assumptions (see, for example, Duggins 2017, 1.2; Moussaïd et al. 2013, 1 and Sobkowicz 2009).
As we see it, opinion dynamics models, as any other type of models, should find a balance between realism
and simplicity, at least if they are built for explanatory purposes. We have included these three mechanisms
because, aswe shall see below, there is empirical evidence of their relevance in processes of opinion formation,
change and exchange. Modeling these three mechanisms generates a model that is not as parsimonious as
some traditional sociophysic models, but a more realistic yet analyzable one.

2.7 Our model is a continuous opinion model in which agents express a public opinion in the interval [−1, 1]. Ini-
tially, each agent is given an opinion which is randomly chosen from a uniform distribution, but the opinion
they express in each time-step of the simulation is the result of a declaration process that unfolds in two steps.

First step

2.8 First, agents establish their provisional opinion (x′i):

x′i = ci + µ(ai − ci) (1)

This provisional opinion is composed of two elements:

2.9 The coherence element (ci). This element refers to the constant actualizationof our private beliefs and is defined
here as themean of the three last opinions that agent i expressed in public. In the absence of other influences,
this element determines the opinion that iwill express. Traditional models on opinion dynamics, like the fam-
ily of Bounded Confidence Models that include the De�uant or De�uant-Weisbuchmodel (De�uant et al. 2000;
Weisbuch et al. 2002, 2003) and theHegselmann-Krausemodel (Krause 2000; Hegselmann&Krause 2002) usu-
ally consider individuals’ opinions as the output of a social exchange of prior opinions. However, as stated
by Wang et al. (2014), in opinion formation and evolution, individuals also deal with their self-attitudes and, as
self-perception theory posits (Bem 1972), we frequently come to clarify our attitude (or private opinion) through
observing our own behavior (or public opinion). If, as a consequence of a social exchange of opinions, an indi-
vidual expresses certain opinions regarding the issue x that were at odds with his private ones, this behavior
will eventually a�ect his inner attitude regardingx. A plausiblemechanism to explain this adjustment of private
opinion is thedrive to reduce cognitive dissonance (Festinger 1957): the dissonanceproducedby conflicting pri-
vate andpublic opinions is likely to be suppressedby aligning the private opinion to the publicly expressed one,
andnot the otherway around. At the same time, it is plausible to assume that people tend to stick to their previ-
ously expressedopinions: weall try to keepa certain stability in theopinions thatweexpress inpublic regarding
a specific topic. This is known as behavioral consistency (Cialdini 2009). As stated by Cialdini, we all try to show
behaviors that are consistent with our own past behaviors. Behavioral inconsistency is seen as an undesirable
individual trait, so avoiding the individual and social pressures that apply when inconsistency is perceived can
be the reason why people actualize their private opinions to match their previously expressed ones.

2.10 The assessment element (ai). Following the tradition of exploring the role of external information in opinion
dynamics, our model introduces signals which represent the opinions the agent gets from external sources,
like media or experts, not from the agent’s interactions with neighbors. In most opinion dynamics models that
have studied the e�ect of mass media, the external information either takes a constant value or changes at
each time step. This is the case of models like those of Carletti et al. (2006); Crokidakis (2012); Gargiulo et al.
(2008); González-Avella et al. (2012); Laguna et al. (2013); Vaz Martins et al. (2010). However, in all these cases,
the external information is the same for all agents. Few models capture multiple mass media sources (one of
them is Quattrociocchi et al. 2014). We try to go a step further, considering external sources of information that
vary from agent to agent. In each time-step, each agent gets a signal related to the issue to which the opinion
refers and considers ai the mean of his last three signals.

2.11 Since signals are nothing but opinions that agents get from external sources, they have values in [−1, 1]. The
value of signals is experimentally manipulated, so it can be randomly chosen for each agent in each time-step
fromauniformdistribution, fromanormal distributionwith amean value equal for all agents, or fromanormal
distribution with a mean that depends on the opinion of each agent. A uniform distribution would represent
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the unusual situation where signals are completely random. A normal distribution could represent a situation
where the external source basically transmits signals around a certain opinion, as usually happenswhenmedia
are controlled by government, or when experts talk about a non-controversial issue. Finally, a normal distri-
bution with amean that depends on each agent’s opinion could be useful to represent di�erent people getting
signals from di�erent media depending on their ideological closeness. In our case, for example, agents with
x ≥ 0 (we shall call them right-wingers) get a signal randomly chosen from a normal distribution with mean
0.5, while agents with x < 0 (le�-wingers) get a signal randomly chosen from a normal distribution with mean
-0.5 (in both cases we set SD= 0.35)3. What we are trying to model here is the commonly known fact that peo-
ple usually get signals that are generally in line with their opinion, that is, people get structured, non-random
signals. Le�-wingers usually read le�-wing newspapers, for example. In these newspapers, signals are diverse:
there are di�erent opinions on the same subject in opinion articles and editorials, some of which can even be
considered right-wing, but this diversity revolves around a le�-wing editorial policy. The same is true for right-
wingers and the signals that they get from right-wing newspapers. It is also plausible to assume that when
right-wingers (le�-wingers) change their mind and become le�-wingers (right-wingers), they also change their
habitual source of information (their preferred newspaper, for example).

2.12 Theparameterµ fine tunes thedegree towhich theprovisional opinion is a�ectedby the assessment, obviously
including the possibility that an agent is completely impermeable to any evidence or information against his
opinion.

Second step

2.13 In the second step, the opinion that agentswill publicly express (xi) is a�ected by a social influencemechanism,
which refers to the e�ect of their neighbors’ opinion on their own opinion. In this case, we formalize a positive
social influence mechanism, that is, a conformity mechanism that reflects the tendency to reduce the opinion
distance with peers.

xi = x′i + θi(ri − x′i) (2)

2.14 In this model, each agent considers his own reference opinion (ri). This reference opinion is almost identical
to the update rule for the opinion of an agent in a Hegselmann-Krause model (2002), but here an agent does
not consider the average opinion of his neighbors but the weighted arithmetic mean of the public opinions
of his neighbors. Opinions are weighted depending on the degree of each node, therefore capturing the fact
that more connected nodes have more influential opinions. In our model, persuasiveness (the ability to make
others change their opinion) and supportiveness (the capacity to reinforce others’ opinions), as defined by the
psychological theory of social impact (Latané 1981), are assumed to be higher in highly connected nodes.

ri =

∑
(kz ∗ xz)∑

kz
(3)

Where z refers to any agent that is connected with i and, therefore, kz refers to z’s node degree and xz refers to
z’s opinion.

2.15 θi captures how much this di�erence a�ects the individual, that is, it captures i’s susceptibility to social influ-
ence. This parameter is equivalent to the convergence parameter of the De�uant model (De�uant et al. 2000).
In fact, the general idea behind Equation 2 is equivalent to that of the De�uant model, but in our case, i con-
siders his provisional opinion and approaches it to the weighted arithmetic mean of the public opinions of his
neighbors. Regarding θi, it is plausible to assume that this susceptibility is a function of the node degree: more
connected nodes are assumed to be influencers and less connected nodes are assumed to be the object of that
influence. Therefore we just assumed θi as perfectly correlated with ki and rescaled to [0, 1]. As can be seen,
there are no zealots in thismodel and therefore anyone can end up changing his opinion, but highly connected
agents are assumed to bemore committed to their opinions.

2.16 In order tomoderate the impact of social influence, we assume that in the highest degree of influence the agent
moves his opinion to the intermediate point between his provisional opinion and his reference opinion:

θi =
1

2

(
1 +

−ki + min(k)

max(k)−min(k)

)
(4)

2.17 This moderate impact of social influence reflects the empirical finding of Moussaïd et al. (2013), who experi-
mentally showed that there is a bias toward one’s initial opinion when exposed to other’s di�erent opinions
and even when the agent compromises, the opinion change is only limited.
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Output

2.18 Public opinion is defined here as the mean of individual opinions at each moment of time. Therefore, the evo-
lution of themean of individual opinions and the shape of this distribution shall be themain output to be ana-
lyzed.

2.19 In sum, in our model:

a) Each simulation takes place in a di�erent network structure: either a random, a small-world or a scale-
free network.

b) Agents try to be coherent with their previously expressed opinions.

c) Agents get external signals thatmay change their opinion depending on their level of resistance or imper-
meability.

d) Agents approach their opinion to the opinion of their neighborhood but consider the opinion of more
connected neighbors as more valuable.

e) This approach to the opinion of the group depends on the agent’s susceptibility to social influence, and
this susceptibility is a function of its degree.

Symbol Variable

ki Node degree of agent i
x′i Provisional opinion of agent i
ci Coherence element
ai Assessment element
µ Relevance of ai on x′i
xi Opinion of agent i
ri Reference opinion of agent i
θi Susceptibility to social influence of agent i
h Homophily (∗)

Table 1: List of model variables. (∗) The homophily parameter is introduced in a later section of the paper.

Analysis

3.1 This section is divided in twoparts. First, we test how the combination of type of network (random, small-world
and scale-free) and level of subjective relevance of the assessment element (µ) (values 0.2, 0.4, 0.6 and 0.8)
a�ects opinion dynamics. This is a descriptive section. We will try to answer the following questions: does the
systemeventually reach some stable state in x̄i? Does the systemoccasionally experience a transition fromone
steady state to another? When those transitions occur, do their type, frequency and structure vary depending
on the type of network and the level of µ? In addition, we explore the e�ect of homophily in public opinion
transitions. The second part is devoted to explaining the patterns described in the first section. Therefore, in
the second part, we shall focus on unraveling the generative process behind those patterns.

The role of networks and external information

3.2 Opinion dynamics in this model are highly dependent on the type of distribution from which agents get the
signals that they use to form their assessment element (ai). Recall here that these signals represent any kind
of information and opinions regarding the topic at hand that the agents get from external sources, like TV or
newspapers, not from face to face interactions. The mean of the distribution of these signals acts as a strong
attractor: when agents get their signals randomly from a normal distribution, x̄i, is always stable around the
mean of that distribution, andwhen they get them form a uniformdistribution, x̄i is always stable around 0, no
matter the value of µ. No changes or fluctuations in public opinion appear under these circumstances.

3.3 Things are quite di�erentwhenagents get a signal randomly chosen fromanormal distribution that has amean
in line with their initial opinion. To test the e�ect of these signals on opinion dynamics, we observed themodel
behavior in the three types of networks and for four selected values of the sensitivity to the signals (µ) (0.2,
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0.4, 0.6 and 0.8). We observed the evolution of the mean and the distribution of opinions (x) over 100,000
time-steps.

3.4 Aswe shall see further on, there are types of dynamics associated to each type of network and level ofµ, but the
specific dynamic we observe each time we build a network and set a value for the parameter µ cannot be pre-
dicted. That is, each single simulationwill showadi�erent path, reachingdi�erent equilibriums, experimenting
di�erent types of transitions (if any), and so on. In fact, since the initial opinion distribution is quickly and com-
pletely restructured as a consequence of the unpredictable signals that agents get each time-step, even the
exactly same initial conditions (the same values of µ, the same specific network composed of the same nodes
with the same links and the same initial opinions) lead to di�erent dynamics. As amatter of fact, once we have
decided the typeof network and set a value forµ, there is nodi�erencebetweenexecuting each simulationwith
the same initial conditions andbuilding a newnetwork for each single simulation. Figure 2 shows howdi�erent
these dynamics can be. Therefore, our analysis should be oriented towards identifying the typeof dynamic that
corresponds to each set of initial conditions.

Figure 2: Evolution of the mean opinion in four single simulations. Scale-free networks with 500 agents and
µ = 0.5. 100,000 time-steps. For reasons of computer tractability, we only show one of each 100 time-steps.
Whiskers for±2 units of SD.

3.5 Figure 3 shows di�erent dynamics for each set of initial conditions. In all simulations with all types of networks
and parameters, 0.5 and -0.5 act as attractors, obviously as a consequence of the structure of the signals that
agents get in each time-step. In RNs and SWNs, the stylized evolution of public opinion (x̄i) (leaving aside the
small short-term fluctuations in the value of x̄i) is either stable at any value between -.5 and .5, or changes
monotonically, with -.5 and .5 as unalterable stable states. That is, if x̄i changes, we never see a change in
the direction of the change, and if this monotonic change reaches either -.5 or .5, then this state will never be
altered. We have conducted di�erent simulations keeping n constant and adding edges to the network, but this
pattern is not altered. In RNs and SWNs, the speed at which the system reaches its stability is di�erent in each
single simulation and does not seem to depend on µ. The value of µ only seems to a�ect the small fluctuations
in the value of x̄i, and is greater with higher values of µ. In sum, we do not observe any transformation of a
previously established stable state in these networks.
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Figure 3: Evolution of the mean opinion (n = 500) with di�erent networks and values of the parameter µ.
100,000 time-steps. Each line represents a single simulation. Ten simulations are shown in each graph. For
reasons of computer tractability, we only show one of each 10 time-steps.

3.6 Things are quite di�erent in SFNs. As the parameter µ grows, the system shows greater instability, frequently
changing from one state to another with no apparent pattern. With lower values of µ (µ = 0.2) the system is
stable or experiences few changes, although we observe rapid-so� changes from one state to another a�er a
long period of stability. Mid-low values of µ (µ = 0.4) more frequently show long periods of stability which
are suddenly altered in a rapid-so� or rapid-radical process of transition to a new state and, for the first time,
we observe a non-monotonic evolution with transitions from higher to lower values and vice versa, in a same
dynamic. With higher values µ (µ = 0.6 and 0.8) the system chaotically and frequently changes from one state
toanother, generally fromoneattractor toanother (from-0.5 to0.5or theotherwayaround),with the frequency
of those transitions being higher with higher values of µ.

3.7 Transitions fromonestable state toanother in scale-freenetworksarenotonly changes in x̄i, but also important
changes in the shape of the opinion distribution. As we already saw in Figure 2, themodel shows various kinds
of transitions, experiencing moments of le�-wing (or right-wing) unanimity, moments of a balance between
le�-wing and right-wing opinions, andmoments of unbalance between them.

3.8 Tomathematically confirmwhat is visually presented in Figure 3, we calculated the information entropy of each
simulation. If we consider this system as a source of information, the di�erent values of x̄i can be thought of as
the information produced by the system and fi

N as the probability of occurrence of each of those states. In this
way, the entropy index serves as a measure of the variability of states that a system displays, and in this case,
as ameasure of the frequency and scope of the fluctuations of themean opinion. The entropy index (EI) of each
simulation can be calculated as follows:

EI = −
∑
i

fi
N
∗ log2

fi
N

(5)

3.9 Table 2 shows two di�erent OLS models where we have regressed EI on type of network and µ. Model 1 shows
the positive and statistically significant coe�icients of µ and scalefree networks. However, Model 2 introduces
interaction terms and the coe�icient of µ is no longer statistically significant. This model proves that µ does
not have a positive impact on EI by itself, but does have a positive e�ect on entropy in scale-free networks. The
change from small-world to scale-free networks increases the e�ect of µ on the entropy index.
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Model 1 Model 2

Constant 2.891∗ 2.891∗

(.149) (.112)
µ(1) 2.315∗ .059

(.386) (.500)
Scale-free(2) 1.688∗ 1.688∗

(.211) (.158)
Random(2) .022 .022

(.211) (.158)
µ ∗ Scale-free 6.176∗

(.708)
µ ∗ Random .592

(.708)

N 120 120
Adjusted R2 0.496 0.717

Table 2: OLS regressionmodels: Entropy. ∗p ≤ 0.001. (1) The parameterµ is centered to avoidmulticollinearity.
(2) Small-world networks as omitted category.

The role of homophily

3.10 Aswe have seen in Figure 3, in ourmodel the public opinion dynamics in SFNs show several types of transitions
from one state to another. However, it seems clear that the rate of change that we observe with higher values
of µ is far from representing any natural dynamic. In those, situations, the system too frequently experiences
radical transitions from one attractor to the other. Therefore, we must consider that in natural settings where
we can assume that agents are embedded in a scale-free network and external signals have a large impact on
individual opinions, a counter-balancing mechanism must be at work. Following the lead of bounded confi-
dence models (De�uant et al. 2000; Krause 2000; Hegselmann & Krause 2002; Weisbuch et al. 2002, 2003), we
hypothesized that homophily could be a plausible mechanism to counter-balance the impact of µ, therefore
“so�ening” the chaotic change in public opinion in such situations.

3.11 Thismechanismhasbeenwidely documented in the literature as oneof the sources of homogeneity in peoples’
personal networks (see, for example, McPherson et al. 2001). In our case, we state that dyadic similarities can
have the e�ect of so�ening the impact of high levels of µ: when external signals align with the opinion of your
neighborhood, they jointly attract your opinion, but when they do not align, these opposite attractions may
partially cancel each other out, thereby reducing the probabilities of an external, signal-induced change in your
private opinion.

3.12 To formalize the roleofhomophily,weassumed that ineach time-stepagentsonly interactwith thoseneighbors
whose opinion falls inside a certain interval x′i ± (1 − h). The homophily parameter h is set in [0, 1]. That
is, a�er determining their provisional opinion (x′i), the reference opinion of each agent (ri) is calculated only
considering those neighbors with xj ∈ [x′i − 1 + h;x′i + 1− h]. When agents do not have any neighbors in this
interval, they only express their x′i. Note that even at the lowest value of h, there is some homophily for some
agents, since they will only interact with agents in [x′i − 1;x′i + 1], so the case when h = 0 is not equivalent to
the no-homophily scenario shown in Figure 3.

3.13 As expected, low levels of homophily produce the samecollectivepatterns thatwe saw in Figure 3 (see Figure 4).
The higher the homophily, the higher the so�ening of the radicalness and rate of changes in the mean opinion
up to the point where the impact of high values of µ is completely neutralized by the high level of homophily.
Moderate oscillations between non-attractor but centered points (-0.3 and 0.3, for example) is the rule when
intermediate levelsµ of andh are combined (µ = 0.6 andh = 0.6 for example). This is a type of oscillation that
we did not see before considering the role of homophily (see Figure 3).

JASSS, 22(1) 4, 2019 http://jasss.soc.surrey.ac.uk/22/1/4.html Doi: 10.18564/jasss.3901



Figure 4: Evolutionof themeanopinion (n = 500) in scale-free networkswithdi�erent values of theparameters
µ andh. 100,000 time-steps. Each line represents a single simulation. Ten simulations are shown in each graph.
For reasons of computer tractability, we only show one of each 10 time-steps.

3.14 Again, wehave calculated the EI (see Equation 5) for each simulation represented in Figure 4 and regressed it on
µ, h, and their interaction term. According to Model 2, there is no independent e�ect of homophily on entropy,
but the e�ect of µ on entropy is higher the lower the values of homophily.

Model 1 Model 2

Constant 3.352∗ 1.905∗

(.174) (.284)
µ(1) 4.985∗ 7.879∗

(.235) (.518)
h -3.687∗ -.793∗

(.235) (.518)
µ ∗ h -5.788∗

(.945)

N 160 160
Adjusted R2 .814 .849

Table 3: OLS regression models: Entropy in scale-free networks. ∗p ≤ 0.001.

Unraveling the generative process

3.15 Ablack-box-free explanationof a simulationoutput is only reachedwhenweunravel its generativeprocess, that
is, themicro-level causal chainof events that is responsible for thegenerationof the (macro-level) output (León-
Medina 2017). By tracing this generative process we could answer the most relevant why questions that could
be applied to the set of results that we presented in the previous section: why does the stylized evolution of the
mean public opinion in RNs and SWNs always remain stable or only change monotonically until the attractor
is reached, while this evolution in SFNs is non-monotonic and shows di�erent types of transitions from one
state to another? And focusing on SFNs, why do transitions occur? Why are some transitions more radical than
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others? Why are these transitions in SFNsmore frequent and radical (going fromone attractor to the other)with
higher µ values?

3.16 The micro-level causal process behind transitions in scale-free networks. We have come to the conclu-
sion that understanding the process behind radical changes (that is, changes from one attractor to the other)
in scale-free networks is key to fully understanding the model behavior. This process is characterized by a se-
quence of steps. We observe so� changes when this sequence is interrupted or reversed. We observe di�erent
model behaviors depending onµbecause this parameter has an influence on theprobability that this sequence
will occur. We observe changes in scale-free but not in random or small-world networks because they di�er in
their capacity to trigger this sequence.

3.17 Therefore, to understand the innerworkings of this simulation, we shall start by analyzing and explaining rapid-
radical transitions in scale-free networks. By “radical” transitions we mean shi�s from a population of only
le�-wingers with x̄i = −0.5 to a population of only right-wingers with x̄i = 0.5, or vice versa.

3.18 One of the keys to understanding abrupt changes in is to be found in the signals that agents get each time-step.
It is important to recall here that this signal is randomly chosen for each agent in each time-step from a normal
distribution N(0.5,3.5) when xi ≥ 0 or N(-0.5,3.5) when xi < 0. Considering this standard deviation, an agent
can sometimes be subject to signals that are not in linewith his x, eventually leading him to change his opinion
from xi > 0 to xi < 0, or vice versa. That is, it is possible that the mean of the last three signals that the agent
gets is not in line with his opinion, therefore pushing him to actualize it (see Equation 1). Once the opinion has
changed, the signal that the agent gets is then randomly chosen from the distribution that corresponds with
his new opinion, either N(0.5,3.5) or N(-0.5,3.5), thus raising the probability that this agent will stay on that side
of the distribution. As we shall see next, this shi� in an agent’s opinion is sometimes the triggering event of a
causal chain of events that leads the system to a new state.

3.19 Generally speaking, a momentary positive value of ai is not strong enough to counterbalance the power of
social influence and force the agent to a new right- (le�-)winged opinion. However, a momentary shi� in the
signofai can indeed force a change in opinion in ahighly connected agent (an influencer, that is, an agentwith a
high ki), basically because influencers are practically free of the counterbalancing force of social influence (see
Equation 4). This shi� in the influencer’s opinion can act as the triggering event of a radical social change.

3.20 In all the cases of radical changes, the triggering event of the transition is a change in the opinion of the agent
with the highest value of k as a consequence of a momentary shi� in the sign of his ai. Once this change is
produced, the influencer does not return to his later side of the opinion distribution, at least in a certain period
of time, basically for two reasons. First, because the change is self-reinforced: ci and ai start working in the
direction of keeping the agent on his current side of the distribution (see Equation 1). Second, the agent can
resist the influence of his neighbors since this influence is considerably low for agents with higher values of k
(see Equations 2, 3 and 4). If the influencer becomes a right- (le�-)winger, he will probably remain as a right-
(le�-)winger for a long period of time.

3.21 His conversion, however, has important consequences. A set of his neighbors, especially those with lower val-
ues of k (ki = 2) and not interconnected, also become right- (le�-)wingers, one a�er the other in a first wave
of individual transformations. The strong influence of the influencer is higher than his neighbors’ desire for
coherence and the signals that they get.

3.22 This is the start of a di�usion process. Little by little, and while the transformations that characterize the first
wave are still taking place, a second wave of transformations occurs. Agents connected with the influencer but
with higher values of k start flipping their opinion. The key to understanding this second wave of transforma-
tions is the agents’ ri. This reference opinion becomes e�ective in forcing an opinion change basically through
three causal processes (operating in conjunction or separately). First, as external signals fluctuate, someagents
momentarily express a more radical opinion, therefore making their neighbors’ rimomentarily more extreme.
This transitory radicalization is especially e�ective when it is the influencer that is radicalized. Given the condi-
tions stated in Equation 3, this circumstance considerably maximizes the influencer’s neighbors’ ri, therefore
pushing some of them to change their opinion. Second, a relatively constant ri can become e�ective in forcing
a change of opinion if the agent’s opinion is momentarily centered (close to 0) as a consequence of an occa-
sional fluctuation in the value of his ai. And third, as the first wave of transformations advances, the value of an
agent’s ri can reach the point when it forces an opinion shi� simply as a consequence of a rise in the number
of newly right- (le�-)wing neighbors.

3.23 As this second wave of transformations is produced, some of the newly right- (le�-)wingers’ neighbors with
k = 2 also become right- (le�-)wingers as in the first wave of transformations. As new right- (le�-)wingers
evolve to values near to the attractor (thanks to the e�ect of the signals), they win their neighbors over to right-
(le�-)wing positions, thus spreading right- (le�-) wing opinions all over in a third wave of transformations.

JASSS, 22(1) 4, 2019 http://jasss.soc.surrey.ac.uk/22/1/4.html Doi: 10.18564/jasss.3901



3.24 Onlywhen an important proportion of agents have become right- (le�-)wingers, do le�- (right-)wing influencers
find enough social pressure to become right- (le�-)wingers. This is an inflection point. When a new influencer’s
opinion flips, the same pattern of di�usion triggered by the first influencer is now reproduced among those
that still remain on the other side of the opinion distribution: those still le�- (right-)wingers that are subject to
his influence (and that remained le�- (right-)wingers thanks to that influence), now actualize their opinion one
a�er another.

3.25 Through these di�erent and partially overlapping waves of individual transformations, right- (le�-)wing opin-
ions spread through the whole network. The opinion of the highly connected agent that triggered all this pro-
cess is clearly a powerful leverage point. In SFNs, public opinion always seems to follow the lead of the in-
fluencer’s opinion. As we can see in the example of Figure 5, each time the influencer changes his opinion,
the di�erence between his opinion and the mean opinion of the population moves to 0 (sometimes abruptly,
sometimes more slowly).

Figure 5: Evolution of the opinion of the influencer (red line) and the di�erence between the opinion of the
influencer and the mean (blue line) in a single simulation. Scale-free network with µ = 0.5. For reasons of
computer tractability, we only show one of each 10 time-steps.

3.26 But sometimes this cascadeof individual transformations is limitedandweonlyobserveamore limited change;
a change to a more centered x̄i, that is, either a slow-so� or a rapid-so� change. An example of these kind of
transitions would be a change from a population of only le�-wingers and x̄i = −0.5 to a population with a
small fraction of right-wingers and x̄i = −0.3 or similar. In this case, we observe the same triggering event and
the same first wave of individual transformations that we saw in the previous example: an influencer changes
his mind as a consequence of the occasional exposure to signals that are not in line with his initial opinion,
and this change triggers a first wave of transformations in some of his followers with a low k. However, once
this first wave of transformations has moved the mean to -0.3, something stops the process. The first wave
of transformations is not strong enough to trigger the second wave. The reason why this is so is to be found
in the causal processes that characterize this second wave as we described in the causal narrative of radical
transitions: agents change theirmind because their ri becomes e�ective in forcing that change, either because
its value is maximized when some neighbor (usually the influencer) experiences a transitory radicalization, or
because theyexperiencea transitorymoderationof their opinion thatmakes themmorevulnerable to thee�ect
of a relatively constant ri (or a combination of both situations). If we keep the value of µ constant as we do in
these examples, these two causal processes just happen or not by chance: they are statistical possibilities that
do not necessarily occur. When they do not occur, the cascade of individual transformations is stopped and
sometimes even reversed for some agents that return to their original belief, or go back and forth fromnegative
to positive values of x. The system just remains stable at x̄i = −0.3 for a long period of time until the sequence
of steps is restarted or reversed as a consequence of a new change in the influencer’s opinion.

3.27 The micro-level causal process behind transitions in di�erent type of networks. Stability or monotonic
changes in the stylized evolution of x̄i until an attractor is reached are the typical dynamics of our model in

JASSS, 22(1) 4, 2019 http://jasss.soc.surrey.ac.uk/22/1/4.html Doi: 10.18564/jasss.3901



RNs and SWNs. Non-monotonic changes characterize SFNs. This di�erent dynamic is the result of one of the
main di�erences in the structure of these types of networks: the degree distribution. There are at least two
consequences of this di�erence.

3.28 First, given the power-law distribution of degrees in scale-free networks, most of the existing links of the net-
work are concentrated in only a few agents. As we have already explained, the triggering event of all changes
in SFNs is a shi� in the opinion of an influencer, and some of the following waves of individual transformations
can only happen as the consequence of the influence of these highly connected agents. The highly connected
agents in RNs and SWNs are less connected than the highly connected agents in SFNs and are therefore not as
influential. This is basically because, given the lower ki of these agents, their impact on their neighbors’ ri is
smaller. The event that triggers a change in the state of the system in SFNs is unable to trigger the same process
in RNs and SWNs.

3.29 Second, since the degree distribution is di�erent in the three types of networks, the mean and shape of the
distribution of θi is also di�erent. On the one hand, themean susceptibility to social influence is higher in SFNs
than in SWNs and RNs. On the other hand, SFNs show a j-curve distribution of θi, while SWNs and RNs show a
negative skew distribution (see Figure 6). Generally speaking, then, the role of social influence is lower in SWNs
and RNs, so all the dynamic is more dominated by the other two elements of the decision (ci and ai), therefore
preventing the spreading potential of new ideas through social interaction.

Figure 6: Density plot of the distribution of θi (susceptibility to social influence) in three types of networks

3.30 How do we explain then the monotonic tendency of the stylized evolution of public opinion towards one of
the attractors in SWNs and RNs? There are no initial conditions that could explain why the simulation moves
towards one attractor and not the other, not even the initial unbalance between le�-wingers and right-wingers
that can be produced by chance in the initial configuration of each simulation. Di�erent simulations with the
same initial conditions end up in di�erent attractors. Whether the simulation starts a path towards 0.5 or -0.5
depends on who first wins the battle for attracting agents from the other side to their field. Agents with values
of x near to 0 can easily shi� from positive to negative values of x (or the other way around) as a consequence
of the fluctuations of ai. It only depends on chancewhowins this initial battle, but once a tendency is started, it
cannot be reversed. More agents on one side of the distribution imply a higher power of attraction of that side
of the distribution, and there are no influencerswhose change in opinion could trigger a reversal of this process
of cumulative transformations.

3.31 The micro-level causal process behind the impact of µ. The parameter µ is positively correlated with the
system instability inSFNs (seeFigure3andTable2). Thehigher thevalueofµ, thehigher the frequencyof abrupt
radical changes in the evolution of x̄i. To describe themechanismbehind this correlation, we should recall here
that µ fine tunes how much the opinion of the agent is a�ected by ai (the mean of the last three signals that
each agent gets). This susceptibility to external signals has three relevant consequences. First, it increases
the probability that a momentary accumulation of signals far from an agent’s x will become strong enough to
force him to change his opinion. This is especially important when the agent is an influencer because, as we
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already saw, this individual transformation could be the triggering event of a social change. The accumulation
of signals that could force an opinion change is produced by chance, but the probability that they actually force
an opinion change depends on µ. In fact, the probability that they actually force an opinion change is higher
for highly connected agents, since they do not have to deal with the counterbalancing e�ect of social influence.
Therefore, the higher the value ofµ, the higher the frequency of events that trigger a process of change in public
opinion.

3.32 Second, signals can also lead the agent to a momentary radicalization of his opinion. Again, higher values of µ
mean that amomentary radicalization of the signals actually radicalizes the individual opinion. And again, this
is more likely to happen in influencers. As we already saw, this transitory radicalization plays an important role
in system transitions because it transitorily moves the value of ri in the influencer’s neighbors away from their
initial opinion, therefore pushing some of them to move from le� to right, or vice versa (a change that is then
self-reinforced as we already explained). In sum, the higher the value of µ, the higher the probability that the
process of individual transformations will spread throughout the network.

3.33 Andthird, sincesignalsare randomlychosen foreachagent ineach time-step fromanormaldistributionN(0.5,3.5)
when xi ≥ 0 or N(-0.5,3.5) when xi < 0, a higher µ value implies that, even when the signals and therefore the
opinion fluctuate, they tend to do so around the attractors. And again, this is more likely to be true for influ-
encers. This is important because an influencer that shi�s his opinion from le� to right, or vice versa, rapidly
tends to fluctuate around the attractor. The farther away from 0, the higher the value of his neighbors’ ri and
hence the higher the probability that his influence will attract some of them to the le� (or right) side of the dis-
tribution (especially those neighbors that were on the other side of the distribution but with values of x close
to 0).

Concluding Remarks

4.1 With only a few exceptions, the understanding of patterns of public opinion change has generally been dis-
missed in the literature on opinion dynamics models. To address this theoretical gap in our understanding of
opinion dynamics, we have built a multi-agent simulation model that could help us to identify some mecha-
nisms underlying changes in public opinion. The model should be understood as a first attempt to expand our
limited knowledge on the collection ofmechanisms that could aspire to explaining public opinion fluctuations.

4.2 Inourmodel, agents interact indi�erent typesof topologies (random, small-worldandscale-freenetworks) and
express an opinion that is the result of a coherence mechanism, in which agents try to stick to their previously
expressed opinions, an assessmentmechanism, inwhich agents consider available external information on the
topic, and a social influence mechanism, in which agents tend to approach their neighbor’s opinions. One of
themain features of ourmodel is that, under certain conditions, its behavior is characterized by di�erent types
of endogenously (that is, not induced by the researcher) triggered changes in the mean opinion and the shape
of the distribution of individual opinions.

4.3 Random and small-world networks only show stability or a monotonic tendency towards a definitive stability
in one of the attractors of the system. Scale-free networks, however, show di�erent types of equilibrium shi�s.
In fact, the higher the relevance of the external signals that the agents get, the higher the frequency and rad-
icalness of the fluctuations. In fact, transformations of public opinion are basically a di�usion process of the
new ideas of the highly connected agents (influencers) in the network. The power-law distribution of degrees
in scale-free networks and a high value of the parameter µ (the subjective relevance of the external signals)
are conditions that favor the rapidity, frequency and radicalness of those di�usion processes. In scale-free net-
works with high values of µ, fluctuations in public opinion are so frequent and radical that we theorized that
a counterbalancing mechanism must be at work in the corresponding natural situations. Following the lead
of bounded confidence models, we have shown that homophily can act as this counterbalancing mechanism:
high levels of homophily have the e�ect of “so�ening” the extent and frequency of public opinion fluctuations,
therefore generating so�er oscillations. In sum, according to our findings, we should observe more fluctua-
tions in public opinion in natural settings where agents are assumed to be embedded in scale-free networks,
and the rate and radicalness of changes should positively depend on how important external information is in
individual opinions and negatively depend on how homophilic the social interactions are.

4.4 Since this is only our first attempt to tackle the issue of modeling equilibrium changes in public opinion, there
are several further directions of analysis that could be pursued in the future. This model could be replicated
in other types of networks, and di�erent assumptions of the model could be redefined. For example, agent’s
memory could be extended, therefore a�ecting the coherence mechanism; di�erent structures of the external
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signs that agents get could be tested; and the relation between agent’s degree and his susceptibility to social
influence could be redefined to consider situations where they do not correlate as we assumed. Since we also
consider the role of homophily, the model could also be redefined so that we introduce a homophily-guided
rewire of links in order to analyze public opinion changes as the network dynamic evolves. Moreover, beyond
homophily, the role of alternative counterbalancing mechanisms for the excessive fluctuations we observed
under certain conditions could also be explored. In fact, given the general neglect of the study of public opinion
fluctuations, there seems to be a whole topic of research ahead of us.
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Notes

1The model was developed using NetLogo. The code can be accessed here: https://www.comses.net/
codebases/6c6b9c77-7c01-44a5-a83a-3873a115977f/releases/1.0.0/

2In the Watts-Strogatz model, the network can oscillate between the initial ordered network (p = 0) and
a completely random network (p = 1). Small-world behavior is exhibited when p > 1

kN , that is, 0.0005 in
our case. In the field of opinion dynamics models, authors generally use small values of p (p = 0.1 in Jiang
et al. 2008 and p = 0.2 in Zhang et al. 2013, just to mention two examples). As we see it, the selection of a
value of pmust depend on how it a�ects themodel behavior. Therefore, in order to choose a value of p, we first
evaluated whether our model behaves di�erently in SWNs with di�erent values of p. The model’s behavior of
our interest is captured with the entropy index (EI) (see Equation 5). We took a sample of 100 SWNs, 10 for each
value of p (starting from 0 and increasing the value in 0.1 steps), and calculated the EI in each network (with
µ = 0.5). In this sample, EI and pwere negatively related (R2 = 0.32), that is, there are di�erences in how the
model behaves with di�erent values of p. Given this range of behaviors, we decided to use the value of p that
reproduces the mean of those behaviors. To do so, we calculated the mean value of EI for each value of p, and
then selected the value of pwhosemean is closer to the overall mean of EI (overall mean EI is 3.26, mean value
of EIwhen p = 0.5 is 3.21).

3The value of this standard deviation determines how o�en agents get signals that are not in line with their
x. Let’s take, for example, the case of a distributionN(0.5, 0.35). Stating SD= 0.35 means that 68.27% of the
signals would be in the interval [0.15, 0.85]. The probability of getting a negative signal is 0.0764, and therefore
the probability of getting three negative signals in a row is 0.000446 (provided that the agent does not change
his opinion before). Although this is neither a necessary nor a su�icient condition for a signal-induced change
in opinion, it can be a good proxy for its probability.
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