Lewis versus Brønsted Acid Activation of a Mn(IV) Catalyst for Alkene Oxidation

Jorn D. Steen, † Stepan Stepanovic, †‡ Mahsa Parvizian, † Johannes W. de Boer, § Ronald Hage, †§ Juan Chen, † Marcel Swart, †∥ Maja Gruden, †∥⊥ and Wesley R. Browne †⊥

†Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
‡Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
§Catezel B.V., BioPartner Center Leiden, Galileweg 8, 2333 BD Leiden, The Netherlands
∥Department of Applied Chemistry, School of Science, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
‡IQCC & Departament de Química, Universitat de Girona, Campus Montilivi (Ciències), 17003 Girona, Spain
⊥ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain

ABSTRACT: Lewis acid (LA) activation by coordination to metal oxido species has emerged as a new strategy in catalytic oxidations. Despite the many reports of enhancement of performance in oxidation catalysis, direct evidence for LA-catalyst interactions under catalytically relevant conditions is lacking. Here, we show, using the oxidation of alkenes with H2O2 and the catalyst [Mn2(μ-O)3(tmtacn)2](PF6)2 (1), that Lewis acids commonly used to enhance catalytic activity, e.g., Sc(OTf)3, in fact undergo hydrolysis with adventitious water to release a strong Brønsted acid. The formation of Brønsted acids in situ is demonstrated using a combination of resonance Raman, UV/vis absorption spectroscopy, cyclic voltammetry, isotope labeling, and DFT calculations. The involvement of Brønsted acids in LA enhanced systems shown here holds implications for the conclusions reached in regard to the relevance of direct LA-metal oxido interactions under catalytic conditions.

INTRODUCTION

The interaction of Lewis acids (LAs) with transition metal complexes and clusters can profoundly change their reactivity, which is most clearly manifested in the critical role of calcium ions in the oxygen evolving complex of photosystem (PS) II.1,2 Recent reports have highlighted correlations between Lewis acid (LA) versus Brønsted acid activation of a Mn(IV) catalyst for alkene oxidation. Direct interaction between, e.g., Sc3+, and manganese complexes.32 The effects observed are due to the release of a strong Brønsted acid upon hydrolysis of the metal triflates by adventitious water either present in the solvent or as water of crystallization in 1. The released Brønsted acid facilitates reduction of 1 by H2O2 and subsequent ligand exchange and redox reactions33 provide for the observed increase in catalytic performance.

Received: September 13, 2019
Published: October 18, 2019
In-line monitoring of the oxidation of styrene presence of LAs, ca. 250, are consistent with the earlier reports [Mn$_2$(μ-O)$_3$(tmtacn)$_2$]$^{2+}$ (1) and Proposed Roles of Lewis Acids

RESULTS AND DISCUSSION

As reported by Watkinson and Nodzewska and the group of Yin, we find here that the addition of metal triflates to 1 prior to the addition of H$_2$O$_2$ results in conversion of styrene to styrene oxide, albeit still with a substantial loss of H$_2$O$_2$ through disproportionation (Scheme 2 and Figures S1 and S2). The changes in the UV/vis absorption spectrum are similar to those reported by Lv et al.,31 who proposed the formation of a mononuclear manganese(IV) complex analogous to that reported earlier by Chin Quee-Smith et al. (i.e., [Mn$_n$(tmtacn)(OMe)$_3$](PF_6)$_n$).42 However, the final UV/vis absorption spectrum is identical to that reported earlier by Hage et al. for 1 in concentrated H$_2$SO$_4$.40 The addition of excess water after the addition of Sc(OTf)$_3$ resulted in an immediate recovery of the initial UV/vis absorption and resonance Raman spectra of 1 (Figure 1), and indeed even 0.2 vol % of water is sufficient for full recovery (see Figures S8a and S2).

The turnover numbers (TONs) achieved here in the presence of LAs, ca. 250, are consistent with the earlier reports (ca. 100).30,31 In-line monitoring of the oxidation of styrene reveals that, in the presence of Lewis acids, the reaction proceeds through two distinct phases (Scheme 2, Figure S2). The addition of H$_2$O$_2$ is followed by an induction period, after which both alkene oxidation and disproportionation of the H$_2$O$_2$ begin concomitantly. The duration of the induction period and the ratio of styrene conversion to H$_2$O$_2$ disproportion depends on the time, here referred to as standing time, between the addition of the Lewis acid to 1 in anhydrous acetonitrile and the subsequent addition of styrene and H$_2$O$_2$ (Scheme 2). Disproportionation of H$_2$O$_2$ is observed regardless of the standing time, whereas conversion of styrene is observed only when the standing time exceeds several minutes. During the reaction, a white precipitate forms that is a mixture of insoluble manganese and scandium salts (by ICP, see Experimental Section for details) of, most likely, acetate formed by hydrolysis of acetonitrile.36,37 Although the addition of a second equivalent of H$_2$O$_2$ results in continued oxidation of styrene (Figure S3), the isolated precipitate is not catalytically active.

Other Lewis acids31 have similar effects to that of Sc(OTf)$_3$, in terms of induction period and rate of oxidation. With Al(OTf)$_3$ consistently higher, conversion of styrene was obtained, whereas with Y(OTf)$_3$, the decomposition of H$_2$O$_2$ was slow, and negligible conversion of styrene was observed (Figure S2). Notably, however, with Y(CF$_3$CO$_2$)$_3$, both rapid decomposition of H$_2$O$_2$ and significant conversion of styrene were observed. The relative performance of the Lewis acids correlates with their relative rates of hydrolysis,38 however, the counterion plays a role in the outcome of the reaction also. These data prompted us to examine the interaction between the LAs, and especially Sc(OTf)$_3$, and 1.

Effect of Lewis Acids on the Electronic and Vibrational Spectroscopy of 1. The UV/vis absorption spectrum of 1 in acetonitrile shows a broad visible absorption at 490 nm and several more intense bands below 400 nm.39,40 The addition of 2 equiv of Sc(OTf)$_3$ results in an increase in absorbance over the range 400 and 650 nm and the appearance of weak bands at ca. 750 and 850 nm (Figure 1a). The relative rate of change in absorbance is constant across the entire spectrum, indicative of a single step process. Notably, the changes are not immediate but take >30 s. The Raman spectrum at λ_{exc} 355 nm undergoes concomitant changes with the resonantly enhanced Mn−O−Mn symmetric stretching band40,41 at 699 cm$^{-1}$ decreasing in intensity and a band at 687 cm$^{-1}$ appearing together with an increase in intensity of the band at 799 cm$^{-1}$ (Figure 1b). DFT calculations and 18O labeling indicate that the band at 699 cm$^{-1}$ is a vibrational mode of the Mn−(μ-O)$_3$−Mn core, while the band at 799 cm$^{-1}$ involves mostly the Mn−N bonds, with little displacement of the Mn−(μ-O)$_3$−Mn core (Figure S4). Similar changes are observed at λ_{exc} 457 nm (Figure S5). Weaker bands appear also that correspond to modes of the tmtacn ligand observed under nonresonant conditions (λ_{exc} 785 nm, Figure S6). The addition of Al(OTf)$_3$ resulted in identical changes to the UV/vis absorption and resonance Raman spectra of 1, whereas the addition of Y(OTf)$_3$ and Y(CF$_3$CO$_2$)$_3$ did not (Figure S7).

The changes in the UV/vis absorption spectrum are similar to those reported by Lv et al.,31 who proposed the formation of a mononuclear manganese(IV) complex analogous to that reported earlier by Chin Quee-Smith et al. (i.e., [Mn$_n$(tmtacn)(OMe)$_3$](PF_6)$_n$).42 However, the final UV/vis absorption spectrum is identical to that reported earlier by Hage et al. for 1 in concentrated H$_2$SO$_4$.40 The addition of excess water after the addition of Sc(OTf)$_3$ resulted in an immediate recovery of the initial UV/vis absorption and resonance Raman spectra of 1 (Figure 1), and indeed even 0.2 vol % of water is sufficient for full recovery (see Figures S8a and S2).
Furthermore, using H$_2^{18}$O did not result in incorporation of 18O into 1 (by Raman spectroscopy, Figures S4 and S8c).40,43 Hence, the changes upon the addition of Sc(OTf)$_3$ are unlikely to be due to “opening” of the Mn–O–Mn bridges.35 Furthermore, DFT calculations indicate that although the formation of a Sc$^{3+}$–O–(MnIV)$_2$ bond is thermodynamically feasible, the calculated frequencies of the relevant vibrational mode (symmetric) do not match the shifts observed experimentally by Raman spectroscopy (Figure S9). In contrast the shifts calculated for 1 and H$^+$ match well (Figure S4). These data indicate that, in solution, Lewis acidic metal ions (e.g., Sc$^{3+}$) do not bind to a bridging oxygen of 1, but instead 1 is protonated by Brønsted acids, vide infra.

Effect of Lewis Acids on the Cyclic Voltammetry of 1.

A key role of Brønsted acids in activating 1 in catalytic oxidations is to shift its reduction potential to more positive potentials. This shift facilitates reduction of 1 by H$_2$O$_2$ from a MnIV state to dinuclear MnII and MnIII species.31 These latter species are catalytically active as established earlier where 1 was used in the presence of carboxylic acids.35

DFT calculations indicate that binding of Sc$^{3+}$ to the Mn–(μ-O)$_3$–Mn core is thermodynamically favorable and changes the Mn–O bond lengths substantially (see SI). The Sc–O bond is predicted to have a significant covalent bond character, close to that of the O–H bond in H$^+$.1 Hence, notwithstanding the discussion above, binding of Sc(OTf)$_3$ could shift the reduction potential of 1 in a similar manner to that induced by protonation and thereby facilitate reduction by H$_2$O$_2$. Indeed, cyclic voltammetry shows that the reduction of 1 at $–0.6$ V vs SCE30 moves to ca. 0.4 V upon the addition of Sc(OTf)$_3$ (Figure 2). The increase in current indicates a multielectron process, and new oxidation waves at ca. 1.0 V on the return cycles are consistent with the formation of new species as shown earlier by de Boer et al.35

Notably these changes are almost identical to those observed upon the addition of TfOH to 1 (Figure 2). As with Lewis acids, the addition of water results in only a minor shift of the redox waves back toward negative potentials, and essentially the same general shape of the redox wave is observed (Figure S10), despite that H$^+$ reverts to 1. It should be noted that even weak acids that are not able to fully protonate 1 can provide sufficient acidity to enable reduction due to the fast equilibriums involved (Figure S11).35 After standing for several minutes, additional redox waves at 0.6 V are observed with both TfOH and Sc(OTf)$_3$ (Figures S12 and S13).35,40 The new redox waves at 0.65 and 1.05 V that appear over time in the presence of Sc(OTf)$_3$ and of TfOH correspond to those of [MnIII(μ-O)(μ-OAc)$_2$(tmtacn)$_2$]$^{2+}$ in the presence of acid (Figure S14).35

Comparison of the Lewis and Brønsted Acids on the Spectroscopy of 1 and Its Catalytic Activity. As for the cyclic voltammetry, Sc(OTf)$_3$ and TfOH have essentially identical effects on the UV/vis absorption and resonance Raman spectra of 1 (Figure 1). Indeed, these same spectroscopic changes are observed upon the addition of concentrated H$_2$SO$_4$ (or D$_2$SO$_4$, Figure S15) to 1 in acetonitrile, and the changes are consistent with formation of
the monoprotonated complex H1+.30,44 Notably the changes induced by Brønsted acids are instantaneous, in contrast to the gradual changes (>30 s) observed upon the addition of Sc(OTf)\textsubscript{3}. This difference is consistent with release of Brønsted acids by hydrolysis of Sc(OTf)\textsubscript{3}18,43 prior to protonation of 1. It should be noted that 1 supplies 1 equiv of water as water of crystallization, in addition to residual water already present in acetonitrile.

Having confirmed the spectroscopic similarities between the addition of TIOH and Sc(OTf)\textsubscript{3} to 1, the Brønsted acid assisted oxidation16,28,46 of styrene was examined. Essentially identical catalytic behavior was observed when using TIOH or Sc(OTf)\textsubscript{3} including a lag period followed by rapid onset of H\textsubscript{2}O\textsubscript{2} decomposition and oxidation of styrene (Figure 3).

Figure 3. Comparison of kinetics of styrene conversion (blue) and H\textsubscript{2}O\textsubscript{2} consumption (magenta) by 1 activated by either TIOH (6 equiv; filled) or Sc(OTf)\textsubscript{3} (2 equiv; empty) for a 1 h standing time. In the absence of any acid, only disproportionation of H\textsubscript{2}O\textsubscript{2} to O\textsubscript{2} is observed (Figure S1).

Similar trends were observed with trifluoroacetic acid (Figure S16), reinforcing that triflic acid is not unique and other Brønsted acids are capable of activating 1 in the same way, i.e., by protonation assisted reduction from the MnV,IV,2 state.47

The release of Brønsted acids from metal trihalides in ostensibly anhydrous solvents has been noted in the literature under various conditions. For example in chlorinated solvents, Hintermann et al. reported that the reaction of AgOTf with a chlorinated substrate, and subsequently solvent, releases TIOH,45 and recently, Schlegel et al. reported the release of catalytically active triflic acid in the metal trflate catalyzed glycosylation reactions.49 Gunnoe et al. have proposed the in situ generation of triflic acid from Al(OTf)\textsubscript{3} in the hydroamination of nonactivated alkenylamines in solvents such as DMSO and nitrobenzene etc.50

In situ formation of TIOH, specifically in acetonitrile, has been proposed by Dumeunier and Markô in the acylation of alcohols catalyzed by metal triflates, which serve as reservoirs of the Brønsted acid.51 Spencer et al. have identified Brønsted acids as the active catalysts in hetero-Michael additions to α,β-unsaturated ketones in the presence of various metal salts,52 and related the catalytic ability of a metal salt to the extent of hydrolysis—conversion was not observed with metal salts that do not undergo hydrolysis. Additionally, water (more than 2 equiv vs metal catalyst) retards the reaction due to its Brønsted basicity. The water in that case most likely originates from side reactions such as imine condensation and acetal/thioacetal formation, which are unavoidable under the nonbasic conditions used for the hetero-Michael addition.

In the present report, 1 equiv of water is present by default due to the fact that 1 is a monohydrate, but as discussed by Spencer et al. even if this is not the case water can form due to background reactions. Indeed, even when anhydrous, the water content is at a minimum 0.001–0.005 vol %, which corresponds to approximately 0.5–3 mM of H\textsubscript{2}O. This is in the same concentration range as the manganese complex (1 mM) and metal triflates (2 mM). Furthermore, in addition to water added with the oxidant H\textsubscript{2}O\textsubscript{2}, even when in 90 wt % concentration, the disproportionation of H\textsubscript{2}O\textsubscript{2} generates H\textsubscript{2}O and O\textsubscript{2} and during epoxidation 1 equiv of H\textsubscript{2}O\textsubscript{2} is released also.

The pK\textsubscript{a} of 1 is lower than most strong acids and hence the leveling effect of water means that when present in excess of the TIOH formed, the strongest acid present is the hydronium ion, which is unable to protonate 1 to an extent detectable by spectroscopic methods. Neither yttrium(III) salts nor CF\textsubscript{3}CO\textsubscript{2}H induce changes in the UV/vis absorption and Raman spectra of 1, although they provide sufficient Brønsted acidity to facilitate reduction of 1 by H\textsubscript{2}O\textsubscript{2} as observed with carboxylic acids earlier.35,41 Indeed, there is no reason that the pK\textsubscript{a} of Sc(H\textsubscript{2}O)\textsubscript{8} species formed by hydrolysis should be lower than that of TIOH and hence the species responsible for protonation of 1 cannot be defined. It is of note, however, that cyclic voltammetry with TIOH is nearly identical to that with Sc(OTf)\textsubscript{3}. Hence, although we have characterized Brønsted acidity in the present study as being due to the formation of TIOH in situ, in reality the nature of the species that protonates 1 to form H\textsubscript{2}H+ is ill-defined. Ultimately, the actual Brønsted acid responsible is of little concern in this case, but rather the effects observed are due to Brønsted rather than Lewis acidity. A point that is certain is that once water is added in molar excess, e.g., with H\textsubscript{2}O\textsubscript{2} or formed by side reactions, the hydronium ion is the Brønsted acid involved. Notably the hydronium ion is a much weaker acid than H\textsubscript{2}H+, and its addition, as shown above, results in a recovery of the original spectral features of 1. Nevertheless, the equilibrium position is sufficient (see cyclic voltammetry) to provide enough H\textsubscript{2}H+ in solution for H\textsubscript{2}O\textsubscript{2} to be able to initiate reduction. The initial reduction triggers an autocatalytic transformation of 1 into species in lower oxidation states as shown earlier.35,61

CONCLUSION

In summary, we have shown here that Lewis acidic metal triflates undergo rapid hydrolysis to generate strong Brønsted acids in acetonitrile under the conditions used for catalytic oxidations with H\textsubscript{2}O\textsubscript{2}. Indeed, even in anhydrous acetonitrile, residual water (ca. 0.5 to 3 mM H\textsubscript{2}O) and water of crystallization (1 molecule per 1) can be sufficient for hydrolysis of the Lewis acid (Sc(OTf)\textsubscript{3}). In the case of oxidation of alkenes with H\textsubscript{2}O\textsubscript{2} and 1, the hydrolysis occurs well before the onset of substrate conversion. Hence, the postulated binding of Lewis acids to 1, or a putative reactive species, does not occur and the changes in spectral properties and enhancements in catalytic activity observed are due to Brønsted acids formed in situ. Indeed, Brønsted acids, i.e., carboxylic acids, were shown earlier to suppress disproportionation41 and allow for H\textsubscript{2}O\textsubscript{2} to be used with complete efficiency in the oxidation of alkenes catalyzed by 1 with, e.g.,
CCl₄CO₂H, with turnover numbers (TONs) exceeding 3000.⁵⁴,⁴⁷

Although Sc⁴⁺-bound species have been observed crystallographically,³²⁻³⁴ the reactivity changes induced by such Lewis acids in solvent mixtures are likely to be due to the release of Brønsted acids. The role of LAs as a source of Brønsted acids shown here impacts more broadly, for example, in the study of Lewis acid activation of iron and other metal catalysts. Beyond this, however, recognizing the possibility to introduce strong Brønsted acids into reactions via Sc(OTf)₃, the use of often appropriate long pass edge filters (Semrock) after which it was focused for a certain time, and hence the reactions should not be carried out in sealed vessels.

Note: Comparison of reaction progress data obtained in the present study with that in previous reports by Nodzewska and Waterston showed the same reaction time (3–4 min).³¹ Lv et al.,³¹ however, applied general reaction conditions to each tested substrate, and therefore a reaction time of 2 h was reported for styrene. It is noted that in the aforementioned studies 0.1 M styrene was used, in contrast to the present study with 1 M and hence the effect of the organic component could be due to a degradation product of the tmcac ligand; more likely, hydrolysis of acetonitrile is responsible since the spectrum is close to that of NaOAc (Figure S18).

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.inorgchem.9b02737.

Additional spectroscopic and electrochemical data (PDF)
ACKNOWLEDGMENTS

The COST association action CM1305 ECOSTBio (STSM grant 34080), the European Research Council (ERC 279549, W.R.B.), MINECO (CTQ2017-87392-P, M.S.), GenCat (2014SGR1202, M.S.), FEDER (UNGI10-4E-801, M.S.), the Chinese Scholarship Council (CSC), and The Netherlands Ministry of Education, Culture and Science (Gravity Program 024.001.035) are acknowledged for financial support. The Peregrine high performance computing cluster of the University of Groningen is acknowledged for computational resources.

REFERENCES

