Treball final de grau

Estudi: Grau en Arquitectura Tècnica i Edificació

Títol: Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Document: memòria i annexes

Alumne: David Morillas Padilla

Tutor: Miquel Àngel Chamorro Trenado **Departament:** d'Arquitectura i Enginyeria de la Construcció **Àrea**: Construccions Arquitectòniques

Convocatòria (mes/any): setembre/2017

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Índex

1.		Intro	oduc	ció	25
2.		Obj	ectiu	S	26
3.		Ante	eced	ents	27
	3. <i>*</i>	1.	Ante	ecedent específic principal	
4.		Met	odolo	ogia	
4	4. <i>*</i>	1.	Prin	neres matèries per l'elaboració de les provetes	32
		4.1.	1.	Argila	
		4.1.	2.	Fangs sobrants procedents de centrals d'àrids	
		4.1.	3.	Sorra normalitzada	
		4.1.	4.	Aigua	
4	4.2	2.	La c	ceràmica	
		4.2.	1.	El procés d'obtenció de la ceràmica	
		4.2.	2.	Transformacions durant la cocció	
		4.2.	3.	Tipus de ceràmica	41
5.		Des	senvo	plupament	
!	5.´	1.	Càlo	cul de primeres matèries	
!	5.2	2.	Diss	seny i elaboració del motlle	
ł	5.3	3.	Diss	seny i elaboració del porta provetes per la caixa calenta calibrada	47
!	5.4	4.	Elat	poració de maons ceràmics (provetes)	50
!	5.5	5.	Ass	aig de resistència a compressió	64
		5.5.	1.	Objectiu	64
		5.5.	2.	Normativa	64
		5.5.	3.	Material i màquines a utilitzar	64
					2

5.5	5.4.	Proves	65
5.5	5.5.	Procediment amb peces senceres	66
5.5	5.6.	Procediment amb peces tallades	70
5.6.	Ass	saig per establir les propietats tèrmiques (mètode caixa calenta calibrada).	72
5.6	5.1.	Conceptes tèrmics	72
5.6	6.2.	Objectiu	73
5.6	5.3.	Normativa	73
5.6	6.4.	Material i maquinària utilitzada	73
5.6	6.5.	Procediment	76
5.6	6.6.	Fórmules	79
5.7.	Ass	saigs per determinar densitats	82
5.7	7.1.	Objectiu	82
5.7	7.2.	Normativa	82
5.7	7.3.	Material i maquinària	
5.7	7.4.	Procediment	
5.7	7.5.	Fórmules	85
5.8.	Ana	àlisi d'imatges, densitats i composició elemental mitjançant SEM-EDX	
5.8	3.1.	Objectiu	
5.8	3.2.	Material i maquinària	
5.8	3.3.	Procediment de preparació	
5.8	3.4.	Procediment d'observació i anàlisi	
5.8	3.5.	Consideracions pels càlculs de porositat real	
5.9.	Ana	àlisi d'estructures cristal·lines mitjançant difracció de raigs X	
5.9	9.1.	Objectiu	104
5.9	9.2.	Material i màquines	

	5.9.	3.	Procediment	104
6.	Res	sultat	S	110
6	6.1.	Res	sistència a compressió	110
	6.1.	1.	Provetes tallades	110
	6.1.	2.	Provetes senceres	121
6	6.2.	Prop	pietats tèrmiques	147
6	6.3.	Den	nsitats	165
6	6.4.	Por	ositat real i composició elemental mitjançant SEM-EDX	191
	6.4.	1.	Porositat real	191
	6.4.	2.	Composició elemental	203
6	6.5.	Estr	ructures cristal·lines mitjançant difracció de raigs X	210
6	6.6.	Con	nparativa de resistència a compressió i conductivitat tèrmica	220
7.	Cor	nclusi	ions	222
7	7.1.	Res	sistència a compressió	222
7	7.2.	Prop	pietats tèrmiques	223
7	7.3.	Den	nsitat aparent i relativa, absorció, i porositat i compacitat relativa	224
7	7.4.	Por	ositat real i microanàlisis	226
7	7.5.	Estr	ructures cristal·lines	227
7	7.6.	Con	nclusions finals	228
8.	Pro	poste	es d'investigació	229
9.	Ref	erèno	cies bibliogràfiques	230
ç	9.1.	Artic	cles i congressos	230
ç	9.2.	Tret	balls finals de grau i tesines	232
ç	9.3.	Nori	mativa	232
ç	9.4.	Altre	es	233

10. Ag	ıraïments	234
11. Ar	nexes	235
11.1.	Especejament del motlle d'acer i els suplements	235
11.2.	Mesures de les provetes desemmotllades, assecades i cuites	237
11.3.	Gràfiques de resistència a compressió (provetes tallades)	255
11.4.	Gràfiques de resistència a compressió fins a 180t (provetes senceres)	277
11.5.	Assaigs mitjançant el mètode de la caixa calenta calibrada	296
11.6.	Imatges SEM-MER	334
11.7.	Composició elemental	
11.8.	Difractogrames	
11.9.	Fitxa tècnica del maó de Piera	410

Índex de figures

Figura 1. Instal-lacions d'Argiles Colades S.A.	33
Figura 2. Sac d'argila PEN-F	
Figura 3. Final del procés quan el fang surt de la premsa	34
Figura 4. Zona de recollida de fangs a Àrids Guixeras S.A.	34
Figura 5. Fangs humits trossejats	35
Figura 6. Fangs secs	35
Figura 7. Fangs picats a mà	
Figura 8. Molí	
Figura 9. Picant fangs	
Figura 10. Fang picat	
Figura 11. Sac de sorra normalitzada	
Figura 12. Mesura de clor, brom i pH amb reactius	
Figura 13. Resultat de l'assaig de pH amb pH-metre	
Figura 14. Procés de soldat de la platina reforçada	
Figura 15. Procés de soldat del motlle	46
Figura 16. Posicionat de marc abans d'encolar	47
Figura 17. Tapa de caixa de fusta	
Figura 18. Tapes de fusta foradades	48
Figura 19. Posicionat del suro sobre la tapa	
Figura 20. Encolat del marc amb la tapa i làmina de suro	48
Figura 21. Tapa de caixa acabada	
Figura 22. Caixa acabada	
Figura 23. Pesat de l'argila (1)	51
Figura 24. Pesat de l'argila (2)	51
Figura 25. Pesat del fang	51
Figura 26. Pesat de la sorra	51
Figura 27. Proveta amb 1053 ml d'aigua	52
Figura 28. Mesclat dels materials i afegit d'aigua amb proveta	53
Figura 29. Neteja de capçals i paret de mescladora durant l'amassat	53
	6

Figura 30.	Amassada acabada5	54
Figura 31.	Pesat de massa per a una proveta5	54
Figura 32.	Oli desencofrant5	54
Figura 33.	Preparació del motlle a la premsa5	5
Figura 34.	Platina de premsat amb desencofrant5	5
Figura 35.	Mescla abocada al motlle5	5
Figura 36.	Mescla regularitzada al motlle5	5
Figura 37.	Platina de premsat col·locada al motlle5	6
Figura 38.	Segona platina col·locada5	6
Figura 39.	Premsat5	57
Figura 40.	Elevat de motlle amb eslinga5	58
Figura 41.	Col·locació de marc obert5	58
Figura 42.	Dessemmotllat5	58
Figura 43.	Proveta desemmotllada sota platina5	58
Figura 44.	Proveta dessemmotllada (1)5	59
Figura 45.	Proveta dessemmotllada (2)5	;9
Figura 46.	Mesurat de la llargada6	50
Figura 47.	Mesurat de l'amplada6	50
Figura 48.	Mesurat del gruix6	50
Figura 49.	Estufa6	51
Figura 50.	Proveta assecada6	51
Figura 51.	Forn6	53
Figura 52.	Peces seques col·locades al forn6	53
Figura 53.	Peces cuites al forn6	53
Figura 54.	Provetes PIERA refrontades6	5
Figura 55.	Prova d'assaig amb proveta de PIERA refrentada6	5
Figura 56.	Proveta de PIERA refrontada després de l'assaig6	6
Figura 57.	Proveta de PIERA sense refrontar després de l'assaig6	6
Figura 58.	Provetes senceres i tallades en estufa6	57
Figura 59.	Màquina d'assaigs a compressió6	57
Figura 60.	Transductor i peu imantat6	57

Figura 61.	Escàner de dades per transductors	.67
Figura 62.	Proveta i transductors col·locats a la premsa	.68
Figura 63.	Transductor en contacte amb proveta	.68
Figura 64.	Lectura de la premsa durant un assaig	.69
Figura 65.	Lectura de l'escàner dels transductors durant un assaig	.69
Figura 66.	Marcatge de tall de provetes	.70
Figura 67.	Tallat de provetes amb serra circular	.70
Figura 68.	Proveta tallada de PIERA durant l'assaig (1)	.71
Figura 69.	Proveta tallada de PIERA durant l'assaig (2)	.71
Figura 70.	Equip complet de caixa tèrmica calibrada	.74
Figura 71.	Regulador de temperatura	.75
Figura 72.	Enregistrador de dades dels termoparells	.75
Figura 73.	Cambra freda	.75
Figura 74.	Cambra calenta	.75
Figura 75.	Proveta a caixa porta provetes oberta	.76
Figura 76.	Proveta a caixa porta provetes tancada	.76
Figura 77.	Col·locació de termoparell a cara freda	.77
Figura 78.	Termoparell col·locat a cara freda	.77
Figura 79.	Col·locació de termoparell a cara calenta	.77
Figura 80.	Termoparell col·locat a cara calenta	.77
Figura 81.	Caixa calenta calibrada en funcionament	.78
Figura 82.	Recopilació de dades a través del programari de l'enregistrador de dades	.78
Figura 83.	Provetes submergides en aigua	.84
Figura 84.	Retirada d'aigua superficial amb paper higiènic	.84
Figura 85.	Pesada a l'aire de proveta saturada d'aigua	.84
Figura 86.	Col·locació de proveta dins l'aigua a la balança	.85
Figura 87.	Pesada en aigua de proveta saturada d'aigua	.85
Figura 88.	Mostres tallades i assecades (1)	.89
Figura 89.	Mostres tallades i assecades (2)	.89
Figura 90.	Tallat de mostres amb serra circular petita	.90
Figura 91.	Mostres tallades	.90

Figura 92. Assecat de mostres en estufa	90
Figura 93. Motlles d'inclusió	90
Figura 94. Mostra amb clip col·locat	91
Figura 95. Mostres col·locades al motlle	91
Figura 96. Mescla de resina epòxid i catalitzador	91
Figura 97. Emplenat de motlles amb la resina	91
Figura 98. Fent el buit a les mostres incloses	92
Figura 99. Mostra en motlle després del curat	92
Figura 100. Mostra desemmotllada	92
Figura 101.Primer polit de mostres	
Figura 102. Mostra en procés de polit	
Figura 103. Papers de polit (1)	93
Figura 104. Papers de polit (2)	
Figura 105. Maquina de polit mitjançant suspensió aquosa amb alúmina	94
Figura 106. Alúmina de les tres diferents granulometries	94
Figura 107. Màquina per netejar amb ultrasons	94
Figura 108. Mostres polides	
Figura 109. Mostres amb porta mostres	
Figura 110. Màquina per fer l'evaporat de carboni	95
Figura 111. Mostra amb evaporat de carboni	
Figura 112. Fent les pistes de plata col·loïdal (1)	
Figura 113. Fent pistes de plata col·loïdal (2)	
Figura 114. Equip del microscopi SEM-MER	
Figura 115. Col·locació de mostres al microscopi SEM-MER	96
Figura 116. Observació amb microscopi SEM-MER	97
Figura 117. Processat d'imatges	97
Figura 118. Exemple imatge SE	
Figura 119. Exemple imatge BSE	
Figura 120. Exemple imatge amb "threshold" aplicat	
Figura 121. Aplicació de "threshold" amb programa ImageJ	
Figura 122. Càlcul d'àrees amb programa ImageJ	100

Figura 123. Execució de microanàlisi	
Figura 124. Exemple de microanàlisi amb gràfica ampliada	
o	
Figura 126. Imatges per anàlisi de porus SE vs BSE	
Figura 127. Trencat de mostra amb martell	
Figura 128. Triturat de la mostra amb martell	
Figura 129. Mostra triturada	
Figura 130. Màquina de molturar	
Figura 131. Mostra i bola de tungstè col·locades a la màquina de molturar	
Figura 132. Mostra molturada	
Figura 133. Abocat de mostra al pot	
Figura 134. Mostra de pols en porta mostres	
Figura 135. Col·locació de mostra al difractòmetre	
Figura 136. Difractòmetre en funcionament	
Figura 137. Lectura del difractòmetre en funcionament	
Figura 138. Assaig de resistència a compressió PF409004.1 (1)	
Figura 139. Assaig de resistència a compressió PF409004.1 (2)	
Figura 140. Assaig de resistència a compressió PF409004.1 (3)	
Figura 141. Assaig de resistència a compressió PF409004.1 (4)	
Figura 142. Assaig de resistència a compressió PF409004.1 (5)	
Figura 143. Assaig de resistència a compressió PF409004.1 (6)	
Figura 144. Assaig de resistència a compressió PF409004.1 (7)	
Figura 145. Assaig de resistència a compressió PF409004.1 (8)	
Figura 146. Assaig de resistència a compressió PF409004.1 (9)	
Figura 147. Assaig de resistència a compressió PF409004.1 (10)	
Figura 148. Assaig de resistència a compressió PF409004.1 (11)	
Figura 149. Assaig de resistència a compressió PF409004.1 (12)	
Figura 150. Assaig de resistència a compressió PF409004.1 (13)	
Figura 151. Assaig de resistència a compressió PF409004.1 (14)	
Figura 152. Assaig de resistència a compressió PF409004.1 (15)	
Figura 153. Assaig de resistència a compressió PF409004.1 (16)	

Figura 154. Assaig de resistència a compressió PF409004.1 (17)	118
Figura 155. Assaig de resistència a compressió PF409004.1 (18)	118
Figura 156. Assaig de resistència a compressió PF409004.1 (19)	119
Figura 157. Assaig de resistència a compressió PF409004 (1)	139
Figura 158. Assaig de resistència a compressió PF409004 (2)	139
Figura 159. Assaig de resistència a compressió PF409004 (3)	139
Figura 160. Assaig de resistència a compressió PF409004 (4)	139
Figura 161. Assaig de resistència a compressió PF409004 (5)	
Figura 162. Assaig de resistència a compressió PF409004 (6)	139
Figura 163. Assaig de resistència a compressió PF409004 (7)	140
Figura 164. Assaig de resistència a compressió PF409004 (8)	140
Figura 165. Assaig de resistència a compressió PF409004 (9)	140
Figura 166. Assaig de resistència a compressió PF409004 (10)	140
Figura 167. Assaig de resistència a compressió PF409004 (11)	140
Figura 168. Assaig de resistència a compressió PF409004 (12)	140
Figura 169. Assaig de resistència a compressió PF409004 (13)	141
Figura 170. Assaig de resistència a compressió PF409004 (14)	141
Figura 171. Assaig de resistència a compressió PF409004 (15)	141
Figura 172. Assaig de resistència a compressió PF409004 (16)	141
Figura 173. Assaig de resistència a compressió PF409004 (17)	141
Figura 174. Assaig de resistència a compressió PF409004 (18)	141
Figura 175. Assaig de resistència a compressió PF409004 (19)	142
Figura 176. Assaig de resistència a compressió PF409004 (20)	142
Figura 177. Assaig de resistència a compressió PF409004 (21)	142
Figura 178. Assaig de resistència a compressió PF409004 (22)	142
Figura 179. Assaig de resistència a compressió PF409004 (23)	
Figura 180. Assaig de resistència a compressió PF409004 (24)	142
Figura 181. Assaig de resistència a compressió PF409004 (25)	
Figura 182. Assaig de resistència a compressió PF409004 (26)	
Figura 183. Assaig de resistència a compressió PF409004 (27)	
Figura 184. Assaig de resistència a compressió PF409004 (28)	

Figura 185. Especejament del motle d'acer	235
Figura 186. Especejament suplements del motle d'acer	236
Figura 187. Imatges BSE a 200 augments PA30850	
Figura 188. Imatges SE a 200 i 50 augments PA30850	
Figura 189. Imatges BSE a 200 augments PA30900	
Figura 190. Imatges SE a 200 i 50 augments PA30900	
Figura 191. Imatges BSE a 200 augments PA30950	
Figura 192. Imatges SE a 200 i 50 augments PA30950	
Figura 193. Imatges BSE a 200 augments PA40850	
Figura 194. Imatges SE a 200 i 50 augments PA40850	341
Figura 195. Imatges BSE a 200 augments PA40900	
Figura 196. Imatges SE a 200 i 50 augments PA40900	
Figura 197. Imatges BSE a 200 augments PA40950	
Figura 198. Imatges SE a 200 i 50 augments PA40950	
Figura 199. Imatges BSE a 200 augments PA50850	
Figura 200. Imatges SE a 200 i 50 augments PA50850	
Figura 201. Imatges BSE a 200 augments PA50900	
Figura 202. Imatges SE a 200 i 50 augments PA50900	
Figura 203. Imatges BSE a 200 augments PA50950	350
Figura 204. Imatges SE a 200 i 50 augments PA50950	351
Figura 205. Imatges BSE a 200 augments PF30850	
Figura 206. Imatges SE a 200 i 50 augments PF30850	
Figura 207. Imatges BSE a 200 augments PF30900	354
Figura 208. Imatges SE a 200 i 50 augments PF30900	
Figura 209. Imatges BSE a 200 augments PF30950	
Figura 210. Imatges SE a 200 i 50 augments PF30950	357
Figura 211. Imatges BSE a 200 augments PF40850	
Figura 212. Imatges SE a 200 i 50 augments PF40850	
Figura 213. Imatges BSE a 200 augments PF40900	
Figura 214. Imatges SE a 200 i 50 augments PF40900	
Figura 215. Imatges BSE a 200 augments PF40950	

Figura 216. Imatges SE a 200 i 50 augments PF40950	363
Figura 217. Imatges BSE a 200 augments PF50850	364
Figura 218. Imatges SE a 200 i 50 augments PF50850	365
Figura 219. Imatges BSE a 200 augments PF50900	366
Figura 220. Imatges SE a 200 i 50 augments PF50900	367
Figura 221. Imatges BSE a 200 augments PF50950	368
Figura 222. Imatges SE a 200 i 50 augments PF50950	369
Figura 223. Imatges BSE a 200 augments PIERA	370
Figura 224. Imatges SE a 200 i 50 augments PIERA	371
Figura 225. Fitxa tècnica del maó de Piera	410

Índex de gràfiques

Gràfica 1. Rang de la distribució granulométrica segons DIN EN 196-1	37
Gràfica 3. Força-Posició del premsat (exemple a 50 kg/cm ²) Font. David Morillas	57
Gràfica 2. Cicle de cocció amb temperatura màxima de 850°C	62
Gràfica 3. Cicle de cocció amb temperatura màxima de 900°C	62
Gràfica 4. Cicle de cocció amb temperatura màxima de 950°C	62
Gràfica 5. Exemple de difractograma	109
Gràfica 6. Resistència a compressió sèrie PA30, PF30 i PIERA	112
Gràfica 7. Resistència a compressió sèrie PA40, PF40 i PIERA	113
Gràfica 8. Resistència a compressió sèrie PA50, PF50 i PIERA	113
Gràfica 9. Resistència a compressió sèrie PA (1)	114
Gràfica 10. Resistència a compressió sèrie PA (2)	114
Gràfica 11. Resistència a compressió sèrie PF (1)	115
Gràfica 12. Resistència a compressió sèrie PF (2)	115
Gràfica 13. Deformació unitària a 180t sèrie PA30, PF30 i PIERA	123
Gràfica 14. Deformació unitària a 180t sèrie PA40, PF40 i PIERA	124
Gràfica 15. Deformació unitària a 180t sèrie PA50, PF50 i PIERA	124
Gràfica 16. Deformació unitària a 180t sèrie PA (1)	125
Gràfica 17. Deformació unitària a 180t sèrie PA (2)	125
Gràfica 18. Deformació unitària a 180t sèrie PF (1)	126
Gràfica 19. Deformació unitària a 180t sèrie PF (2)	126
Gràfica 20. Comparativa gràfiques resistència a compressió fins 180t sèrie PA30 i PIERA	127
Gràfica 21. Comparativa gràfiques resistència a compressió fins 180t sèrie PA40 i PIERA	128
Gràfica 22. Comparativa gràfiques resistència a compressió fins 180t sèrie PA50 i PIERA	129
Gràfica 23. Comparativa gràfiques resistència a compressió fins 180t sèrie PF30 i PIERA	130
Gràfica 24. Comparativa gràfiques resistència a compressió fins 180t sèrie PF40 i PIERA	131
Gràfica 25. Comparativa gràfiques resistència a compressió fins 180t sèrie PF50 i PIERA	132
Gràfica 26. Comparativa gràfiques resistència a compressió fins 180t sèrie PA850 i PIERA	۱ 1 33
Gràfica 27. Comparativa gràfiques resistència a compressió fins 180t sèrie PA900 i PIERA	۸ 1 34
Gràfica 28. Comparativa gràfiques resistència a compressió fins 180t sèrie PA950 i PIERA	A 135

Gràfica 29. Comparativa gràfiques resistència a compressió fins 180t sèrie PF	_850 i PIERA 136
Gràfica 30. Comparativa gràfiques resistència a compressió fins 180t sèrie PF_	_900 i PIERA 137
Gràfica 31. Comparativa gràfiques resistència a compressió fins 180t sèrie PF_	_950 i PIERA 138
Gràfica 32. Conductivitat tèrmica sèrie PA30, PF30 i PIERA	150
Gràfica 33. Conductivitat tèrmica sèrie PA40, PF40 i PIERA	150
Gràfica 34. Conductivitat tèrmica sèrie PA50, PF50 i PIERA	
Gràfica 35. Conductivitat tèrmica sèrie PA (1)	151
Gràfica 36. Conductivitat tèrmica sèrie PA (2)	152
Gràfica 37. Conductivitat tèrmica sèrie PF (1)	152
Gràfica 38. Conductivitat tèrmica sèrie PF (2)	153
Gràfica 39. Transmitància tèrmica sèrie PA30, PF30 i PIERA	154
Gràfica 40. Transmitància tèrmica sèrie PA40, PF40 i PIERA	154
Gràfica 41. Transmitància tèrmica sèrie PA50, PF50 i PIERA	155
Gràfica 42. Transmitància tèrmica sèrie PA (1)	
Gràfica 43. Transmitància tèrmica sèrie PA (2)	156
Gràfica 44. Transmitància tèrmica sèrie PF (1)	156
Gràfica 45. Transmitància tèrmica sèrie PF (2)	157
Gràfica 46. Flux de calor sèrie PA30, PF30 i PIERA	
Gràfica 47. Flux de calor sèrie PA40, PF40 i PIERA	
Gràfica 48. Flux de calor sèrie PA50, PF50 i PIERA	
Gràfica 49.Flux de calor sèrie PA (1)	
Gràfica 50. Flux de calor sèrie PA (2)	160
Gràfica 51. Flux de calor sèrie PF (1)	161
Gràfica 52. Flux de calor sèrie PF (2)	161
Gràfica 53. Densitat aparent sèrie PA30, PF30 i PIERA	
Gràfica 54. Densitat aparent sèrie PA40, PF40 i PIERA	
Gràfica 55. Densitat aparent sèrie PA50, PF50 i PIERA	169
Gràfica 56. Densitat aparent sèrie PA (1)	169
Gràfica 57. Densitat aparent sèrie PA (2)	170
Gràfica 58. Densitat aparent sèrie PF (1)	170
Gràfica 59. Densitat aparent sèrie PF (2)	171

Gràfica 60. Densitat	relativa sèrie PA30, PF30 i PIERA	172
Gràfica 61. Densitat	relativa sèrie PA40, PF40 i PIERA	172
Gràfica 62. Densitat	relativa sèrie PA50, PF50 i PIERA	173
Gràfica 63. Densitat	relativa sèrie PA (1)	173
Gràfica 64. Densitat	relativa sèrie PA (2)	174
Gràfica 65. Densitat	relativa sèrie PF (1)	174
Gràfica 66. Densitat	relativa sèrie PF (2)	175
Gràfica 67. Absorció	sèrie PA30, PF30 i PIERA	176
Gràfica 68. Absorció	sèrie PA40, PF40 i PIERA	176
Gràfica 69. Absorció	sèrie PA50, PF50 i PIERA	177
Gràfica 70. Absorció	sèrie PA (1)	177
Gràfica 71. Absorció	sèrie PA (2)	178
Gràfica 72. Absorció	sèrie PF (1)	178
Gràfica 73. Absorció	sèrie PF (2)	179
Gràfica 74. Porositat	t relativa sèrie PA30, PF30 i PIERA	
Gràfica 75. Porositat	relativa sèrie PA40, PF40 i PIERA	
Gràfica 76. Porositat	relativa sèrie PA50, PF50 i PIERA	
Gràfica 77. Porositat	t relativa sèrie PA (1)	
Gràfica 78. Porositat	relativa sèrie PA (2)	
Gràfica 79. Porositat	t relativa sèrie PF (1)	
Gràfica 80. Porositat	t relativa sèrie PF (2)	
Gràfica 81. Compaci	itat relativa sèrie PA30, PF30 i PIERA	
Gràfica 82. Compaci	itat relativa sèrie PA40, PF40 i PIERA	
Gràfica 83. Compaci	itat relativa sèrie PA50, PF50 i PIERA	
Gràfica 84. Compaci	itat relativa sèrie PA (1)	
Gràfica 85. Compaci	itat relativa sèrie PA (2)	
Gràfica 86. Compaci	itat relativa sèrie PF (1)	
Gràfica 87. Compaci	itat relativa sèrie PF (2)	
Gràfica 88. Porositat	real sèrie PA30, PF30 i PIERA	198
Gràfica 89. Porositat	real sèrie PA40, PF40 i PIERA	198
Gràfica 90. Porositat	real sèrie PA50, PF50 i PIERA	199

Gràfica 91. Porositat real sèrie PA (1)199	
Gràfica 92. Porositat real sèrie PA (2)200	
Gràfica 93. Porositat real sèrie PF (1)200	
Gràfica 94. Porositat real sèrie PF (2)201	
Gràfica 95. Difractograma ampliat i estructures cristal·lines PA30900	
Gràfica 96. Difractograma ampliat i estructures cristal·lines PIERA	
Gràfica 97. Comparativa difractogrames PA30211	
Gràfica 98. Comparativa difractogrames PA40212	
Gràfica 99. Comparativa difractogrames PA50	
Gràfica 100. Comparativa difractogrames PF30214	
Gràfica 101. Comparativa difractogrames PF40215	
Gràfica 102. Comparativa difractogrames PF50216	
Gràfica 103. Comparativa difractogrames PA i PIERA	
Gràfica 104. Comparativa difractogrames PF218	
Gràfica 105. Comparativa difractogrames PA, PF i PIERA219	
Gràfica 106. Comparativa resistència compressió-conductivitat tèrmica PA i PIERA (1)220	
Gràfica 107. Comparativa resistència compressió-conductivitat tèrmica PA i PIERA (2) 220	
Gràfica 108. Comparativa resistència compressió-conductivitat tèrmica PF i PIERA (1) 221	
Gràfica 109. Gràfiques resistència a compressió PA308501	
Gràfica 110. Gràfiques resistència a compressió PA309001256	
Gràfica 111. Gràfiques resistència a compressió PA309501257	
Gràfica 112. Gràfiques resistència a compressió PA408501258	
Gràfica 113. Gràfiques resistència a compressió PA409001	
Gràfica 114. Gràfiques resistència a compressió PA409002260	
Gràfica 115. Gràfiques resistència a compressió PA409501	
Gràfica 116. Gràfiques resistència a compressió PA508501262	
Gràfica 117. Gràfiques resistència a compressió PA509001263	
Gràfica 118. Gràfiques resistència a compressió PA509501264	
Gràfica 119. Gràfiques resistència a compressió PF308501	
Gràfica 120. Gràfiques resistència a compressió PF309001	
Gràfica 121. Gràfiques resistència a compressió PF309501267	

Gràfica 122. Gràfiques resistència a compressió PF408501	
Gràfica 123. Gràfiques resistència a compressió PF409001	
Gràfica 124. Gràfiques resistència a compressió PF409002	
Gràfica 125. Gràfiques resistència a compressió PF409501	271
Gràfica 126. Gràfiques resistència a compressió PF508501	
Gràfica 127. Gràfiques resistència a compressió PF509001	
Gràfica 128. Gràfiques resistència a compressió PF509501	
Gràfica 129. Gràfiques resistència a compressió PIERA1	
Gràfica 130. Gràfiques resistència a compressió PIERA2	
Gràfica 131. Gràfiques resistència a compressió PA30850	
Gràfica 132. Gràfiques resistència a compressió PA30900	
Gràfica 133. Gràfiques resistència a compressió PA30950	
Gràfica 134. Gràfiques resistència a compressió PA40850	
Gràfica 135. Gràfiques resistència a compressió PA40900	
Gràfica 136. Gràfiques resistència a compressió PA40950	
Gràfica 137. Gràfiques resistència a compressió PA50850	
Gràfica 138. Gràfiques resistència a compressió PA50900	
Gràfica 139. Gràfiques resistència a compressió PA50950	
Gràfica 140. Gràfiques resistència a compressió PF30850	
Gràfica 141. Gràfiques resistència a compressió PF30900	
Gràfica 142. Gràfiques resistència a compressió PF30950	
Gràfica 143. Gràfiques resistència a compressió PF40850	
Gràfica 144. Gràfiques resistència a compressió PF40900	
Gràfica 145. Gràfiques resistència a compressió PF40950	
Gràfica 146. Gràfiques resistència a compressió PF50850	
Gràfica 147. Gràfiques resistència a compressió PF50900	
Gràfica 148. Gràfiques resistència a compressió PF50950	
Gràfica 149. Gràfiques resistència a compressió PIERA	
Gràfica 150. Gràfiques mètode de la caixa calenta calibrada PA30850_(1)	
Gràfica 151. Gràfiques mètode de la caixa calenta calibrada PA30850_ (2)	
Gràfica 152. Gràfiques mètode de la caixa calenta calibrada PA30900_ (1)	

Gràfica 153. Gràfiques mètode de la caixa calenta calibrada PA30900_ (2)	
Gràfica 154. Gràfiques mètode de la caixa calenta calibrada PA30950_ (1)	
Gràfica 155. Gràfiques mètode de la caixa calenta calibrada PA30950_ (2)	
Gràfica 156. Gràfiques mètode de la caixa calenta calibrada PA40850_(1)	
Gràfica 157. Gràfiques mètode de la caixa calenta calibrada PA40850_ (2)	
Gràfica 158. Gràfiques mètode de la caixa calenta calibrada PA40900_ (1)	
Gràfica 159. Gràfiques mètode de la caixa calenta calibrada PA40900_ (2)	
Gràfica 160. Gràfiques mètode de la caixa calenta calibrada PA40950_(1)	
Gràfica 161. Gràfiques mètode de la caixa calenta calibrada PA40950_(2)	
Gràfica 162. Gràfiques mètode de la caixa calenta calibrada PA50850_(1)	
Gràfica 163. Gràfiques mètode de la caixa calenta calibrada PA50850_ (2)	
Gràfica 164. Gràfiques mètode de la caixa calenta calibrada PA50900_(1)	
Gràfica 165. Gràfiques mètode de la caixa calenta calibrada PA50900_(2)	
Gràfica 166. Gràfiques mètode de la caixa calenta calibrada PA50950_(1)	
Gràfica 167. Gràfiques mètode de la caixa calenta calibrada PA50950_ (2)	
Gràfica 168. Gràfiques mètode de la caixa calenta calibrada PF30850_ (1)	
Gràfica 169. Gràfiques mètode de la caixa calenta calibrada PF30850_ (2)	
Gràfica 170. Gràfiques mètode de la caixa calenta calibrada PF30900_(1)	
Gràfica 171. Gràfiques mètode de la caixa calenta calibrada PF30900_(2)	
Gràfica 172. Gràfiques mètode de la caixa calenta calibrada PF30950_(1)	
Gràfica 173. Gràfiques mètode de la caixa calenta calibrada PF30950_(2)	
Gràfica 174. Gràfiques mètode de la caixa calenta calibrada PF40850_(1)	
Gràfica 175. Gràfiques mètode de la caixa calenta calibrada PF40850_(2)	
Gràfica 176. Gràfiques mètode de la caixa calenta calibrada PF40900_(1)	
Gràfica 177. Gràfiques mètode de la caixa calenta calibrada PF40900_(2)	
Gràfica 178. Gràfiques mètode de la caixa calenta calibrada PF40950_(1)	
Gràfica 179. Gràfiques mètode de la caixa calenta calibrada PF40950_(2)	
Gràfica 180. Gràfiques mètode de la caixa calenta calibrada PF50850_(1)	
Gràfica 181. Gràfiques mètode de la caixa calenta calibrada PF50850_(2)	
Gràfica 182. Gràfiques mètode de la caixa calenta calibrada PF50900_(1)	
Gràfica 183. Gràfiques mètode de la caixa calenta calibrada PF50900_ (2)	

Gràfica 184. Gràfiques mètode de la caixa calenta calibrada PF50950_(1)	
Gràfica 185. Gràfiques mètode de la caixa calenta calibrada PF50950_(2)	331
Gràfica 186. Gràfiques mètode de la caixa calenta calibrada PIERA_ (1)	
Gràfica 187. Gràfiques mètode de la caixa calenta calibrada PIERA_ (2)	
Gràfica 188. Difractograma PA30850	
Gràfica 189. Difractograma PA30900	
Gràfica 190. Difractograma PA30950	
Gràfica 191. Difractograma PA40850	
Gràfica 192. Difractograma PA40900	
Gràfica 193. Difractograma PA40950	
Gràfica 194. Difractograma PA50850	
Gràfica 195. Difractograma PA50900	
Gràfica 196. Difractograma PA50950	
Gràfica 197. Difractograma PF30850	
Gràfica 198. Difractograma PF30900	
Gràfica 199. Difractograma PF30950	
Gràfica 200. Difractograma PF40850	
Gràfica 201. Difractograma PF40900	
Gràfica 202. Difractograma PF40950	
Gràfica 203. Difractograma PF50850	
Gràfica 204. Difractograma PF50900	
Gràfica 205. Difractograma PF50950	
Gràfica 206. Difractograma PIERA	

Índex de gràfiques-taula

Gràfica-taula 7. Microanàlisi per anàlisi de porus EDX (1)	102
Gràfica-taula 7. Microanàlisi per anàlisi de porus EDX (2)	103
Gràfica-taula 1. Microanàlisis EDX PA30	203
Gràfica-taula 2. Microanàlisis EDX PA40	204
Gràfica-taula 3. Microanàlisis EDX PA50	205
Gràfica-taula 4. Microanàlisis EDX PF30	206
Gràfica-taula 5. Microanàlisis EDX PF40	207
Gràfica-taula 6. Microanàlisis EDX PF50	208
Gràfica-taula 7. Microanàlisis EDX PIERA	209
Gràfica-taula 8. Microanàlisis EDX PA30850	
Gràfica-taula 9. Microanàlisis EDX PA30900	
Gràfica-taula 10. Microanàlisis EDX PA30950	
Gràfica-taula 11. Microanàlisis EDX PA40850	
Gràfica-taula 12. Microanàlisis EDX PA40900	
Gràfica-taula 13. Microanàlisis EDX PA40950	
Gràfica-taula 14. Microanàlisis EDX PA50850	
Gràfica-taula 15. Microanàlisis EDX PA50900	
Gràfica-taula 18. Microanàlisis EDX PA50950	
Gràfica-taula 17. Microanàlisis EDX PF30850	
Gràfica-taula 18. Microanàlisis EDX PF30900	
Gràfica-taula 19. Microanàlisis EDX PF30950	
Gràfica-taula 20. Microanàlisis EDX PF40850	
Gràfica-taula 21. Microanàlisis EDX PF40900	
Gràfica-taula 22. Microanàlisis EDX PF40950	
Gràfica-taula 23. Microanàlisis EDX PF50850	
Gràfica-taula 24. Microanàlisis EDX PF50900	
Gràfica-taula 25. Microanàlisis EDX PF50950	
Gràfica-taula 26. Microanàlisis EDX PIERA	

Índex de taules

Taula 1. Composició química argila PEN-F	33
Taula 2. Granulometria de sorra normalitzada	37
Taula 3. Pes, volum i dimensions provetes desemmotllades TFG-Canal	43
Taula 4. Dosificacions de les amassades	44
Taula 5. Material per les amassades	44
Taula 6. Cicles de cocció	61
Taula 7. Resistència a compressió sèrie PA	110
Taula 8. Resistència a compressió sèrie PF	111
Taula 9. Resistència a compressió PIERA	111
Taula 10. Resum resistència a compressió PA	112
Taula 11. Resum resistència a compressió PF	112
Taula 12. Deformació a 180t PA	121
Taula 13. Deformació a 180t PF	122
Taula 14. Deformació a 180t PIERA	122
Taula 15. Resum deformació unitària a 180t PA	123
Taula 16. Resum deformació unitària a 180t PF	123
Taula 17. Propietats tèrmiques PA	147
Taula 18. Propietats tèrmiques PF	148
Taula 19. Propietats tèrmiques PIERA	149
Taula 20. Resum conductivitat tèrmica PA	149
Taula 21. Resum conductivitat tèrmica PF	149
Taula 22. Resum transmitància tèrmica PA	153
Taula 23. Resum transmitància tèrmica PF	153
Taula 24. Resum flux de calor PA	157
Taula 25. Resum flux de calor PF	158
Taula 26. Densitat aparent i relativa, absorció, porositat i compacitat relativa PA	165
Taula 27. Densitat aparent i relativa, absorció, porositat i compacitat relativa PF	
Taula 28. Densitat aparent i relativa, absorció, porositat i compacitat relativa PIERA	
Taula 29. Resum densitat aparent PA	167
	22

Taula 30. Resum densitat aparent PF	
Taula 31. Resum densitat relativa PA	
Taula 32. Resum densitat relativa PF	
Taula 33. Resum absorció PA	
Taula 34. Resum absorció PF	
Taula 35. Resum porositat relativa PA	
Taula 36. Resum porositat relativa PF	
Taula 37. Resum compacitat relativa PA	
Taula 38. Resum compacitat relativa PF	
Taula 39. Porositat real PA30	
Taula 40. Porositat real PA40	
Taula 41. Porositat real PA50	
Taula 42. Porositat real PF30	
Taula 43. Porositat real PF40	
Taula 44. Porositat real PF50	
Taula 45. Porositat real PIERA	
Taula 46. Resum porositat real PA	
Taula 47. Resum porositat real PF	
Taula 43. Mesures PA30850	237
Taula 43. Mesures PA30900	
Taula 43. Mesures PA30950	
Taula 44. Mesures PA40850	
Taula 44. Mesures PA40900	241
Taula 44. Mesures PA40950	
Taula 55. Mesures PA50850	
Taula 55. Mesures PA50900	
Taula 55. Mesures PA50950	245
Taula 43. Mesures PF30850	
Taula 43. Mesures PF30900	
Taula 43. Mesures PF30950	
Taula 44. Mesures PF40850	

Taula 44. Mesures PF40900	. 250
Taula 44. Mesures PF40950	. 251
Taula 55. Mesures PF50850	. 252
Taula 55. Mesures PF50900	. 253
Taula 55. Mesures PF50950	. 254
Taula 55. Mesures PIERA	.254

1. Introducció

Actualment en el mon de la construcció hi ha moltes investigacions obertes a nous materials i especialment, amb materials reciclats.

En aquest treball, del molt ampli ventall de possibilitats de investigació sostenible, s'ha triat la ceràmica, un material molt important dins la història de la construcció.

Fa uns anys enrere, es va començar a investigar sobre l'aprofitament de fangs obtinguts per la neteja d'àrids per a la fabricació de ceràmica.

A partir de llavors, des de la Universitat de Girona, alumnes i professors d'Arquitectura Tècnica varen seguir estudiant l'aplicació d'aquests fangs fins a dia d'avui.

2. Objectius

L'objectiu principal del treball és l'ampliació dels estudis fets anteriorment els quals es detallen en l'apartat d'antecedents, i més concretament el d'en Jordi Canal.

Aquesta ampliació es vol dur a terme fent un estudi de la influència de la pressió del premsat i temperatura de cocció sobre la resistència a la compressió i conductivitat tèrmica del maó massís ceràmic massís fabricat amb fangs procedents de central d'àrids.

Es volen calcular densitats i porositats de la ceràmica fabricada per estudiar la seva relació amb la resistència a compressió i les propietats.

S'analitzaran mostres amb microscopi electrònic de rastreig, per calcular porositats i conèixer la composició química elemental.

Per acabar, també es farà difracció de raigs X per analitzar les estructures cristal·lines.

3. Antecedents

Aquest treball té com a antecedents específics els següents treballs finals de grau fets per alumnes d'Arquitectura Tècnica de la Universitat de Girona:

- El reaprofitament dels fangs sobrants d'una central d'àrids per la seva aplicació a la construcció, fet per Bjorn Erik Berthelsen i Francesc Xavier Janer (2012). D'ara en endavant, *TFG-Berthelsen-Janer*.
- Reaprofitament dels fangs sobrants d'una central d'àrids per, a la fabricació de rajols i rajoles, fet per Jordi Martil Soria i Arnau Mestre Reus (2014). D'ara en endavant, *TFG-Martil-Reus.*
- Ampliació i perfeccionament de l'estudi de l'obtenció de peces ceràmiques a partir de l'aprofitament dels fangs sobrants d'una central d'àrids, fet per Marc Vergeli (2015). D'ara en endavant, TFG-Vergeli.
- La influència de la pressió de fabricació i del canvi de temperatura de cocció en les propietats de la ceràmica porosa fabricada amb fangs procedents de central d'àrids, fet per Josep Cortals i Albert Lozano (2015). D'ara en endavant, *TFG-Cortals-Lozano*.
- Influència de la pressió de fabricació i temperatura de cocció en la resistència a compressió i conductivitat tèrmica de la ceràmica porosa fabricada amb fangs procedents de centrals d'àrids, fet per Jordi Canal (2016). D'ara en endavant, TFG-Canal.

Cal destacar un altre antecedent específic, la tesina *Estudi de l'aprofitament de subproductes industrials procedents del tractament d'àrids com a matèria primera ceràmica,* feta per Isaura Oliver Graells (2011).

També hi ha varis articles i estudis relacionats amb aquest treball i els abans esmentats.

En el treball final de grau *TFG-Canal* es descriuen detalladament els antecedents esmenats dels treballs finals de grau anteriors, la tesina, articles i altres estudis.

3.1. Antecedent específic principal

L'antecedent específic principal és el treball final de grau TFG-Canal.

L'objectiu principal era fer un estudi de la conductivitat tèrmica i el comportament de la ceràmica amb pressions de fabricació de 30kg/cm², 40kg/cm² i 50kg/cm² i les temperatures de cocció de 800°C a 950°C amb intervals de 50°C. Realitzant l'estudi tèrmic mitjançant l'assaig de la Caixa calenta calibrada amb la caixa actual al laboratori de la UDG i fabricant una nova caixa millorant les prestacions de l'anterior comparant els resultats de les dues caixes.

Es van realitzar assaigs de densitat l'assaig de densitat mitjançant la balança hidrostàtica per trobar les densitats, l'absorció, la porositat i la compacitat de les peces per relacionar una possible connexió amb la millora tèrmica de les provetes. Es van fer anàlisis amb microscopi SEM (Scanning Electron Microscope) per trobar porositats reals interiors i la composició química de les provetes.

També es va realitzar l'assaig a compressió de totes les peces assajades anteriorment, ja que és l'assaig més determinant alhora de comprovar les característiques de la ceràmica, i d'aquesta manera trobar la relació "pressió de fabricació-cocció" de la peça ceràmica més adequada respecte els assajos realitzats.

Les conclusions que es van extreure van ser les següents:

- Els resultats de la conductivitat tèrmica calculats a partir de les dues caixes calentes son semblants. Els resultats de la caixa vella donen millors conductivitats tèrmiques, és a dir, més baixes, però són resultats menys fiables ja que segons les imatges termogràfiques es poden observar les pèrdues de temperatura i els ponts tèrmics que té la caixa calenta vella.
- Les provetes amb millor conductivitat tèrmica son les fabricades a pressions de 30kg/cm², té certa lògica doncs son les provetes amb menor pressió de fabricació i per tant les més poroses. Les temperatures de cocció no són tant influents però a la vegada s'observa que en tots els casos la temperatura de cocció més adequada respecte la seva pressió de fabricació son les provetes cuites a 900°C. Per tant les millors provetes són les fabricades a pressió de 30kg/cm² i cuites a 900°C.
- Segons l'article Utilización de nuevas materias primas y residus insdustriales para mejorar las posibilidades de uso de los materiales cerámicos del àrea de de Bailén (Jaén), de R. J. -

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Arboledas, A. Merino i S. Bueno, arriben a la conclusió que la variació de temperatures de cocció no fa variar de manera significativa la conductivitat tèrmica del material, sinó que depenen més del material mesclat i la densitat de les peces. Es contempla que el material VG (50% argila Vermella i 50% argila Gris) amb una temperatura de cocció de 950°C i amb una densitat aparent de 2,10 g/cm², presenta una conductivitat tèrmica de 0,83 W/mK. El maó massís ceràmic de Piera CV ecomanual segons la seva fitxa tècnica presenta una conductivitat tèrmica de 0,85 W/mK, que és la mateixa que es determina en el catàleg d'elements constructius del CTE. Dit això es conclou que els valors de conductivitat tèrmica obtinguts han sigut semblants.

- La temperatura de cocció no influeix en la densitat relativa i densitat aparent, però si que influeix la pressió de fabricació. A més pressió de fabricació s'obtenen provetes amb més densitat relativa i aparent.
- La porositat i la compacitat de les provetes, a menor pressió de fabricació tenen major porositat i menor compacitat. I el mateix a la inversa.
- La porositat influeix directament en la conductivitat tèrmica de les provetes.
- S'obtenen resultats semblants d'absorció en comparació amb les de l'article Materias primeras ricas en arcila de las Capas Rojas Triásicas (Norte de Jaen) para fabricar materiales cerámicos de construccion, fet per M. Vázquez i J. Jiménez-Millán. Segons l'article obtenen absorcions de 9,1% a 17,5% en peces cuites a 1000°C i de 16% a 18,5% en peces cuites a 800°C; segons el treball d'en Jordi Canal els resultats obtinguts van de 13,9% al 17,13% depenent de temperatura de cocció i la pressió de fabricació.
- La resistència a compressió normalitzada de les provetes compleix amb la mínima requerida segons el CTE-DB SE-F, de seguretat estructural de fàbrica, de 5 N/mm².
- La pressió de fabricació influeix directament en la resistència a compressió de les provetes.
 A major pressió de fabricació, major resistència a compressió.
- Les temperatures de cocció influeixen en la resistència a compressió. Les provetes cuites una temperatura de 900°C són les que tenen millors resultats a compressió, seguidament de les de 950°C, 850°C i 800°C.
- La porositat de les imatges observades amb el microscopi és més elevada en les provetes fabricades a menor pressió, doncs succeeix exactament el mateix que els resultats de les provetes analitzades en l'assaig de densitat però amb la diferència que les porositats

calculades amb les imatges són lleugerament més elevades, entre un 3 i un 11% en tots els casos que les calculades amb l'assaig de densitats. El mostreig s'ha fet amb 5 imatges per cada proveta de diferent pressió de fabricació i temperatura de cocció; en cada imatge es donen diferents resultats de porositat.

- Les temperatures de cocció no influeixen en la porositat de les imatges observades amb el microscopi, com tampoc influeixen en les porositats obtingudes amb l'assaig de densitats.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

4. Metodologia

El procés a seguir per l'elaboració del present treball és el següent:

- Recerca d'informació, antecedents i referències bibliogràfiques
 - o Antecedents: tesis i tesines, treballs final de grau, articles, congressos i altres estudis.
 - Normatives: UNE, CTE i altres.
- Càlcul i obtenció de les primeres matèries per la fabricació de provetes
 - o Argila.
 - Fangs sobrants procedents de centrals d'àrids.
 - o Sorra normalitzada.
 - o Aigua
- Disseny i elaboració de motlle de provetes
 - o Disseny i especejament
 - o Muntatge
- Disseny i elaboració de caixa porta provetes de fusta per assaig en caixa calenta calibrada
 - o Diseny
 - o Muntatge
- Obtenció de maons ceràmics massissos de Piera.
- Elaboració de maons ceràmics massissos.
 - Provetes fabricades amb argila.
 - 3 pressions · 3 coccions · 6 provetes = 54 unitats
 - Provetes fabricades amb argila i fangs sobrants procedents de central d'àrids.
 - 3 pressions · 3 coccions · 6 provetes = 54 unitats
- Realització d'assaigs, anàlisi i tècniques
 - Assaig de resistència a compressió mitjançant maquina d'assaig a compressió.
 - Assaig per establir propietats tèrmiques mitjançant el mètode de la caixa calenta calibrada.
 - o Assaig de densitat mitjançant la balança hidrostàtica.
 - o Anàlisi d'imatges, porositat real i composició elemental mitjançant SEM.
 - o Anàlisi d'estructures cristal·lines mitjançant difracció de raigs X.
- Càlcul i interpretació de resultats.
- Conclusions.

4.1. Primeres matèries per l'elaboració de les provetes

Per l'elaboració de les provetes s'utilitzarà argila, fangs sobrants procedents de centrals d'àrids, sorra normalitzada i aigua.

En els treballs finals de grau *TFG-Berthelsen-Janer i TFG-Martil-Reus*, es descriuen més detalladament els apartats de:

- L'obtenció, procedència i descripció dels fangs utilitzats i dels seus components.
- La descripció de l'argila, les seves propietats i tipus.

En el treballs final de grau TFG-Vergeli i TFG-Cortals-Lozano es descriu més detalladament:

- L'obtenció i procedència de l'argila.
- La procedència i descripció de la sorra.

A continuació es descriuen de manera resumida cadascun dels materials utilitzats per fer les provetes.

4.1.1. Argila

L'argila és una roca sedimentaria descomposta constituïda per agregats de silicats d'alumini hidratats, procedents de la descomposició de roques que contenen feldspat. Pot presentar diferents coloracions segons les impureses que conté; des de colors mes rogencs fins al blanc quan és pura.

En l'àmbit de la construcció és característica per la seva plasticitat quan conté aigua, i per la seva duresa després de la seva cocció per sobre dels 800°C.

En aquest treball s'utilitzarà una argila PEN-F (pendular fi), subministrada per l'empresa Argiles Colades S.A.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Figura 1. Instal·lacions d'Argiles Colades S.A. Font. David Morillas

Figura 2. Sac d'argila PEN-F Font. David Morillas

La composició química de l'argila PEN-F que ens proporciona l'empresa és la següent:

Mostra	%
Na2O	0,450
MgO	1,450
AI2O3	19,550
SiO2	52,270
P2O5	0,160
SO3	0,050
K2O	3,750
CaO	4,910
TiO2	0,085
MnO	0,060
Fe2O3	6,700
NiO	*
ZnO	0,020
Ga2O3	*
Rb2O	0,020
SrO	0,030
Y2O3	*
ZrO2	0,030
Nb2O5	*
BaO	0,070
PPC	9,650
Taula 1.	Composició química argila PEN-F
	Font. Argiles Colades S.A.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

4.1.2. Fangs sobrants procedents de centrals d'àrids

Aquests fangs s'extreuen de les centrals d'àrids. S'extreuen en el moment de neteja dels àrids. Es fa la separació dels elements sòlids i líquids, és a dir, àrids i aigua; aquest procés es fa mitjançant un hidrocicló.

Aquest procés s'acaba amb l'obtenció de llots que es condueixen en un dipòsit de decantació per reduir la quantitat d'aigua, aquests es condueixen a una tremuja d'emmagatzematge que filtra i premsa per finalment obtenir els fangs.

Concretament s'utilitzaran els fangs proporcionats per l'empresa Àrids Guixeras S.A.

Es van recollir aproximadament 60 kg de fang dels quals se'n han utilitzat aproximadament 40 kg; es va seleccionar la zona de recollida per obtenir uns fangs semblants als utilitzats als treballs finals de grau anteriors.

Figura 3. Final del procés quan el fang surt de la premsa Font. Xavier Janer i Bjorn Berthelsen

Figura 4. Zona de recollida de fangs a Àrids Guixeras S.A.

Font. David Morillas

El grup de recerca CATS, va sol·licitar un informe per determinar la composició mineral del fang i mitjançant la difracció de raigs X, es va determinar que estaven compostos majoritàriament per quars; la composició completa és la següent:

- Quars SiO2
- Albita Na(AlSi35O8)
- Montmorillonita (Na,Ca)0.3(Al,Mg)2Si2O10(OH)2·nH2O
- Mica Moscovita KAl2(Si3Al)O10((OH)1.8O0.2)
- Sanidina K0.5Na0.5Ca0.03(AlSi3O8)
- Calcita (CaCO3)
- Caolinita Al2(Si2O5)(OH)4

Per preparar el fang per ser utilitzat primer cal fer un assecat a l'estufa durant 24 hores a 100°C.

Tot seguit es pica manualment fins a obtenir un diàmetre suficient com per poder introduir dins del molí.

Un cop mòlt el fang es col·loca a l'estufa fins a la seva utilització. Abans d'utilitzar-lo es treu del forn i es deixa refredar a temperatura ambient.

A continuació es poden veure imatges del procés:

Figura 5. Fangs humits trossejats Font. David Morillas

Figura 6. Fangs secs Font. David Morillas

Figura 7. Fangs picats a mà Font. David Morillas

Figura 8. Molí Font. David Morillas

Figura 9. Picant fangs Font. David Morillas

Figura 10. Fang picat Font. David Morillas
4.1.3. Sorra normalitzada

Per elaborar les provetes s'utilitzarà sorra normalitzada CEN-NORMSAND DIN EN 196-1. Aquesta sorra es subministra en sacs de 1,35 kg.

Aquesta sorra te una granulometria d'entre 0,08 i 2,00 mm. La proporció es mostra a la taula següent, que ve donada per el fabricant:

Tamiz (mm)	Límite inferior	Promedio de intervalo	Límite superior	
2,00	0	0	0	
1,60	2	7	12	
1,00	28	33	38	
0,50	62	67	72	
0,16	82	87	92	
0,08	98	99	100	
Taula 2. Granulometria de sorra normalitzada Font, www.normesand.de				

Gràfica 1. Rang de la distribució granulométrica segons DIN EN 196-1

Font. www.normesand.de

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

4.1.4. Aigua

L'aigua utilitzada per fer l'amassat ha de ser potable, és a dir, apta per al consum humà. Per a potabilitzar l'aigua natural es du a terme el seu tractament mitjançant processos físics i químics.

Per fer l'amassat es recull l'aigua en el mateix moment de ésser utilitzada. Es recull directament de les aixetes del Laboratori de construcció de l'Edifici P2 de l'Escola Politècnica Superior de la Universitat de Girona.

S'ha realitzat un petit anàlisi de l'aigua per conèixer el seu pH, el nivell de clor i brom i els resultats són els següents:

- El nivell de clor és menor a 0,5 mg/l i el nivell de brom és menor a 1 mg/l.
- Pel que fa al pH, obtenim un nivell de 7,65.

Figura 12. Mesura de clor, brom i pH amb reactius Font. David Morillas

Figura 13. Resultat de l'assaig de pH amb pH-metre Font. David Morillas

També cal tenir en compte que l'aigua no ha de tenir alts nivells de calç ja que la seva capacitat d'expansió en presència d'aigua podria provocar fissures i trencaments a les provetes de ceràmica elaborades.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

4.2. La ceràmica

La ceràmica és un material molt utilitzat en la construcció en l'actualitat i també durant bona part de la història de la construcció. Abans de la ceràmica es coneixia l'argila seca; més tard es va descobrir la ceràmica, que bàsicament és argila cuita.

En el treball final de grau *TFG-Berthelsen-Janer* i *TFG-Cortals-Lozano* es descriu la ceràmica de manera detallada els següents apartats:

- El procés d'obtenció de la ceràmica.
- Les transformacions químiques en el procés de cocció.
- Els tipus de ceràmica segons la temperatura de cocció.
- Els tipus de ceràmica segons el grau de porositat.

A continuació es descriuen de manera resumida cadascun dels apartats.

4.2.1. El procés d'obtenció de la ceràmica

Per a l'obtenció de la ceràmica cal seguir els passos següents:

- Humectació de l'argila. Per a una bona elaboració cal que l'argila tingui un grau d'humitat i un assecat adequat. L'argila te la capacitat de captar l'aigua per absorció i adsorció:
 - Absorció. L'aigua es distribueix homogèniament per tota la massa a nivell molecular arribant a formar una suspensió col·loïdal.
 - Adsorció. Les partícules d'aigua s'adhereixen a les superfícies de les partícules laminars, estructura laminar, de l'argila a causa de forces residuals físiques o químiques.
- Conformació. La conformació pot ser mitjançat premsat manual o mecànic, o per extrusió:
 - Premsat manual. Es premsa manualment amb l'ajuda d'un motlle. La compressió del material és baixa. Els motlles son d'estructura senzilla i permeten gran variabilitat de formes.

- Premsat mecànic. Es realitza el premsat amb una màquina. Es pot premsar a pressions més elevades i amb exactitud. Els motlles han de ser capaços de suportar les altes pressions sense deformar-se de manera significativa.
- Extrusió. S'utilitza una matriu per la qual es va introduint el material per una banda, i per l'altra surt el material el qual es va tallant de manera paral·lela a la matriu per obtenir les peces. El disseny de les peces ve donat per el disseny de la matriu.
- Assecat. S'extreu l'aigua de les peces per evaporació. Les peces s'assequen en una estufa.
 Cal controlar la velocitat d'evaporació per tal d'evitar la fissuració i esberlat. En l'assecat hi distingim tres fases:
 - Primera. Hi ha reducció de volum i no apareixen porus.
 - o Segona. Hi ha reducció de volum i apareixen porus.
 - Tercera. No hi ha reducció de volum i augmenta la porositat.
- Cocció. En la cocció es produeixen canvis de fase, oxidacions, sinteritzacions i vitrificacions.
 El material es transforma, és un procés irreversible que dóna lloc a un nou material amb característiques diferents. Es produeix una pèrdua d'aigua i una disminució de la porositat i volum. Cal tenir en compte que s'ha de controlar el cicle de cocció, és a dir, l'escalfament i el refredament.

4.2.2. Transformacions durant la cocció

Durant la cocció de la massa es produeixen les següents transformacions segons la temperatura:

- Fins a 200 °C. Pèrdua d'aigua i plasticitat. Es produeix una important contracció.
- De 200 a 450 °C. Pèrdua d'aigua i plasticitat. Es produeix contracció. Transformació irreversible.
- De 400 a 650 °C. Pèrdua total de l'aigua. Apareix el silicat d'alumini anhídrid: transformació de caolí a metacaolí.
- De 650 a 850°C. Contracció lenta. El metacaolí es comença a transformar en mul·lita.
- De 850 a 950 °C. Continua el procés de transformació de metacaolí a mul·lita.
- Més de 1000 °C. Transformació molecular dels silicats cristal·litzant en forma d'agulles.
- Més de 1700 °C. Es produeix la fusió de la ceràmica.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

4.2.3. Tipus de ceràmica

Tot i que la temperatura de cocció i la porositat tenen una relació directe, es poden classificar de ambdues maneres.

Els tipus de ceràmica segons la temperatura màxima de cocció son:

- Terracota. De 800 a 1000 °C.
- Gres i pisa. De 1100 a 1300 °C.
- Porcellana. De 1300 a 1450 °C.
- Ceràmica refractària i vitrificada. De 1300 a 1800 °C.

Els tipus de ceràmica segons la seva porositat són:

- Ceràmica porosa. Terrissa. S'utilitza per fabricar de maons, rajoles, teules i revoltons entre d'altres.
- Ceràmica semi compacte. Pisa, vidriada i gres. S'utilitza per fabricar canalitzacions, rajoles i equips sanitaris entre d'altres.
- Ceràmica compacte o vitrificada. Porcellana. S'utilitza habitualment per fabricar elements decoratius.

5. Desenvolupament

5.1. Càlcul de primeres matèries

Per començar cal fer una estimació del material necessari per fer les comandes de material.

Les dosificacions utilitzades són les mateixes utilitzades en el treball final de grau *TFG-Canal*, que va utilitzar la dosificació que donava millors resultats del treball final de grau *TFG-Vergeli*.

Les dosificacions per fer la ceràmica feta amb argila és la següent:

- 100 kg argila + 20 kg sorra + 11,7 kg aigua = 131,7 kg massa total
- En percentatge serien aproximadament:
 - o 75,930 % argila.
 - o 15,186 % sorra.
 - o 8,884 % aigua.

Les dosificacions per fer la ceràmica feta amb argila i fangs és la següent:

- 84 kg argila + 16 kg fang + 20 kg sorra + 11,7 kg aigua = 131,7 kg massa total
- En percentatge serien aproximadament:
 - o 63,781 % argila.
 - o 12,149% fang.
 - o 15,186 % sorra.
 - o 8,884 % aigua.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Per fer l'estimació s'han agafat les dades de pes, dimensions i volum de les provetes després de l'amassat del treball final de grau *TFG-Canal*. La taula següent recull les mitjanes d'aquestes dades:

Amassada	Pes (g)	Amplada (mm)	Longitud (mm)	Gruix (mm)	Volum (cm3)	Densitat (g/cm3)
30-800	1250,6	72,11	145,49	55,54	582,61	2,15
30-850	1161,0	72,73	145,44	54,66	578,17	2,01
30-900	1139,3	72,17	145,39	52,17	547,47	2,08
30-950	1097,7	72,63	145,43	51,38	542,67	2,02
40-800	1203,4	72,30	145,23	54,89	576,39	2,09
40-850	1150,4	71,88	145,20	52,55	548,49	2,10
40-900	1196,2	72,02	145,27	53,60	560,78	2,13
40-950	1197,6	72,40	145,28	54,08	568,88	2,11
50-800	1236,4	72,37	145,32	55,32	581,79	2,13
50-850	1204,4	72,34	145,23	53,35	560,53	2,15
50-900	1186,3	72,35	145,20	52,30	549,47	2,16
50-950	1218,9	72,21	145,07	54,17	567,48	2,15
MITJANA	1186,8	72,29	145,30	53,67	563,73	2,11
Taula 3. Pes. volum i dimensions provetes desemmotilades TFG-Canal						

Amb aquesta taula es pot calcular aproximadament el pes total de les provetes a fabricar.

Les provetes a fabricar són de les mateixes dimensions que les dels maons "MANUAL PIERA ROJO" de CERÀMICA PIERA, S.L.. Les dimensions són 276 x 133 x 43 mm.

Es faran càlculs a partir de les dosificacions i la taula anterior. Els càlculs segons la "Taula 3" són els següents:

Densitat mitjana desprès del desemmotllat = $dM1 = 2,11 \frac{g}{cm^3}$

Volum nova proveta = $V1 = 276 \cdot 133 \cdot 43 = 1578444 \text{ } mm^3 = 1578,444 \text{ } cm^3$

Pes nova proveta 1 = P1 = V1 · dM1 = 1578,444 $cm^3 \cdot 2,11 \frac{g}{cm^3}$ = 3330,52 g

Segons el treball final de grau *TFG-Canal*, en una amassada es podien fer 12 provetes i sobrava una mica de material, utilitzava 10,08 kg d'argila, 1,92 kg de fang, 2,4 kg de sorra i 1,404 l d'aigua. Tot això suma un total de 15,804 kg i per cada proveta, sense tenir en compte el material sobrant, s'utilitzava 1,317 kg de material.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

A continuació es faran càlculs amb les dades de dosificació del TFG-Canal:

Densitat mitjana segons la dosificació = $dM2 = \frac{1317g}{563,73cm^3} = 2,34\frac{g}{cm^3}$

Pes nova proveta 2 = P2 = V1 · dM2 = 1578,444 cm³ · 2,34 $\frac{g}{cm^3}$ = 3693,56 g

Per fer els càlculs de la comanda es va agafar com a referència el pes P2 ja que es considera que hi poden haver pèrdues i material sobrant que no es té en compte fent els càlculs del pes P1, i això podria comportar una comanda escassa de material.

Provetes	Pes unitari (kg)	Argila/ut (kg)	Fang/ut (kg)	Sorra/ut (kg)	Aigua/ut (kg)
Provetes argila	2,805	0,000	0,561	0,328	2,805
Provetes fang	2,356	0,449	0,561	0,328	2,356
Total	5,160	0,449	1,122	0,656	5,160
Taula 4. Dosificacions de les amassades					

Amassades	Provetes	Argila (kg)	Fang (kg)	Sorra (kg)	Aigua (kg)	Total (kg)
1 d'argila	6	16,827	0,000	3,365	1,969	22,161
9 d'argila	54	151,444	0,000	30,289	17,719	199,452
1 de fang	6	14,135	2,692	3,365	1,969	22,161
9 de fang	54	127,213	24,231	30,289	17,719	199,452
Totes	108	278,657	24,231	60,578	35,438	398,903
Taula 5. Material per les amassades						

Per tant cal demanar un mínim de 280 kg d'argila, 25 kg de fang i 61 kg de sorra. Tot i així es fa una comanda de 300 kg d'argila en sacs de 20 kg (15 sacs), es va a buscar un sac de fang de 60 kg, tenint en compte que el fang és humit i que en perdre l'aigua reduirà el seu pes aproximadament un 25% però, tot i així hi haurà material sobrant; també es demanen 60 sacs de sorra de 1,35 kg, essent un total de 81 kg de sorra, dels quals se n' han gastat aproximadament 75 kg.

Cal tenir en compte que va ser necessari anar a buscar 2 sacs més tenint en compte que es va fer inservible un sac que es va mullar a causa d'una inundació, i també es van haver de repetir dues amassades, una d'elles es va trencar una peça sencera que no tocava i l'altre perquè es va repetir una amassada que ja s'havia fet. Finalment va sobrar un sac d'argila, per tant es van gastar 320 kg.

5.2. Disseny i elaboració del motlle

Per fer el motlle per el premsat de les provetes, es va dissenyar de manera que fos resistent a les altes pressions sotmeses, per a una fàcil i ràpida execució i per a unes dimensions d'acabat determinades segons els maons de Piera, és a dir 276x133x43 cm.

La base motlle s'ha elaborat amb acer, concretament amb perfils laminats L100, i perfils rodons Ø10 per les nanses.

L'especejament del motlle és el següent:

- 2 perfils L100 de 333 mm.
- 2 perfils L100 de 276 mm.
- 4 perfils rodons Ø10 de 90 mm.
- 2 perfils rodons Ø10 de 153 mm.

Com a suplements del motlle tenim la platina reforçada la qual serà la encarregada de transmetre la pressió de la premsa al material emmotllat que està composada per:

- 1 passamà de 80x5 de 133 mm.
- 1 passamà de 80x5 de 276 mm.
- 2 passamans de 80x5 de 306 mm.
- 1 planxa de 83x226x10 mm.
- 1 planxa de 133x276x10 mm.

També caldrà una base per col·locar el motlle, una planxa de 526x383x10mm.

Finalment es fabricarà un marc d'acer obert per un costat, és a dir, que estarà format per 3 laterals, i que serà necessari per fer el desemmotllat. Aquest marc esta composat per:

- 1 tub quadrat de 50x50x336 d'1mm de gruix.
- 2 tubs quadrats de 50x50x433 d'1mm de gruix.

En els annexes es poden veure els plànols del motlle i els seus suplements.

Per a la unió de peces del motlle i els suplements es va utilitzar la soldadura a l'arc. Primer es va soldar la platina reforçada i seguidament el motlle ja que a partir de la platina es podien fixar amb

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

sergents els perfils per soldar del motlle, i també d'aquesta manera garantir un bon encaix entre el motlle i la platina.

Cal tenir en compte que abans de col·locar la platina es varen col·locar unes galgues d'1mm pel seu voltant, és a dir que la galga quedaria col·locada entre la platina i la cara interior del motlle per deixar un marge de pas entre ells.

Figura 14. Procés de soldat de la platina reforçada Font. David Morillas

Figura 15. Procés de soldat del motlle

Font. David Morillas

5.3. Disseny i elaboració del porta provetes per la caixa calenta calibrada

Per fer l'assaig amb el mètode de la caixa calenta calibrada calia fer un porta provetes per a col·locar les peces a assajar a la caixa.

El porta provetes és bàsicament una caixa de fusta que té una cavitat interior per col·locar la proveta i la resta d'espai està reomplert amb material aïllant per a evitar la transmissió de calor entre cambres, i així obtenir unes bones dades per calcular-ne els resultats.

Per a la seva fabricació primer es va elaborar un marc de fusta de 50x50 cm amb uns llistons de fusta de 55x55cm. El marc quadrat es va fer encolant quatre llistons fixats amb serjants, dos llistons de 50 cm i dos llistons de 390 cm.

Les tapes de la caixa son d'aglomerat de fusta de 50x50x1,5 cm.

A la part central de cada tapa es va fer un forat que serveix per comunicar les dues cambres amb la proveta. Aquest forat té un perímetre aproximadament equidistant al de la proveta i es més curt que la longitud i amplada de la proveta. Les dimensions aproximades del forat son de 25x10 cm.

Figura 16. Posicionat de marc abans d'encolar Font. David Morillas

Figura 17. Tapa de caixa de fusta Font. David Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Figura 18. Tapes de fusta foradades Font. David Morillas

Figura 19. Posicionat del suro sobre la tapa Font. David Morillas

Figura 20. Encolat del marc amb la tapa i làmina de suro Font. David Morillas

Un cop acabat el marc es fixa amb cola una de les tapes i es deixa subjectat amb serjants fins a assecar-se.

Entre la proveta i les tapes es col·loca una làmina de neoprè d'uns 8 mm de gruix per garantir una millor estanqueïtat.

L'aïllament de reomplert interior està composat per una capa de 4 mm de làmina de suro i la resta és d'escuma de poliuretà especial per a altes temperatures. La làmina de suro es va col·locar en el moment d'encolar la tapa fixa.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

L'escuma es va projectar amb pistola a l'interior després de col·locar una proveta embolicada amb film transparent per evitar que l'aïllament s'adherís a la peça. Un cop sec l'aïllament es va tallar el sobrant amb l'ajuda d'un cúter.

L'altra tapa no serà fixa, sinó que s'hi col·locaran uns mecanismes d'acer es que permetran posar i treure de manera ràpida i senzilla a l'hora de fer el canvi de proveta.

Figura 21. Tapa de caixa acabada Font. David Morillas

Figura 22. Caixa acabada Font. David Morillas

5.4. Elaboració de maons ceràmics (provetes)

Els codis de les provetes estan composats per 2 lletres inicials seguides de 6 números. A continuació es detallen el seus significats.

- Per a les provetes que no tenen contingut de fangs les seves lletres inicials seran "PA", tal i com s'anomenaran d'ara en endavant.
- Per a les provetes que s'elaboren amb fangs les seves lletres inicials seran "PF", tal i com s'anomenaran d'ara en endavant.
- Les dos primeres xifres indiquen la pressió del premsat de fabricació, és a dir, 30, 40 o 50 kg/cm².
- Les tres xifres següents indiquen la temperatura de cocció, és a dir, 850, 900 o 950°C.
- La última xifra indica l'ordre de fabricació dins de cada amassada, és a dir, 1, 2, 3, 4, 5 o 6.
- Exemple. Proveta elaborada amb fangs amb una pressió del premsat de fabricació de 50 kg/cm², amb una temperatura de cocció de 900°C, i la primera de l'amassada en ésser desemmotllada. El codi de l'anterior proveta és "PF509001".

Es comença fent unes provetes de prova, concretament 2 amassades amb premsat i cuita, per conèixer les quantitats exactes necessàries per fer la mescla. Es va concloure que les dosificacions de les amassades serien les següents:

- Per la sèrie PA: 9 kg d'argila, 1,8 kg de sorra i 1,053 l d'aigua.
- Per la sèrie PF: 7,56 kg d'argila, 1,44 kg de sorra i 1,053 l d'aigua.

També es va concloure que per cada proveta eren necessaris aproximadament 3600 g de mescla.

PA per aprofitar les estones entre amassades per la preparació dels fangs entre d'altres coses.

Es va comprovar que no es podia fer un amassada sencera per cada sèrie de 6 provetes ja que la mescladora no tenia la capacitat volumètrica suficient, i per aquest motiu es va optar per fer 2 amassades seguides de 3 provetes cadascuna.

Abans de començar a amassar es treuen de l'estufa l'argila i el fang fins que estiguin a temperatura ambient. Per a un bon assecat han d'estar aproximadament 48 h a una temperatura entre 60 i 80°C

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Un cop els materials ja estan a temperatura ambient, es pesen amb una balança i s'aboquen a la mescladora seguint el següent ordre: argila, sorra i aigua per les PA, i argila, fang, sorra i aigua per les PF.

Figura 23. Pesat de l'argila (1) Font. David Morillas

Figura 24. Pesat de l'argila (2) Font. David Morillas

Figura 25. Pesat del fang Font. David Morillas

Figura 26. Pesat de la sorra Font. David Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Figura 27. Proveta amb 1053 ml d'aigua Font. David Morillas

Per fer una bona mescla es mesclaven durant aproximadament 2 minuts cada vegada que s'afegia el següent material a la mescladora fins arribar a l'aigua, és a dir, en el cas de les PF, primer es mesclaven durant aproximadament 2 minuts l'argila i el fang, seguidament s'afegia la sorra i es mesclaven durant 2 minuts més, i finalment l'aigua s'afegia lentament amb l'ajuda d'una proveta de 1000 ml durant aproximadament dos parts de 10 minuts.

En referència a l'aigua cal tenir en compte que s'afegia en dos parts, durant la primera part s'afegia aproximadament dos terceres parts de l'aigua, seguidament es parava la mescladora i es removia manualment la mescla amb una paleta o espàtula per repassar la mescla de les parets, de la base i netejar els capçals mescladors; fet això es continuava afegint la resta de l'aigua, i un cop afegida es tornava a remoure la mescla amb una paleta o espàtula per repassar la mescla de les parets, de la base i netejar els capçals mescladors.

L'aigua també es podia afegir amb un polvoritzador d'aigua però es va optar per utilitzar les provetes de 1000 ml ja que es podien mesurar amb més precisió les quantitats d'aigua afegides i els resultats de l'amassat eren semblants, és a dir, que es produïen una quantitat de grumolls semblants.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Figura 28. Mesclat dels materials i afegit d'aigua amb proveta Font, David Morillas

Figura 29. Neteja de capçals i paret de mescladora durant l'amassat

Font. David Morillas

Acabada l'amassada s'afegia la mescla en 3 bols d'acer, en cada bol s'afegia una quantitat de 3610 g amb un error màxim de ± 2 g.

El següent pas és el premsat de les provetes. Abans però, calia fer la preparació del premsat, i per ordre es feia el següent:

- Col·locació de planxa base a sobre de la màquina de premsat.
- Neteja del motlle, planxa base i platina de premsa.
- Col·locació del motlle sobre la platina base.
- Aplicació de desencofrat sobre la base, parets interiors del motlle i base de la platins de premsa amb l'ajuda d'un pinzell.
- Fixació d'una eslinga a la màquina de premsat, que servirà per aixecar el motlle en el desemmotllat.
- Programat de la màquina a la pressió requerida.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Figura 30.Amassada acabada

Font. David Morillas

Figura 31. Pesat de massa per a una proveta Font. David Morillas

Figura 32. Oli desencofrant Font. David Morillas

Fet això s'abocava el material d'un bol dins del motlle, s'escampava al mateix nivell de manera regular amb una paleta o espàtula, es col·locava la platina de premsa sobre del motlle i sobre aquesta es col·locava una altra platina per millorar el contacte amb el plat de la màquina de premsa.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Figura 33. Preparació del motlle a la premsa Font. David Morillas

Figura 34. Platina de premsat amb desencofrant Font. David Morillas

Figura 35. Mescla abocada al motlle

Font. David Morillas

Figura 36. Mescla regularitzada al motlle Font. David Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Figura 37. Platina de premsat col·locada al motlle Font. David Morillas

Figura 38. Segona platina col·locada Font. David Morillas

Seguidament s'aplicava pressió amb la premsa de manera automàtica. Segons la pressió desitjada s'aplicava una carrega màxima. Aquesta càrrega s'aplica segons la superfície, i tenint en compte que teníem una superfície aproximada de 276x133mm, s'aplicaven les següents càrregues:

- Per a una pressió de 30 kg/cm², 11021,4 kg ≈ 11,02 t
- Per a una pressió de 40 kg/cm², 14683,2 kg ≈ 14,68 t
- Per a una pressió de 50 kg/cm², 18354,0 kg ≈ 18,35 t

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfica 2. Força-Posició del premsat (exemple a 50 kg/cm²) Font. David Morillas

Per aplicar aquestes càrregues es va utilitzar la màquina d'assaig universal del laboratori.

No es podia utilitzar la premsa petita que s'havia utilitzat en els treballs finals de grau anteriors ja que no permetia aplicar aquestes càrregues.

Figura 39. Premsat Font. David Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Un cop premsada la massa es lliga l'eslinga a les nanses del motlle, s'eleva tot el conjunt a una alçada adequada per poder col·locar el marc d'acer entre la planxa base i el motlle, i un cop col·locat el marc la premsa torna a exercir pressió per fer el desemmotllat.

El desemmotllat consisteix en fer lliscar la proveta pel motlle fins caure a la planxa base.

Quan la peça ja s'ja desemmotllat, es torna a elevar el motlle per retirar el marc i la proveta desemmotllada.

Figura 40. Elevat de motlle amb eslinga Font. David Morillas

Figura 41. Col·locació de marc obert Font. David Morillas

Figura 42. Dessemmotllat Font. David Morillas

Figura 43. Proveta desemmotllada sota platina Font. David Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Figura 44. Proveta dessemmotllada (1) Font. David Morillas

Figura 45. Proveta dessemmotllada (2) Font. David Morillas

Després de desemmotllar la peça es pesa amb una balança amb una precisió de 1 g, es mesuren les seves dimensions amb una cinta d'acer amb una precisió de 1 mm, i es gravava el codi de la proveta creant un relleu amb l'ajuda d'un clau d'acer.

Tot i que als projectes de final de grau antecedents utilitzaven peus de rei per mesurar les provetes i la normativa ens marca uns valors més estrictes de mesura, es va considerar que era suficient la mesura amb una cinta mil·limetrada ja que segons la fitxa tècnica dels maons ecomanuals de Piera, el fabricant dona les mesures en mil·límetres.

Es mesuraven dos vegades cada dimensió a diferents posicions, és a dir, es mesuraven en costats oposats 2 longituds, 2 amplades i 2 gruixos. Per pesar les peces s'han tingut en compte que, segons la normativa, tenint en compre que la massa utilitzada era de 3600 g, la precisió de pesat havia de ser d'un màxim de 3,6 g en aquest cas concret.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Figura 46. Mesurat de la llargada Font. David Morillas

Figura 47. Mesurat de l'amplada Font. David Morillas

Figura 48. Mesurat del gruix Font. David Morillas

Un cop mesurades i pesades les peces es posaven a l'estufa entre 60 i 80 °C durant un mínim de 48 h. Es va establir un mínim de dos dies ja que amb les provetes de prova es va comprovar que era un temps adequat.

Després d'assecar les peces a l'estufa es tornen a pesar i mesurar de la mateixa manera que després del desemmotllat. Fet això es col·loquen al forn, es programa el cicle de cocció i es posa en marxa.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Figura 49. Estufa Font. David Morillas

Figura 50. Proveta assecada Font. David Morillas

La cocció de les peces dura 25 hores. Hi ha tres tipus de cicles, els quals entre ells només en varia la temperatura màxima de cocció. Els cicles de cocció utilitzats són els mateixos que s'han utilitzat en el treball final de greu *TFG-Berthelsen-Janer*.

La temperatura màxima de cada cicle és 850, 900 i 950°C.

A la taula següent es poden veure el cicles de cocció:

Temps (h)	Temperatures de cocció (°C)	
0	20	
0 a 5	350	
5 a 8	650	
8 a 11	Temperatura màxima (850, 900 o 950)	
11 a 13	Temperatura màxima (850, 900 o 950)	
13 a 16	650	
16 a 19	450	
19 a 24	100	
24 a 25	20	
Taula 6. Cicles de cocció		

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfica 3. Cicle de cocció amb temperatura màxima de 850°C

Gràfica 4. Cicle de cocció amb temperatura màxima de 900°C

Gràfica 5. Cicle de cocció amb temperatura màxima de 950°C

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Figura 51. Forn Font. David Morillas

Figura 52. Peces seques col·locades al forn Font. David Morillas

Figura 53. Peces cuites al forn Font. David Morillas

5.5. Assaig de resistència a compressió

5.5.1. Objectiu

Hi ha dos objectius en aquest assaig:

- Determinar la resistència a compressió normalitzada de les peces ceràmica fabricades, PA i PF, i les de PIERA.
- L'anàlisi del comportament de les peces senceres sotmeses fins a una càrrega de 180 t.

5.5.2. Normativa

La normativa de referència per aquest assaig ha sigut la norma UNE-EN 772-1:2011+A1 amb el títol Métodos de ensayo de piezas para fábrica de albañileria. Parte 1: Determinación de la resisténcia a compresión.

També s'ha utilitzat la norma UNE EN 772-16, amb el títol Métodos de ensayo de piezas para fábrica de albañileria. Parte 16: Determinación de las dimensiones.

5.5.3. Material i màquines a utilitzar

 Màquina d'assaig a compressió. Per fer els assaig es va utilitzar una màquina d'assaig a compressió de la marca SERVOSIS, model MES-200 que té la capacitat d'aplicar una força de 200 t. Aquesta màquina està equipada amb un plat d'acer fix inferior i un plat d'acer basculant superior; el fet de ser un plat basculant no ens compleix el requisits que ens demana la normativa però, per realitzar els assaigs que es volien fer va ser necessari utilitzar

aquesta màquina d'assaig ja que era la única que es disposava capaç de trencar totes les provetes de l'assaig.

- Transductors i màquina de recollida de dades. Per mesurar desplaçaments de les cares durant l'assaig de les peces senceres. La màquina de mesura utilitzada és de la marca VISHAY, model 500B Scanner. Els transductors es col·loquen amb un peu imantat.
- Platines d'acer. Platines per col·locar entre la proveta i els plats de la premsa per garantir el contacte amb el total de la superfície superior i inferior de la proveta.
- Cinta mètrica d'acer inoxidable. Per mesurar la superfície de les provetes.
- Estufa. Per assecar les peces.
- Balança. Per pesar les peces.
- Serra circular. Per tallar les peces a unes dimensions adequades segons la normativa.

5.5.4. Proves

Inicialment es varen fer proves amb els maons ecomanuals de Piera, d'ara en endavant PIERA, per establir els mètodes i característiques dels posteriors assaigs. També es varen fer proves amb les provetes de prova fabricades. Aquests assaigs es van fer amb provetes senceres sense refrontar i amb refrontat. Es va comprovar que no es podia arribar a la càrrega màxima de ruptura.

Figura 54. Provetes PIERA refrontades Font. David Morillas

Figura 55. Prova d'assaig amb proveta de PIERA refrentada

Font. David Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Figura 56. Proveta de PIERA refrontada després de l'assaig

Font. David Morillas

Figura 57. Proveta de PIERA sense refrontar després de l'assaig

Font. David Morillas

Tot seguit es va provar de fer assaigs amb mitja peça, és a dir, la proveta tallada per la meitat de la seva longitud, i es va comprovar que es podien trencar les provetes.

Es va concloure doncs que es realitzaria el següent:

- La meitat de les peces serien assajades senceres i l'altra meitat serien assajades només d'una part, és a dir, tallades a unes dimensions acceptades per normativa.
- Les peces senceres es premsaran a una velocitat de 0,02 mm/s fins arribar a 180 t.
- Les peces tallades tindran aproximadament una amplada de 100 mm i una longitud de 133 mm.

5.5.5. Procediment amb peces senceres

Aquest assaig és l'últim que es va fer a les provetes ja que és un assaig destructiu.

Les provetes es van condicionar per assecat en estufa a 105°C durant 48 h. Abans d'assajar es deixaven refredar a temperatura ambient.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Aquest condicionament es tenia en compte per fer els càlculs de la resistència a compressió normalitzada; per fer-ho es minoraven els resultats un 80%.

Figura 58. Provetes senceres i tallades en estufa Font. David Morillas

Figura 59. Màquina d'assaigs a compressió Font. David Morillas

Figura 60. Transductor i peu imantat. Font. David Morillas

Figura 61. Escàner de dades per transductors Font. David Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Abans de col·locar les provetes a la maquina cal netejar les platines de suport i els plats de la premsa amb l'ajuda d'un drap o paper higiènic.

Per fer l'assaig es col·loca la proveta entre dos platines d'acer, i aquestes entre el plat superior i les platines de reblert situades sobre el plat inferior de la premsa. La proveta es col·loca de manera centrada als plats de la premsa per a un bon repartiment de la força aplicada i per minimitzar els moviments basculants del plat superior.

Es col·loquen els transductors als dos laterals de cada proveta amb l'ajuda del peu imantat sobre les platines de suport col·locades sobre el plat de la premsa i es posiciona a 0 el plat de la premsa i l'escàner dels transductors.

Figura 62. Proveta i transductors col·locats a la premsa Font. David Morillas

Figura 63. Transductor en contacte amb proveta Font. David Morillas

Tot seguit s'iniciaven alhora la premsa i l'escàner de manera manual, és a dir, que eren necessàries dues persones per activar la màquina d'assaig i l'escàner dels transductors alhora.

La premsa es programa per aplicar una velocitat de càrrega en funció de la posició del plat i el temps, concretament de 0,02 mm/s. Aquesta velocitat es manté fins arribar a una càrrega de 180 t; a partir de llavors es deixa d'aplicar càrrega i es fa baixar automàticament el plat de la premsa per retirar la proveta. També cal tenir en compte que es parava l'escàner un cop s'arribava a la càrrega de 180 t.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Figura 64. Lectura de la premsa durant un assaig Font. David Morillas

Figura 65. Lectura de l'escàner dels transductors durant un assaig

Es van fer fotografies de les provetes abans, durant i després de l'assaig.

Els resultats de la premsa es recollien en un arxiu en format "txt", format de text, i els de l'escàner es recollien en format "xls", format excel.

Els dos arxius tenien aproximadament la mateixa durada temporal però a diferents escales, és a dir que el nombre de dades preses era diferent; mentre que l'escàner prenia 10 dades per segon, la premsa no tenia una escala concreta per cada proveta sinó que totes eren diferents però inferior a les dades preses per l'escàner.

Per aquest motiu va ser necessària una distribució manual de cada arxiu, tenint en compte que cap d'ells tenia la mateixa escala per poder unir les dades de força del plat, posició del plat, posició del transductor 1 i posició del transductor 2.

Finalment, es feien les gràfiques conjuntes dels resultats. En l'eix vertical de les gràfiques es pot veure la força del plat i la posició dels transductors, i en l'eix horitzontal la posició del plat.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

5.5.6. Procediment amb peces tallades

Les peces tallades tenen una codi diferent a les senceres. El codi és semblant al de les peces senceres però amb la diferencia que acaba amb ".1" o ".2", és a dir, el codi de la peça sencera i a més a més s'afegeix al final un punt i un 1, o un punt i un 2 ja que són dos les provetes que s'extreuen d'una sencera. Un exemple de codificació és PA309004.1.

Les provetes es tallaven en quatre parts, una per assajar, una per fer els anàlisis corresponents amb el micoscopi SEM i la difracció de raigs X, una part sobrant, i una altra part que, en un bon principi la intenció era per assajar per fer l'assaig amb 6 provetes de cada sèrie tal i com diu la normativa, però finalment només va ser possible assajar 6 provetes de les de les sèries PA40900, PF40900 i PIERA, per manca de temps i disponibilitat de màquina. El tall amb serra es feia amb l'addició d'aigua per evitar crear pols i refredar el disc de tall.

Es van escollir aquestes sèries per que es va considerar que eren les més adequades per comparar amb les de PIERA tenint en compte que la pressió del premsat es la mitjana i que en el treball final de grau *TFG-Canal* les provetes cuites a 900°C eren les que donaven millors resultats

El primer pas va ser marcar les provetes amb l'ajuda d'una esquadra mil·limetrada i un llapis, tallarles amb la serra circular i col·locar-les a l'estufa durant 2 dies entre 60 i 80°C. Abans d'assajar es deixaven refredar a temperatura ambient.

Figura 66. Marcatge de tall de provetes Font. David Morillas

Figura 67. Tallat de provetes amb serra circular Font. David Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Un cop les provetes ja estan a temperatura ambient, es col·loquen a la premsa sobre platines d'acer col·locades sobre el plat inferior, i deixant la part superior directament en contacte amb el plat superior.

Tot seguit es posa en marxa la premsa. L'aplicació de la càrrega segons la normativa es fa a una velocitat determinada fins aproximadament la meitat de la càrrega prevista i seguidament s'ajusta la velocitat de manera que s'arribi a la càrrega màxima en un temps no inferior a 1 minut. Seguint aquesta pauta l'aplicació de càrrega es fa a una velocitat inicial de 0,3 (N/mm²)/s, tal i com es demana segons la normativa per a una resistència a compressió prevista d'entre 21 i 40 N/mm², i es segueix amb la mateixa velocitat fins a arribar a la càrrega màxima.

Figura 68. Proveta tallada de PIERA durant l'assaig (1) Font. David Morillas

Figura 69. Proveta tallada de PIERA durant l'assaig (2) Font. David Morillas

Finalment es fan les gràfiques i càlcul de resultats a partir de l'arxiu en format "txt" donat per la màquina d'assaig.

Per calcular la resistència de compressió de cada proveta es divideixen la càrrega màxima per la superfície de càrrega. Aquest resultat s'expressa arrodonint al 0,1 N/mm².

Així doncs la resistència a compressió de cada sèrie serà la mitjana de les resistències de les seves provetes, arrodonida al 0,1 N/mm arrodonint al 0,1 N/mm². També es calcula el coeficient de variació de la mostra.

5.6. Assaig per establir les propietats tèrmiques (mètode caixa calenta calibrada)

5.6.1. Conceptes tèrmics

Com a conceptes principals per aquest assaig tenim la conductivitat tèrmica, la transmitància tèrmica i el flux de calor.

La conductivitat tèrmica (λ) és una propietat física dels materials que mesura la capacitat de conducció de la calor en règim estacionari. Concretament és relació entre la quantitat de calor que passa per unitat de temps i el gradient de temperatura a través d'una àrea la qual el calor flueix perpendicularment a un ritme estacionari. Segons la segona llei de la termodinàmica el calor flueix sempre en direcció a la temperatura més baixa.

La transmitància tèrmica (U) és la mesura del calor que flueix per unitat de temps i superfície, transferit per un element o sistema constructiu format per una o més capes de material amb les cares paral·leles, quan hi ha un gradient tèrmic de 1°C de temperatura entre els dos ambients que aquest separa.

El flux de calor (Q) és la quantitat de calor que entra en un sistema per unitat de temps, és a dir la relació entre el calor diferencial que entra en el sistema i el temps que triga en entrar. Quan parlem de la capacitat d'un material per a la oposició al flux de calor, ens referim al concepte de resistència tèrmica (R).

També és important el significat de estat estacionari. Un sistema està en estat estacionari si les variables que defineixen el seu comportament no varien respecte al temps.
Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

5.6.2. Objectiu

L'objectiu d'aquest assaig és determinar mitjançant el mètode de la caixa calenta calibrada les següents propietats tèrmiques:

- Transmitància tèrmica (U).
- Conductivitat tèrmica (λ).
- Flux de calor (Q).

5.6.3. Normativa

La normativa de referència per aquest assaig ha sigut la norma UNE-EN ISO 8990 amb el títol Determinación de las propiedades de transmisión térmica en régimen estacionario. Métodos de la caja caliente guardada y calibrada. (ISO 8990:1994).

També s'ha seguit la normativa del CTE DB-HE (Código Tècnico de la Edificación. Documento Bàsico HE Ahorro de Energía), i la norma UNE EN 772-16, amb el títol Métodos de ensayo de piezas para fábrica de albañileria. Parte 16: Determinación de las dimensiones.

5.6.4. Material i maquinària utilitzada

Per fer l'assaig es va utilitzar una caixa calenta calibrada, la que es va fabricar en el treball final de grau *TFG-Canal*. Aquesta caixa es va fabricar seguint bona part de las pautes marcades a la norma UNE-EN ISO 8990. Els components de la caixa son:

- o Cambra freda.
- o Cambra calenta.
- Motlle de caixa de fusta.
- o Resistència elèctrica i regulador de temperatura (controlador PID).

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

• Termoparells, enregistrador de dades (*data logger*) i ordinador amb programari específic per descarregar les dades de l'enregistrador.

Es tracta d'una caixa d'acer recoberta interiorment per 10 cm de suro formada per dues cambres i una part central con es col·loca la caixa de fusta porta provetes.

Hi ha una cambra freda i una cambra calenta; en aquesta última hi ha col·locada la resistència elèctrica, i aquesta està connectada amb el regulador de temperatura que està encastat a l'exterior de la caixa.

Els termoparells són els sensors de temperatura que estan col·locats a les cambres i que es col·loquen a les cares de la peça. Hi ha 5 termoparells, aquests estan situats a:

- Un a la cambra freda per mesurar la temperatura de l'aire.
- Dos a la cambra calenta per mesurar la temperatura de l'aire; un està connectat a l'enregistrador de dades i l'altre al regulador de temperatura.
- Un a la cara freda de la proveta.
- Un a la cara calenta de la proveta.

En el treball final de grau *TFG-Canal* es descriu de manera més detallada els components i disseny de la caixa calenta calibrada.

Figura 70. Equip complet de caixa tèrmica calibrada

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Figura 71. Regulador de temperatura Font. David Morillas

Figura 72. Enregistrador de dades dels termoparells Font. David Morillas

Figura 73. Cambra freda Font. David Morillas

Figura 74. Cambra calenta Font. David Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

5.6.5. Procediment

Segons la normativa, no es defineix un únic criteri per determinar l'estat estacionari, per això s'ha establert que per fer aquest assaig es consideraria un estat estacionari de les temperatures quan la mesura de cada temperatura mesurada en un període de 1 h no variï més de 0,5°C, dit d'una altra manera, que en el període d'1 h no hauria de variar més de 0,5°C la temperatura de la cambra freda, de la cambra calenta, de la cara freda de la proveta i de la cara calenta de la proveta.

Inicialment es van estipular dos assaigs diaris perquè es va comprovar que aproximadament les provetes iniciaven l'estat estacionari al cap de 3 h; a partir de llavors es deixaven 3 h més de lectura com a mínim, ja que és el mínim requerit per la normativa. Més tard es va decidir que per manca de temps es farien 3 assaigs per dia; un al matí, un a la tarda i un altre que es deixava des del vespre fins l'endemà al matí. Per tant els assaigs passaven a ser de un total de 5 h com a mínim. Tot i això es va comprovar que la diferència dels resultats no era significativa.

Aquest assaig era el primer, es feia a partir del dia següent de la cocció de les peces. Per realitzar l'assaig primer calia netejar les vores que tenen contacte entre la peça i la caixa porta provetes. Es col·locava la peça en una posició concreta, és a dir, que totes les peces es col·locaves de la mateixa manera. Un cop col·locada la peça es col·locava la tapa, es fixava i es posicionava al centre de la caixa calenta calibrada.

Figura 75. Proveta a caixa porta provetes oberta Font. David Morillas

Figura 76. Proveta a caixa porta provetes tancada Font. David Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

El següent pas era col·locar els termoparells a les cares de la peça. El termoparell de la cara calenta es fixava amb un tall de cinta adhesiva d'alumini, i el de la cara calenta es fixava també amb la mateixa cinta però entre la cinta i el termoparell es col·locava una capa d'aïllament de llana mineral. Aquest aïllament permetia que la lectura del termoparell fos únicament la de la cara calenta i no la temperatura de la cambra, perquè evitava la transmissió directa de la calor al termoparell.

Figura 77. Col·locació de termoparell a cara freda Font. David Morillas

Figura 78. Termoparell col·locat a cara freda Font. David Morillas

Figura 79. Col·locació de termoparell a cara calenta Font. David Morillas

Figura 80. Termoparell col·locat a cara calenta Font. David Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Després de posar els termoparells ja es podia col·locar la caixa porta provetes al centre de la caixa calenta calibrada i fixar-la amb una certa pressió de manera que no quedin espais que comuniquin l'interior de la caixa amb l'exterior. Fet això es posava en marxa la resistència, el regulador de temperatura i l'enregistrador de dades dels termoparells.

Figura 81. Caixa calenta calibrada en funcionament Font. David Morillas

Figura 82. Recopilació de dades a través del programari de l'enregistrador de dades

Font. David Morillas

Es programava l'enregistrament per registrar dades cada 5 minuts, i el regulador a temperatura a 60°C. La temperatura estabilitzada podia oscil·lar entre 58 i 62°C. També cal tenir en compte que es van utilitzar dos reguladors de temperatura diferents ja que es va espatllar un i conseqüentment es va canviar.

Un cop passades mínimes 5 h es guardaven les dades en un arxiu en format "xls", format excel, es retirava la caixa porta provetes i es tornava a col·locar una altra proveta.

Cal tenir en compte que en general els assaigs es començaven sense deixar refredar la cambra, és a dir, que es feia un assaig rere l'altre sense esperar que es refredes la caixa i s'igualessin les temperatures de la cambra freda i calenta. Això comportava un escalfament més ràpid de la proveta i per tant arribar abans a l'estat estacionari.

Finalment a partir dels arxius "xls" es feien els càlculs de la conductivitat tèrmica, transmitància tèrmica i flux de calor, i es dibuixaven les gràfiques les quals en l'eix vertical es situa la temperatura en °C i en l'eix horitzontal es situa el temps en h.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

5.6.6. Fórmules

Resistència tèrmica interna(R):

$$R\left[\frac{m^2\cdot {}^\circ C}{W}\right] = \frac{e}{\lambda}$$

On,

e[m] = gruix de l'element

$$\lambda \left[\frac{W}{m \cdot {}^{\circ}C} \right] = Conductivitat t ermica$$

Transmitància tèrmica (U):

$$U\left[\frac{W}{m^2 \cdot °C}\right] = \frac{1}{R}$$

On,

$$R\left[\frac{m^2 \cdot {}^{\circ}C}{W}\right] = Resis ència t èrmica interna$$

Flux de calor (Q):

$$Q[W] = \frac{S \cdot \lambda \cdot \left(T_{sc} - T_{sf}\right)}{e}$$

$$Q[W] = S \cdot U \cdot \left(T_c - T_f\right)$$

On,

 $S[m^2] = Superfície \ de \ l'element$

 $\lambda \left[\frac{W}{m \cdot {}^{\circ}C}\right] = Conductivitat t ermica$

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

- $T_{sc}[^{\circ}C] = Temperatura de la superfície de la cara calenta$
- $T_{sf}[^{\circ}C] = Temperatura de la superfície de la cara freda$
- e[m] = gruix de l'element
- $T_c[^{\circ}C] = Temperatura de l'aire de la cambra calenta$
- $T_f[^{\circ}C] = Temperatura de l'aire de la cambra freda$

Coeficient superficial de transmissió interior (hi):

$$h_i\left[\frac{W}{m^2\cdot {}^\circ C}\right] = \frac{1}{R_{si}}$$

On,

$$R_{si}\left[\frac{m^2 \cdot {}^{\circ}C}{W}\right] = Resistència tèrmica superficial d'un tancament en contacte amb l'aire interior$$

Segons el CTE DB-HE, la resistència tèrmica superficial de tancaments en contacte amb l'aire interior (R_{si}) és de 0,13 m²·K/W en els tancaments verticals o amb pendent sobre la horitzontal més gran de 60° i flux horitzontal. Per tant, la resistència superficial interior total (R_{st}), tenint en compte que hi ha dos cares, serà:

$$R_{st} = R_{si} + R_{si} = 2 \cdot 0.13 \frac{m^2 \cdot C}{W}$$
$$R_{st} = 0.26 \frac{m^2 \cdot C}{W}$$

Temperatura de la superfície de la cara calenta (T_{sc}):

$$T_{sc}[^{\circ}C] = T_c - \frac{U \cdot (T_{sc} - T_{sf})}{h_i}$$

On,

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

 $T_c[^{\circ}C] = Temperatura de l'aire de la cambra calenta$

 $U\left[\frac{W}{m^2 \cdot {}^{\circ}C}\right] = Transmitància tèrmica$

 $T_c[^{\circ}C] = Temperatura de l'aire de la cambra calenta$

 $T_f[^{\circ}C] = Temperatura de l'aire de la cambra freda$

Conductivitat tèrmica (λ):

 $\lambda \left[\frac{W}{m \cdot {}^{\circ}C}\right] = \frac{e \cdot U \cdot (T_c - T_f)}{(T_{sc} - T_{sf})}$

On,

e[m] = gruix de l'element

 $U\left[\frac{W}{m^2 \cdot {}^{\circ}C}\right] = Transmitància tèrmica$

 $T_c[^{\circ}C] = Temperatura de l'aire de la cambra calenta$

 $T_f[^{\circ}C] = Temperatura de l'aire de la cambra freda$

 $T_{sc}[^{\circ}C] = Temperatura de la superfície de la cara calenta$

 $T_{sf}[^{\circ}C] = Temperatura de la superfície de la cara freda$

I ve aïllada de:

$$Q = \frac{S \cdot \lambda \cdot (T_{sc} - T_{sf})}{e}; Q = S \cdot U \cdot (T_c - T_f)$$
$$\frac{S \cdot \lambda \cdot (T_{sc} - T_{sf})}{e} = S \cdot U \cdot (T_c - T_f) \rightarrow \frac{\lambda \cdot (T_{sc} - T_{sf})}{e} = U \cdot (T_c - T_f) \rightarrow \lambda = \frac{e \cdot U \cdot (T_c - T_f)}{(T_{sc} - T_{sf})}$$

81

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

5.7. Assaigs per determinar densitats

5.7.1. Objectiu

El primer objectiu d'aquests assaigs és determinar la densitat aparent seca, la densitat absoluta seca, l'absorció, la porositat relativa i la compacitat relativa de les provetes fabricades i les de PIERA.

El segon objectiu es analitzar els resultats per trobar possibles relacions amb les propietats tèrmiques i la resistència a compressió de les mateixes.

5.7.2. Normativa

S'utilitzaran les següents normes:

- UNE EN 772-3, amb el títol Métodos de ensayo de piezas para fábrica de albañileria. Parte
 3: Determinación del volumen neto y del porcentaje de huecos por pesada hidrostática de piezas de arcilla cocida para fábrica de albañileria.
- UNE EN 772-13, amb en títol Métodos de ensayo de piezas para fábrica de albañileria. Parte
 13: Determinación de la densidad absoluta seca y de la densidad aparente seca de piezas
 para fábrica de albañileria (excepto piedra natural).
- UNE EN 772-16, amb el títol Métodos de ensayo de piezas para fábrica de albañileria. Parte 16: Determinación de las dimensiones.
- UNE 103-301-94, amb el títol Determinación de la densidad de un suelo. Método de la balanza hidrostática.

5.7.3. Material i maquinària

Per fer aquests assaigs es va utilitzat el següent:

- Balança hidrostàtica. Balança que serveix per pesar tant material a l'aire com submergit en aigua. Té una precisió mínima de 0,1% de la massa de la proveta.
- Estufa. Per assecar les provetes.
- Cinta mètrica d'acer inoxidable. Per mesurar les provetes en les diferents etapes.
- Recipient amb aigua. Recipient suficientment gran per poder submergir les provetes en aigua.
- Paper higiènic. Per assecar el sobrant d'aigua de les provetes.

5.7.4. Procediment

En primer lloc es pesaven i mesuraven les peces seques cuites. En general el pesat es feia després de la cocció ja que es considera que les provetes estan seques.

Per altra banda les que no es pesaven després de la cocció, s'assecaven a l'estufa durant 48 h a una temperatura d'entre 60 i 80°C.

Seguidament s'emplenava el recipient d'aigua i es submergien totalment les peces, és a dir, que les peces estiguin cobertes d'aigua i deixant espai entre elles. Per a garantir això es cobrien d'aigua aproximadament 5 cm més de la cota superior de les provetes, i es col·locaven amb una separació aproximada de 2 cm.

Les provetes es deixaven en aigua fins que arribessin a tenir una massa constant, és a dir, que les peces estiguessin completament saturades. Es deixaven durant 24 hores, ja que es va comprovar que era un temps suficient per arribar a massa constant. Segons la norma, per establir una massa constant, la massa de dos pesades successives en un interval de 30 min ha de diferir menys d'un 0,2 %.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Figura 83. Provetes submergides en aigua Font. David Morillas

Passades les 24 h es treien del recipient amb aigua, es retirava amb paper higiènic l'aigua superficial que quedava a les provetes i es pesaven immediatament. Es pesaven amb una balança hidrostàtica; es feien dos pesades, una a l'aire, per conèixer la massa saturada en aigua, i una altra dins l'aigua, per conèixer la massa saturada i submergida en aigua.

Figura 84. Retirada d'aigua superficial amb paper higiènic Font. David Morillas

Figura 85. Pesada a l'aire de proveta saturada d'aigua Font. David Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Figura 86. Col·locació de proveta dins l'aigua a la balançaFigura 87. Pesada en aigua de proveta saturada d'aiguaFont. David MorillasFont. David Morillas

S'anotaven els resultats i tot seguit es col·locaven a l'estufa per posteriorment fer l'assaig a compressió, o es guardaven per ser tallades.

5.7.5. Fórmules

Volum aparent (V_{ap}):

 $V_{ap}[cm^3] = l \cdot a \cdot h$

l[cm] = longitud

a[cm] = amplada

h[cm] = alçada o gruix

Densitat aparent seca (ρ_{ap}):

$$\rho_{ap}\left[\frac{g}{cm^3}\right] = \frac{m_s}{V_{ap}}$$

On,

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

 $m_s[g] = massa \ en \ sec$

 $V_{ap}[cm^3] = Volum a parent$

Volum relatiu (V_r):

$$V_r[cm^3] = \frac{M_s - M_{ss}}{\rho_{aigua}}$$

On,

 $M_s[g] = massa \ a \ l'aire \ saturada \ d'aigua$ $M_{ss}[g] = massa \ a \ l'aigua \ saturada \ d'aigua$

$$\rho_{aigua}\left[\frac{g}{cm^3}\right] = densitat \ de \ l'aigua \approx 1 \frac{g}{cm^3}$$

Densitat relativa seca (pr):

$$\rho_{abs}\left[\frac{g}{cm^3}\right] = \frac{m_s}{V_n}$$

On,

 $m_s[g] = massa \ en \ sec$

 $V_n[cm^3] = volum net o absolut$

Volum de porus accessibles o oberts(V_{pa}):

$$V_{pa}[cm^3] = \frac{M_{ss} - m_s}{\rho_{aigua}}$$

On,

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

 $M_s[g] = massa \ a \ l'aire \ saturada \ d'aigua$ $m_s[g] = massa \ en \ sec$

$$\rho_{aigua}\left[\frac{g}{cm^3}\right] = densitat \ de \ l'aigua \approx 1 \frac{g}{cm^3}$$

Porositat relativa o oberta (Pr):

$$P_r = \frac{V_{pa}}{V_{ap}} \rightarrow En \% \rightarrow P_r(\%) = \frac{V_{pa}}{V_{ap}} \cdot 100$$

On,

 $V_{pa}[cm^3] = Volum \ de \ porus \ accessibles \ o \ oberts$

$$V_{ap}[cm^3] = Volum a parent$$

Compacitat relativa (C_r)

$$C_r = 1 - P_r \to En \ \% \to C_r(\%) = (1 - P_r) \cdot 100$$

On,

 $P_r = Porositat relativa o oberta$

Absorció (Abs):

$$Abs = \frac{M_{ss} - m_s}{m_s} \rightarrow En \% \rightarrow Abs(100) = \frac{M_{ss} - m_s}{m_s} \cdot 100$$

On,

 $M_{ss}[g] = massa \ a \ l'aigua \ saturada \ d'aigua$

 $M_s[g] = massa \ a \ l'aire \ saturada \ d'aigua$

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

5.8. Anàlisi d'imatges, densitats i composició elemental mitjançant SEM-EDX

5.8.1. Objectiu

L'objectiu és fer l'observació mitjançant SEM (Scanning Electron Microscopy) i microanàlisi amb EDX (Energy Dispersive X-ray spectroscopy), per obtenir imatges de les diferents mostres, poder analitzar els seus components i, a partir de les imatges fer càlculs de densitats per poder compararles amb les obtingudes en els assaigs de densitats.

5.8.2. Material i maquinària

Per preparar, observar i analitzar les mostres es van utilitzar:

- Microscopi electrònic de rastreig SEM-EDX. Els models són SEM Zeiss DSM 960A i EDX i EDX Bruker Quantax 200. La capacitat d'augment és entre 5 i 200000 augments.
- Serra circular gran i serra circular petita. Per al tallat de les mostres.
- Estufa. Per assecar les mostres.
- Motlles de silicona i suport de mostra. Per la preparació de mostres.
- Resina epòxid Axson RSF816 i catalitzador. Per la preparació de mostres.
- Màquina per fer el buit. Per la preparació de mostres.
- Màquina polidora de mostres i els discs de polit.
- Màquina de polit final de mostres i la alúmina.
- Màquina per rentat de mostres amb ultrasons.
- Porta mostres (stub).
- Plata col·loïdal. Per la preparació de mostres.
- Màquina d'evaporació de carboni i carboni. Per la preparació de mostres.
- Compressor d'aire sec.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

5.8.3. Procediment de preparació

El procediment de preparació comença amb el tall de les provetes de mostra. Aquest tall s'efectua en el mateix moment que es van tallar les provetes per fel l'assaig de resistència a compressió.

Figura 88. Mostres tallades i assecades (1) Font. David Morillas

Figura 89. Mostres tallades i assecades (2) Font. David Morillas

Les mostres es van extreure de cada proveta amb el 4 com a últim número de codi, és a dir que es va agafar una mostra de cada amassada, i una de PIERA, sumant un total de 19 mostres.

Les mostres es van extreure de la part central de cada proveta, i aquestes feien aproximadament 133 mm de longitud, 43 mm d'ample i 10 mm de gruix.

Fins aquí el procediment es va realitzar al Laboratori de Construcció de l'Escola Politècnica Superior de la Universitat de Girona.

El procediment continua en els STR (Serveis Tècnics de Recerca) de la Universitat de Girona.

El següent pas era tallar les mostres a unes dimensions més petites, contretament de 30x15x10 mm. Les mostres es tallaven amb una serra circular tenint en compte la part superior i inferior de la proveta original.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Per poder distingir la part superior, les mostres es van fer asimètriques; per fer-ho es tallava de manera esbiaixada una cantonada de la part superior de cada mostra.

Figura 90. Tallat de mostres amb serra circular petita Font. David Morillas

Figura 91. Mostres tallades Font. David Morillas

Ja que el tall es va realitzar amb l'adició d'aigua per evitar la pols i l'escalfament del disc, es van deixar assecar les mostres en una estufa durant 24 h a una temperatura de 100°C.

Assecades les mostres es van incloure en un motlle de silicona. Amb un clip de suport de resines sintètiques es pinçava la mostra i es col·locava dins el motlle. Seguidament es preparava la resina epòxid i es s'abocava a cadascun dels motlles fins cobrir les mostres.

Figura 92. Assecat de mostres en estufa

Figura 93. Motlles d'inclusió Font. David Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Figura 94. Mostra amb clip col·locat Font. David Morillas

Figura 95. Mostres col·locades al motlle Font. David Morillas

Abans d'abocar la resina epòxid es mesclava amb un catalitzador; la proporció era de 5 parts de resina epòxid i 2 de catalitzador. A cada motlle s'hi afegien aproximadament 16 ml de la mescla. Sobre la mostra es col·locava un paper amb el codi d'identificació de la mostra.

Figura 96. Mescla de resina epòxid i catalitzador Font. David Morillas

Figura 97. Emplenat de motlles amb la resina Font. David Morillas

Amb la màquina del buit, es feia el buit a les mostres per treure l'aire del seu interior i així deixar penetrar la resina epòxid. Fet això es deixaven curar les mostres durant 24 h a temperatura ambient tot i que amb menys hores era suficient..

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Figura 98. Fent el buit a les mostres incloses Font. David Morillas

Al cap d'aproximadament 24 h es desemmotllaven les mostres incloses i es preparaven per polir. Abans de polir es feia un devastat del perímetre superior de la mostra per millorar la manejabilitat i evitar talls.

Figura 99. Mostra en motlle després del curat Font. David Morillas

Figura 100. Mostra desemmotllada Font. David Morillas

El següent pas a seguir era el polit de les mostres amb l'ajuda d'una màquina es feia un polit de 7 seqüències amb papers abrasius de diferents densitat de punts per superfície; la seqüència de polits es va fer en amb papers de menor a major unitats de punts en el següent ordre: P80, P150, P240,

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

P400, P800, P1200 i P2000. Per fer-ho es col·locava el paper a la màquina al plat giratori, es treia el sobrant de resina, es feia un rebaix inicial i un rebaix secundari fent un moviment circular amb moviment contrari al del plat; i així amb cada sèrie.

Figura 101.Primer polit de mostres Font. David Morillas

Figura 102. Mostra en procés de polit Font. David Morillas

Figura 103. Papers de polit (1) Font. David Morillas

Figura 104. Papers de polit (2) Font. David Morillas

Aquest polit es feia amb adició d'aigua i era important netejar bé el plat giratori cada vegada que es canviava a papers mes fins per evitar un mal polit.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

El polit final consistia en seguir un procés semblant a l'anterior però canviant el paper per alúmina. Es feien tres seqüències de suspensió aquosa amb alúmina en seguint l'ordre de major a menor granulometria de les partícules: 9,5 μ , 3 μ i 1 μ .

Figura 105. Maquina de polit mitjançant suspensió aquosa amb alúmina

Figura 106. Alúmina de les tres diferents granulometries Font. David Morillas

Acabat el polit es netejaven les mostres amb ultrasons amb aigua i sabó. Es feien dos seqüències, la primera amb aigua potable i sabó i la segona amb aigua desionitzada per fer l'esbandit

Font. David Morillas

Figura 107. Màquina per netejar amb ultrasons

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

S'assecaven les mostres i es bufaven amb aire sec comprimit per eliminar la pols superficial.

Tot seguit es muntaven en el porta mostres del microscopi i es cobria amb carboni la seva superfície fent un evaporat de carboni d'alt buit. Aquest porta mostres es col·locava amb adhesiu termoplàstic.

Figura 108. Mostres polides Font. David Morillas

Figura 109. Mostres amb porta mostres Font. David Morillas

Figura 110. Màquina per fer l'evaporat de carboni Font. David Morillas

Figura 111. Mostra amb evaporat de carboni Font. David Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Finalment es fan les pistes de plata col·loïdal per sonar conductivitat a la mostra, és a dir, es fan unes connexions entre la mostra i el porta mostres per donar la bona conductivitat a la mostra un cop col·locada al microscopi i així garantir una bona observació i anàlisi.

Figura 112. Fent les pistes de plata col·loïdal (1) Font. David Morillas

Figura 113. Fent pistes de plata col·loïdal (2) Font. David Morillas

5.8.4. Procediment d'observació i anàlisi

Es col·loquen les mostres al microscopi SEM-MER en sèries de 3. El microscopi fa el buit al seu interior abans de l'observació de les mostres.

Figura 114. Equip del microscopi SEM-MER Font, David Morillas

Figura 115. Col·locació de mostres al microscopi SEM-MER

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

De cada mostra es capturen imatges amb el detector d'electrons secundaris (SE) i amb el detector d'electrons retrodispersats (BSE). També es fan microanàlisis de cada mostra amb el detector EDX (Energy Dispersion X-Ray Analysis). Les imatges i microanàlisis que s'han fet de cada mostra són els següents:

- Imatges BSE a 200 augments de la part superior, central i inferior de la mostra; 3x3=9 imatges.
- Imatges SE a 200 augments de la part superior, central i inferior de la mostra; 3 imatges que corresponen a 3 imatges BSE, és a dir, de la mateixa zona capturada.
- Imatges SE a 50 augments i microanàlisi de la part superior, central i inferior de la mostra; 3 imatges corresponents a la zona del microanàlisi.

Per tant s'han fet 15 imatges i 3 microanàlisis de cada mostra.

Figura 116. Observació amb microscopi SEM-MER Font. David Morillas

Figura 117. Processat d'imatges Font. David Morillas

A partir de les 9 imatges BSE de cada mostra s'ha fet un càlcul de la seva porositat utilitzant el programa ImageJ.

Es varen fer proves de càlcul de porositat amb els porus visibles en les imatges SE, però els resultats no van ser els esperats i es va canviar de mètode. Finalment es va considerar que els porus eren les parts buides que es podien observar i les parts emplenades per la resina epòxid. Aquestes parts

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

coincidien amb la majoria de les zones més fosques de les imatges BSE, que són els elements amb nombre atòmic més baix, aproximadament fins al carboni, carboni inclòs.

Amb el programa ImageJ es podia seleccionar l'àrea que es considerava com a porus i l'àrea total de la imatge, i a partir d'aquí es podia calcular el percentatge. Els passos a seguir eren els següents:

- Carregar la imatge a ImageJ.
- Escalar la imatge a partir de l'escala gràfica de la mateixa.
- Retallar la imatge per veure només la part la qual s'observa la mostra.
- Aplicar el "treshold" per defecte. Es decideix fer així per unificar els criteris d'aplicació i després de comprovar que donava un bon resultat.
- Seleccionar i mesurar l'àrea total.
- Seleccionar i mesurar l'àrea considerada com a porus.
- Exportar les dades a un format "xls" i fer els càlculs dels totals de porositat de les 9 imatges de cada mostra i la seva mitjana.

Figura 118. Exemple imatge SE

Figura 119. Exemple imatge BSE

Font. David Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Figura 120. Exemple imatge amb "threshold" aplicat

Font. David Morillas

Figura 121. Aplicació de "threshold" amb programa ImageJ

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Figura 122. Càlcul d'àrees amb programa ImageJ Font. David Morillas

Pel que fa als microanàlisis fets amb EDX, aquests són els que ens donen informació de la composició elemental de la mostra. Aquests es fan a partir d'un anàlisi quantitatiu.

Figura 123. Execució de microanàlisi

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Figura 124. Exemple de microanàlisi amb gràfica ampliada

Per analitzar els microanàlisis cal tenir en compte que no es poden determinar els continguts exactes de Carboni (C) ja que la majoria de carboni forma part de la resina epòxid que ha penetrat en els porus de la mostra i també del recobriment fet de carboni mitjançant la evaporació de carboni al buit.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

5.8.5. Consideracions pels càlculs de porositat real

Es fan uns anàlisis dels porus per definir el que es consideren porus oberts i porus tancats. Es fa el microanàlisi de dues zones diferents. La primera es fa en una zona partint de l'hipótesi que és un porus tancat, i la segona es fa en una zona on hipotèticament hi ha porus oberts, que és on està embeguda la resina epòxid.

Es fa l'anàlisi a partir dels següents resultats:

- En vermell es marca la zona hipotètica de porus tancat.

Figura 125. Imatge per anàlisi de porus SE vs BSE (1)

Gràfica-taula 1. Microanàlisi per anàlisi de porus EDX (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

- En blau es marca la zona hipotètica de porus obert.

Figura 126. Imatges per anàlisi de porus SE vs BSE

Gràfica-taula 2. Microanàlisi per anàlisi de porus EDX (2)

Es pot observar que, al primer microanàlisi de porus, l'escala de la gràfica és molt baixa en comparació amb la resta analitzades i que les quantitats de components també es molt baixa, per tant es considera que es un porus tancat. En canvi, al segon microanàlisi, es comprova que és diferent que el primer i que correspon a la resina epòxid. Per tant per fer els càlculs de porositat real es tindran en compte les parts més fosques de la imatge, ja que en general es tracta dels porus tancats i oberts.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

5.9. Anàlisi d'estructures cristal·lines mitjançant difracció de raigs X

5.9.1. Objectiu

L'objectiu d'aquest anàlisi es determinar i comparar les estructures cristal·lines de les mostres PA, PF i PIERA tenint en compte ja que les PA s'han fabricat sense fangs i les PF amb fangs i que s'han cuit arribant a temperatures màximes diferents, 850, 900 i 950°C.

5.9.2. Material i màquines

Per a preparar i analitzar les mostres es va fer servir el següent:

- Difractòmetre de raig X de pols, Model Bruker AXS D8 Advance.
- Martell. Per trencar les provetes.
- Màquina de molturar.
- Alcohol i paper higiènic.
- Pots esterilitzats de 10 cl.
- Porta mostres de difractòmetre.

5.9.3. Procediment

Per fer les mostres es varen utilitzar les mostres tallades de totes les peces de codi acabat amb 4, les quals també es van utilitzar per preparar les mostres per observar amb el microscopi SEM- MER.

Abans del segon tall de mostres per al SEM-MER, es trencava una part de cadascuna amb l'ajuda d'un martell. Es trencaven aproximadament parts de 43x30x10 mm.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Per trencar les mostres es feia sobre una enclusa d'acer. Abans de res es netejava amb paper i alcohol la superfície de l'enclusa, el martell i els guants; això es feia per evitar contaminar les mostres.

El tros trencat es posava en una bosseta de plàstic i es picava amb el martell. Això servia per fer un picat previ per fer i facilitar el molturat. La mostra triturada s'abocava en un pot de plàstic esterilitzat.

Figura 127. Trencat de mostra amb martell Font. David Morillas

Figura 128. Triturat de la mostra amb martell Font. David Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Figura 129. Mostra triturada Font. David Morillas

Es següent pas era el molturat de les mostres, i tracta de fer pols a partir de la mostra. El primer que es feia era netejar el recipient del molturat i la bola de tungstè; es netejava amb paper i alcohol.

Per fer la pols s'havien de fer 2 molturats per cada mostra. Un primer molturat que servia per netejar amb més profunditat el recipient i la bola de tungstè, i que per tant es llençava, i un segon molturat que es feia seguidament al segon i sense netejar el recipient i la bola. Per a una bona molturada van ser suficients 5 minuts per cada seqüència.

Figura 130. Màquina de molturar Font. David Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Figura 131. Mostra i bola de tungstè col·locades a la màquina de molturar

Font. David Morillas

Font. David Morillas

La preparació de la mostra s'acaba amb la col·locació de la pols resultant del segon molturat dins pot de plàstic amb l'ajuda de paper de pesat.

Figura 132. Mostra molturada Font. David Morillas

Figura 133. Abocat de mostra al pot Font. David Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Per analitzar les mostres es col·locava una mica de pols en un porta provetes en el difractòmetre i s'iniciava l'anàlisi.

Figura 134. Mostra de pols en porta mostres Font. David Morillas

Figura 135. Col·locació de mostra al difractòmetre Font. David Morillas

Bàsicament el difractòmetre es tracta d'un emissor de raig X i un detector. El detector i la mostra es van movent de tal manera que fa canviar l'angle de detecció per capturar els raig difractats en totes les direccions possibles; el detector es mou en un angle i la mostra es mou en angle i rotació.

Figura 136. Difractòmetre en funcionament

Figura 137. Lectura del difractòmetre en funcionament

Font. David Morillas
Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

A partir d'aquí s'analitzen els patrons de difracció i s'extreuen els resultats.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

6. Resultats

6.1. Resistència a compressió

6.1.1. Provetes tallades

Resistència a compressió de la sèrie PA:

						Resistè	ncia a		Resistè	ncia a essió			
Sèrie / Proveta	Longitud	Amplada	Gruix	Superfície	Càrrega	compre (RC	essió ;)	factor de forma d	normali (RC · d	tzada	Desviació estàndard	Coeficient de variació (%)	Variància
	(mm)	(mm)	(mm)	(mm²)	(t)	(N/m	m²)		(N/m	m²)			
4.1	134,50	100,00	43,75	13450,00	60,90	44,42		0,9031	32,09				
PA30850/5.1	134,50	100,00	44,00	13450,00	44,78	32,66	39,03	0,9030	23,59	28,20	4,29	15,22	18,43
6.1	134,25	100,00	43,75	13425,00	54,74	40,00		0,9031	28,90				
4.1	134,25	100,00	43,75	13425,00	61,90	45,23		0,9031	32,68				
PA30900/5.1	134,50	100,00	43,75	13450,00	42,32	30,87	38,37	0,9031	22,30	27,72	5,20	18,77	27,09
6.1	134,25	100,00	43,75	13425,00	53,39	39,01		0,9031	28,19				
4.1	134,25	100,00	44,25	13425,00	58,70	42,89		0,9029	30,98				
PA30950/5.1	134,25	100,00	44,00	13425,00	48,16	35,19	36,22	0,9030	25,42	26,16	4,50	17,19	20,22
6.1	134,25	100,00	44,00	13425,00	41,83	30,57		0,9030	22,08				
4.1	134,50	100,00	43,25	13450,00	62,73	45,75		0,9034	33,07				
PA40850/5.1	134,50	100,00	43,25	13450,00	52,89	38,58	40,45	0,9034	27,88	29,23	3,37	11,52	11,34
6.1	134,50	100,00	43,25	13450,00	50,75	37,02		0,9034	26,75				
4.1	134,25	100,00	43,25	13425,00	48,80	35,66		0,9034	25,77				
4.2	134,25	100,00	43,25	13425,00	65,16	47,61		0,9034	34,41				
PA40900/ ^{5.1}	134,50	100,00	43,25	13450,00	59,79	43,61	43.65	0,9034	31,52	31.54	3.06	9.69	9.34
5.2	134,50	100,00	43,25	13450,00	60,80	44,35	.0,00	0,9034	32,05	0.,0.	0,00	0,00	0,01
6.1	134,25	100,00	43,25	13425,00	63,91	46,70		0,9034	33,75				
6.2	134,25	100,00	43,25	13425,00	60,16	43,96		0,9034	31,77				
4.1	134,50	100,00	43,25	13450,00	45,82	33,42		0,9034	24,15				
PA40950/5.1	134,50	100,00	43,25	13450,00	48,74	35,55	36,32	0,9034	25,69	26,25	2,42	9,22	5,86
6.1	134,50	100,00	43,25	13450,00	54,82	39,98		0,9034	28,90				
4.1	134,50	100,00	42,75	13450,00	52,95	38,62		0,9036	27,92				
PA50850/5.1	134,50	100,00	42,25	13450,00	58,31	42,53	40,79	0,9039	30,75	29,49	1,44	4,89	2,08
6.1	134,25	100,00	42,50	13425,00	56,42	41,23		0,9038	29,81				
4.1	134,50	100,00	42,50	13450,00	52,52	38,31		0,9038	27,70				
PA50900/5.1	134,50	100,00	42,50	13450,00	94,44	-	38,31	-	-	-	-	-	-
6.1	134,50	100,00	42,50	13450,00	127,81	-		-	-				
4.1	134,00	100,00	43,00	13400,00	65,05	47,62		0,9035	34,42				
PA50950/5.1	134,00	100,00	43,00	13400,00	65,90	48,24	49,59	0,9035	34,87	35,84	2,09	5,83	4,36
6.1	134,00	100,00	42,75	13400,00	72,26	52,90		0,9036	38,24				

Taula 7. Resistència a compressió sèrie PA

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Resistència a compressió de la sèrie PF:

Sèrie / Proveta	Longitud (mm)	Amplada (mm)	Gruix (mm)	Superfície	Càrrega (t)	Resistència a compressió (RC) (N/mm²)	factor de forma d	Resistència a compressió normalitzada (RC · d · 0,8) (N/mm ²)	Desviació estàndard	Coeficient de variació (%)	Variància
4.1	134.75	100.00	44.50	13475.00	46.63	33.95	0.9028	24.52			
PF30850/5.1	134,75	100,00	44,50	13475,00	45,80	33,34 32,93	0,9028	24,08 23,78	0,92	3,86	0,84
6.1	134,75	100,00	44,50	13475,00	43,28	31,51	0,9028	22,76			
4.1	134,50	100,00	44,25	13450,00	48,12	35,10	0,9029	25,35			
PF30900/5.1	134,50	100,00	44,50	13450,00	48,19	35,15 34,93	0,9028	25,38 25,23	3 0,24	0,95	0,06
6.1	134,50	100,00	44,50	13450,00	47,37	34,55	0,9028	24,95			
4.1	134,50	100,00	44,50	13450,00	57,41	41,87	0,9028	30,24			
PF30950/5.1	134,50	100,00	44,50	13450,00	47,17	34,40 35,79	0,9028	24,85 25,85	5 3,98	15,41	15,87
6.1	134,25	100,00	44,50	13425,00	42,57	31,11	0,9028	22,47			
4.1	134,50	100,00	43,50	13450,00	56,11	40,92	0,9033	29,57			
PF40850/5.1	134,75	100,00	43,75	13475,00	49,18	35,80 39,46	0,9031	25,87 28,57	2,30	8,07	5,30
6.1	134,75	100,00	43,75	13475,00	57,20	41,64	0,9031	30,09			
4.1	134,25	100,00	43,50	13425,00	60,73	44,38	0,9033	32,07			
4.2	134,25	100,00	43,50	13425,00	47,91	35,01	0,9033	25,30			
PF40900/ ^{5.1}	134,50	100,00	43,50	13450,00	48,23	35,18 40.32	0,9033	25,42 29.14	3.48	11.94	12.10
5.2	134,50	100,00	43,50	13450,00	58,69	42,81	0,9033	30,93	-, -	,-	, -
6.1	134,00	100,00	43,50	13400,00	52,37	38,34	0,9033	27,70			
6.2	2 134,00	100,00	43,50	13400,00	63,12	46,21	0,9033	33,39			
4.1	134,25	100,00	43,50	13425,00	44,37	32,42	0,9033	23,43	5 00	40.00	00.00
PF4095075.1	134,25	100,00	43,50	13425,00	64,02	46,78 38,48	0,9033	33,80 27,80	5,38	19,33	28,89
0.	134,50	100,00	43,50	13450,00	49,67	30,23	0,9033	20,18			
4. DE50950/51	104,20	100,00	43,20	12425,00	12 10	40,17	0,9034	32,00	6.06	25.11	10 15
FF306307 5.	134,25	100,00	43,20	13425,00	43,10	31,55 36,50	0,9034	22,00 21,13	0,90	20,11	40,40
0.	13/ 75	100,00	43.25	13/75 00	67 11	18.86	0.003/	35.31			
PE50900/51	135.00	100,00	43 25	13500.00	47 43	34 47 38 90	0,3034	24 91 28 1 ²	6.24	22.21	38 97
6 1	135.00	100,00	43 25	13500.00	45 94	33,38	0,0004	24 13	0,24	22,21	00,07
4.1	134,75	100,00	43.00	13475.00	64.67	47.08	0.9035	34.03			
PF50950/5.1	134.50	100.00	43.25	13450.00	55.09	40.18 40.69	0.9034	29.04 29.4	4.45	15.13	19.80
6.1	134,50	100,00	43,25	13450,00	47,72	34,81	0,9034	25,15		,	

Taula 8. Resistència a compressió sèrie PF

Resistència a compressió de les provetes PIERA:

Sèrie / Prov	e eta	Longitud (mm)	Amplada (mm)	Gruix (mm)	Superfície (mm²)	Càrrega (t)	Resistèr compre (RC (N/mn	ncia a ssió) n²)	factor de forma <i>d</i>	Resistè compre normali (RC · d (N/m	ncia a essió itzada · 0,8) m²)	Desviació estàndard	Coeficient de variació (%)	Variància
	4.1	134,00	100,00	43,25	13400,00	64,34	47,10		0,9034	34,04				
	4.2	134,00	100,00	43,25	13400,00	50,30	36,82		0,9034	26,61				
	, 5.1	134,00	100,00	43,25	13400,00	129,98	-	11 66	-	-	20.11	E 09	16.97	25 70
FIERA	′ 5.2	134,00	100,00	43,25	13400,00	69,94	51,20	41,00	0,9034	37,00	30,11	5,06	10,07	25,79
	6.1	134,50	100,00	43,25	13450,00	48,82	35,61		0,9034	25,73				
	6.2	134,50	100,00	43,25	13450,00	51,50	37,56		0,9034	27,15				

Taula 9. Resistència a compressió PIERA

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Taula resum de resistència a compressió de la sèrie PA (N/mm²):

Pressió del premsat	Temperatura màxima de cocció							
	850°C	900°C	950°C					
30 kg/cm ²	28,20	27,72	26,16					
40 kg/cm ²	29,23	31,54	26,25					
50 kg/cm ²	29,49	27,70	35,84					
Taula 10. Resum resistència a compressió PA								

Taula resum de resistència a compressió de la sèrie PF (N/mm²):

Pressió del premsat	Temperatura màxima de cocció							
	850°C	900°C	950°C					
30 kg/cm ²	23,78	25,23	25,85					
40 kg/cm ²	28,51	29,14	27,80					
50 kg/cm ²	27,73	28,11	29,41					
Taula 11. Resum resistència a compressió PF								

Resistència a compressió de PIERA: 30,11 N/mm².

Comparativa gràfica de resistències a compressió de les sèries PA30, PF30 i PIERA:

Gràfica 7. Resistència a compressió sèrie PA30, PF30 i PIERA

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa gràfica de resistències a compressió de les sèries PA40, PF40 i PIERA:

Comparativa gràfica de resistències a compressió de les sèries PA50, PF50 i PIERA:

Gràfica 9. Resistència a compressió sèrie PA50, PF50 i PIERA

Gràfica 8. Resistència a compressió sèrie PA40, PF40 i PIERA

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa gràfica de resistències a compressió de la sèrie PA:

Gràfica 10. Resistència a compressió sèrie PA (1)

Gràfica 11. Resistència a compressió sèrie PA (2)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa gràfica de resistències a compressió de la sèrie PF:

Gràfica 12. Resistència a compressió sèrie PF (1)

Gràfica 13. Resistència a compressió sèrie PF (2)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

6.1.1.1. Fotografies de resultats

A continuació es podran veure fotografies d'abans, durant i després de fer un assaig de resistència a compressió d'una proveta tallada. La proveta d'exemple serà la PF409004.1.

Figura 138. Assaig de resistència a compressió PF409004.1 (1)

Font. David Morillas

Figura 139. Assaig de resistència a compressió PF409004.1 (2) Font. David Morillas

Figura 140. Assaig de resistència a compressió PF409004.1 (3)

Font. David Morillas

Figura 141. Assaig de resistència a compressió PF409004.1 (4)

Figura 142. Assaig de resistència a compressió PF409004.1 (5)

Font. David Morillas

Font. David Morillas

Figura 143. Assaig de resistència a compressió PF409004.1 (6)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Figura 144. Assaig de resistència a compressió PF409004.1 (7)

Figura 145. Assaig de resistència a compressió PF409004.1 (8)

Font. David Morillas

Figura 146. Assaig de resistència a compressió PF409004.1 (9)

Font. David Morillas

Figura 147. Assaig de resistència a compressió PF409004.1 (10)

Figura 148. Assaig de resistència a compressió PF409004.1 (11)

Font. David Morillas

Figura 149. Assaig de resistència a compressió PF409004.1 (12)

Font. David Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Figura 150. Assaig de resistència a compressió PF409004.1 (13)

Font. David Morillas

Figura 151. Assaig de resistència a compressió PF409004.1 (14)

Figura 152. Assaig de resistència a compressió PF409004.1 (15)

Font. David Morillas

Figura 153. Assaig de resistència a compressió PF409004.1 (16)

Font. David Morillas

Figura 154. Assaig de resistència a compressió PF409004.1 (17)

Font. David Morillas

Figura 155. Assaig de resistència a compressió PF409004.1 (18)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Figura 156. Assaig de resistència a compressió PF409004.1 (19) Font. David Morillas

6.1.1.2. Anàlisi de resultats

Vocabulari: resistència a compressió (RC), resistència a compressió normalitzada (RCN)

Primer cal comentar que a la Taula 7, Taula 8, i Taula 9, es poden veure en vermell els resultats de càrrega les provetes PA509005.1, PA509506.1, PF508506.1 i PIERA5.1. Això indica que aquestes provetes s'han desestimat per calcular la resistència a compressió. Als annexes es poden veure les seves gràfiques.

La desestimació de les provetes anteriors s'ha fet perquè el resultat de l'assaig no ha sigut adequat; es pot veure que són resultats alts comparats amb la resta. Aquestes provetes s'han comportat de manera irregular durant l'assaig, es comprimien de tal manera que la part central quedava pràcticament intacte i molt resistent, anava suportant cada vegada més carrega fins parar l'assaig manualment ja que els seus comportaments no eren els esperats. Aquestes provetes, a part de les PIERA, tenen la similitud d'haver sigut fabricades a una pressió de 50 kg/cm².

Segons els coeficients de variació, cal tenir en compte que hi ha dispersions de resultats d'entre 0,95 i 25,21%. La de més de 25% es d'una sèrie la qual s'ha desestimat una proveta.

La resistència a compressió normalitzada de PIERA és semblant a la de la fitxa tècnica del fabricant, segons el fabricant té una RCN de 30 N/mm² i en aquest assaig una RCN de 30,11 N/mm².

La sèrie amb major resistència a compressió és la PA50950 (35,84), seguida de PA40900 (31,54), PIERA (30,11) i PF50950 (29,41).

La sèrie amb la menor resistència a compressió és la PF30850 (23,78), seguida de PF30900 (25,23) i PF30950 (25,85). Es pot veure doncs que la PF30 és la sèrie amb menor RC.

En general les PA tenen millor RC que les PF.

Les provetes que tenen una RC semblant a PIERA són PA50850 i PA50950.

Pel que fa a la sèrie PA:

- Segons la pressió de premsat:
 - La RC mitjana més alta és la de PA50.
 - La RC mitjana més baixa és la de PA30.
- Segons la temperatura màxima de cocció:
 - La RC mitjana més alta és la de PA__950.
 - La RC mitjana més baixa és la de PA__850, tot i que és pràcticament igual a la de PA__900.

Pel que fa a la sèrie PF:

- Segons la pressió de premsat:
 - La RC mitjana més alta és la de PF40, tot i que és molt semblant a la de PF50.
 - La RC mitjana més baixa és la de PF30.
- Segons la temperatura màxima de cocció:
 - La RC mitjana més alta és la de PF__950, tot i que és semblant a la de PF_900.
 - La RC mitjana més baixa és la de PF__850.

En general les RC són majors les de les sèries cuites a 850°C.

En general les sèries amb menor RC són les sèries cuites a 900 i 950°C.

De manera visual durant l'assaig es podien detectar fissures a les provetes a partir d'entre 5 i 15t aproximadament; també es podia veure que les provetes anaven adquirint una secció cònica.

La majoria de les provetes quedaven totalment deteriorades, excepte algunes que en quedava una petita part central i que tenia una geometria de secció cònica.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

6.1.2. Provetes senceres

Deformació a 180t de la sèrie PA:

Sèrie / Proveta	3	Longitud (mm)	Amplada (mm)	Gruix (mm)	Superfície (mm²)	Deformació (mm)	Deformació mitjana (mm)	Deformació unitària	Deformació unitària mitiana
	1	275.25	134.00	43.50	36883.50	8.61	、	0.20	
PA30850	2	275.25	134.00	43.50	36883.50	6.05	7,43	0.14	0,17
	3	275,00	134,00	43,50	36850,00	7,64	,	0,18	,
	1	274,75	134,00	43,25	36816,50	6,05		0,14	
PA30900	2	274,75	133,50	43,25	36679,13	5,20	5,30	0,12	0,12
	3	274,75	134,00	43,50	36816,50	4,66		0,11	
	1	274,25	134,00	43,50	36749,50	5,05		0,12	
PA30950	2	274,25	134,00	43,25	36749,50	4,68	4,80	0,11	0,11
	3	274,25	134,00	43,25	36749,50	4,68		0,11	
	1	274,75	134,00	43,00	36816,50	7,54		0,18	
PA40850	2	274,50	134,00	43,00	36783,00	6,50	6,47	0,15	0,15
	3	274,75	134,00	42,75	36816,50	5,36		0,13	
	1	275,00	134,00	43,25	36850,00	5,04		0,12	
PA40900	2	274,75	134,00	43,25	36816,50	4,88	4,96	0,11	0,11
	3	274,75	134,00	43,25	36816,50	4,95		0,11	
	1	275,25	134,00	43,25	36883,50	7,71		0,18	
PA40950	2	275,50	134,00	43,25	36917,00	6,44	6,84	0,15	0,16
	3	275,50	134,00	43,50	36917,00	6,37		0,15	
	1	274,25	134,50	42,75	36886,63	7,36		0,17	
PA50850	2	274,75	134,00	42,75	36816,50	5,94	6,38	0,14	0,15
	3	274,25	134,00	42,75	36749,50	5,83		0,14	
	1	274,75	134,00	42,50	36816,50	7,33		0,17	
PA50900	2	274,50	134,00	42,50	36783,00	5,64	6,94	0,13	0,16
	3	274,75	134,00	42,75	36816,50	7,85		0,18	
	1	274,00	134,00	42,75	36716,00	6,37		0,15	
PA50950	2	274,00	134,00	42,75	36716,00	5,19	5,39	0,12	0,13
	3	274,00	133,50	42,75	36579,00	4,61		0,11	

Taula 12. Deformació a 180t PA

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Deformació a 180t de la sèrie PF:

Sèrie / Proveta	1	Longitud (mm)	Amplada (mm)	Gruix (mm)	Superfície (mm²)	Deformació (mm)	Deformació mitjana (mm)	Deformació unitària	Deformació unitària mitjana
	1	275.75	134.50	44.50	37088.38	7.98	. ,	0.18	
PF30850	2	275.50	134.50	44.50	37054.75	6.63	6.84	0.15	0.15
	3	275.50	134.50	44.50	37054.75	5.91	,	0.13	,
	1	275,25	134,00	44,50	36883,50	6,31		0,14	
PF30900	2	275,25	134,00	44,25	36883,50	5,48	5,88	0,12	0,13
	3	275,25	134,00	44,50	36883,50	5,84		0,13	
	1	275,25	134,00	44,50	36883,50	6,62		0,15	
PF30950	2	275,00	134,00	44,50	36850,00	5,53	5,82	0,12	0,13
	3	274,75	134,00	44,50	36816,50	5,31		0,12	
	1	275,25	134,00	43,75	36883,50	7,16		0,16	
PF40850	2	275,25	134,00	43,75	36883,50	5,47	5,90	0,13	0,14
	3	275,25	134,00	43,50	36883,50	5,07		0,12	
	1	275,00	134,00	43,50	36850,00	5,23		0,12	
PF40900	2	274,75	134,00	43,50	36816,50	5,15	5,09	0,12	0,12
	3	274,75	134,00	43,50	36816,50	4,90		0,11	
	1	275,00	134,00	43,50	36850,00	5,01		0,12	
PF40950	2	274,75	134,00	43,50	36816,50	4,93	4,91	0,11	0,11
	3	274,75	134,00	43,50	36816,50	4,79		0,11	
	1	275,25	133,50	43,25	36745,88	5,34		0,12	
PF50850	2	275,00	133,50	42,75	36712,50	4,99	5,17	0,12	0,12
	3	274,75	133,50	42,75	36679,13	5,19		0,12	
	1	275,50	134,50	43,75	37054,75	5,28		0,12	
PF50900	2	275,50	134,50	43,50	37054,75	6,93	5,83	0,16	0,13
	3	275,50	134,50	43,50	37054,75	5,27		0,12	
	1	275,25	134,50	43,25	37021,13	4,34		0,10	
PF50950	2	275,25	134,50	43,00	37021,13	4,54	4,45	0,11	0,10
	3	275,25	134,50	43,00	37021,13	4,46		0,10	

Taula 13. Deformació a 180t PF

Deformació a 180t de PIERA:

Sèrie / Prove	e eta	Longitud (mm)	Amplada (mm)	Gruix (mm)	Superfície (mm²)	Deformació (mm)	Deformació mitjana (mm)	Deformació unitària	Deformació unitària mitjana
	1	278,00	134,50	43,25	37391,00	5,93		0,14	
PIERA	2	278,25	134,50	43,00	37424,63	5,73	5,96	0,13	0,14
	3	277,00	134,50	43,50	37256,50	6,23		0,14	

Taula 14. Deformació a 180t PIERA

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Taula resum de deformació unitària a 180t de la sèrie PA:

Pressió del premsat	Temperatura màxima de cocció							
	850°C	900°C	950°C					
30 kg/cm ²	0,17	0,12	0,11					
40 kg/cm ²	0,15	0,11	0,16					
50 kg/cm ²	0,15	0,16	0,13					
Taula 15. Resum deformació unitària a 180t PA								

Taula resum de deformació unitària a 180t de la sèrie PF:

Pressió del premsat	Temperatura màxima de cocció						
	850°C	900°C	950°C				
30 kg/cm ²	0,15	0,13	0,13				
40 kg/cm ²	0,14	0,12	0,11				
50 kg/cm ²	0,12	0,13	0,10				
Taula 16. Resum deformació unitària a 180t PF							

Deformació unitària a 180t PIERA: 0,14 N/mm².

Comparativa gràfica de deformació unitària a 180t de les sèries PA30, PF30 i PIERA:

Gràfica 14. Deformació unitària a 180t sèrie PA30, PF30 i PIERA

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Deformació unitària a 180t sèries PA40, PF40 i **PIERA** 0,18 0,16 0,16 0,14 0,15 0,14 0,14 0,12 0.12 0,11 0,11 0,10 0,08 0,06 0,04 0,02 0,00 PIERA PA40850 PF40850 PA40900 PF40900 PA40950 PF40950

Comparativa gràfica de deformació unitària a 180t de les sèries PA40, PF40 i PIERA:

Gràfica 15. Deformació unitària a 180t sèrie PA40, PF40 i PIERA

Comparativa gràfica de deformació unitària a 180t de les sèries PA50, PF50 i PIERA:

Gràfica 16. Deformació unitària a 180t sèrie PA50, PF50 i PIERA

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa gràfica de deformació unitària a 180t de la sèrie PA:

Gràfica 17. Deformació unitària a 180t sèrie PA (1)

Gràfica 18. Deformació unitària a 180t sèrie PA (2)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa gràfica de deformació unitària a 180t de la sèrie PF:

Gràfica 19. Deformació unitària a 180t sèrie PF (1)

Gràfica 20. Deformació unitària a 180t sèrie PF (2)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa de gràfiques de resistència a compressió fins 180t de la sèrie PA30 i PIERA:

Gràfica 21. Comparativa gràfiques resistència a compressió fins 180t sèrie PA30 i PIERA

in state (man)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa de gràfiques* de resistència a compressió fins 180t de la sèrie PA40 i PIERA:

Gràfica 22. Comparativa gràfiques resistència a compressió fins 180t sèrie PA40 i PIERA *Gràfiques en miniatura; les gràfiques originals es poden consultar als annexes.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa de gràfiques de resistència a compressió fins 180t de la sèrie PA50 i PIERA:

Gràfica 23. Comparativa gràfiques resistència a compressió fins 180t sèrie PA50 i PIERA

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa de gràfiques de resistència a compressió fins 180t de la sèrie PF30 i PIERA:

PF309002

PF309502

PF309503

PIERA 2

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa de gràfiques de resistència a compressió fins 180t de la sèrie PF40 i PIERA:

PF409002

PF409502

PF409503

PIERA 2

Gràfica 25. Comparativa gràfiques resistència a compressió fins 180t sèrie PF40 i PIERA

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa de gràfiques de resistència a compressió fins 180t de la sèrie PF50 i PIERA:

PF509002

PF509502

PF509503

PIERA 2

Gràfica 26. Comparativa gràfiques resistència a compressió fins 180t sèrie PF50 i PIERA

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa de gràfiques de resistència a compressió fins 180t de la sèrie PA__850 i PIERA:

PA408502

PIERA 2

Gràfica 27. Comparativa gràfiques resistència a compressió fins 180t sèrie PA_850 i PIERA

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa de gràfiques de resistència a compressió fins 180t de la sèrie PA__900 i PIERA:

PIERA 2

Gràfica 28. Comparativa gràfiques resistència a compressió fins 180t sèrie PA_900 i PIERA

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa de gràfiques de resistència a compressió fins 180t de la sèrie PA__950 i PIERA:

Gràfica 29. Comparativa gràfiques resistència a compressió fins 180t sèrie PA__950 i PIERA

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa de gràfiques de resistència a compressió fins 180t de la sèrie PF__850 i PIERA:

PF408502

PF508502

PF508503

PIERA 2

Gràfica 30. Comparativa gràfiques resistència a compressió fins 180t sèrie PF_850 i PIERA

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa de gràfiques de resistència a compressió fins 180t de la sèrie PF__900 i PIERA:

PIERA 2

Gràfica 31. Comparativa gràfiques resistència a compressió fins 180t sèrie PF__900 i PIERA

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa de gràfiques de resistència a compressió fins 180t de la sèrie PF__950 i PIERA:

PF409502

PF509502

PF509503

PIERA 2

Gràfica 32. Comparativa gràfiques resistència a compressió fins 180t sèrie PF__950 i PIERA

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Fotografies de resultats 6.1.2.1.

A continuació es podran veure fotografies d'abans, durant i després de fer un assaig de resistència a compressió d'una proveta sencera. La proveta d'exemple serà la PF409004.

Figura 157. Assaig de resistència a compressió PF409004 (1)

Font. David Morillas

Figura 159. Assaig de resistència a compressió PF409004 (3)

Font. David Morillas

Figura 160. Assaig de resistència a compressió PF409004 (4)

Figura 161. Assaig de resistència a compressió PF409004 (5)

Font. David Morillas

Font. David Morillas

Figura 162. Assaig de resistència a compressió PF409004 (6)

Font. David Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Figura 163. Assaig de resistència a compressió PF409004 (7) Font. David Morillas

Figura 164. Assaig de resistència a compressió PF409004 (8)

Figura 165. Assaig de resistència a compressió PF409004 (9)

Font. David Morillas

Figura 166. Assaig de resistència a compressió PF409004 (10)

Font. David Morillas

Figura 167. Assaig de resistència a compressió PF409004 (11)

Font. David Morillas

Figura 168. Assaig de resistència a compressió PF409004 (12)

Font. David Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Figura 169. Assaig de resistència a compressió PF409004 (13) Font. David Morillas

Figura 170. Assaig de resistència a compressió PF409004 (14)

Font. David Morillas

Figura 171. Assaig de resistència a compressió PF409004 (15) Font. David Morillas

Figura 172. Assaig de resistència a compressió PF409004 (16)

Font. David Morillas

Figura 173. Assaig de resistència a compressió PF409004 (17)

Font. David Morillas

Figura 174. Assaig de resistència a compressió PF409004 (18)

Font. David Morillas

141

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Figura 175. Assaig de resistència a compressió PF409004 (19)

Figura 176. Assaig de resistència a compressió PF409004 (20)

Font. David Morillas

Figura 177. Assaig de resistència a compressió PF409004 (21)

Font. David Morillas

Figura 178. Assaig de resistència a compressió PF409004 (22)

Font. David Morillas

Figura 179. Assaig de resistència a compressió PF409004 (23)

Font. David Morillas

Figura 180. Assaig de resistència a compressió PF409004 (24)

Font. David Morillas

142

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Figura 181. Assaig de resistència a compressió PF409004 (25) Font. David Morillas

Figura 182. Assaig de resistència a compressió PF409004 (26) Font. David Morillas

Figura 183. Assaig de resistència a compressió PF409004 (27)

Figura 184. Assaig de resistència a compressió PF409004 (28)

Font. David Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

6.1.2.2. Anàlisi de resultats

Vocabulari: deformació unitària a 180t (DU)

La sèrie amb la major DU és la PA30850 (0,17), seguida de dos iguals entre elles, la PA40950 i PA50900 (0,16).

La sèrie amb la menor DU és la PF50950 (0,10), seguida de tres iguals entre elles, la PA30950, PA40900 i PA30950 (0,13).

La PIERA es troba aproximadament a la mitjana de les DU; té una DU igual a les PF4085 (0,14).

Les sèries que tenen una DU semblant a la de PIERA són, amb +0,01 de DU, PA40, PA50 i PA30, i amb -0,01 de DU, PA50950, PF30900, PF30950 i PF50900.

Pel que fa a la sèrie PA:

- Segons la pressió de premsat:
 - La DU mitjana més alta és la de PA50.
 - La DU mitjana més baixa és la de PA30 tot i que també té la DU més alta de totes, la ja anomenada PA30850.
- Segons la temperatura màxima de cocció:
 - La DU mitjana més alta és la de PA_850.
 - La DU mitjana més baixa és la de PA__900, tot i que és molt semblant la PA__950.

Pel que fa a la sèrie PF:

- Segons la pressió de premsat:
 - La DU mitjana més alta és la de PF30.
 - La DU mitjana més baixa és la de PF50.
- Segons la temperatura màxima de cocció:
 - La DU mitjana més alta és la de PF__850.
 - La DU mitjana més baixa és la de PF__950.

En general les DU són majors les de les sèries cuites a 850°C.

En general les sèries amb menor DU són les sèries cuites a 900 i 950°C.
Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

En les gràfiques de resistència a compressió fins a 180t pel que fa a la relació entre força i posició del plat, en general es poden distingir 3 tipus de gràfiques, les quals s'anomenaran GT1, GT2 i GT3.

La primera, GT1, és la qual es poden veure 2 sectors, un primer sector amb poca pendent i un segon sector amb pendent pronunciada i poc variable fins a 180t. Com per exemple la gràfica de PA309003, PF409001 i PIERA1, PIERA2

La segona, GT2, és la que podem distingir 3 sectors, un primer sector que té poca pendent, un segon sector amb pendent més pronunciada i poc variable, i un tercer sector amb disminució de la pendent fins a 180t. Com per exemple la gràfica de PA308503, PF309001 i PIERA3.

La tercera, GT3, és la qual podem distingir 3 sectors, un primer sector amb poca pendent, un segon amb pendent pronunciada i un tercer amb significatives fluctuacions i/o pendents variables, és a dir positives i negatives fins a 180t. Per exemple tenim la gràfica PA409501, PF308501.

En general el tipus de gràfica més predominant és la GT1, seguida de la GT2.

A la sèrie PA hi ha 6 GT3, PA308501, PA308503, PA408501, PA408502, PA409501 i PA509003 mentre que a la PF hi ha 4 GT3, 2 amb uns canvis més significatius al tercer sector, PF308501, PF509002, i 2 amb uns canvis menys diferenciats al tercer sector, PF309501 i PF309502.

Pel que fa a les gràfiques on es poden veure els resultats dels transductors, es pot veure que en general es detecten canvis de posició molt pronunciats als inicis del segon tram anomenat a les gràfiques GT1, GT2 i GT3. Aquest canvis de posició en positiu solen coincidir amb el despreniment de les cares de la proveta on estan situats els transductors.

La comparativa de gràfiques segons la temperatura de cocció ens mostra que hi ha diferents comportaments de manera més puntual; es pot veure quela relació entre la força i la posició del plat formen pendents menys pronunciades i més irregulars a la temperatura de 850°C a les PA30 i PA40.

Segons a la deformació de les provetes a partir dels transductors col·locats als cantells, es considera que la informació que donen ja no s'interpreta com a deformació a partir de que es comencen a despendre els cantells, és a dir, que els resultats que es donen a partir del despreniment dels cantells es consideren com a tal i no pas com a una deformació real de la proveta.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Es podia veure durant els assaigs que en general els cantells es començaven a despendre quan els transductors marcaven un desplaçament d'entre 2 i 3 mm. En la majoria de provetes el despreniment dels cantells era mínim d'una cara, i a vegades de les dos. Això es pot interpretar amb els canvis de posició dels transductors en els canvis significatius de pendent o bé a partir dels 2 o 3 mm de posició.

En alguns casos el despreniment dels cantells podia ser nul o poc significatiu a les dos cares, per exemple en el cas de PIERA3, el qual es pot veure que com a màxim el transductor 1 mesura un desplaçament aproximat de 0,8 mm i el transductor 2 de 0,5 mm. La PA309503 també té un recorregut màxim de desplaçament baix, aproximadament 2,5 mm el transductor 2 i el transductor 1, 1 mm.

Cal tenir en compte també que els transductors es retiraven quan arribaven al seu límit de lectura o abans per evitar que es trenquessin. En general es treien en arribar al seu límit, és a dir un cop arribat als 10 mm.

De manera visual durant l'assaig es podien detectar fissures a les provetes a partir d'entre 20 i 30t aproximadament.

En general les provetes acabaven l'assaig amb una pèrdua de massa dels laterals i quedant una gran part central pràcticament sencera.

També es podia veure que habitualment el trencament tenia tendència a ser major en un dels dos cantells de la peça. Cal tenir en compte que el plat superior de la premsa tenia ròtula i que podia afavorir aquest fet.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

6.2. Propietats tèrmiques

Propietats tèrmiques de la sèrie PA:

Sèrie	Proveta	Transmitància tèrmica (U)	Mitjana U	Flux de calor (Q)	Mitjana Q	Coeficient conductivitat termica (λ)	Mitjana λ	Desviació estàndard λ	Coeficient de variació λ (%)	Variància λ
	DA000504		[w/m²·°C]		[vv]		[w/m·°C]			
PA30850	PA308501 PA308502 PA308503 PA308504 PA308505 PA308506	3,605 3,531 3,441 3,435 3,592 3,347	3,492	2,328 2,329 2,251 2,249 2,472 2,222	2,309	0,788 0,899 0,740 0,835 0,804 0,790	0,809	0,054	6,622	0,003
PA30900	PA309001 PA309002 PA309003 PA309004 PA309005 PA309006	3,449 3,308 3,318 3,366 3,444 3,334	3,370	2,330 2,240 2,257 2,376 2,348 2,286	2,306	0,830 0,706 0,743 0,721 0,759 0,751	0,752	0,043	5,717	0,002
PA30950	PA309501 PA309502 PA309503 PA309504 PA309505 PA309506	3,450 3,427 3,433 3,600 3,575 3,582	3,511	2,256 2,256 2,240 2,504 2,467 2,443	2,361	0,795 0,811 0,819 0,890 0,855 0,850	0,837	0,035	4,189	0,001
PA40850	PA408501 PA408502 PA408503 PA408504 PA408505 PA408506	3,425 3,403 3,306 3,563 3,285 3,399	3,397	2,332 2,354 2,282 2,355 2,736 2,550	2,435	0,782 0,725 0,672 0,813 0,681 0,803	0,746	0,062	8,326	0,004
PA40900	PA409001 PA409002 PA409003 PA409004 PA409005 PA409006	3,368 3,379 3,206 3,306 3,481 3,362	3,350	2,260 2,280 2,159 2,187 2,365 2,247	2,250	0,759 0,764 0,681 0,752 0,832 0,709	0,750	0,052	6,921	0,003
PA40950	PA409501 PA409502 PA409503 PA409504 PA409505 PA409506	3,508 3,376 3,470 3,349 3,434 3,361	3,416	2,317 2,226 2,293 2,192 2,242 2,214	2,247	0,788 0,713 0,786 0,659 0,724 0,698	0,728	0,051	6,967	0,003
PA50850	PA508501 PA508502 PA508503 PA508504 PA508505 PA508506	3,088 2,950 2,858 2,991 2,713 2,910	2,918	2,092 2,051 1,922 2,107 1,978 2,380	2,088	0,598 0,575 0,508 0,675 0,515 0,540	0,568	0,063	11,060	0,004
PA50900	PA509001 PA509002 PA509003 PA509004 PA509005 PA509006	3,033 3,193 3,328 3,157 3,196 3,377	3,214	2,099 2,264 2,332 2,167 2,223 2,309	2,232	0,578 0,657 0,750 0,642 0,648 0,824	0,683	0,088	12,918	0,008
PA50950	PA509501 PA509502 PA509503 PA509504 PA509505 PA509506	3,312 3,334 3,145 3,232 3,376 3,237	3,272	2,248 2,255 2,146 2,209 2,322 2,226	2,234	0,709 0,760 0,669 0,704 0,735 0,690	0,711	0,032	4,536	0,001

Taula 17. Propietats tèrmiques PA

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Propietats tèrmiques de la sèrie PF:

Sèrie	Proveta	Transmitància tèrmica (U)	Mitjana U	Flux de calor (Q)	Mitjana Q	Coeficient conductivitat termica (λ)	Mitjana λ	Desviació estàndard	Coeficient de variació	Variància λ
		[W/m²·°C]	[W/m²⋅°C]	ÌŴ	[W]	[W/m-°C]	[W/m⋅°C]	^	A (%)	
PF30850	PF308501 PF308502 PF308503 PF308504 PF308505 PF308506	3,403 3,508 3,571 3,506 3,490 3,461	3,490	2,225 2,333 2,436 2,360 2,359 2,325	2,340	0,702 0,903 0,789 0,877 0,807 0,743	0,803	0,077	9,548	0,006
PF30900	PF309001 PF309002 PF309003 PF309004 PF309005 PF309006	3,368 3,540 3,460 3,452 3,536 3,421	3,463	2,291 2,454 2,386 2,379 2,423 2,329	2,377	0,718 0,799 0,839 0,814 0,761 0,743	0,779	0,046	5,904	0,002
PF30950	PF309501 PF309502 PF309503 PF309504 PF309505 PF309506	3,434 3,529 3,427 3,417 3,414 3,457	3,446	2,343 2,395 2,613 2,398 2,287 2,296	2,389	0,781 0,809 0,743 0,797 0,747 0,838	0,786	0,037	4,649	0,001
PF40850	PF408501 PF408502 PF408503 PF408504 PF408505 PF408506	3,778 3,635 3,688 3,633 3,710 3,689	3,689	2,525 2,440 2,480 2,430 2,554 2,557	2,498	0,920 0,885 0,945 0,912 0,924 0,973	0,926	0,030	3,245	0,001
PF40900	PF409001 PF409002 PF409003 PF409004 PF409005 PF409006	3,645 3,658 3,601 3,515 3,682 3,621	3,620	2,504 2,480 2,444 2,367 2,483 2,441	2,453	0,895 0,959 0,890 0,802 0,951 0,914	0,902	0,057	6,268	0,003
PF40950	PF409501 PF409502 PF409503 PF409504 PF409505 PF409506	3,617 3,678 3,487 3,588 3,602 3,614	3,598	2,513 2,533 2,341 2,400 2,406 2,395	2,431	0,907 0,937 0,817 0,849 0,859 0,921	0,882	0,047	5,331	0,002
PF50850	PF508501 PF508502 PF508503 PF508504 PF508505 PF508506	3,676 3,714 3,656 3,366 3,641 3,554	3,601	2,439 2,462 2,425 2,170 2,437 2,354	2,381	0,949 0,912 0,882 0,713 0,842 0,811	0,851	0,084	9,844	0,007
PF50900	PF509001 PF509002 PF509003 PF509004 PF509005 PF509006	3,617 3,555 3,531 3,544 3,625 3,621	3,582	2,409 2,383 2,320 2,345 2,412 2,424	2,382	0,886 0,824 0,811 0,812 0,927 0,902	0,860	0,051	5,895	0,003
PF50950	PF509501 PF509502 PF509503 PF509504 PF509505 PF509506	3,586 3,637 3,633 3,613 3,561 3,561 3,659	3,615	2,410 2,423 2,396 2,358 2,356 2,444	2,398	0,989 0,998 0,940 0,956 0,870 0,978	0,955	0,047	4,914	0,002

Taula 18. Propietats tèrmiques PF

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Propietats tèrmiques de PIERA:

Sèrie	Proveta	Transmitància tèrmica (U) [W/m²·°C]	Mitjana U [W/m²·°C]	Flux de calor (Q) [W]	Mitjana Q [W]	Coeficient conductivitat termica (λ) [W/m·°C]	Mitjana λ [W/m⋅°C]	Desviació estàndard λ	Coeficient de variació λ (%)	Variància λ
	PIERA 1	3,098		2,745		0,723				
	PIERA 2	3,120		2,626		0,730		0.050	7 072	
	PIERA 3	2,954	3 152		2 627	0,665	5 0,743			0.004
FILINA	PIERA 4	3,091	3,152	2,629	2,021	0,717		0,039	1,915	0,004
F	PIERA 5	3,310		2,638		0,793				
	PIERA 6	3,341		2,618		0,831				

Taula 19. Propietats tèrmiques PIERA

Taula resum de conductivitat tèrmica de la sèrie PA (W/m·°C):

Pressió del premsat	Temperatura màxima de cocció										
	850°C	900°C	950°C								
30 kg/cm ²	0,81	0,75	0,84								
40 kg/cm ²	0,75	0,75	0,73								
50 kg/cm ²	0,57	0,68	0,71								
Taula 20. Resum conductivitat tèrmica PA											

Taula resum de conductivitat tèrmica de la sèrie PF (W/m·°C):

Pressió del premsat	Temperatura màxima de cocció										
	850°C	900°C	950°C								
30 kg/cm ²	0,80	0,78	0,79								
40 kg/cm ²	0,93	0,90	0,88								
50 kg/cm ²	0,85	0,86	0,96								
Taula 21. Resum conductivitat tèrmica PF											

Conductivitat tèrmica de PIERA: 0,743 (W/m·°C).

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Conductivitat tèrmica sèries PA30, PF30 i PIERA [W/m·°C] 0,86 0,84 0,84 0,82 0,80 0,81 0,80 0,78 0.79 0,78 0,76 0,74 0,75 0.74 0,72 0,70 0,68 PIERA PA30850 PF30850 PA30900 PF30900 PA30950 PF30950

Comparativa gràfica de conductivitat tèrmica de les sèries PA30, PF30 i PIERA:

Comparativa gràfica de conductivitat tèrmica de les sèries PA40, PF40 i PIERA:

Gràfica 34. Conductivitat tèrmica sèrie PA40, PF40 i PIERA

Gràfica 33. Conductivitat tèrmica sèrie PA30, PF30 i PIERA

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa gràfica de conductivitat tèrmica de les sèries PA50, PF50 i PIERA:

Gràfica 35. Conductivitat tèrmica sèrie PA50, PF50 i PIERA

Comparativa gràfica de conductivitat tèrmica de la sèrie PA:

Gràfica 36. Conductivitat tèrmica sèrie PA (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfica 37. Conductivitat tèrmica sèrie PA (2)

Comparativa gràfica de conductivitat tèrmica de la sèrie PF:

Gràfica 38. Conductivitat tèrmica sèrie PF (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfica 39. Conductivitat tèrmica sèrie PF (2)

Taula resum de transmitància tèrmica de la sèrie PA (W/m²·°C):

Pressió del premsat	Temperatura màxima de cocció										
	850°C	900°C	950°C								
30 kg/cm ²	3,49	3,37	3,51								
40 kg/cm ²	3,40	3,35	3,42								
50 kg/cm ²	2,92	3,21	3,27								
Taula 22. Resum transmitància tèrmica PA											

Taula resum de transmitància tèrmica de la sèrie PF (W/m²·°C):

Pressió del premsat	Temperatura màxima de cocció										
	850°C	900°C	950°C								
30 kg/cm ²	3,49	3,46	3,45								
40 kg/cm ²	3,69	3,62	3,60								
50 kg/cm ²	3,60	3,58	3,61								
Taula 23. Resum transmitància tèrmica PF											

Transmitància tèrmica de PIERA: 3,15 (W/m²·°C).

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa gràfica de transmitància tèrmica de les sèries PA30, PF30 i PIERA:

Gràfica 40. Transmitància tèrmica sèrie PA30, PF30 i PIERA

Comparativa gràfica de transmitància tèrmica de les sèries PA40, PF40 i PIERA:

Gràfica 41. Transmitància tèrmica sèrie PA40, PF40 i PIERA

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa gràfica de transmitància tèrmica de les sèries PA50, PF50 i PIERA:

Gràfica 42. Transmitància tèrmica sèrie PA50, PF50 i PIERA

Comparativa gràfica de transmitància tèrmica de la sèrie PA:

Gràfica 43. Transmitància tèrmica sèrie PA (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfica 44. Transmitància tèrmica sèrie PA (2)

Comparativa gràfica de transmitància tèrmica de la sèrie PF:

Gràfica 45. Transmitància tèrmica sèrie PF (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfica 46. Transmitància tèrmica sèrie PF (2)

Taula resum de flux de calor de la sèrie PA (W):

Prossió del promest	Temperatura màxima de cocci									
Flessio dei pleilisat	850°C	900°C	950°C							
30 kg/cm ²	2,31	2,31	2,36							
40 kg/cm ²	2,43	2,25	2,25							
50 kg/cm ²	2,09	2,23	2,23							

Taula 24. Resum flux de calor PA

Taula resum de flux de calor de la sèrie PF (W):

	cció
850°C 900°C 950°C	°C
30 kg/cm ² 2,34 2,38 2,	2,39
40 kg/cm ² 2,50 2,45 2,	2,43
50 kg/cm ² 2,38 2,38 2,	2,40

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Taula 25. Resum flux de calor PF

Flux de calor de PIERA: 2,63 (W).

Comparativa gràfica de flux de calor de les sèries PA30, PF30 i PIERA:

Gràfica 47. Flux de calor sèrie PA30, PF30 i PIERA

Comparativa gràfica de flux de calor de les sèries PA40, PF40 i PIERA:

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfica 48. Flux de calor sèrie PA40, PF40 i PIERA

Comparativa gràfica de flux de calor de les sèries PA50, PF50 i PIERA:

Gràfica 49. Flux de calor sèrie PA50, PF50 i PIERA

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa gràfica de flux de calor de la sèrie PA:

Gràfica 50. Flux de calor sèrie PA (1)

Gràfica 51. Flux de calor sèrie PA (2)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa gràfica de flux de calor de la sèrie PF:

Gràfica 53. Flux de calor sèrie PF (2)

Gràfica 52. Flux de calor sèrie PF (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

6.2.1. Anàlisi de resultats

Vocabulari: conductivitat tèrmica (CT), transmitància tèrmica (TT), Flux de calor (FC).

La desviació estàndard de la CT està aproximadament entre el valor mínim i màxim, 0,03 i 0,09 respectivament.

El coeficient de variació de la CT està aproximadament entre un 3,25 i un 12,92%, tenint en compte que només 2 sèries sobrepassen el 10%, la PA50850, amb un 11,06% i la PA50900 amb un 12,92%.

La variància de la CT està aproximadament entre un valor de 0,001 i 0,008.

La sèrie amb la major CT és la PF50950 (0,955), seguida de PF40850 (0,926) i PF40900 (0,902).

La sèrie amb la menor CT és la PA50850 (0,568), seguida de PA50900 (0,683) i PA50950 (0,711).

La PIERA (0,743) es troba aproximadament per sota de la mitjana de CT; té una CT semblant a les de la sèrie PA40850 (0,746), PA40900 (0,750) i PA40950 (0,728), i la PA30900 (0,752).

En general la sèrie PA té millor CT que la sèrie PF. Només hi ha 2 casos que la PF és millor, la PF30850 (0,803), que només varia un +0,006 de CT de la PA30850 (0,809), i la PF30950 (0,786), que varia un +0,051 de CT de la PA30950 (0,837).

Pel que fa a la sèrie PA:

- Segons la pressió de premsat:
 - La CT mitjana més alta és la de PA30.
 - La CT mitjana més baixa és la de PA50.
- Segons la temperatura màxima de cocció:
 - La CT mitjana més alta és la de PA__950.
 - La CT mitjana més baixa és la de PA__850.

Pel que fa a la sèrie PF:

- Segons la pressió de premsat:
 - La CT mitjana més alta és la de PF40.
 - La CT mitjana més baixa és la de PF30.
- Segons la temperatura màxima de cocció:
 - La CT més alta és la PF__950.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

• La CT més baixa és la PF__900.

La sèrie amb la major TT és la PF40850, seguida de PF40900 i PF50950.

La sèrie amb la menor TT és la PA50850, seguida de PIERA, PA50900 i PA50950.

La PIERA, es troba segons la mitjana entre les TT mes baixes; té una TT semblant a la de la sèrie PA50900. Respecte la PIERA la PA50900 té +0,06 de TT.

La sèrie PA té millor TT que la sèrie PF.

Pel que fa a la sèrie PA:

- Segons la pressió de premsat:
 - La TT mitjana més alta és la de PA30.
 - La TT mitjana més baixa és la de PA50.
- Segons la temperatura màxima de cocció:
 - La TT mitjana més alta és la de PA__950.
 - La TT mitjana més baixa és la PA__850. Tot i que respecte de les PA__900, només es mes baixa la PA50.

Pel que fa a la sèrie PF:

- Segons la pressió de premsat:
 - La TT mitjana més alta és la de PF40.
 - La TT mitjana més baixa és la de PF30, i amb una diferència significativa.
- Segons la temperatura màxima de cocció:
 - La TT mitjana més alta és la de PF__850.
 - La TT mitjana més baixa és la de PF__900 juntament amb la PF__950. Tot i que de la PF__950 la sèrie PF40 i PF50, tenen una TT lleugerament mes baixa respecte la PF900.

La sèrie amb el major FC és la PIERA (2,63), seguida de PF40850 (2,50), PF40900 (2,45) i PF40950 (2,43).

La sèrie amb el menor FC és la PA50850 (2,09), seguida de PA50900 (2,23) i PA50950 (2,23)

La sèrie PA té menor FC que la sèrie PF.

Pel que fa a la sèrie PA:

- Segons la pressió de premsat:
 - El FC mitjà més alt és la de PA30, tot i que el de PA30850 és mes baix que el de PA40850.
 - El FC mitjà més baix és la de PA50.
 - Segons la temperatura màxima de cocció:
 - El FC mitjà més alt és la de PA__950.
 - El FC mitjà més baix és la PA__850. Tot i que té el FC més alt, el de PF40850.

Pel que fa a la sèrie PF:

- Segons la pressió de premsat:
 - El FC mitjà més alt és el de PF40.
 - El FC mitjà més baix és el de PF30, i amb una diferència significativa respecte PF40 pero semblant a PF50.
- Segons la temperatura màxima de cocció:
 - Els FC mitjans més alts són el de la PF_850 i PF_950; la seva mitjana és la mateixa. Cal tenir en compte que la PF40850 té el flux més alt que la resta.
 - El FC mitjà més baix és el de la PF__900. Cal tenir en compte que les mitjanes de PF__850, PF__900 i PF__950 són molt semblants.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

6.3. Densitats

Densitat aparent (p_{ap}) i relativa (p_r), absorció (Abs), i porositat (P_r) i compacitat relativa (C_r) de la sèrie PA:

Sèrie	ms	I	а	h	V_{ap}	ρ_{ap}	ρ_{ap}	Ms	M _{ss}	Vr	ρr	ρ _r	V_{pa}	Abs	Abs	Pr	Pr	Cr	Cr
/ Proveta	[g]	[cm]	[cm]	[cm]	[cm ³]	[g/cm ³]	[g/cm ³]	[g]	[g]	[cm ³]	[g/cm ³]	[g/cm³]	[cm ³]	(%)	(%)		(%)		(%)
1	3041	13,45	27,53	4,35	1610,42	1,89		3486	1868	1618	1,88		445,00	14,63		27,50		72,50	
2	3031	13,45	27,53	4,35	1610,42	1,88		3478	1861	1617	1,87		447,00	14,75		27,64		72,36	
PA30850 / 3	3028	13,45	27,50	4,35	1608,96	1,88	1 87	3479	1859	1620	1,87	1 87	451,00	14,89	15.00	27,84	28.00	72,16	72.00
4300307	3015	13,45	27,48	4,38	1616,73	1,86	1,07	3477	1853	1624	1,86	1,07	462,00	15,32	13,00	28,45	20,00	71,55	12,00
5	3031	13,45	27,50	4,40	1627,45	1,86		3497	1865	1632	1,86		466,00	15,37		28,55		71,45	
6	3018	13,43	27,50	4,38	1615,20	1,87		3473	1850	1623	1,86		455,00	15,08		28,03		71,97	
1	3033	13,45	27,48	4,33	1598,26	1,90		3476	1872	1604	1,89		443,00	14,61		27,62		72,38	
2	3030	13,43	27,48	4,33	1595,28	1,90		3482	1878	1604	1,89		452,00	14,92		28,18		71,82	
PA30900 / 3	3025	13,43	27,48	4,35	1604,51	1,89	1 88	3468	1863	1605	1,88	1 87	443,00	14,64	15.07	27,60	28 21	72,40	71 70
4	3015	13,43	27,50	4,38	1615,20	1,87	1,00	3480	1853	1627	1,85	1,07	465,00	15,42	10,07	28,58	20,21	71,42	11,15
5	3025	13,45	27,53	4,38	1619,67	1,87		3494	1863	1631	1,85		469,00	15,50		28,76		71,24	
6	3021	13,43	27,50	4,38	1615,20	1,87		3486	1858	1628	1,86		465,00	15,39		28,56		71,44	
1	3024	13,43	27,43	4,35	1601,59	1,89		3467	1863	1604	1,89		443,00	14,65		27,62		72,38	
2	3024	13,43	27,43	4,33	1592,38	1,90		3455	1856	1599	1,89		431,00	14,25		26,95		73,05	
PA30950 / ³	3022	13,43	27,43	4,33	1592,38	1,90	1.88	3451	1855	1596	1,89	1.87	429,00	14,20	14.80	26,88	27.67	73,12	72.33
4	3017	13,43	27,45	4,43	1630,68	1,85	.,	3475	1845	1630	1,85	.,0.	458,00	15,18	,00	28,10	21,01	71,90	,00
5	3014	13,43	27,48	4,40	1622,95	1,86		3477	1845	1632	1,85		463,00	15,36		28,37		71,63	
6	3015	13,43	27,45	4,40	1621,47	1,86		3474	1844	1630	1,85		459,00	15,22		28,16		71,84	
1	3038	13,43	27,48	4,30	1586,06	1,92		3472	1886	1586	1,92		434,00	14,29		27,36		72,64	
2	3042	13,45	27,45	4,30	1587,57	1,92		3479	1889	1590	1,91		437,00	14,37		27,48		72,52	
PA40850 / 3	3050	13,43	27,48	4,28	1576,84	1,93	1.91	3472	1885	1587	1,92	1.90	422,00	13,84	14.57	26,59	27.66	73,41	72.34
4	3034	13,45	27,53	4,33	1601,16	1,89	.,	3473	1866	1607	1,89	.,	439,00	14,47	,e.	27,32	2.,00	72,68	,o .
5	3041	13,45	27,53	4,33	1601,16	1,90		3506	1886	1620	1,88		465,00	15,29		28,70		71,30	
6	3034	13,45	27,53	4,33	1601,16	1,89		3497	1879	1618	1,88		463,00	15,26		28,62		71,38	
1	3032	13,45	27,50	4,33	1599,71	1,90		3479	1872	1607	1,89		447,00	14,74		27,82		72,18	
2	3023	13,45	27,48	4,33	1598,26	1,89		3478	1873	1605	1,88		455,00	15,05		28,35		71,65	
PA40900 / 3	3020	13,43	27,48	4,33	1595,28	1,89	1.89	3467	1865	1602	1,89	1.88	447,00	14,80	14.87	27,90	28.01	72,10	71.99
4	3020	13,43	27,48	4,33	1595,28	1,89	.,	3464	1860	1604	1,88	.,	444,00	14,70	,e.	27,68	20,01	72,32	,
5	3023	13,45	27,50	4,33	1599,71	1,89		3468	1864	1604	1,88		445,00	14,72		27,74		72,26	
6	3023	13,43	27,48	4,33	1595,28	1,89		3483	1874	1609	1,88		460,00	15,22		28,59		71,41	
1	3053	13,45	27,53	4,33	1601,16	1,91		3505	1881	1624	1,88		452,00	14,81		27,83		72,17	
2	3042	13,45	27,55	4,33	1602,62	1,90		3492	1873	1619	1,88		450,00	14,79		27,79		72,21	
PA40950 / 3	3043	13,45	27,55	4,35	1611,88	1,89	1.90	3497	1876	1621	1,88	1.89	454,00	14,92	14.63	28,01	27.59	71,99	72.41
4	3048	13,45	27,53	4,33	1601,16	1,90	,	3487	1876	1611	1,89	,	439,00	14,40	,	27,25	,	72,75	,
5	3045	13,45	27,53	4,33	1601,16	1,90		3484	1875	1609	1,89		439,00	14,42		27,28		72,72	
6	3048	13,45	27,53	4,33	1601,16	1,90		3489	1878	1611	1,89		441,00	14,47		27,37		72,63	
1	3020	13,45	27,43	4,28	1576,90	1,92		3452	1870	1582	1,91		432,00	14,30		27,31		72,69	
2	3032	13,45	27,48	4,28	15/9,78	1,92		3451	1867	1584	1,91		419,00	13,82		26,45		73,55	
PA50850 / 3	3027	13,45	27,43	4,28	1576,90	1,92	1,93	3438	1862	1576	1,92	1,92	411,00	13,58	13,68	26,08	26,25	73,92	73,75
4	3030	13,45	27,43	4,28	1576,90	1,92		3432	1857	1575	1,92		402,00	13,27		25,52		74,48	
5	3035	13,45	27,48	4,23	1561,30	1,94		3451	18/1	1580	1,92		416,00	13,71		26,33		73,67	
6	3025	13,43	27,45	4,25	1566,19	1,93		3432	1858	15/4	1,92		407,00	13,45		25,86		74,14	
1	3054	13,45	27,48	4,25	1570,54	1,94		3485	1907	1578	1,94		431,00	14,11		27,31		72,69	
2	3048	13,45	27,45	4,25	1569,11	1,94		3489	1908	1581	1,93		441,00	14,47		27,89		72,11	
PA50900 / 3	3050	13,45	27,48	4,28	15/9,78	1,93	1,94	3492	1908	1584	1,93	1,93	442,00	14,49	14,28	27,90	27,57	72,10	72,43
4	3061	13,45	27,45	4,25	1569,11	1,95		3496	1912	1584	1,93		435,00	14,21		27,46		72,54	
5	3053	13,45	27,45	4,25	1569,11	1,95		3492	1909	1583	1,93		439,00	14,38		21,13		12,21	
6	3054	13,45	27,43	4,25	1567,68	1,95		3482	1904	15/8	1,94		428,00	14,01		27,12		72,88	
1	3027	13,40	27,40	4,28	1009,61	1,93		3458	18/9	15/9	1,92		431,00	14,24		27,30		72,70	
2	3021	13,43	27,40	4,28	15/2,54	1,92		3440	1868	1572	1,92		419,00	13,87		26,65		13,35	
PA50950 / 3	3018	13,38	27,40	4,28	1566,68	1,93	1,92	3442	1868	15/4	1,92	1,91	424,00	14,05	14,31	26,94	27,31	73,06	72,69
4	3015	13,40	27,40	4,30	15/8,/9	1,91		3459	1869	1590	1,90		444,00	14,73		27,92		72,08	
5	3020	13,40	27,45	4,30	1581,67	1,91		3460	1869	1591	1,90		440,00	14,57		27,66		72,34	
6	3018	13,40	27,45	4,28	15/2,4/	1,92		3453	1990	158/	1,90		435,00	14,41		27,41		12,59	

Taula 26. Densitat aparent i relativa, absorció, porositat i compacitat relativa PA

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Densitat aparent (p_{ap}) i relativa (p_r), absorció (Abs), i porositat (P_r) i compacitat relativa (C_r) de la sèrie PF:

Sèrie	ms	I	а	h	V_{ap}	$ ho_{ap}$	ρ_{ap}	Ms	M _{ss}	Vr	ρ _r	ρ _r	V_{pa}	Abs	Abs	Pr	$\overline{\mathbf{P}_{r}}$	Cr	Cr
/ Proveta	[g]	[cm]	[cm]	[cm]	[cm ³]	[g/cm ³]	[g/cm ³]	[g]	[g]	[cm³]	[g/cm ³]	[g/cm ³]	[cm ³]	(%)	(%)		(%)		(%)
1	3047	13,48	27,58	4,45	1653,50	1,84		3536	1876	1660	1,84		489,00	16,05		29,46		70,54	
2	3034	13,48	27,55	4,45	1652,00	1,84		3525	1867	1658	1,83		491,00	16,18		29,61		70,39	
PF30850 / 3	3033	13,48	27,55	4,45	1652,00	1,84	1,84	3522	1865	1657	1,83	1,83	489,00	16,12	16,02	29,51	29,39	70,49	70,61
4	3035	13,48	27,55	4,45	1652,00	1,84		3519	1866	1653	1,84		484,00	15,95		29,28		70,72	
5	3048	13,48	27,55	4,45	1652,00	1,85		3532	1873	1659	1,84		484,00	15,88		29,17		70,83	
0	3037	13,40	27,53	4,45	1647 44	1,04		3502	1855	1647	1,03		405,00	15,97		29,29		70,71	
2	3030	13,45	27,53	4 43	1638 18	1,04		3501	1853	1648	1,04		471.00	15 54		28,58		71,40	
3	3030	13,45	27,53	4.45	1647.44	1,84		3499	1851	1648	1,84		469.00	15,48		28,46		71.54	
PF30900 / 4	3025	13.45	27.50	4.43	1636.70	1.85	1,84	3490	1848	1642	1.84	1,84	465.00	15.37	15,48	28.32	28,48	71.68	71,52
5	3030	13,45	27,53	4,45	1647,44	1,84		3501	1854	1647	1,84		471,00	15,54		28,60		71,40	
6	3030	13,45	27,50	4,45	1645,94	1,84		3496	1852	1644	1,84		466,00	15,38		28,35		71,65	
1	3024	13,45	27,53	4,45	1647,44	1,84		3490	1851	1639	1,85		466,00	15,41		28,43		71,57	
2	3024	13,45	27,50	4,45	1645,94	1,84		3487	1846	1641	1,84		463,00	15,31		28,21		71,79	
PE30950 / 3	3027	13,45	27,48	4,45	1644,45	1,84	1 84	3490	1843	1647	1,84	1 84	463,00	15,30	15.32	28,11	28 22	71,89	71 78
4	3022	13,45	27,48	4,45	1644,45	1,84	1,01	3483	1844	1639	1,84	1,01	461,00	15,25	10,02	28,13	20,22	71,87	1 1,10
5	3024	13,45	27,48	4,45	1644,45	1,84		3491	1846	1645	1,84		467,00	15,44		28,39		71,61	
6	3023	13,43	27,50	4,45	1642,88	1,84		3482	1845	1637	1,85		459,00	15,18		28,04		71,96	
1	3048	13,45	27,53	4,38	1619,67	1,88		3493	1873	1620	1,88		445,00	14,60		27,47		72,53	
2	3042	13,45	27,53	4,38	1619,67	1,88		3488	1870	1618	1,88		446,00	14,66		27,56		72,44	
PF40850 / 3	3039	13,45	27,53	4,35	1610,42	1,89	1,88	3481	1000	1010	1,00	1,88	442,00	14,54	14,59	27,30	27,44	72,00	72,56
4	2042	13,40	27,53	4,30	1610,42	1,09		2400	1003	1614	1,00		441,00	14,55		27,52		72,00	
5	3043	13,40	27,53	4,30	1622,00	1,00		3489	1866	1615	1,00		440,00	14,00		27,30		72,44	
1	3032	13 45	27,50	4.35	1608.96	1.88		3476	1865	1611	1,88		444 00	14 64		27.56		72 44	
2	3030	13.45	27.48	4.35	1607.49	1.88		3474	1862	1612	1.88		444.00	14.65		27.54		72.46	
5540000 (3	3028	13.45	27.48	4.35	1607.49	1.88		3468	1853	1615	1.87		440.00	14.53		27.24		72.76	
PF40900 / 4	3034	13,43	27,48	4,35	1604,51	1,89	1,89	3466	1858	1608	1,89	1,88	432,00	14,24	14,47	26,87	27,25	73,13	72,75
5	3037	13,45	27,48	4,35	1607,49	1,89		3475	1867	1608	1,89		438,00	14,42		27,24		72,76	
6	3034	13,40	27,48	4,35	1601,52	1,89		3469	1863	1606	1,89		435,00	14,34		27,09		72,91	
1	3032	13,45	27,50	4,35	1608,96	1,88		3475	1860	1615	1,88		443,00	14,61		27,43		72,57	
2	3026	13,45	27,48	4,35	1607,49	1,88		3471	1855	1616	1,87		445,00	14,71		27,54		72,46	
PF40950 / 3	3028	13,45	27,48	4,35	1607,49	1,88	1.88	3469	1855	1614	1,88	1.88	441,00	14,56	14.63	27,32	27.44	72,68	72.56
4	3021	13,43	27,48	4,35	1604,51	1,88	,	3459	1849	1610	1,88	,	438,00	14,50	,	27,20	,	72,80	,
5	3023	13,43	27,48	4,35	1604,51	1,88		3474	1858	1616	1,87		451,00	14,92		27,91		72,09	
0	3023	13,45	27,48	4,30	1607,49	1,88		3401	1075	15009	1,88		438,00	14,49		21,22		72.06	
1	3030	13,40	27,55	4,33	1595,21	1,90		3466	1075	1509	1,91		420,00	14,10		20,94		73,00	
2	3035	13,40	27,30	4,20	1573.01	1,95		3457	1869	1588	1,91		422 00	13.90		26 57		73 43	
PF50850 / 4	3027	13.43	27.50	4.33	1596.74	1,90	1,91	3473	1861	1612	1,81	1,89	446.00	14.73	14,36	27.67	27,22	72.33	72,78
5	3031	13.43	27.53	4.33	1598.19	1.90		3474	1865	1609	1.88		443.00	14.62		27.53		72.47	
6	3025	13,43	27,50	4,33	1596,74	1,89		3469	1857	1612	1,88		444,00	14,68		27,54		72,46	
1	3032	13,50	27,55	4,38	1627,17	1,86		3483	1863	1620	1,87		451,00	14,87		27,84		72,16	
2	3028	13,48	27,55	4,35	1614,88	1,88		3472	1854	1618	1,87		444,00	14,66		27,44		72,56	
PE50000 / 3	3030	13,48	27,55	4,35	1614,88	1,88	1 88	3467	1852	1615	1,88	1 88	437,00	14,42	1/1/13	27,06	27 1/	72,94	72 86
4	3028	13,48	27,53	4,33	1604,14	1,89	1,00	3455	1851	1604	1,89	1,00	427,00	14,10	17,70	26,62	21,14	73,38	12,00
5	3027	13,50	27,55	4,33	1608,58	1,88		3461	1857	1604	1,89		434,00	14,34		27,06		72,94	
6	3028	13,50	27,53	4,33	1607,12	1,88		3459	1854	1605	1,89		431,00	14,23		26,85		73,15	
1	3035	13,48	27,53	4,33	1604,14	1,89		3465	1864	1601	1,90		430,00	14,17		26,86		73,14	
2	3034	13,48	27,53	4,30	1594,87	1,90		3461	1860	1601	1,90		427,00	14,07		20,67		73,33	
PF50950 / 3	3037	13,48	27,53	4,30	1594,87	1,90	1,90	3403	1003	1600	1,90	1,90	420,00	14,03	14,11	20,03	26,75	73,38	73,25
4	3030	13,48	27,53	4,30	1601.10	1,90		3455	1057	1598	1,90		420,00	14,03		20,00		73,40	
5	3033	13,43	27,53	4,55	1601,16	1,09		346/	1862	1602	1,09		432,00	14,24		20,90		73,00	
0	0000	10,40	21,00	1,00		1,50		5104	1002	1002	1,00		120,00	,		20,10		10,22	

Taula 27. Densitat aparent i relativa, absorció, porositat i compacitat relativa PF

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Densitat aparent (pap) i relativa (pap), absorció (Abs), i porositat (Pr) i compacitat relativa (Cr) de PIERA:

Sèrie	ms	I	а	h	V _{ap}	ρ_{ap}	$\overline{\rho_{ap}}$	Ms	Mss	Vr	ρ _r	ρ _r	V _{pa}	Abs	Abs	Pr	P _r	Cr	Cr
/ Proveta	[g]	[cm]	[cm]	[cm]	[cm ³]	[g/cm ³]	[g/cm ³]	[g]	[g]	[cm ³]	[g/cm ³]	[g/cm ³]	[cm ³]	(%)	(%)		(%)		(%)
1	3019	13,45	27,80	4,33	1617,16	1,87		3169	1584	1585	1,90		150,00	4,97		9,46		90,54	
2	3039	13,45	27,83	4,30	1609,26	1,89		3157	1552	1605	1,89		118,00	3,88		7,35		92,65	
	3036	13,45	27,70	4,35	1620,66	1,87	1 88	3112	1521	1591	1,91	1 01	76,00	2,50	1 22	4,78	8 08	95,22	01 02
4	3031	13,40	27,68	4,33	1603,90	1,89	1,00	3159	1578	1581	1,92	1,91	128,00	4,22	4,20	8,10	0,00	91,90	31,32
5	3025	13,40	27,80	4,33	1611,15	1,88		3202	1625	1577	1,92		177,00	5,85		11,22		88,78	
6	3024	13,45	27,80	4,33	1617,16	1,87		3224	1646	1578	1,92		200,00	6,61		12,67		87,33	

Taula 28. Densitat aparent i relativa, absorció, porositat i compacitat relativa PIERA

Taula resum de densitat aparent de la sèrie PA (g/cm³):

Pressió del premsat	Temperatura màxima de cocció		
	850°C	900°C	950°C
30 kg/cm ²	1,87	1,88	1,88
40 kg/cm ²	1,91	1,89	1,90
50 kg/cm ²	1,93	1,94	1,92
Taula 29. Resum densitat aparent PA			

Taula resum de densitat aparent de la sèrie PF (g/cm³):

Pressió del premsat	Temperatura màxima de cocció		
	850°C	900°C	950°C
30 kg/cm ²	1,84	1,84	1,84
40 kg/cm ²	1,88	1,89	1,88
50 kg/cm ²	1,91	1,88	1,90
Taula 30. Resum densitat aparent PF			

Densitat aparent de PIERA: 1,88 g/cm³.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Densitat aparent seca sèries PA30, PF30 i PIERA $[g/cm^3]$ 1,89 1,88 1,88 80 1,87 88 1,87 1,86 1,85 1,84 1,84 1,84 1,84 1,83 1,82 1,81 PIERA PA30850 PF30850 PA30900 PF30900 PA30950 PF30950 Gràfica 54. Densitat aparent sèrie PA30, PF30 i PIERA

Comparativa gràfica de densitat aparent de les sèries PA30, PF30 i PIERA:

Comparativa gràfica de densitat aparent de les sèries PA40, PF40 i PIERA:

Gràfica 55. Densitat aparent sèrie PA40, PF40 i PIERA

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa gràfica de densitat aparent de les sèries PA50, PF50 i PIERA:

Gràfica 56. Densitat aparent sèrie PA50, PF50 i PIERA

Comparativa gràfica de densitat aparent de la sèrie PA:

Gràfica 57. Densitat aparent sèrie PA (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfica 58. Densitat aparent sèrie PA (2)

Comparativa gràfica de densitat aparent de la sèrie PF:

Gràfica 59. Densitat aparent sèrie PF (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfica 60. Densitat aparent sèrie PF (2)

Taula resum de densitat relativa de la sèrie PA (g/cm³):

Pressió del premsat	Temperatura màxima de cocció		
	850°C	900°C	950°C
30 kg/cm ²	1,87	1,87	1,87
40 kg/cm ²	1,90	1,88	1,89
50 kg/cm ²	1,92	1,93	1,91
Taula 31. Resum densitat relativa PA			

Taula resum de densitat relativa de la sèrie PF (g/cm³):

Pressió del premsat	Temperatura màxima de cocció		
	850°C	900°C	950°C
30 kg/cm ²	1,83	1,84	1,84
40 kg/cm ²	1,88	1,88	1,88
50 kg/cm ²	1,89	1,88	1,90
Taula 32. Resum densitat relativa PF			

Densitat relativa de PIERA: 1,91 g/cm³.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa gràfica de densitat relativa de les sèries PA30, PF30 i PIERA:

Gràfica 61. Densitat relativa sèrie PA30, PF30 i PIERA

Comparativa gràfica de densitat relativa de les sèries PA40, PF40 i PIERA:

Gràfica 62. Densitat relativa sèrie PA40, PF40 i PIERA

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Densitat relativa seca sèries PA50, PF50 i PIERA $[g/cm^3]$ 1,94 1,93 1,93 1,92 1,91 ,92 1,90 1,911,89 1,90 1,89 1,88 1,88 1,87 1,86 1,85 PIERA PA50850 PF50850 PA50900 PF50900 PA50950 PF50950

Comparativa gràfica de densitat relativa de les sèries PA50, PF50 i PIERA:

Gràfica 63. Densitat relativa sèrie PA50, PF50 i PIERA

Densitat relativa seca sèrie PA [g/cm³]

Comparativa gràfica de densitat relativa de la sèrie PA:

30 kg/cm²

1,82

■ 850 °C ■ 900 °C ■ 950 °C

40 kg/cm²

50 kg/cm²

Gràfica 64. Densitat relativa sèrie PA (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfica 65. Densitat relativa sèrie PA (2)

Comparativa gràfica de densitat relativa de la sèrie PF:

Gràfica 66. Densitat relativa sèrie PF (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfica 67. Densitat relativa sèrie PF (2)

Taula resum d'absorció de la sèrie PA (%):

Pressió del premsat	Temperatura màxima de cocció		
	850°C	900°C	950°C
30 kg/cm ²	15,00	15,07	14,80
40 kg/cm ²	14,57	14,87	14,63
50 kg/cm ²	13,68	14,28	14,31
Taula 33. Resum absorció PA			

Taula resum d'absorció de la sèrie PF (%):

Pressió del premsat	Temperatura màxima de cocció		
	850°C	900°C	950°C
30 kg/cm ²	16,02	15,48	15,32
40 kg/cm ²	14,59	14,47	14,63
50 kg/cm ²	14,36	14,43	14,11
Taula 34. Resum absorció PF			

Absorció de PIERA: 4,23 %.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa gràfica d'absorció de les sèries PA30, PF30 i PIERA:

Gràfica 68. Absorció sèrie PA30, PF30 i PIERA

Comparativa gràfica d'absorció de les sèries PA40, PF40 i PIERA:

Gràfica 69. Absorció sèrie PA40, PF40 i PIERA

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa gràfica d'absorció de les sèries PA50, PF50 i PIERA:

Gràfica 70. Absorció sèrie PA50, PF50 i PIERA

Absorció sèrie PA (%) 15,50 15,00 15,07 14,87 14,80 15,00 14,63 14,57 14,28 14,31 14,50 14,00 13,68 13,50 13,00 12,50 30 kg/cm² 40 kg/cm² 50 kg/cm² ■ 850 °C ■ 900 °C ■ 950 °C

Comparativa gràfica d'absorció de la sèrie PA:

Gràfica 71. Absorció sèrie PA (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfica 72. Absorció sèrie PA (2)

Comparativa gràfica d'absorció de la sèrie PF:

Gràfica 73. Absorció sèrie PF (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfica 74. Absorció sèrie PF (2)

Taula resum de porositat relativa de la sèrie PA (%):

Pressió del premsat	Temperatura màxima de cocció		
	850°C	900°C	950°C
30 kg/cm ²	28,00	28,21	27,67
40 kg/cm ²	27,66	28,01	27,59
50 kg/cm ²	26,25	27,57	27,31
Taula 35. Resum porositat relativa PA			

Taula resum de porositat relativa de la sèrie PF (%):

Pressió del premsat	Temperatura màxima de cocció		
	850°C	900°C	950°C
30 kg/cm ²	29,39	28,48	28,22
40 kg/cm ²	27,44	27,25	27,44
50 kg/cm ²	27,22	27,14	26,75
Taula 36. Resum porositat relativa PF			

Porositat relativa de PIERA: 8,08 %.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa gràfica de porositat relativa de les sèries PA30, PF30 i PIERA:

Gràfica 75. Porositat relativa sèrie PA30, PF30 i PIERA

Comparativa gràfica de porositat relativa de les sèries PA40, PF40 i PIERA:

Gràfica 76. Porositat relativa sèrie PA40, PF40 i PIERA
Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa gràfica de porositat relativa de les sèries PA50, PF50 i PIERA:

Gràfica 77. Porositat relativa sèrie PA50, PF50 i PIERA

Comparativa gràfica de porositat relativa de la sèrie PA:

Gràfica 78. Porositat relativa sèrie PA (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfica 79. Porositat relativa sèrie PA (2)

Comparativa gràfica de porositat relativa de la sèrie PF:

Gràfica 80. Porositat relativa sèrie PF (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfica 81. Porositat relativa sèrie PF (2)

Taula resum de compacitat relativa de la sèrie PA (%):

Pressió del premsat	Temperatura màxima de cocció					
	850°C	900°C	950°C			
30 kg/cm ²	72,00	71,79	72,33			
40 kg/cm ²	72,34	71,99	72,41			
50 kg/cm ²	73,75	72,43	72,69			
Taula 37. Resum compacitat relativa PA						

Taula resum de compacitat relativa de la sèrie PF (%):

Pressió del premsat	Temperatura màxima de cocció					
	850°C	900°C	950°C			
30 kg/cm ²	70,61	71,52	71,78			
40 kg/cm ²	72,56	72,75	72,56			
50 kg/cm ²	72,78	72,86	73,25			
Taula 38. Resum compacitat relativa PF						

Compacitat relativa de PIERA: 91,92 %.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa gràfica de compacitat relativa de les sèries PA30, PF30 i PIERA:

Gràfica 82. Compacitat relativa sèrie PA30, PF30 i PIERA

Comparativa gràfica de compacitat relativa de les sèries PA40, PF40 i PIERA:

Gràfica 83. Compacitat relativa sèrie PA40, PF40 i PIERA

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa gràfica de compacitat relativa de les sèries PA50, PF50 i PIERA:

Gràfica 84. Compacitat relativa sèrie PA50, PF50 i PIERA

Comparativa gràfica de compacitat relativa de la sèrie PA:

Gràfica 85. Compacitat relativa sèrie PA (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfica 86. Compacitat relativa sèrie PA (2)

Comparativa gràfica de compacitat relativa de la sèrie PF:

Gràfica 87. Compacitat relativa sèrie PF (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfica 88. Compacitat relativa sèrie PF (2)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

6.3.1. Anàlisi de resultats

Vocabulari: densitat aparent (DA), densitat relativa (DR), absorció (Abs), porositat relativa (PR) i compacitat relativa (CR).

Pel que fa a la densitat aparent i relativa, són molt semblants els seus resultats, en les sèries de les PA i PF la que més varia ho fa amb 0,03 unitats; les de PIERA també varien 0,03 unitats. La resta varien 0,01 i 0,02 o no varien. Cal tenir en compte que de les que varien, les més altes son les DA en la sèrie PA i PF però no en PIERA. Degut a la semblança entre la DA i DR, només es faran observacions i comentaris sobre la DA.

La sèrie amb la major DA és la PA50900 (1,94), seguida de PA50850 (1,93) i PA50950 (1,92).

Les sèries amb la menor DA són conjuntament la PF30850, PF30900 i PF30950 (1,84), seguides de PA30850 (1,87), i seguides conjuntament de PA30900, PA30950, PA40850, PA50900, i PIERA (1,88).

La PIERA, es troba aproximadament a la mitjana de les DA.

La sèrie PA té major DA que la sèrie PF.

Pel que fa a la sèrie PA:

- Segons la pressió de premsat:
 - La DA mitjana més alta és la de PA50.
 - La DA mitjana més baixa és la de PA30.
- Segons la temperatura màxima de cocció:
 - La DA mitjana més alta és la de PA40 i PA30 conjuntament; tot i que la PA40900 és la més alta.
 - La DA mitjana més baixa és la PA_950. Tot i que respecte de les PA_850 i PA_900, hi ha poca variació.

- Segons la pressió de premsat:
 - La DA mitjana més alta és la de PF50.
 - La DA mitjana més baixa és la de PF30.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

- Segons la temperatura màxima de cocció:
 - La DA mitjana més alta és la de PF__850.
 - La DA mitjana més baixa és la de PF__950; Tot i que de la PF__900 és molt semblant.

Pel que fa a l'absorció es poden veure que els resultats de les PA i PF comparats amb les de PIERA, són molt diferents. Mentre que l'absorció de les PA i PF està entre els valors de 13,68 i 16,02, la PIERA té el valor de 4,23, per tant les PA i PF tenen més del triple d'absorció que les de PIERA.

La sèrie amb la major Abs és la PF30850 (16,02), seguida de PF30900 (15,48) i PF30950 (1,92).

Les sèrie amb la menor Abs després de la PIERA és la PA50850 (13,68), seguida de PF50950 (14,11) i PA50900 (14,28).

Les sèries PA i PF tenen una Abs molt semblant però cal tenir en compte que les mes altes es troben a la PF.

Pel que fa a la sèrie PA:

- Segons la pressió de premsat:
 - L'Abs mitjana més alta és la de P30.
 - L'Abs mitjana més baixa és la de PA50.
- Segons la temperatura màxima de cocció:
 - L'Abs mitjana més alta és la de PA__900, però no destaca sobre les altres.
 - L'Abs mitjana més baixa és la PA__850.

- Segons la pressió de premsat:
 - L'Abs mitjana més alta és la de PF30.
 - L'Abs mitjana més baixa és la de PF50.
- Segons la temperatura màxima de cocció:
 - L'Abs mitjana més alta és la de PF__850.
 - L'Abs mitjana més baixa és la de PF__950.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Pel que fa a la porositat relativa i la compacitat relativa, només es comentaran els resultats de porositat ja que existeix una relació entre ells, aquesta relació es que tots dos sumen un 100%, és a dir, PR + CR = 100%, o dit d'una altra manera, quan una PR és considera la major, la CR es considera la menor.

La sèrie amb la major PR és la PF30850 (29,39), seguida de PF30900 (28,48) i PF30950 (28,22).

Les sèrie amb la menor PR, i amb molta diferència, és la PIERA (8,08), seguida de PA50850 (26,25), seguida de PF50950 (26,75) i PF50900 (27,14).

Les sèries PA i PF tenen una PR molt semblant però cal tenir en compte que les mes altes es troben a la PF.

Pel que fa a la sèrie PA:

- Segons la pressió de premsat:
 - La PR mitjana més alta és la de P30.
 - La PR mitjana més baixa és la de PA50.
- Segons la temperatura màxima de cocció:
 - La PR mitjana més alta és la de PA__900.
 - La PR mitjana més baixa és la PA__850; tot i que la de PA30850 és més alta que la de PA30950,i la de PA40850 és més alta que la de PA40950.

- Segons la pressió de premsat:
 - La PR mitjana més alta és la de PF30.
 - La PR mitjana més baixa és la de PF50.
- Segons la temperatura màxima de cocció:
 - La PR mitjana més alta és la de PF__850.
 - La PR mitjana més baixa és la de PF__950.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

6.4. Porositat real i composició elemental mitjançant SEM-EDX

6.4.1. Porositat real

Porositat real de la sèrie PA30:

)
[µm²] [µm²] (%) (%) (%	
BSE 1 190976176 47393028 24,82	
superior BSE 2 190976176 52922115 27,71 25,96	
BSE 3 190976176 48387929 25,34	
BSE 1 190976176 48723529 25,51	
PA30850 centre BSE 2 190976176 46851177 24,53 26,07 26,	14
BSE 3 190976176 53785038 28,16	
BSE 1 190976176 54010850 28,28	
Inferior BSE 2 190976176 47636950 24,94 26,40	
BSE 3 190976176 49587287 25,97	
BSE 1 190976176 53013006 27,76	
superior BSE 2 1909/61/6 48626860 25,46 26,20	
BSE 3 1909/61/6 48469941 25,38	
BSE 1 1909/61/6 530/62/4 27,79 DA20000 contro DOE 0 400070470 50520520 24.47 27.01 26	
PAS0900 Centre BSE 2 190976176 59536536 31,17 27,01 20,0	09
DSE 3 190970170 42150555 22,07	
inferior BSE 2 100076176 50220160 26.20 27.47	
BSE 3 100076176 51100718 26.81	
BSE 1 190976176 58287316 30.52	
Superior BSE 2 190976176 60533858 31.70 28.96	
BSE 3 190976176 47086523 24.66	
BSE 1 190976176 55000949 28.80	
PA30950 centre BSE 2 190976176 56937534 29.81 28.12 27.	73
BSE 3 190976176 49180579 25.75	
BSE 1 190976176 48782571 25.54	
inferior BSE 2 190976176 48278722 25,28 26,10	
BSE 3 190976176 52458851 27,47	

Taula 39. Porositat real PA30

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Porositat real de la sèrie PA40:

			Àrea total	Àrea de	Porositat	Porositat	Porositat
Mostra	Zona	Imatge		porus	real	real de zona	real mitjana
			[µm²]	[µm²]	(%)	(%)	(%)
		BSE 1	190976176	51541115	26,99		
	superior	BSE 2	190976176	45576196	23,86	25,85	
		BSE 3	190976176	50981898	26,70		
		BSE 1	190976176	47950982	25,11		
PA40850	centre	BSE 2	190976176	47932777	25,10	24,35	25,34
		BSE 3	190976176	43636039	22,85		
		BSE 1	190976176	53668374	28,10		
	inferior	BSE 2	190976176	45768273	23,97	25,82	
		BSE 3	190976176	48466969	25,38		
		BSE 1	190976176	49703548	26,03		
	superior	BSE 2	190976176	43879380	22,98	25,20	
		BSE 3	190976176	50792855	26,60		
		BSE 1	190976176	45936911	24,05		
PA40900	centre	BSE 2	190976176	50267961	26,32	24,55	25,18
		BSE 3	190976176	44447668	23,27		
		BSE 1	190976176	47615610	24,93		
	inferior	BSE 2	190976176	49031886	25,67	25,79	
		BSE 3	190976176	51146140	26,78		
		BSE 1	190976176	50796429	26,60		
	superior	BSE 2	190976176	47497910	24,87	24,56	
		BSE 3	190976176	42439823	22,22		
PA40950		BSE 1	190976176	48747174	25,53		
	centre	BSE 2	190976176	33023803	17,29	24,06	23,65
		BSE 3	190976176	56075250	29,36		
		BSE 1	190976176	42121842	22,06		
	inferior	BSE 2	190976176	42405403	22,20	22,32	
		BSE 3	190976176	43334954	22,69		

Taula 40. Porositat real PA40

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Porositat real de la sèrie PA50:

			Àrea total	Àrea de	Porositat	Porositat	Porositat
Mostra	Zona	Imatge		porus	real	real de zona	real mitjana
			[µm²]	[µm²]	(%)	(%)	(%)
		BSE 1	190976176	45398008	23,77		
	superior	BSE 2	190976176	50391365	26,39	26,22	
		BSE 3	190976176	54432366	28,50		
		BSE 1	190976176	49349736	25,84		
PA50850	centre	BSE 2	190976176	54084076	28,32	27,86	27,93
		BSE 3	190976176	56172588	29,41		
		BSE 1	190976176	53976457	28,26		
	inferior	BSE 2	190976176	50730233	26,56	29,70	
		BSE 3	190976176	65469346	34,28		
		BSE 1	190976176	45319543	23,73		
	superior	BSE 2	190976176	48616133	25,46	24,54	
		BSE 3	190976176	46655712	24,43		
		BSE 1	190976176	48297294	25,29		
PA50900	centre	BSE 2	190976176	41349890	21,65	23,54	23,47
		BSE 3	190976176	45240557	23,69		
		BSE 1	190976176	35273122	18,47		
	inferior	BSE 2	190976176	43416358	22,73	22,32	
		BSE 3	190976176	49224048	25,77		
		BSE 1	190976176	49517067	25,93		
	superior	BSE 2	190976176	58419367	30,59	27,65	
		BSE 3	190976176	50455064	26,42		
PA50950		BSE 1	190976176	49465979	25,90		
	centre	BSE 2	190976176	50604172	26,50	25,37	25,84
		BSE 3	190976176	45270999	23,71		
		BSE 1	190976176	48429726	25,36		
	inferior	BSE 2	190976176	46457165	24,33	24,49	
		BSE 3	190976176	45435291	23,79		

Taula 41. Porositat real PA50

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Porositat real de la sèrie PF30:

			Àrea total	Àrea de	Porositat	Porositat	Porositat
Mostra	Zona	Imatge		porus	real	real de zona	real mitjana
			[µm²]	[µm²]	(%)	(%)	(%)
		BSE 1	190976176	56257558	29,46		
	superior	BSE 2	190976176	54186650	28,37	26,75	
		BSE 3	190976176	42806476	22,41		
		BSE 1	190976176	48625112	25,46		
PF30850	centre	BSE 2	190976176	48583853	25,44	25,68	25,99
		BSE 3	190976176	49932674	26,15		
		BSE 1	190976176	47136700	24,68		
	inferior	BSE 2	190976176	50169097	26,27	25,55	
		BSE 3	190976176	49065901	25,69		
		BSE 1	190976176	49670833	26,01		
	superior	BSE 2	190976176	51684182	27,06	27,06	
		BSE 3	190976176	53692642	28,11		
		BSE 1	190976176	50660517	26,53		
PF30900	centre	BSE 2	190976176	47931156	25,10	26,51	27,73
		BSE 3	190976176	53290279	27,90		
		BSE 1	190976176	53166659	27,84		
	inferior	BSE 2	190976176	61910496	32,42	29,61	
		BSE 3	190976176	54550152	28,56		
		BSE 1	190976176	50077679	26,22		
	superior	BSE 2	190976176	57532425	30,13	29,60	
		BSE 3	190976176	61957150	32,44		
PF30950		BSE 1	190976176	55523951	29,07		
	centre	BSE 2	190976176	51144253	26,78	28,89	29,25
		BSE 3	190976176	58845390	30,81		
		BSE 1	190976176	56435086	29,55		
	inferior	BSE 2	190976176	53564647	28,05	29,26	
		BSE 3	190976176	57611034	30,17		

Taula 42. Porositat real PF30

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Porositat real de la sèrie PF40:

			Àrea total	Àrea de	Porositat	Porositat	Porositat
Mostra	Zona	Imatge		porus	real	real de zona	real mitjana
			[µm²]	[µm²]	(%)	(%)	(%)
		BSE 1	190976176	42622946	22,32		
	superior	BSE 2	190976176	44896165	23,51	24,12	
		BSE 3	190976176	50668839	26,53		
		BSE 1	190976176	47404689	24,82		
PF40850	centre	BSE 2	190976176	46874196	24,54	24,66	24,39
		BSE 3	190976176	47029057	24,63		
		BSE 1	190976176	47416510	24,83		
	inferior	BSE 2	190976176	42003370	21,99	24,39	
		BSE 3	190976176	50330512	26,35		
		BSE 1	190976176	53209126	27,86		
	superior	BSE 2	190976176	51602861	27,02	27,11	
		BSE 3	190976176	50518130	26,45		
		BSE 1	190976176	50645806	26,52		
PF40900	centre	BSE 2	190976176	50717596	26,56	26,49	27,04
		BSE 3	190976176	50423868	26,40		
		BSE 1	190976176	51951611	27,20		
	inferior	BSE 2	190976176	50561778	26,48	27,51	
		BSE 3	190976176	55071655	28,84		
		BSE 1	190976176	52844712	27,67		
	superior	BSE 2	190976176	41970134	21,98	25,58	
		BSE 3	190976176	51747102	27,10		
PF40950		BSE 1	190976176	49381627	25,86		
	centre	BSE 2	190976176	54504815	28,54	27,38	27,28
		BSE 3	190976176	52956069	27,73		
		BSE 1	190976176	51171177	26,79		
	inferior	BSE 2	190976176	54487554	28,53	28,89	
		BSE 3	190976176	59891150	31,36		

Taula 43. Porositat real PF40

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Porositat real de la sèrie PF50:

			Àrea total	Àrea de	Porositat	Porositat	Porositat
Mostra	Zona	Imatge	A Ca lolai	porus	real	real de zona	real mitjana
			[µm²]	[µm²]	(%)	(%)	(%)
		BSE 1	190976176	44067575	23,07		
	superior	BSE 2	190976176	50472217	26,43	23,23	
		BSE 3	190976176	38550024	20,19		
		BSE 1	190976176	46700719	24,45		
PF50850	centre	BSE 2	190976176	48379678	25,33	24,82	24,16
		BSE 3	190976176	47123659	24,68		
		BSE 1	190976176	48516851	25,40		
	inferior	BSE 2	190976176	46690025	24,45	24,42	
		BSE 3	190976176	44692751	23,40		
		BSE 1	190976176	50534055	26,46		
	superior	BSE 2	190976176	45614679	23,89	25,46	
		BSE 3	190976176	49697405	26,02		
		BSE 1	190976176	50099478	26,23		
PF50900	centre	BSE 2	190976176	49601358	25,97	25,99	25,19
		BSE 3	190976176	49208656	25,77		
		BSE 1	190976176	51492521	26,96		
	inferior	BSE 2	190976176	49136785	25,73	24,12	
		BSE 3	190976176	37573775	19,67		
		BSE 1	190976176	49453675	25,90		
	superior	BSE 2	190976176	56498946	29,58	27,21	
		BSE 3	190976176	49966265	26,16		
PF50950		BSE 1	190976176	58773849	30,78		
	centre	BSE 2	190976176	46713188	24,46	28,14	27,56
		BSE 3	190976176	55752733	29,19		
		BSE 1	190976176	51966976	27,21		
	inferior	BSE 2	190976176	52851867	27,67	27,31	
		BSE 3	190976176	51681314	27,06		

Taula 44. Porositat real PF50

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Porositat real de PIERA:

Mostra	Zona	Imatge	Àrea total	Àrea de porus	Porositat real	Porositat real de zona	Porositat real mitjana
			[µm²]	[µm²]	(%)	(%)	(%)
		BSE 1	190976176	58221362	30,49		
	superior	BSE 2	190976176	37356036	19,56	27,74	
		BSE 3	190976176	63353101	33,17		
		BSE 1	190976176	49673483	26,01		
PIERA	centre	BSE 2	190976176	64758050	33,91	28,88	27,40
		BSE 3	190976176	51000319	26,71		
		BSE 1	190976176	34426452	18,03	25,59	
	inferior	BSE 2	190976176	62919346	32,95		
		BSE 3	190976176	49271348	25,80		

Taula 45. Porositat real PIERA

Taula resum de porositat real de la sèrie PA (%):

Pressió del premsat	Temperatura màxima de cocció					
	850°C	900°C	950°C			
30 kg/cm ²	26,14	26,89	27,73			
40 kg/cm ²	25,34	25,18	23,65			
50 kg/cm ²	27,93	23,47	25,84			
Taula 46. Resum porositat real PA						

Taula resum de porositat real de la sèrie PF (%):

Pressió del premsat	Temperatura màxima de cocció				
	850°C	900°C	950°C		
30 kg/cm ²	25,99	27,73	29,25		
40 kg/cm ²	24,39	27,04	27,28		
50 kg/cm ²	24,16	25,19	27,56		
Taula 47. Resum porositat real PF					

Porositat real de PIERA: 27,40 %.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa gràfica de porositat real de les sèries PA30, PF30 i PIERA:

Gràfica 89. Porositat real sèrie PA30, PF30 i PIERA

Gràfica 90. Porositat real sèrie PA40, PF40 i PIERA

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa gràfica de porositat real de les sèries PA50, PF50 i PIERA:

Gràfica 91. Porositat real sèrie PA50, PF50 i PIERA

Gràfica 92. Porositat real sèrie PA (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfica 93. Porositat real sèrie PA (2)

Comparativa gràfica de porositat real de la sèrie PF:

Gràfica 94. Porositat real sèrie PF (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfica 95. Porositat real sèrie PF (2)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

6.4.1.1. Anàlisi de resultats

Vocabulari: porositat real (PRR)

Es pot veure que els resultats de la porositat real de les PA i PF són semblants a les de PIERA.

La sèrie amb la major PRR és la PF30950 (29,25), seguida conjuntament de PA30950 i PF30900 (27,73), i seguida de PF30950 (27,56).

Les sèrie amb la menor PRR és la PA50900 (23,47), seguida de PA40950 (23,65), seguida de PF50850 (24,16).

Les sèries PA i PF tenen una PRR molt semblant però cal tenir en compte que les més altes es troben a la PF.

Els resultats de la sèrie PA són més variables que els de la PF.

Pel que fa a la sèrie PA:

- Segons la pressió de premsat:
 - La PRR mitjana més alta és la de PA30.
 - La PRR mitjana més baixa és la de PA50.
- Segons la temperatura màxima de cocció:
 - La PRR mitjana més alta és la de PA__800.
 - La PRR mitjana més baixa és la PA__900.

- Segons la pressió de premsat:
 - La PRR mitjana més alta és la de PF30.
 - La PRR mitjana més baixa és la de PF50.
- Segons la temperatura màxima de cocció:
 - La PRR mitjana més alta és la de PF__850.
 - La PRR mitjana més baixa és la de PF__950.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Spectrum: PA30850 1

6.4.2. Composició elemental

Composició elemental de la sèrie PA30:

Element	Series	unn. C	norm. C	Atom. C
		[wt.%]	[wt.%]	[at.%]
Carbon	K-series	28.97	28.47	39.70
Oxygen	K-series	42.33	41.61	43.55
Fluorine	K-series	0.57	0.56	0.49
Sodium	K-series	0.52	0.51	0.37
Magnesium	K-series	0.53	0.53	0.36
Aluminium	K-series	5.47	5.38	3.34
Silicon	K-series	16.69	16.41	9.78
Chlorine	K-series	0.00	0.00	0.00
Potassium	K-series	1.66	1.63	0.70
Calcium	K-series	1.94	1.91	0.80
Titanium	K-series	0.25	0.24	0.08
Iron	K-series	2.81	2.76	0.83
	Total:	101.73	100.00	100.00

Element	Series	unn. C	norm. C	Atom. C
		[wt.%]	[wt.%]	[at.%]
Carbon	K-series	35.26	30.63	42.15
Oxygen	K-series	47.52	41.28	42.64
Sodium	K-series	0.50	0.44	0.31
Magnesium	K-series	0.60	0.52	0.35
Aluminium	K-series	5.83	5.06	3.10
Silicon	K-series	17.42	15.13	8.91
Potassium	K-series	1.81	1.58	0.67
Calcium	K-series	2.60	2.26	0.93
Titanium	K-series	0.33	0.29	0.10
Iron	K-series	3.25	2.83	0.84
			1	

Total: 115.12 100.00 100.00

Spectrum:	PA30950	superior	1
-----------	---------	----------	---

Spectrum: PA30900 superior 1

Element	Series	unn. C [wt.%]	norm. C [wt.%]	Atom. C [at.%]
Carbon	K-series	36.04	29.94	41.01
Oxygen	K-series	51.48	42.77	43.98
Sodium	K-series	0.46	0.38	0.27
Magnesium	K-series	0.59	0.49	0.33
Aluminium	K-series	5.20	4.32	2.64
Silicon	K-series	20.38	16.93	9.92
Potassium	K-series	1.44	1.20	0.50
Calcium	K-series	1.76	1.46	0.60
Titanium	K-series	0.33	0.27	0.09
Iron	K-series	2.68	2.23	0.66
	Total:	120.36	100.00	100.00

Gràfica-taula 3. Microanàlisis EDX PA30

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Composició elemental de la sèrie PA40:

Total: 112.93 100.00 100.00

Gràfica-taula 4. Microanàlisis EDX PA40

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Composició elemental de la sèrie PA50:

Gràfica-taula 5. Microanàlisis EDX PA50

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Composició elemental de la sèrie PF30:

Gràfica-taula 6. Microanàlisis EDX PF30

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Composició elemental de la sèrie PF40:

Total: 100.94 100.00 100.00

Gràfica-taula 7. Microanàlisis EDX PF40

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Composició elemental de la sèrie PF50:

Gràfica-taula 8. Microanàlisis EDX PF50

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Composició elemental de la PIERA:

Gràfica-taula 9. Microanàlisis EDX PIERA

6.4.2.1. Anàlisi de resultats

Pel que fa als microanàlisis, cal tenir en compte que només s'han exposat en el capítol de resultats els microanàlisis realitzats a la part superior de cada mostra, ja que aquests i els de la part central i inferior de cada mostra són molt semblants al de la superior. Tot i així els microanàlisis de la part central i central i inferior es poden veure als annexes.

En els resultats podem veure que totes les mostres tenen els mateixos elements majoritaris i que aquests apareixen en quantitats molts semblants. Aquests elements són, de major a menor quantitat:

- Oxigen (O). Entre un 39,66 i 45,58%
- Carboni (C). Entre un 22,15 i 34,15%
- Silici (Si). Entre un 12,12 i un 20,36%
- Alumini (Al). Entre un 4,32 i 6,09%
- Ferro (Fe). Entre un 2,23 i 3,25%
- Calci (Ca). Entre un 1,24 i 2,26%
- Potassi (K). Entre un 1,20 i 1,83%
- Altres com Magnesi (Mg), Sodi (Na), Titani (Ti); i en algunes mostres Fluor (F) Clor (Cl) i Manganés (Mn).

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

6.5. Estructures cristal·lines mitjançant difracció de raigs X

Retall ampliat de difractogrames i estructures cristal·lines de la sèrie PA30900 i de PIERA:

PA30900 - File: PA30900.raw - Type: 2Th/Th locked - Start: 5.00 ° - End: 50.00 ° - Step: 0.05 ° - Step time: 2. s - Temp.: 25 °C (Room)
Operations: Import

46-1045 (*) - Quartz, syn - SiO2 - Hexagonal - P3221 (154)

86-0439 (C) - Orthoclase - K(AISi3O8) - Monoclinic - C2/m (12)

76-0898 (C) - Albite - Na(AlSi3O8) - Triclinic - C-1 (0)

02-0037 (D) - Montmorillonite - AlSi2O6(OH)2 - Monoclinic -

B2-0576 (C) - Muscovite 2 ITM RG1 - KAl2(AlSi3O10)(OH)2 - Monoclinic - C2/c (15)

Gràfica 96. Difractograma ampliat i estructures cristal·lines PA30900

Piera - Type: 2Th/Th locked - Start: 5.00 ° - End: 50.00 ° - Step: 0.05 ° - Step time: 2. s - Temp.: 25 °C (Room) - Anode: Cu - WL 1: 1.5406 - Operations: Import

46-1045 (*) - Quartz, syn - SiO2 - Hexagonal - P3221 (154)

86-0439 (C) - Orthoclase - K(AlSi3O8) - Monoclinic - C2/m (12)

76-0898 (C) - Albite - Na(AISi3O8) - Triclinic - C-1 (0)

Gràfica 97. Difractograma ampliat i estructures cristal·lines PIERA

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa de difractogrames de la sèrie PA30:

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa de difractogrames de la sèrie PA40:

Gràfica 99. Comparativa difractogrames PA40

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa de difractogrames de la sèrie PA50:

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa de difractogrames de la sèrie PF30:

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa de difractogrames de la sèrie PF40:

Gràfica 102. Comparativa difractogrames PF40

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa de difractogrames de la sèrie PF50:

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa de difractogrames de les sèries PA i PIERA:

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa de difractogrames de la sèrie PF:

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Comparativa de difractogrames de les sèries PA, PF i PIERA:

6.5.1. Anàlisi de resultats

Als annexes es poden veure els difractogrames de cada sèrie de manera individual i també el difractograma de PIERA.

En els difractogrames de les provetes fabricades amb argila i amb fang, trobem, de més a menys intensitat: patrons de quars (SiO2), que són els que tenen els pics més alts i es poden veure a simple vista; també trobem amb menys intensitat feldspat ortosa, albita, montmorillonita i moscovita. Per altra banda, es pot veure que les estructures cristal·lines de Piera són diferents a la resta; aquesta no montmorillonita ni moscovita.

Es pot veure que a les comparacions dels difractogrames de cada sèrie fabricada a diferents temperatures, no hi ha diferències significatives entre uns patrons i altres.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

6.6. Comparativa de resistència a compressió i conductivitat tèrmica

Gràfiques comparatives de resistència a compressió i conductivitat tèrmica de la sèrie PA i PIERA:

Gràfica 107. Comparativa resistència compressió-conductivitat tèrmica PA i PIERA (1)

Gràfica 108. Comparativa resistència compressió-conductivitat tèrmica PA i PIERA (2)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfica 109. Comparativa resistència compressió-conductivitat tèrmica PF i PIERA (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

7. Conclusions

7.1. Resistència a compressió

Les provetes fabricades amb argila tenen una millor resistència a compressió que les fabricades amb fang.

La relació amb la pressió de fabricació i la resistència a la compressió és significativa ja que les provetes amb millor resistència a compressió són les fabricades a 50 kg/cm² per les d'argila i 40 kg/cm² per les de fang; i amb menor resistència a la compressió son les fabricades a 30 kg/cm² en ambdós casos, les fabricades amb argila i també les de fang. Per tant, si s'augmenta la pressió de premsat també n'augmenta la resistència a compressió.

Pel que fa a la temperatura de cocció no té una relació important en els resultats de resistència a compressió però en general es pot considerar que augmentant la temperatura de cocció s'obtenen resistències més altes.

Les provetes fabricades en general tenen una resistència a compressió inferior a les de Piera. Les que tenen resultats semblants a les de Piera són les provetes fabricades a 50 kg/cm³. Cal tenir en compte que els maons de Piera es fabriquen mitjançant el mètode d'extrusió, el qual podria ser millor que l'utilitzat per fabricat les provetes de manera més artesanal i/o que les pressions durant l'extrusió siguin elevades, entre d'altres motius.

Ens trobem també que els resultats de la Piera com a resistència a compressió són molt semblants als que es mostren a la fitxa tècnica del fabricant. Es pot considerar doncs que en general s'han obtingut bons resultats.

Les provetes, un cop assajades a compressió, assumeixen una geometria de secció cònica.

Es pot concloure que no es pot determinar la resistència a compressió de manera efectiva fent l'assaig a compressió de les provetes de maó senceres, i que per tant és necessari tallar-les per poder fer l'assaig. Un motiu, de que no s'obtenen resultats esperats es que les provetes suporten més carrega, pot ser que la força de fregament que es crea entre les provetes i els plats o platines

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

col·locades a la premsa, faci disminuir les tensions internes de la proveta, afavorint així la seva resistència a compressió empleada per la premsa.

Cal també tenir en compte que en comparació de les resistències a compressió obtingudes en treball final e grau *TFG-Canal*, les resistències a compressió són més elevades. Un motiu d'aquest fet pot ser que la relació entre pressió de premsat i volum sigui també més elevada.

En els assaigs de les provetes senceres es relaciona la deformació amb la temperatura màxima de cocció. A major temperatura de cocció s'obtenen deformacions més baixes. No és tan clara però la relació amb la pressió de fabricació.

Es determinen tres tipus de comportaments diferents, segons les gràfiques dels resultats, de les peces senceres assajades a compressió fins a 180t. El comportament més general és que totes les provetes arriben a suportar una càrrega de 180t i en general es desprenen com a mínim un dels seus costats, i la secció passa de tenir una secció rectangular a una geometria de secció cònica.

Amb els transductors a l'assaig de càrrega de 180t es pot determinar de manera aproximada l'aparició de fissures dels cantells on estan situats i el despreniment dels mateixos, però no s'ha pogut utilitzar per relacionar la deformació de la peça amb la resistència a compressió de la mateixa.

7.2. Propietats tèrmiques

Pel que fa la conductivitat tèrmica, en general les provetes fabricades amb argila tenen millor conductivitat tèrmica que les fabricades amb fang. Només hi ha dos casos on el resultat de les fabricades amb fang ha sigut millor, però de manera poc significativa; aquets casos es troben a la pressió de fabricació de 30 kg/cm², per tant es pot concloure que a una pressió baixa es poden obtenir bones conductivitats tèrmiques de les provetes fabricades amb fang.

Hi ha una relació general entre la pressió de premsat i la conductivitat tèrmica en les provetes, aquesta és diferent entre les provetes fabricades amb fang i argila. Les d'argila tenen una millor conductivitat a major pressió, i les de fang al contrari. Per tant no es pot concloure que hi hagi una única millor pressió del premsat.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Pel que fa a la temperatura de cocció si que es pot dir que té una relació de manera conjunta, argila i fang, amb la conductivitat tèrmica. Es conclou de manera general que les provetes cuites a 900°C tenen una millor conductivitat tèrmica.

En comparació amb el valor orientatiu de conductivitat tèrmica del CEC (0,85 W/m·K) i que és també el que es mostra a la fitxa tècnica dels maons ecomanuals de Piera, són millors els valors obtinguts per les provetes fabricades amb argila i aproximadament menys de la meitat de les de fang.

Els resultats obtinguts en el treball final de grau *TFG-Canal*, són mes baixos si es comparen amb els de les provetes fabricades amb fang. Això pot ser per un o varis motius, un d'ells pot esser que la pressió de premsat no té en compte el volum sinó la superfície, i com que les provetes tenen gruixos diferents, és possible que estiguin més compactades, és a dir, premsades a més pressió en relació al volum, i això impliqui un empitjorament general de la conductivitat tèrmica. També podria ser un motiu que les caixes porta provetes utilitzades per col·locar a la caixa calenta calibrada no han sigut les mateixes i que per tant poden tenir més o menys pèrdues de calor; per tant si fos així la caixa fabricada per les provetes senceres tindria més bon aïllament entre les cambres freda, calenta i l'exterior.

La resta de propietats tèrmiques analitzades, es conclou que els resultats de la transmitància tèrmica tenen una relació directa amb els de la conductivitat tèrmica, i per tant de manera general es poden considerar de la mateixa manera que la conductivitat tèrmica. El mateix es pot dir del flux de calor, que també té una relació directa amb la conductivitat tèrmica i la transmitància tèrmica.

7.3. Densitat aparent i relativa, absorció, i porositat i compacitat relativa

Pel que fa a les densitats, s'ha comprovat que la densitat aparent i la relativa són molt semblants per tant significa que el volum de porus oberts és molt poc significatiu. També degut a aquesta semblança, s'han analitzat conjuntament les dos densitats.

En general les provetes que tenen una densitat més alta són les premsades a 50 kg/cm² i les més baixes les premsades a 30 kg/cm². Per tant es pot concloure que hi ha una relació directa entre la densitat i la pressió del premsat.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

La temperatura màxima de cocció no te una relació significativa amb les densitats.

Com a comparació de resultats de densitats de la ceràmica de Piera, segons la fitxa tècnica, la densitat aparent és de 1850 kg/m³, i els resultats obtinguts són de una densitat aparent de 1880 kg/m³. Tenint en compte aquestes dades es pot concloure que s'han obtingut dades semblants.

També cal tenir en compte que el resultat de la densitat aparent de les provetes de Piera és menor que el de la densitat relativa. Això pot ser a causa de la irregularitat de la superfície de les provetes, ja que en algunes es podien veure cantonades de secció corba i forats en alguna o vàries cares; per tant no es tenen en compte alguns espais buits per determinar les dimensions, i pot donar a una relació més baixa entre el pes i el volum.

Les provetes fabricades amb argila tenen més densitat que les fabricades amb fang. Això, de manera general, no ens dona una relació lligada a la conductivitat tèrmica ni amb la resistència a compressió, però si s'analitzen per separat, es pot concloure que les fabricades amb argila, a major densitat, major és la resistència a compressió i menor la conductivitat tèrmica; i per altra banda les d'argila a major densitat, major és la resistència a compressió i també major la conductivitat tèrmica. Per tant es pot concloure que hi ha comportaments diferents depenent del material que s'utilitza per fer les provetes.

L'absorció es veu directament relacionada amb la pressió de fabricació, a major pressió de fabricació l'absorció és menor, per tant també es relaciona amb la densitat; a més densitat menor absorció. Per altra banda, la temperatura de cocció no té una relació significativa amb l'absorció.

Es considera que no hi ha diferències significatives d'absorció entre les provetes fabricades amb argila i fang, però si que ho són amb les de Piera ja que segons els resultats, l'absorció de les provetes fabricades són tres vegades majors que la dels maons de Piera. Això podria ser a causa de la utilització d'additius per fer augmentar la densitat de les provetes; un altre motiu pot ser la diferència del procés de fabricació i dels materials utilitzats.

La porositat relativa està també relacionada amb la pressió de fabricació però no ho fa de manera significativa amb la temperatura màxima de cocció. A major pressió de fabricació la porositat relativa és menor; d'aquesta manera també es relaciona amb l'absorció, la densitat, i, tenint en compte el material utilitzat per la fabricació, argila o fang, la conductivitat tèrmica i la resistència a compressió es relacionaran de diferents maneres.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

La compacitat relativa va lligada directament a la porositat relativa, i per tant es pot dir que una alta compacitat relativa ve donada per una baixa porositat relativa, ja que, en tant per cent, les dues sumen un total de 100. D'aquesta manera es dedueix que a menor compacitat relativa hi haurà una major absorció i menor densitat.

7.4. Porositat real i microanàlisis

Els resultats de porositat real en general no han sigut els esperats ja que, la majoria de resultats, tots excepte quatre, són menors que els de la porositat relativa i, teòricament, hauria de ser al contrari.

Tampoc han sigut esperats els resultats de porositat real de Piera ja que no són gens semblants als de la porositat relativa; segons els resultats les provetes de Piera tindrien una porositat real de més de tres vegades més gran que la porositat aparent, i aquests resultats es consideren desproporcionats. Si comparem els resultats amb els del treball final de grau *TFG-Canal*, es pot veure que resultats de porositat real són superiors als de la porositat relativa, entre un 3 i 11%, i aquests resultats es poden considerar acceptables.

El fet d'obtenir uns resultats de porositat real no esperats pot ser degut a que les mostres obtingudes de les provetes no eren prou representatives, ja que només s'analitza una petita part d'una sola proveta de cada amassada; també pot ser un motiu que el mètode utilitzat per al càlcul de les porositats no sigui el més adequat. Tot i així les porositats reals tenen una relació amb la pressió de premsat, i per tant també es relacionen amb les porositats relatives.

Segons els resultats de porositat real, les provetes fetes amb fang són en general les més poroses.

A partir dels microanàlisis, es pot concloure que els elements que componen les provetes fabricades amb argila o fangs són molt semblants. Són semblants tant els elements que les composen com la seva quantitat.

Cal tenir en compte però, que mitjançant la tècnica EDX per l'anàlisi del elements no es pot quantificar el contingut exacte de carboni ja que els resultats de carboni també formen part del

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

carboni pel qual està composta la resina epòxid on s'ha inclòs la mostra i el recobriment de carboni de la mostra per fer la observació.

Es conclou doncs que en general les provetes tenen, de major a menor quantitat, oxigen, silici, alumini, ferro, calci, potassi, magnesi, sodi, titani; i algunes provetes també tenen fluor, clor i manganés.

7.5. Estructures cristal·lines

Es pot concloure que de manera general que les provetes de fang i argila es composen, de major a menor intensitat, de quars, feldspat ortosa, albita, montmoril·lonita i moscovita.

En l'observació per separat de les dues sèries diferents, la d'argila i la de fang, la comparació a diferents temperatures màximes de cocció no mostra canvis significatius en la composició ni intensitat de les estructures cristal·lines de les provetes. Tampoc s'han observat canvis depenent de la pressió de premsat.

Pel que fa a la comparació de les estructures cristal·lines de les provetes fabricades amb argila i fang, es pot dir que no s'han trobat diferències significatives entre les mostres però si que s'ha vist una certa diferència amb les de Piera ja que, aquesta última, només té estructures de quars, feldspat ortosa i albita.

Per tant es conclou doncs que no hi ha variacions significatives en relació a la temperatura màxima de cocció ni amb la pressió del premsat.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

7.6. Conclusions finals

Finalment es conclou que tant la pressió del premsat i la temperatura de cocció influeixen sobre la resistència a compressió i conductivitat tèrmica dels maons massissos. Tot i que influeix de manera més significativa la pressió del premsat.

Aquesta influencia però depèn també en gran part del material utilitzat per la fabricació, és a dir, les provetes fabricades només amb argila, sorra, i aigua, i les que, a més a més d'aquests materials, també s'utilitzen fangs sobrants procedents de la neteja d'àrids de les pròpies centrals d'àrids. Dit això podem concloure que els materials utilitzats també tenen una influencia sobre la resistència a compressió i conductivitat tèrmica dels maons massissos.

Pel que fa als maons fabricats amb argila (argila, sorra i aigua), es pot concloure que les millors combinacions per a la seva fabricació són: una pressió de premsat de 50 kg/cm² i una temperatura de cocció de 950°C.

I pel que pa a la fabricació de maons amb fangs (argila, fangs sobrants procedents de centrals d'àrids, sorra i aigua), es conclou que les millors combinacions per a la seva fabricació són: una pressió de premsat de 50 kg/cm² i una temperatura de cocció de 950°C.

La densitat aparent, la densitat relativa, l'absorció, la porositat relativa, la compacitat relativa i la porositat real, es relacionen directament amb la pressió del premsat.

Els maons fabricats amb argila i els fabricats amb fangs tenen una semblant composició elemental i l'estructura cristal·lina, tenint en compte que la fabricació s'ha fet a diferents pressions de premsat i diferents temperatures màximes de cocció.

Per altra banda, els maons de Piera també tenen una composició elemental semblant a la dels maons fabricats amb argila i els fabricats amb fangs, però tenen menys tipus d'estructures cristal·lines. Per tant es pot concloure que aquestes diferències poden venir donades per la utilització d'un mètode de fabricació i materials diferents.

També cal dir que s'han assolit els objectius originals del treball i d'altres que s'han originat a mesura que s'ha anat fent el treball en qüestió.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

8. Propostes d'investigació

Per a seguir la investigació a partir d'aquest treball final de grau, tenint en compte les conclusions finals, es proposen el següent:

- Pel que fa l'estudi de la resistència a compressió amb la peca sencera, es podrien fer estudis amb màquines d'assaig a compressió de més alt tonatge per a poder estudiar el comportament de les provetes i la màxima resistència a compressió.
- En relació a la resistència a compressió normalitzada, es proposa fer un estudi més ampli, com a mínim de 6 provetes de cada sèrie.
- Per a un futur es proposa també fer un estudi el qual es pugui fer un amassat amb més volum de material per la fabricació de maons ja que aquest pot ser un dels motius d'algunes altes dispersions dels resultats obtinguts.
- Tenint en compte les capacitats de la caixa calenta calibrada utilitzada per fer els assaigs, es proposa fer assaigs amb caixes calentes normalitzades i comparar-ne els resultats.
- Es proposa modificar el mètode d'anàlisi de porositats reals mitjançant l'anàlisi d'imatges obtingudes amb microscopi electrònic de rastreig i comparar-ne els resultats obtinguts per un altre mètode d'assaig.
- També es proposa variar les temperatures màximes de cocció i les pressions de premsat amb l'objectiu de buscar la relació més optima entre la resistència a compressió i la conductivitat tèrmica.
- Per últim, es proposa la fabricació de ceràmica amb la utilització d'altres materials reciclats, és a dir, fabricar ceràmica a partir d'argila, sorra, aigua i un altre material, o bé amb argila, fangs sobrants procedents de centrals d'àrids, sorra, aigua i un altre material.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

9. Referències bibliogràfiques

9.1. Articles i congressos

Arezki S., Chelouah N., Tahakourt A. (2016) *The effect of the addition of ground olive stones on the physical and mechanical properties of clay bricks.* Materiales de construcción 66, 322, April-June 2016, e093.

Balgaranova J., Petkov A., Pavlova L., Alexandrova A. (2003) *Utilization ofwastes from the coke-chemical production and sewage sludge as additives in the brick-clay.* Water, Air, and Soil Pollution 150, 103–111.

Chamorro M. A., Pareta M. M., Berthelsen B. E., Janer F. X. (2016) *The exploitation of sludge from aggregate plants in the manufacture of porous fired clay bricks.* Materiales de construcción 66, 323, July-September 2016, e093.

Coletti C., Maritan L., Cultrone G., Mazzoli C. (2016) Use of industrial ceramic sludge in brick production: Effect on aesthetic quality and physical properties. Construction and Building Materials 124, 219–227.

Crespo, R., Jiménez, R. (2011). Utilización de lodos procedentes del lavado de áridos naturales en la producción de materiales de construcción. IX Congreso cubano de geología.

Demir, I. (2008) *Effect of organic residues addition on the technological properties of clay bricks.* Waste Management 28, 622-627.

Galán R. J., Merino A., Bueno S. (2012) *Utilización de nuevas materias primas y residuos Industriales para mejorar las posibilidades de uso de los materiales cerámicos del área de Bailén (Jaén).* Materiales de construcción 63, 312, 553-568.

Kadir A., Mohajerani A. (2011) *Bricks: an exellent building material for recycling wastes – a review.* Environmental Management and Engineering (EME 2011)

Kizinievic O., Zurauskiene R., Kizinievic V., Zurauskas R. (2013) *Utilisationof sludge waste from water treatment for ceramic products.* Construction and Building Materials 41, 464–473.

230

Monteiro S. N., Alexandre J., Margem J. I., Sánchez R., Vieira C.M.F. (2008) *Incorporation of sludge waste from water treatment plant into red ceràmic.* Construction and Building Materials 22, 1281–1287.

Mymrin V. A., Alekseev K. P., Zelinskaya E. V., Tolmacheva N. A., Catai R. E. (2014) *Industrial* sewage slurry utilization for red ceramics production. Construction and Building Materials 66, 368–374.

Narendra A, Pathrose C. (2017) *Development of thermally efficient fibre-based eco-friendly brick reusing locally available waste materials.* Construction and Building Materials 133, 275–284.

Pérez L., Corpas F.A., Martínez S., Artiaga R., Pascual J. (2012) Manufacturing new ceramic materials from clay and red mud derived from the aluminium industry. Construction and Building Materials 35, 656-665.

Raut S.P., Ralegaonkar R.V, Mandavgane S.A. (2011) *Development of sustainable construction material using industrial and agriculturalsolid waste: A review of waste-create bricks.* Construction and Building Materials 25, 4037–4042.

Sutcu M., Alptekin H., Erdogmus E., Er Y., Gencel O. (2015) *Characteristics of fired clay bricks with waste marble powder addition as building materials. Construction and Building Materials* 82 (2015), 1–8. Construction and Building Materials 91, 86–93.

Ukwatta A., Mohajerani A, Setunge S., Eshtiaghi N. (2015) *Possible use of biosolids in fired-clay bricks.* Construction and Building Materials 91, 86–93.

Vázquez M., Jiménez J. (2004) *Materias primas ricas en arcilla de las Capas Rojas Triásicas (Norte de Jaén, España) para fabricar materiales cerámicos de construcción.* Materiales de Construcción, 273, 5-20.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

9.2. Treballs finals de grau i tesines

Oliver I. (2011) Estudi de l'aprofitament de subproductes industrials procedents del tractament d'àrids com matèria primera ceràmica. Tesina. Universitat Politècnica de Catalunya. Tutor: Viladevall M.

Berthelsen B., Janer F.X. (2012) *Reaprofitament dels fangs sobrants d'una central d'àrids per a la seva aplicació a la construcción.* Projecte/Treball Final de Carrera. Universitat de Girona. Tutor: Pareta M. M.

Vergeli M. (2015) *Ampliació i perfeccionament de l'estudi de l'obtenció de peces ceràmiques a partir de l'aprofitament dels fangs sobrants d'una central d'àrids*. Treball final de grau. Tutor: Pareta M. M.

Martil J., Mestre A.(2014) *Reaprofitament dels fangs sobrants d'una central d'àrids per, a la fabricació de rajols i rajoles*. Treball final de grau. Universitat de Girona. Tutor: Pareta M. M.

Lozano A., Cortals J. (2015) *Influencia dels fangs sobrants d'una central d'àrids per la seva aplicació en la construcció.* Projecte final de carrera. Universitat de Girona. Tutor: Chamorro M. A.

Canal J. (2016) Influència de la pressió de fabricació i temperatura de cocció en la resistència a compressió i conductivitat tèrmica de la ceràmica porosa fabricada amb fangs procedents de centrals d'àrids. Treball final de grau. Tutor: Chamorro M. A.

9.3. Normativa

CTE DB-HE (Código Tècnico de la Edificación. Documento Bàsico HE Ahorro de Energía)

UNE 103-301-94 Determinación de la densidad de un suelo. Método de la balanza hidrostàtica.

UNE 103-105-93 Determinación de la densidad mínima de una arena

UNE-EN 771-1:2011+A1 Especificaciones de piezas para fàbrica de albañileria. Parte 1: piezas de arcilla cocida.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

UNE-EN 772-1:2011+A1 *Métodos de ensayo de piezas para fàbrica de albañileria. Parte 1: Determinación de la resistència a compresión.*

UNE EN 772-13 Métodos de ensayo de piezas para fàbrica de albañileria. Parte 13: Determinación de la densidad absoluta seca y de la densidad aparente seca de piezas para fàbrica de albañileria (excepto piedra natural).

UNE-EN 772-16 Métodos de ensayo de piezas para fàbrica de albañileria. Parte 16: Determinación de las dimensiones.

UNE EN 772-3 Métodos de ensayo de piezas para fàbrica de albañileria. Parte 3: Determinación del volumen neto y del porcentaje de huecos por pesada hidrostàtica de piezas de arcilla cocida para fàbrica de albañileria.

UNE-EN ISO 8990 Determinación de las propiedades de transmisión térmica en régimen estacionario. Métodos de la caja caliente guardada i calibrada. (ISO 8990:1994).

9.4. Altres

Àrids Guixeras S. L., http://www.aridsguixeras.cat.

Argiles Colades S. A., <u>http://www.argilescolades.com</u>.

Ceràmiques Piera S. L., http://www.pieraecoceramica.com.

ImageJ, https://imagej.nih.gov/ij.

Normensand GmbH, <u>https://www.normensand.de</u>.

Serveis Tècnics de Recerca de la Universitat de Girona, http://www2.udg.edu/tabid/12511/language/ca-ES/Default.aspx.

10. Agraïments

En primer lloc, vull donar les gràcies al meu tutor del treball final de grau, en Miquel Àngel Chamorro Trenado ja que m'ha resolt molts dubtes i m'ha guiat de manera satisfactòria en situacions complicades.

Agraeixo de manera especial a en Pere Bellvehi Cassadella, que gracies a la seva gran ajuda al laboratori i amb moltes hores de dedicació, ha sigut possible l'elaboració d'aquest treball.

Vull agrair a en Joan Llorenç Sulivera, per les seves recomanacions i la resolució d'un seguit de dubtes que m'han sigut molt útils per l'elaboració del treball, a l'Elena Vilagran Grau, que em va donar un cop de mà en alguns aspectes del treball, i també a la resta de professors que he tingut aquests últims anys i dels quals he aprés moltes coses.

Un gran agraïment a en Dani Reyes Bautista i en Xavier Fonrodona Gubau, que m'han ajudat molt en l'anàlisi de mostres, i també a en Jordi Blavia Bergós i la Carme Carulla Contreras per fer possible aquests anàlisis.

Agraeixo a Argiles Colades S.A. i a Àrids Guixeras S.L. per la seva col·laboració en el treball.

Dono les gràcies als companys perquè junts hem anat superant els reptes del grau i també hem viscut molt bones experiències.

Agraeixo a la meva família, especialment a la meva mare i als meus avis, que sempre m'han donat suport i m'han animat a seguir endavant en moments difícils.

Voldria agrair també als amics, que, a més de fer-me gaudir de la vida, em fan costat quan em cal.

Finalment també vull agrair a la resta als professors que he tingut i dels quals gran part del que he aprés fins ara és gracies a ells.

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

11. Annexes

11.1. Especejament del motlle d'acer i els suplements

Font. David Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Figura 186. Especejament suplements del motle d'acer

Font. David Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

11.2. Mesures de les provetes desemmotllades, assecades i cuites

Dimensions (mm), volum (cm³), massa (g), densitat aparent (g/cm³) de les provetes PA30850:

Desemmo	Desemmotllades													
Paca				Dimen	sions					Volum	Масса	Densitat		
i eça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	volum	wassa	aparent		
PA308501	276,00	277,00	276,50	134,50	136,00	135,25	44,00	44,00	44,00	1645,452	3600	2,188		
PA308502	276,00	276,50	276,25	134,50	136,00	135,25	44,00	44,00	44,00	1643,964	3600	2,190		
PA308503	276,00	277,00	276,50	135,00	136,00	135,50	44,00	44,00	44,00	1648,493	3600	2,184		
PA308504	276,00	277,00	276,50	135,00	136,00	135,50	44,00	44,00	44,00	1648,493	3603	2,186		
PA308505	276,00	276,50	276,25	135,00	136,00	135,50	44,00	44,00	44,00	1647,003	3603	2,188		
PA308506	276,50	277,00	276,75	135,00	136,00	135,50	44,00	44,00	44,00	1649,984	3601	2,182		

Assecades

Poca				Dimen	sions					Volum	Massa	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	volum	1112220	aparent
PA308501	276,00	277,00	276,50	134,50	136,00	135,25	44,00	44,00	44,00	1645,452	3600	2,188
PA308502	276,00	276,50	276,25	134,50	136,00	135,25	44,00	44,00	44,00	1643,964	3600	2,190
PA308503	276,00	277,00	276,50	135,00	136,00	135,50	44,00	44,00	44,00	1648,493	3600	2,184
PA308504	276,00	277,00	276,50	135,00	136,00	135,50	44,00	44,00	44,00	1648,493	3603	2,186
PA308505	276,00	276,50	276,25	135,00	136,00	135,50	44,00	44,00	44,00	1647,003	3603	2,188
PA308506	276,50	277,00	276,75	135,00	136,00	135,50	44,00	44,00	44,00	1649,984	3601	2,182

Cuites

Boos				Dimen	sions					Volum	Massa	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	volum	1110220	aparent
PA308501	276,00	277,00	276,50	134,50	136,00	135,25	44,00	44,00	44,00	1645,452	3600	2,188
PA308502	276,00	276,50	276,25	134,50	136,00	135,25	44,00	44,00	44,00	1643,964	3600	2,190
PA308503	276,00	277,00	276,50	135,00	136,00	135,50	44,00	44,00	44,00	1648,493	3600	2,184
PA308504	276,00	277,00	276,50	135,00	136,00	135,50	44,00	44,00	44,00	1648,493	3603	2,186
PA308505	276,00	276,50	276,25	135,00	136,00	135,50	44,00	44,00	44,00	1647,003	3603	2,188
PA308506	276,50	277,00	276,75	135,00	136,00	135,50	44,00	44,00	44,00	1649,984	3601	2,182
				Taula	10 11-000	- DA 200	50					

Taula 48. Mesures PA30850

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Dimensions (mm), volum (cm³), massa (g), densitat aparent (g/cm³) de les provetes PA30900:

Desemmotllades

Poco				Mes	ures					Volum	Масса	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	volum	ivia55a	aparent
PA308501	276,00	277,00	276,50	134,50	136,00	135,25	44,00	44,00	44,00	1645,452	3600	2,188
PA308502	276,00	276,50	276,25	134,50	136,00	135,25	44,00	44,00	44,00	1643,964	3600	2,190
PA308503	276,00	277,00	276,50	135,00	136,00	135,50	44,00	44,00	44,00	1648,493	3600	2,184
PA308504	276,00	277,00	276,50	135,00	136,00	135,50	44,00	44,00	44,00	1648,493	3603	2,186
PA308505	276,00	276,50	276,25	135,00	136,00	135,50	44,00	44,00	44,00	1647,003	3603	2,188
PA308506	276,50	277,00	276,75	135,00	136,00	135,50	44,00	44,00	44,00	1649,984	3601	2,182

Assecades

Poca				Mes	ures					Volum	Pos	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	Volum	гез	aparent
PA309001	273,50	273,00	273,25	133,50	134,00	133,75	43,00	43,50	43,25	1580,666	3250	2,056
PA309002	273,00	273,50	273,25	133,00	134,00	133,50	43,00	43,00	43,00	1568,592	3254	2,074
PA309003	273,50	273,50	273,50	133,50	134,00	133,75	43,50	44,00	43,75	1600,402	3252	2,032
PA309004	274,00	273,50	273,75	133,50	134,00	133,75	43,50	44,00	43,75	1601,865	3242	2,024
PA309005	274,00	273,50	273,75	133,50	134,00	133,75	43,50	44,00	43,75	1601,865	3243	2,025
PA309006	274,00	273,50	273,75	133,50	134,00	133,75	43,50	43,50	43,50	1592,712	3245	2,037

Cuites

			Mesu	ures					Volum	Bee	Densitat
Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	volum	Fe5	aparent
274,50	275,00	274,75	134,00	135,00	134,50	43,00	43,50	43,25	1598,255	3033	1,898
274,50	275,00	274,75	133,50	135,00	134,25	43,00	43,50	43,25	1595,284	3030	1,899
274,50	275,00	274,75	134,00	134,50	134,25	43,00	44,00	43,50	1604,506	3025	1,885
275,00	275,00	275,00	134,00	134,50	134,25	43,50	44,00	43,75	1615,195	3015	1,867
275,00	275,50	275,25	134,00	135,00	134,50	43,50	44,00	43,75	1619,674	3025	1,868
275,00	275,00	275,00	134,00	134,50	134,25	43,50	44,00	43,75	1615,195	3021	1,870
	Longitud 1 274,50 274,50 274,50 275,00 275,00 275,00	Longitud 1 Longitud 2 274,50 275,00 274,50 275,00 274,50 275,00 275,00 275,00 275,00 275,00 275,00 275,00	Longitud 1Longitud 2Longitud274,50275,00274,75274,50275,00274,75274,50275,00275,00275,00275,00275,25275,00275,00275,00275,00275,00275,00	Mese Longitud 1 Longitud 2 Longitud 1 274,50 275,00 274,75 134,00 274,50 275,00 274,75 133,50 274,50 275,00 274,75 134,00 275,00 275,00 274,75 134,00 275,00 275,00 275,00 134,00 275,00 275,50 275,25 134,00 275,00 275,00 275,00 134,00 275,00 275,00 275,00 134,00	Mesustation Longitud 1 Longitud 2 Amplada 1 Amplada 2 274,50 275,00 274,75 134,00 135,00 274,50 275,00 274,75 133,50 135,00 274,50 275,00 274,75 134,00 134,50 275,00 275,00 275,00 134,00 134,50 275,00 275,50 275,50 134,00 135,00 275,00 275,00 275,00 134,00 135,00 275,00 275,50 275,50 134,00 135,00 275,00 275,50 275,50 134,00 135,00 275,00 275,50 275,50 134,00 135,00 275,00 275,50 275,50 134,00 134,50	Mesual in the image in the image. Memory instance in the image in the	Mesustation Longitud 1 Longitud 2 Longitud 1 Amplada 1 Amplada 2 Amplada 6 Gruit 1 274,50 275,00 274,75 134,00 135,00 134,25 43,00 274,50 275,00 274,75 133,50 135,00 134,25 43,00 274,50 275,00 274,75 134,00 134,50 134,25 43,00 274,50 275,00 275,00 275,00 134,00 134,50 43,00 275,00 275,50 275,50 134,00 134,50 43,50 275,00 275,50 275,50 134,00 134,50 43,50 275,00 275,50 275,50 134,00 134,50 43,50 275,00 275,50 275,50 134,00 134,50 43,50 275,00 275,00 275,00 134,00 134,50 43,50	Mesure Longitud 1 Longitud 2 Longitud 1 Amplada 1 Amplada 2 Amplada 6 Gruix 2 274,50 275,00 274,75 134,00 135,00 134,25 43,00 43,50 274,50 275,00 274,75 133,50 135,00 134,25 43,00 43,50 274,50 275,00 274,75 134,00 134,50 134,25 43,00 44,00 275,00 275,00 275,50 134,00 134,50 134,25 43,00 44,00 275,00 275,50 275,50 134,00 134,50 43,50 44,00 275,00 275,50 275,50 134,00 134,50 43,50 44,00 275,00 275,50 275,50 134,00 134,50 43,50 44,00 275,00 275,00 275,00 134,00 134,50 43,50 44,00 275,00 275,00 275,00 134,00 134,50 43,50 44,00	Mesures Longitud 1 Longitud 2 Longitud 4 Amplada 1 Amplada 2 Amplada 6 Gruix 1 Gruix 2 Gruix 3 274,50 275,00 274,75 134,00 135,00 134,50 43,00 43,55	Mesure Longitud 1 Longitud 2 Longitud 4 Amplada 1 Amplada 2 Amplada 6 Gruit 1 Gruit 2 Gruit 2 Gruit 3 274,50 275,00 274,75 134,00 135,00 134,25 43,00 43,50 43,25 1598,255 274,50 275,00 274,75 134,00 134,50 134,25 43,00 43,50 43,50 1604,506 274,50 275,00 274,75 134,00 134,50 134,25 43,00 43,05 1604,506 275,00 275,00 275,00 275,05 134,00 134,50 134,25 43,00 43,07 1615,195 275,00 275,00 275,05 134,00 134,00 134,05 43,05 44,00 43,75 1615,195 275,00 275,00 275,00 275,00 134,00 134,00 134,05 43,05 44,00 43,75 1619,674 275,00 275,00 275,00 275,00 134,00 134,50	Image: Problem in the system in theq tend in the system in the system in the system in the

Taula 49. Mesures PA30900

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Dimensions (mm), volum (cm³), massa (g), densitat aparent (g/cm³) de les provetes PA30950:

Desemmotllades

Poco				Mes	ures					Volum	Pos	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	Volum	гез	aparent
PA309501	276,00	276,50	276,25	135,00	135,50	135,25	44,00	43,50	43,75	1634,623	3600	2,202
PA309502	276,00	276,50	276,25	135,00	135,50	135,25	43,50	44,00	43,75	1634,623	3604	2,205
PA309503	276,00	276,50	276,25	135,00	135,50	135,25	43,50	43,50	43,50	1625,282	3601	2,216
PA309504	276,00	276,50	276,25	135,00	135,50	135,25	44,00	44,50	44,25	1653,304	3601	2,178
PA309505	276,00	276,50	276,25	135,00	135,50	135,25	44,00	44,50	44,25	1653,304	3600	2,177
PA309506	276,00	276,50	276,25	135,00	135,50	135,25	44,00	44,50	44,25	1653,304	3601	2,178

Assecades

Poca				Mes	ures					Volum	Pos	Densitat
геçа	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	Volum	гез	aparent
PA309501	273,50	273,00	273,25	133,50	134,00	133,75	43,50	43,00	43,25	1580,666	3230	2,043
PA309502	273,50	273,00	273,25	133,50	134,00	133,75	43,00	43,00	43,00	1571,529	3233	2,057
PA309503	273,50	273,50	273,50	133,50	134,00	133,75	43,00	43,00	43,00	1572,967	3232	2,055
PA309504	274,00	273,50	273,75	133,50	134,00	133,75	43,50	44,00	43,75	1601,865	3223	2,012
PA309505	274,00	273,50	273,75	133,50	134,00	133,75	43,50	44,00	43,75	1601,865	3221	2,011
PA309506	274,00	273,50	273,75	133,50	134,00	133,75	43,50	44,00	43,75	1601,865	3224	2,013

Cuites

Baaa				Mesu	ures					Volum	Bac	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	volum	Fe5	aparent
PA309501	274,00	274,50	274,25	134,00	134,50	134,25	43,50	43,50	43,50	1601,586	3024	1,888
PA309502	274,00	274,50	274,25	134,00	134,50	134,25	43,00	43,50	43,25	1592,381	3024	1,899
PA309503	274,00	274,50	274,25	134,00	134,50	134,25	43,00	43,50	43,25	1592,381	3022	1,898
PA309504	274,50	274,50	274,50	134,00	134,50	134,25	44,00	44,50	44,25	1630,684	3017	1,850
PA309505	275,00	274,50	274,75	134,00	134,50	134,25	43,50	44,50	44,00	1622,948	3014	1,857
PA309506	274,50	274,50	274,50	134,00	134,50	134,25	43,50	44,50	44,00	1621,472	3015	1,859

Taula 50. Mesures PA30950

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Dimensions (mm), volum (cm⁴), massa (g), densitat aparent (g/cm⁴) de les provetes PA40850:

Desemmotllades

Poco				Mes	ures					Volum	Pos	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	Volum	гез	aparent
PA408501	276,00	277,00	276,50	135,00	135,50	135,25	43,00	43,50	43,25	1617,404	3590	2,220
PA408502	276,00	277,00	276,50	135,00	135,50	135,25	43,50	43,50	43,50	1626,753	3598	2,212
PA408503	276,00	277,00	276,50	135,00	135,50	135,25	43,50	43,50	43,50	1626,753	3596	2,211
PA408504	276,00	277,00	276,50	135,00	136,00	135,50	43,50	44,00	43,75	1639,127	3599	2,196
PA408505	276,00	276,50	276,25	134,50	136,00	135,25	43,50	44,00	43,75	1634,623	3599	2,202
PA408506	276,00	276,50	276,25	134,50	136,00	135,25	43,50	44,00	43,75	1634,623	3601	2,203

Assecades

Poca				Mes	ures					Volum	Pos	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	Volum	гез	aparent
PA408501	273,00	273,50	273,25	133,00	134,00	133,50	42,00	43,00	42,50	1550,352	3236	2,087
PA408502	273,00	273,00	273,00	133,00	134,00	133,50	43,00	42,50	42,75	1558,045	3244	2,082
PA408503	273,00	273,50	273,25	133,00	134,00	133,50	43,00	43,00	43,00	1568,592	3248	2,071
PA408504	273,50	274,00	273,75	133,50	134,50	134,00	43,00	43,50	43,25	1586,518	3239	2,042
PA408505	273,50	273,50	273,50	133,50	134,50	134,00	43,00	43,50	43,25	1585,069	3239	2,043
PA408506	273,50	274,00	273,75	133,50	134,50	134,00	43,00	43,50	43,25	1586,518	3239	2,042

Cuites

Peça				Mes	ures					Volum	Bee	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	volum	Fe5	aparent
PA408501	274,50	275,00	274,75	134,00	134,50	134,25	42,50	43,50	43,00	1586,063	3038	1,915
PA408502	274,50	274,50	274,50	134,00	135,00	134,50	43,00	43,00	43,00	1587,571	3042	1,916
PA408503	274,50	275,00	274,75	134,00	134,50	134,25	42,50	43,00	42,75	1576,842	3050	1,934
PA408504	275,00	275,50	275,25	134,00	135,00	134,50	43,00	43,50	43,25	1601,164	3034	1,895
PA408505	275,00	275,50	275,25	134,00	135,00	134,50	43,00	43,50	43,25	1601,164	3041	1,899
PA408506	275,00	275,50	275,25	134,00	135,00	134,50	43,00	43,50	43,25	1601,164	3034	1,895

Taula 51. Mesures PA40850

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Dimensions (mm), volum (cm⁴), massa (g), densitat aparent (g/cm⁴) de les provetes PA40900:

Desemmotllades

Poco				Mes	ures					Volum	Pos	Densitat
геçа	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	Volum	гез	aparent
PA409001	276,00	277,00	276,50	135,00	136,00	135,50	43,00	44,00	43,50	1629,760	3603	2,211
PA409002	276,50	277,00	276,75	135,00	136,00	135,50	43,00	44,00	43,50	1631,234	3602	2,208
PA409003	276,00	277,00	276,50	135,00	136,00	135,50	43,00	44,00	43,50	1629,760	3601	2,210
PA409004	276,00	277,00	276,50	135,00	136,00	135,50	43,50	44,00	43,75	1639,127	3604	2,199
PA409005	276,50	277,00	276,75	135,00	136,00	135,50	43,00	44,00	43,50	1631,234	3600	2,207
PA409006	276,50	277,00	276,75	135,00	136,00	135,50	43,50	44,00	43,75	1640,609	3603	2,196

Assecades

Poca				Mes	ures					Volum	Pos	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	Volum	гез	aparent
PA409001	273,00	273,50	273,25	133,50	134,00	133,75	43,00	43,50	43,25	1580,666	3217	2,035
PA409002	273,50	273,50	273,50	133,50	134,00	133,75	43,00	43,50	43,25	1582,112	3217	2,033
PA409003	273,00	273,50	273,25	133,00	134,00	133,50	43,00	43,00	43,00	1568,592	3217	2,051
PA409004	273,50	273,00	273,25	133,50	134,00	133,75	43,00	43,00	43,00	1571,529	3215	2,046
PA409005	273,00	273,00	273,00	133,50	134,00	133,75	43,00	43,50	43,25	1579,220	3214	2,035
PA409006	273,50	273,50	273,50	133,00	134,00	133,50	43,00	43,00	43,00	1570,027	3220	2,051

Cuites

Baaa				Mes	ures					Volum	Bee	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	volum	Fe5	aparent
PA409001	274,50	275,50	275,00	134,00	135,00	134,50	43,00	43,50	43,25	1599,709	3032	1,895
PA409002	274,50	275,00	274,75	134,00	135,00	134,50	43,00	43,50	43,25	1598,255	3023	1,891
PA409003	274,50	275,00	274,75	134,00	134,50	134,25	43,00	43,50	43,25	1595,284	3020	1,893
PA409004	274,50	275,00	274,75	134,00	134,50	134,25	43,00	43,50	43,25	1595,284	3020	1,893
PA409005	274,50	275,50	275,00	134,00	135,00	134,50	43,00	43,50	43,25	1599,709	3023	1,890
PA409006	274,50	275,00	274,75	134,00	134,50	134,25	43,00	43,50	43,25	1595,284	3023	1,895

Taula 52. Mesures PA40900

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Dimensions (mm), volum (cm⁴), massa (g), densitat aparent (g/cm⁴) de les provetes PA40950:

Desemmotllades

Poco				Mes	ures					Volum	Pos	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	Volum	гез	aparent
PA409501	276,00	277,00	276,50	135,00	135,50	135,25	43,50	44,00	43,75	1636,102	3601	2,201
PA409502	276,00	277,00	276,50	135,00	135,50	135,25	43,50	44,00	43,75	1636,102	3603	2,202
PA409503	276,00	276,50	276,25	134,50	135,50	135,00	43,00	44,00	43,50	1622,278	3602	2,220
PA409504	276,00	277,00	276,50	135,00	135,50	135,25	43,50	43,50	43,50	1626,753	3599	2,212
PA409505	276,00	277,00	276,50	135,00	135,50	135,25	43,50	43,50	43,50	1626,753	3601	2,214
PA409506	276,00	277,00	276,50	135,00	135,50	135,25	43,00	43,50	43,25	1617,404	3601	2,226

Assecades

Poca				Mes	ures					Volum	Pos	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	volum	Fe5	aparent
PA409501	274,00	273,50	273,75	133,50	134,00	133,75	43,00	43,50	43,25	1583,558	3225	2,037
PA409502	273,00	273,50	273,25	133,50	134,00	133,75	42,50	43,00	42,75	1562,392	3230	2,067
PA409503	273,00	273,50	273,25	133,50	134,00	133,75	42,50	43,50	43,00	1571,529	3231	2,056
PA409504	273,00	273,50	273,25	133,50	134,00	133,75	43,00	43,50	43,25	1580,666	3220	2,037
PA409505	273,00	273,00	273,00	133,50	134,00	133,75	43,00	43,50	43,25	1579,220	3226	2,043
PA409506	273,00	273,50	273,25	133,50	134,00	133,75	43,00	43,50	43,25	1580,666	3229	2,043

Cuites

Baaa				Mesu	ures					Volum	Bee	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	volum	Fe5	aparent
PA409501	275,00	275,50	275,25	134,00	135,00	134,50	43,00	43,50	43,25	1601,164	3053	1,907
PA409502	275,00	276,00	275,50	134,00	135,00	134,50	43,00	43,50	43,25	1602,618	3042	1,898
PA409503	275,00	276,00	275,50	134,00	135,00	134,50	43,00	44,00	43,50	1611,882	3043	1,888
PA409504	275,00	275,50	275,25	134,00	135,00	134,50	43,00	43,50	43,25	1601,164	3048	1,904
PA409505	275,00	275,50	275,25	134,00	135,00	134,50	43,00	43,50	43,25	1601,164	3045	1,902
PA409506	275,00	275,50	275,25	134,00	135,00	134,50	43,00	43,50	43,25	1601,164	3048	1,904

Taula 53. Mesures PA40950

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Dimensions (mm), volum (cm⁵), massa (g), densitat aparent (g/cm⁵) de les provetes PA50850:

Desemmotllades

Poco				Mes	ures					Volum	Pos	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	Volum	гез	aparent
PA508501	276,00	276,00	276,00	136,00	135,00	135,50	42,00	44,00	43,00	1608,114	3577	2,224
PA508502	276,00	276,00	276,00	135,00	135,00	135,00	42,00	44,00	43,00	1602,180	3580	2,234
PA508503	275,00	277,00	276,00	135,00	135,00	135,00	41,50	44,00	42,75	1592,865	3585	2,251
PA508504	275,50	276,00	275,75	135,00	135,50	135,25	42,00	44,00	43,00	1603,693	3587	2,237
PA508505	276,00	276,00	276,00	135,00	135,50	135,25	42,00	43,00	42,50	1586,483	3586	2,260
PA508506	275,50	276,00	275,75	135,00	135,50	135,25	42,00	43,00	42,50	1585,045	3589	2,264

Assecades

Poca				Mes	ures					Volum	Pos	Densitat
геçа	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	Volum	гез	aparent
PA508501	273,50	272,00	272,75	134,50	133,50	134,00	41,00	44,00	42,50	1553,311	3208	2,065
PA508502	273,00	273,00	273,00	133,00	134,50	133,75	41,00	44,00	42,50	1551,834	3219	2,074
PA508503	273,00	273,00	273,00	133,00	134,50	133,75	41,00	43,50	42,25	1542,706	3211	2,081
PA508504	273,00	273,00	273,00	133,50	134,00	133,75	41,50	44,00	42,75	1560,963	3213	2,058
PA508505	273,00	273,00	273,00	133,50	134,50	134,00	42,00	43,00	42,50	1554,735	3215	2,068
PA508506	273,00	273,00	273,00	133,50	134,00	133,75	42,00	43,00	42,50	1551,834	3220	2,075

Cuites

Baaa				Mes	ures					Volum	Bee	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	volum	Fe5	aparent
PA508501	274,00	274,50	274,25	134,50	134,50	134,50	41,50	44,00	42,75	1576,903	3020	1,915
PA508502	274,50	275,00	274,75	134,00	135,00	134,50	42,00	43,50	42,75	1579,778	3032	1,919
PA508503	274,00	274,50	274,25	134,00	135,00	134,50	41,50	44,00	42,75	1576,903	3027	1,920
PA508504	274,00	274,50	274,25	134,00	135,00	134,50	41,50	44,00	42,75	1576,903	3030	1,921
PA508505	274,50	275,00	274,75	134,00	135,00	134,50	41,50	43,00	42,25	1561,301	3035	1,944
PA508506	274,50	274,50	274,50	134,00	134,50	134,25	42,00	43,00	42,50	1566,194	3025	1,931

Taula 54. Mesures PA50850

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Dimensions (mm), volum (cm⁵), massa (g), densitat aparent (g/cm⁵) de les provetes PA50900:

Desemmotllades

Poco				Mes	ures					Volum	Pos	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	Volum	гез	aparent
PA509001	275,50	276,00	275,75	135,50	136,00	135,75	42,50	44,00	43,25	1618,980	3592	2,219
PA509002	276,00	276,00	276,00	135,00	136,00	135,50	42,50	44,00	43,25	1617,464	3595	2,223
PA509003	276,50	276,00	276,25	135,00	136,00	135,50	42,50	44,00	43,25	1618,929	3598	2,222
PA509004	276,00	276,50	276,25	134,50	136,00	135,25	42,50	44,00	43,25	1615,942	3597	2,226
PA509005	276,00	276,50	276,25	135,00	136,00	135,50	42,50	44,00	43,25	1618,929	3602	2,225
PA509006	276,00	276,50	276,25	135,00	136,00	135,50	42,50	43,00	42,75	1600,213	3598	2,248

Assecades

Poca				Mes	ures					Volum	Pos	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	Volum	гез	aparent
PA509001	273,00	274,00	273,50	134,00	134,50	134,25	42,00	43,00	42,50	1560,488	3242	2,078
PA509002	273,00	274,00	273,50	133,50	134,50	134,00	42,00	43,00	42,50	1557,583	3248	2,085
PA509003	273,50	274,00	273,75	133,50	134,50	134,00	42,00	43,00	42,50	1559,006	3250	2,085
PA509004	273,00	274,00	273,50	133,50	134,50	134,00	42,00	43,00	42,50	1557,583	3242	2,081
PA509005	273,00	274,00	273,50	133,50	134,50	134,00	42,00	43,00	42,50	1557,583	3248	2,085
PA509006	273,00	273,50	273,25	133,50	134,50	134,00	42,00	42,50	42,25	1547,005	3243	2,096

Cuites

Baaa				Mes	ures					Volum	Bee	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	volum	Fe5	aparent
PA509001	274,50	275,00	274,75	134,00	135,00	134,50	42,00	43,00	42,50	1570,540	3054	1,945
PA509002	274,00	275,00	274,50	134,00	135,00	134,50	42,00	43,00	42,50	1569,111	3048	1,943
PA509003	274,50	275,00	274,75	134,00	135,00	134,50	42,00	43,50	42,75	1579,778	3050	1,931
PA509004	274,00	275,00	274,50	134,00	135,00	134,50	42,00	43,00	42,50	1569,111	3061	1,951
PA509005	274,00	275,00	274,50	134,00	135,00	134,50	42,00	43,00	42,50	1569,111	3053	1,946
PA509006	274,00	274,50	274,25	134,00	135,00	134,50	42,00	43,00	42,50	1567,682	3054	1,948

Taula 55. Mesures PA50900

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Dimensions (mm), volum (cm⁵), massa (g), densitat aparent (g/cm⁵) de les provetes PA50950:

Desemmotllades

Peça				Mes	ures					Volum	Pos	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	Volum	гез	aparent
PA509501	276,00	276,00	276,00	135,00	135,00	135,00	43,00	43,00	43,00	1602,180	3596	2,244
PA509502	275,50	276,00	275,75	135,00	135,50	135,25	43,00	43,00	43,00	1603,693	3595	2,242
PA509503	276,00	276,00	276,00	135,00	135,00	135,00	42,50	43,50	43,00	1602,180	3594	2,243
PA509504	276,00	276,00	276,00	134,50	135,50	135,00	43,00	44,50	43,75	1630,125	3599	2,208
PA509505	276,00	276,00	276,00	135,00	135,50	135,25	43,00	44,00	43,50	1623,812	3599	2,216
PA509506	276,00	276,00	276,00	135,00	135,50	135,25	43,00	44,00	43,50	1623,812	3598	2,216

Assecades

Peça				Mes	ures					Volum	Pos	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	Volum	гез	aparent
PA509501	273,00	273,50	273,25	133,50	133,50	133,50	42,00	42,50	42,25	1541,232	3229	2,095
PA509502	272,50	273,50	273,00	133,50	133,50	133,50	42,00	42,50	42,25	1539,822	3227	2,096
PA509503	273,00	273,50	273,25	133,00	133,50	133,25	42,00	43,00	42,50	1547,449	3226	2,085
PA509504	273,00	274,00	273,50	133,00	134,00	133,50	41,50	43,50	42,50	1551,771	3221	2,076
PA509505	273,00	274,00	273,50	133,00	134,00	133,50	42,00	43,00	42,50	1551,771	3222	2,076
PA509506	273,00	273,50	273,25	133,50	134,00	133,75	42,00	43,00	42,50	1553,255	3223	2,075

Cuites

Peça				Mes	ures					Volum	Bee	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	volum	Fe5	aparent
PA509501	274,00	274,00	274,00	134,00	134,00	134,00	42,50	43,00	42,75	1569,609	3027	1,929
PA509502	274,00	274,00	274,00	134,00	134,50	134,25	42,50	43,00	42,75	1572,537	3021	1,921
PA509503	274,00	274,00	274,00	133,50	134,00	133,75	42,50	43,00	42,75	1566,681	3018	1,926
PA509504	274,00	274,00	274,00	133,50	134,50	134,00	42,00	44,00	43,00	1578,788	3015	1,910
PA509505	274,50	274,50	274,50	133,50	134,50	134,00	42,50	43,50	43,00	1581,669	3020	1,909
PA509506	274,50	274,50	274,50	133,50	134,50	134,00	42,50	43,00	42,75	1572,473	3018	1,919

Taula 56. Mesures PA50950

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Dimensions (mm), volum (cm³), massa (g), densitat aparent (g/cm³) de les provetes PF30850:

Desemmotllades

Peça				Mes	ures					Volum	Pos	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	Volum	гез	aparent
PF308501	276,50	276,50	276,50	135,00	135,50	135,25	45,00	45,00	45,00	1682,848	3603	2,141
PF308502	276,50	277,00	276,75	135,00	135,50	135,25	45,00	45,00	45,00	1684,370	3598	2,136
PF308503	276,50	277,00	276,75	135,00	135,50	135,25	45,00	45,00	45,00	1684,370	3603	2,139
PF308504	276,50	276,50	276,50	135,00	135,50	135,25	45,00	45,00	45,00	1682,848	3603	2,141
PF308505	276,50	277,00	276,75	135,00	135,50	135,25	44,50	45,00	44,75	1675,012	3602	2,150
PF308506	276,50	277,00	276,75	135,00	135,00	135,00	44,50	45,00	44,75	1671,916	3604	2,156

Assecades

Boos				Mes	ures					Volum	Bee	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	volum	Fe5	aparent
PF308501	274,00	274,00	274,00	134,00	134,00	134,00	44,50	44,00	44,25	1624,683	3219	1,981
PF308502	274,00	274,00	274,00	134,00	134,00	134,00	44,00	44,50	44,25	1624,683	3217	1,980
PF308503	274,00	274,00	274,00	133,50	134,00	133,75	44,50	44,50	44,50	1630,814	3224	1,977
PF308504	274,00	274,00	274,00	133,50	134,00	133,75	44,50	44,50	44,50	1630,814	3228	1,979
PF308505	274,00	273,50	273,75	133,50	134,00	133,75	44,00	44,50	44,25	1620,172	3227	1,992
PF308506	274,00	274,00	274,00	133,50	134,00	133,75	44,00	44,50	44,25	1621,652	3229	1,991

Cuites

Peça				Mes	ures					Volum	Bee	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	volum	Fe5	aparent
PF308501	275,50	276,00	275,75	134,50	135,00	134,75	44,50	44,50	44,50	1653,500	3047	1,843
PF308502	275,00	276,00	275,50	134,50	135,00	134,75	44,50	44,50	44,50	1652,001	3034	1,837
PF308503	275,50	275,50	275,50	134,50	135,00	134,75	44,50	44,50	44,50	1652,001	3033	1,836
PF308504	275,50	275,50	275,50	134,50	135,00	134,75	44,50	44,50	44,50	1652,001	3035	1,837
PF308505	275,50	275,50	275,50	134,50	135,00	134,75	44,50	44,50	44,50	1652,001	3048	1,845
PF308506	275,50	275,50	275,50	134,50	135,00	134,75	44,50	44,50	44,50	1652,001	3037	1,838

Taula 57. Mesures PF30850

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Dimensions (mm), volum (cm³), massa (g), densitat aparent (g/cm³) de les provetes PF30900:

Desemmotllades

Peça				Mes	ures					Volum	Pos	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	Volum	гез	aparent
PF309001	276,00	277,00	276,50	135,00	136,00	135,50	44,50	45,00	44,75	1676,592	3600	2,147
PF309002	276,00	277,00	276,50	135,00	135,50	135,25	44,50	45,00	44,75	1673,499	3600	2,151
PF309003	276,00	277,00	276,50	135,00	136,00	135,50	44,00	45,00	44,50	1667,226	3603	2,161
PF309004	276,00	277,00	276,50	135,00	136,00	135,50	44,00	45,00	44,50	1667,226	3603	2,161
PF309005	276,00	277,00	276,50	135,00	136,00	135,50	44,50	45,00	44,75	1676,592	3602	2,148
PF309006	276,00	277,00	276,50	135,00	135,50	135,25	44,50	45,00	44,75	1673,499	3603	2,153

Assecades

Poco				Mes	ures					Volum	Pos	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	volum	res	aparent
PF309001	274,00	274,00	274,00	133,50	134,00	133,75	44,00	44,50	44,25	1621,652	3221	1,986
PF309002	274,00	274,00	274,00	133,50	134,00	133,75	44,00	44,50	44,25	1621,652	3225	1,989
PF309003	274,00	274,00	274,00	133,50	134,00	133,75	44,00	45,00	44,50	1630,814	3228	1,979
PF309004	274,00	274,00	274,00	133,50	134,00	133,75	44,00	44,50	44,25	1621,652	3223	1,987
PF309005	274,00	274,00	274,00	133,50	134,00	133,75	44,00	44,50	44,25	1621,652	3224	1,988
PF309006	274,00	274,00	274,00	133,50	134,00	133,75	44,00	44,50	44,25	1621,652	3227	1,990

Cuites

Peça				Mesu	ures					Volum	Bee	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	volum	Fe5	aparent
PF309001	275,00	275,50	275,25	134,00	135,00	134,50	44,50	44,50	44,50	1647,440	3031	1,840
PF309002	275,00	275,50	275,25	134,00	135,00	134,50	44,00	44,50	44,25	1638,185	3030	1,850
PF309003	275,00	275,50	275,25	134,00	135,00	134,50	44,00	45,00	44,50	1647,440	3030	1,839
PF309004	275,00	275,00	275,00	134,00	135,00	134,50	44,00	44,50	44,25	1636,697	3025	1,848
PF309005	275,00	275,50	275,25	134,00	135,00	134,50	44,50	44,50	44,50	1647,440	3030	1,839
PF309006	275,00	275,00	275,00	134,00	135,00	134,50	44,50	44,50	44,50	1645,944	3030	1,841

Taula 58. Mesures PF30900

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Dimensions (mm), volum (cm³), massa (g), densitat aparent (g/cm³) de les provetes PF30950:

Desemmotllades

Poco				Mes	ures					Volum	Pos	Densitat
i eça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	Volum	1 65	aparent
PF309501	276,00	277,00	276,50	135,00	135,50	135,25	44,50	44,50	44,50	1664,150	3601	2,164
PF309502	276,00	277,00	276,50	135,00	135,50	135,25	44,50	44,50	44,50	1664,150	3602	2,164
PF309503	276,00	276,50	276,25	135,00	135,50	135,25	44,50	45,00	44,75	1671,986	3603	2,155
PF309504	276,50	276,50	276,50	135,00	135,50	135,25	44,50	45,00	44,75	1673,499	3601	2,152
PF309505	276,50	276,50	276,50	135,00	135,50	135,25	45,00	44,50	44,75	1673,499	3604	2,154
PF309506	276,50	276,50	276,50	135,00	135,50	135,25	44,50	44,50	44,50	1664,150	3602	2,164

Assecades

Poca				Mes	ures					Volum	Pos	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	volum	Fe5	aparent
PF309501	274,00	273,50	273,75	133,50	134,00	133,75	44,00	44,00	44,00	1611,019	3235	2,008
PF309502	274,00	274,00	274,00	133,50	134,00	133,75	44,00	44,00	44,00	1612,490	3239	2,009
PF309503	274,00	274,00	274,00	133,50	134,00	133,75	44,00	44,00	44,00	1612,490	3242	2,011
PF309504	274,00	274,00	274,00	133,50	134,50	134,00	44,00	44,50	44,25	1624,683	3234	1,991
PF309505	274,00	273,50	273,75	133,50	134,50	134,00	44,00	44,50	44,25	1623,201	3237	1,994
PF309506	274,00	274,00	274,00	133,50	134,00	133,75	44,00	44,00	44,00	1612,490	3237	2,007

Cuites

Peça				Mesu	ures					Volum	Bee	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	volum	Fe5	aparent
PF309501	275,00	275,50	275,25	134,00	135,00	134,50	44,00	44,50	44,50	1647,440	3024	1,836
PF309502	274,50	275,50	275,00	134,00	135,00	134,50	44,00	44,50	44,50	1645,944	3024	1,837
PF309503	274,50	275,00	274,75	134,00	135,00	134,50	44,00	44,50	44,50	1644,447	3027	1,841
PF309504	274,50	275,00	274,75	134,00	135,00	134,50	44,50	44,50	44,50	1644,447	3022	1,838
PF309505	274,50	275,00	274,75	134,00	135,00	134,50	44,50	44,50	44,50	1644,447	3024	1,839
PF309506	275,00	275,00	275,00	134,00	134,50	134,25	44,00	44,50	44,50	1642,884	3023	1,840

Taula 59. Mesures PF30950

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Dimensions (mm), volum (cm⁴), massa (g), densitat aparent (g/cm⁴) de les provetes PF40850:

Desemmotllades

Poco				Mes	ures					Volum	Pos	Densitat
i eça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	Volum	163	aparent
PF408501	276,00	276,50	276,25	135,00	135,50	135,25	44,00	43,50	43,75	1634,623	3601	2,203
PF408502	276,00	277,00	276,50	135,00	136,00	135,50	44,00	43,50	43,75	1639,127	3600	2,196
PF408503	276,00	276,50	276,25	135,00	135,50	135,25	44,00	44,00	44,00	1643,964	3600	2,190
PF408504	276,00	277,00	276,50	135,00	135,50	135,25	43,50	44,00	43,75	1636,102	3600	2,200
PF408505	276,50	277,00	276,75	135,00	135,50	135,25	44,00	43,50	43,75	1637,582	3598	2,197
PF408506	276,50	277,00	276,75	135,00	135,50	135,25	44,00	43,50	43,75	1637,582	3601	2,199

Assecades

Poca				Mes	ures					Volum	Pos	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	volum	res	aparent
PF408501	274,00	273,50	273,75	133,50	134,00	133,75	43,50	43,00	43,25	1583,558	3241	2,047
PF408502	274,00	274,00	274,00	133,50	134,50	134,00	43,50	43,00	43,25	1587,967	3245	2,043
PF408503	274,00	274,00	274,00	133,50	134,50	134,00	43,00	43,50	43,25	1587,967	3246	2,044
PF408504	273,50	274,00	273,75	133,50	134,00	133,75	43,00	43,50	43,25	1583,558	3242	2,047
PF408505	274,00	274,00	274,00	133,50	134,50	134,00	43,50	43,00	43,25	1587,967	3242	2,042
PF408506	274,00	274,00	274,00	133,50	134,50	134,00	43,50	43,00	43,25	1587,967	3246	2,044

Cuites

Peça				Mes	ures					Volum	Bee	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	volum	Fe5	aparent
PF408501	275,00	275,50	275,25	134,00	135,00	134,50	44,00	43,50	43,75	1619,674	3048	1,882
PF408502	275,00	275,50	275,25	134,00	135,00	134,50	44,00	43,50	43,75	1619,674	3042	1,878
PF408503	275,00	275,50	275,25	134,00	135,00	134,50	43,50	43,50	43,50	1610,419	3039	1,887
PF408504	275,00	275,50	275,25	134,00	135,00	134,50	43,50	43,50	43,50	1610,419	3036	1,885
PF408505	275,00	275,50	275,25	134,50	135,00	134,75	44,00	43,50	43,75	1622,685	3043	1,875
PF408506	275,00	275,50	275,25	134,50	135,00	134,75	44,00	43,50	43,75	1622,685	3039	1,873

Taula 60. Mesures PF40850

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Dimensions (mm), volum (cm⁴), massa (g), densitat aparent (g/cm⁴) de les provetes PF40900:

Desemmotllades

Poco				Mes	ures					Volum	Pos	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	Volum	гез	aparent
PF409001	276,00	276,50	276,25	135,00	135,50	135,25	44,00	43,50	43,75	1634,623	3598	2,201
PF409002	276,00	276,50	276,25	135,00	135,50	135,25	44,00	43,50	43,75	1634,623	3601	2,203
PF409003	276,50	276,50	276,50	135,00	135,50	135,25	43,50	44,00	43,75	1636,102	3602	2,202
PF409004	276,00	277,00	276,50	135,00	135,50	135,25	43,50	43,50	43,50	1626,753	3601	2,214
PF409005	276,00	277,00	276,50	135,00	135,50	135,25	43,50	43,50	43,50	1626,753	3603	2,215
PF409006	276,00	276,50	276,25	135,00	135,50	135,25	43,50	43,50	43,50	1625,282	3600	2,215

Assecades

Poca				Mes	ures					Volum	Pos	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	volum	res	aparent
PF409001	273,50	274,00	273,75	133,50	134,50	134,00	43,50	43,00	43,25	1586,518	3239	2,042
PF409002	273,50	274,00	273,75	133,50	134,00	133,75	43,50	43,50	43,50	1592,712	3240	2,034
PF409003	273,50	273,50	273,50	133,50	134,50	134,00	43,50	43,50	43,50	1594,232	3242	2,034
PF409004	273,50	273,50	273,50	133,50	134,50	134,00	43,50	43,00	43,25	1585,069	3241	2,045
PF409005	273,50	274,00	273,75	133,50	134,50	134,00	43,50	43,00	43,25	1586,518	3247	2,047
PF409006	273,50	274,00	273,75	133,50	134,00	133,75	43,50	43,00	43,25	1583,558	3244	2,049

Cuites

Peça				Mesu	ures					Volum	Bee	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	volum	Fe5	aparent
PF409001	274,50	275,50	275,00	134,00	135,00	134,50	43,50	43,50	43,50	1608,956	3032	1,884
PF409002	274,50	275,00	274,75	134,00	135,00	134,50	43,50	43,50	43,50	1607,494	3030	1,885
PF409003	274,50	275,00	274,75	134,00	135,00	134,50	43,50	43,50	43,50	1607,494	3028	1,884
PF409004	274,50	275,00	274,75	134,00	134,50	134,25	43,50	43,50	43,50	1604,506	3034	1,891
PF409005	274,50	275,00	274,75	134,00	135,00	134,50	43,50	43,50	43,50	1607,494	3037	1,889
PF409006	274,50	275,00	274,75	134,00	134,00	134,00	43,50	43,50	43,50	1601,518	3034	1,894

Taula 61. Mesures PF40900

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Dimensions (mm), volum (cm⁴), massa (g), densitat aparent (g/cm⁴) de les provetes PF40950:

Desemmotllades

Peça				Mes	ures					Volum	Pos	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	Volum	гез	aparent
PF409501	276,00	276,50	276,25	135,00	135,50	135,25	44,00	44,00	44,00	1643,964	3600	2,190
PF409502	276,00	276,50	276,25	134,50	135,50	135,00	44,00	44,00	44,00	1640,925	3601	2,194
PF409503	276,00	276,50	276,25	134,50	135,50	135,00	44,00	44,00	44,00	1640,925	3599	2,193
PF409504	276,00	276,50	276,25	135,00	135,50	135,25	44,00	44,00	44,00	1643,964	3598	2,189
PF409505	276,50	276,50	276,50	135,00	135,50	135,25	44,00	44,00	44,00	1645,452	3601	2,188
PF409506	276,50	276,50	276,50	135,00	135,50	135,25	43,50	44,00	43,75	1636,102	3600	2,200

Assecades

Boos				Mes	ures					Volum	Bee	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	volum	Fe5	aparent
PF409501	273,50	274,00	273,75	133,50	135,50	134,00	43,50	43,50	43,50	1595,689	3231	2,025
PF409502	273,50	273,50	273,50	133,50	135,50	134,00	43,50	43,50	43,50	1594,232	3228	2,025
PF409503	273,50	273,50	273,50	133,50	135,50	134,00	43,50	43,50	43,50	1594,232	3231	2,027
PF409504	273,50	273,50	273,50	133,50	135,50	134,00	43,50	43,50	43,50	1594,232	3222	2,021
PF409505	273,50	273,50	273,50	133,50	135,50	134,00	43,50	43,50	43,50	1594,232	3225	2,023
PF409506	273,50	74,00	173,75	133,50	135,50	134,00	43,50	43,50	43,50	1012,789	3227	3,186

Cuites

Peça				Mesu	ures					Volum	Bee	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	volum	Fe5	aparent
PF409501	274,50	275,50	275,00	134,00	135,00	134,50	43,50	43,50	43,50	1608,956	3032	1,884
PF409502	274,50	275,00	274,75	134,00	135,00	134,50	43,50	43,50	43,50	1607,494	3026	1,882
PF409503	274,50	275,00	274,75	134,00	135,00	134,50	43,50	43,50	43,50	1607,494	3028	1,884
PF409504	274,50	275,00	274,75	134,00	134,50	134,25	43,50	43,50	43,50	1604,506	3021	1,883
PF409505	274,50	275,00	274,75	134,00	134,50	134,25	43,50	43,50	43,50	1604,506	3023	1,884
PF409506	274,50	275,00	274,75	134,00	135,00	134,50	43,50	43,50	43,50	1607,494	3023	1,881

Taula 62. Mesures PF40950

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Dimensions (mm), volum (cm⁵), massa (g), densitat aparent (g/cm⁵) de les provetes PF50850:

Desemmotllades

Peça				Mes	ures					Volum	Pos	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	Volum	гез	aparent
PF508501	276,00	276,50	276,25	134,50	135,50	135,00	43,00	43,00	43,00	1603,631	3599	2,244
PF508502	276,00	276,50	276,25	134,50	135,50	135,00	43,00	43,50	43,25	1612,955	3601	2,233
PF508503	276,00	276,50	276,25	134,50	136,00	135,25	43,00	43,50	43,25	1615,942	3602	2,229
PF508504	276,50	276,50	276,50	135,00	136,00	135,50	43,50	44,00	43,75	1639,127	3599	2,196
PF508505	276,50	277,00	276,75	135,00	136,00	135,50	43,50	43,50	43,50	1631,234	3601	2,208
PF508506	276,50	276,50	276,50	135,00	136,00	135,50	43,50	44,00	43,75	1639,127	3601	2,197

Assecades

Poca				Mes	ures					Volum	Pos	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	volum	res	aparent
PF508501	273,50	274,00	273,75	133,50	134,00	133,75	42,50	42,50	42,50	1556,098	3241	2,083
PF508502	273,00	274,00	273,50	133,50	134,00	133,75	42,50	43,00	42,75	1563,822	3244	2,074
PF508503	273,50	274,00	273,75	133,50	134,00	133,75	42,50	43,00	42,75	1565,251	3245	2,073
PF508504	274,00	274,00	274,00	133,50	134,50	134,00	43,00	43,50	43,25	1587,967	3234	2,037
PF508505	274,00	274,00	274,00	133,50	134,50	134,00	43,00	43,00	43,00	1578,788	3237	2,050
PF508506	274,00	274,00	274,00	133,50	134,50	134,00	43,00	43,50	43,25	1587,967	3235	2,037

Cuites

Peça				Mes	ures					Volum	Bee	Densitat
reça	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	volum	Fe5	aparent
PF508501	275,00	275,50	275,25	133,50	134,50	134,00	43,00	43,50	43,25	1595,211	3036	1,903
PF508502	274,50	275,50	275,00	133,50	134,50	134,00	42,50	43,00	42,75	1575,338	3035	1,927
PF508503	274,50	275,00	274,75	133,50	134,50	134,00	42,50	43,00	42,75	1573,905	3035	1,928
PF508504	275,00	275,00	275,00	133,50	135,00	134,25	43,00	43,50	43,25	1596,736	3027	1,896
PF508505	275,00	275,50	275,25	133,50	135,00	134,25	43,00	43,50	43,25	1598,188	3031	1,897
PF508506	275,00	275,00	275,00	133,50	135,00	134,25	43,00	43,50	43,25	1596,736	3025	1,894

Taula 63. Mesures PF50850
Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Dimensions (mm), volum (cm⁵), massa (g), densitat aparent (g/cm⁵) de les provetes PF50900:

Desemmotllades

Peça	Mesures										Pos	Densitat
	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	Volum	гез	aparent
PF509001	276,50	277,00	276,75	135,00	136,00	135,50	44,00	43,50	43,75	1640,609	3601	2,195
PF509002	276,50	276,50	276,50	135,00	136,00	135,50	44,50	43,50	44,00	1648,493	3600	2,184
PF509003	276,50	277,00	276,75	135,00	136,00	135,50	44,00	43,50	43,75	1640,609	3601	2,195
PF509004	276,50	277,00	276,75	135,00	136,00	135,50	44,00	43,50	43,75	1640,609	3599	2,194
PF509005	276,50	277,00	276,75	135,00	136,00	135,50	44,00	43,50	43,75	1640,609	3598	2,193
PF509006	276,50	277,00	276,75	135,00	136,00	135,50	43,50	44,00	43,75	1640,609	3597	2,192

Assecades

Peça		Mesures										Densitat
	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	volum	Fe5	aparent
PF509001	274,00	274,50	274,25	133,50	134,00	133,75	43,50	43,00	43,25	1586,451	3240	2,042
PF509002	274,00	274,00	274,00	133,50	134,00	133,75	44,00	43,00	43,50	1594,166	3241	2,033
PF509003	274,00	274,00	274,00	133,50	134,00	133,75	43,50	43,00	43,25	1585,004	3242	2,045
PF509004	274,00	274,00	274,00	133,50	134,50	134,00	43,50	43,00	43,25	1587,967	3238	2,039
PF509005	274,00	274,00	274,00	133,50	134,50	134,00	43,50	43,00	43,25	1587,967	3238	2,039
PF509006	274,00	274,00	274,00	133,50	134,50	134,00	43,00	43,50	43,25	1587,967	3240	2,040

Cuites

Peça				Volum	Pes	Densitat						
	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	volum	Fe5	aparent
PF509001	275,00	276,00	275,50	134,50	135,50	135,00	44,00	43,50	43,75	1627,172	3032	1,863
PF509002	275,50	275,50	275,50	134,50	135,00	134,75	44,00	43,00	43,50	1614,878	3028	1,875
PF509003	275,50	275,50	275,50	134,50	135,00	134,75	43,50	43,50	43,50	1614,878	3030	1,876
PF509004	275,00	275,50	275,25	134,50	135,00	134,75	43,50	43,00	43,25	1604,140	3028	1,888
PF509005	275,50	275,50	275,50	134,50	135,50	135,00	43,50	43,00	43,25	1608,576	3027	1,882
PF509006	275,00	275,50	275,25	134,50	135,50	135,00	43,00	43,50	43,25	1607,116	3028	1,884

Taula 64. Mesures PF50900

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Dimensions (mm), volum (cm⁵), massa (g), densitat aparent (g/cm⁵) de les provetes PF50950:

Desemmotllades

Peça		Mesures										Densitat
	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	Volum	163	aparent
PF509501	276,50	277,00	276,75	135,00	135,50	135,25	43,50	43,50	43,50	1628,224	3600	2,211
PF509502	276,50	277,00	276,75	135,00	135,50	135,25	43,50	44,00	43,75	1637,582	3600	2,198
PF509503	276,50	277,00	276,75	135,00	135,50	135,25	44,00	43,50	43,75	1637,582	3598	2,197
PF509504	276,50	277,00	276,75	135,00	135,50	135,25	43,50	44,00	43,75	1637,582	3597	2,197
PF509505	276,50	277,00	276,75	135,00	135,50	135,25	43,50	44,00	43,75	1637,582	3600	2,198
PF509506	276,50	277,00	276,75	135,00	135,50	135,25	43,50	44,00	43,75	1637,582	3600	2,198

Assecades

Peça		Mesures										Densitat
	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	volum	Fe5	aparent
PF509501	276,00	274,50	275,25	133,50	134,50	134,00	43,00	43,00	43,00	1585,991	3245	2,046
PF509502	276,00	274,50	275,25	134,00	134,50	134,25	42,50	43,50	43,00	1588,949	3246	2,043
PF509503	276,00	274,50	275,25	134,00	134,50	134,25	43,00	43,00	43,00	1588,949	3250	2,045
PF509504	276,00	274,50	275,25	134,00	134,50	134,25	43,00	43,00	43,00	1588,949	3240	2,039
PF509505	276,00	274,50	275,25	133,50	134,50	134,00	43,00	43,50	43,25	1595,211	3246	2,035
PF509506	276,00	274,50	275,25	134,00	134,50	134,25	43,00	43,50	43,25	1598,188	3247	2,032

Cuites

Peça		Mesures										Densitat
	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	volum	Fe5	aparent
PF509501	275,00	275,50	275,25	134,50	135,00	134,75	43,00	43,50	43,25	1604,140	3035	1,892
PF509502	275,00	275,50	275,25	134,50	135,00	134,75	42,50	43,50	43,00	1594,867	3034	1,902
PF509503	275,00	275,50	275,25	134,50	135,00	134,75	43,00	43,00	43,00	1594,867	3037	1,904
PF509504	275,00	275,50	275,25	134,50	135,00	134,75	43,00	43,00	43,00	1594,867	3030	1,900
PF509505	275,00	275,50	275,25	134,00	135,00	134,50	43,00	43,50	43,25	1601,164	3033	1,894
PF509506	275,00	275,50	275,25	134,00	135,00	134,50	43,00	43,50	43,25	1601,164	3035	1,895
				T (05.14	DEEOO						

Taula 65. Mesures PF50950

Dimensions (mm), volum (cm⁵), massa (g), densitat aparent (g/cm⁵) de les provetes PIERA:

Cuites												
Peça			Volum	Bac	Densitat							
	Longitud 1	Longitud 2	Longitud	Amplada 1	Amplada 2	Amplada	Gruix 1	Gruix 2	Gruix	volum	Fe5	aparent
PIERA 1	277,00	279,00	278,00	134,50	134,50	134,50	43,00	43,50	43,25	1617,161	3019	1,867
PIERA 2	277,50	279,00	278,25	134,50	134,50	134,50	42,50	43,50	43,00	1609,259	3039	1,888
PIERA 3	276,00	278,00	277,00	134,50	134,50	134,50	43,50	43,50	43,50	1620,658	3036	1,873
PIERA 4	275,50	278,00	276,75	134,00	134,00	134,00	42,50	44,00	43,25	1603,905	3031	1,890
PIERA 5	277,00	279,00	278,00	134,00	134,00	134,00	43,00	43,50	43,25	1611,149	3025	1,878
PIERA 6	277,00	279,00	278,00	134,50	134,50	134,50	43,00	43,50	43,25	1617,161	3024	1,870
				T (00 14	0/50						

Taula 66. Mesures PIERA

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

11.3. Gràfiques de resistència a compressió (provetes tallades)

Gràfiques de resistència a compressió de la sèrie PA30850_.1:

Gràfica 110. Gràfiques resistència a compressió PA30850_.1

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PA30900_.1:

Gràfica 111. Gràfiques resistència a compressió PA30900_.1

----- Plat

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PA30950_.1:

Gràfica 112. Gràfiques resistència a compressió PA30950_.1

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PA40850_.1:

Gràfica 113. Gràfiques resistència a compressió PA40850_.1

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PA40900_.1:

5 0

Gràfica 114. Gràfiques resistència a compressió PA40900_.1

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PA40900_.2:

Gràfica 115. Gràfiques resistència a compressió PA40900_.2

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PA40950_.1:

Gràfica 116. Gràfiques resistència a compressió PA40950_.1

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PA50850_.1:

Posició plat (mm)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PA50900_.1:

Gràfica 118. Gràfiques resistència a compressió PA50900_.1

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PA50950_.1:

Gràfica 119. Gràfiques resistència a compressió PA50950_.1

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PF30850_.1:

5 0

Gràfica 120. Gràfiques resistència a compressió PF30850_.1

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PF30900_.1:

Gràfica 121. Gràfiques resistència a compressió PF30900_.1

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PF30950_.1:

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PF40850_.1:

Gràfica 123. Gràfiques resistència a compressió PF40850_.1

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PF40900_.1:

Gràfica 124. Gràfiques resistència a compressió PF40900_.1

- Plat

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PF40900_.2:

Gràfica 125. Gràfiques resistència a compressió PF40900_.2

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PF40950_.1:

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PF50850_.1:

Gràfica 127. Gràfiques resistència a compressió PF50850_.1

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PF50900_.1:

Gràfica 128. Gràfiques resistència a compressió PF50900_.1

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PF50950_.1:

Gràfica 129. Gràfiques resistència a compressió PF50950_.1

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PIERA_.1:

Gràfica 130. Gràfiques resistència a compressió PIERA_.1

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PIERA_.2:

Gràfica 131. Gràfiques resistència a compressió PIERA_.2

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

11.4. Gràfiques de resistència a compressió fins a 180t (provetes senceres)

Gràfiques de resistència a compressió de la sèrie PA30850_:

Gràfica 132. Gràfiques resistència a compressió PA30850_

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PA30900_:

Gràfica 133. Gràfiques resistència a compressió PA30900_

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PA30950_:

Gràfica 134. Gràfiques resistència a compressió PA30950_

Posició plat (mm) – Transductor 1. – – Plat

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Resistència a compressió PA408501 (fins 180t)

Plat

Gràfica 135. Gràfiques resistència a compressió PA40850_

Gràfiques de resistència a compressió de la sèrie PA40850_:

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PA40900_:

Gràfica 136. Gràfiques resistència a compressió PA40900_

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PA40950_:

Gràfica 137. Gràfiques resistència a compressió PA40950_

-Transductor 2 ---- Transductor 1 ----- Plat

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PA50850_:

– Plat

Gràfica 138. Gràfiques resistència a compressió PA50850_

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PA50900_:

0

– Plat

Gràfica 139. Gràfiques resistència a compressió PA50900_

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PA50950_:

Gràfica 140. Gràfiques resistència a compressió PA50950_

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PF30850_:

Gràfica 141. Gràfiques resistència a compressió PF30850_

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PF30900_:

Gràfica 142. Gràfiques resistència a compressió PF30900_

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PF30950_:

Gràfica 143. Gràfiques resistència a compressió PF30950_
Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PF40850_:

Gràfica 144. Gràfiques resistència a compressió PF40850_

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PF40900_:

Gràfica 145. Gràfiques resistència a compressió PF40900_

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PF40950_:

Gràfica 146. Gràfiques resistència a compressió PF40950_

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PF50850_:

Gràfica 147. Gràfiques resistència a compressió PF50850_

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PF50900_:

Gràfica 148. Gràfiques resistència a compressió PF50900_

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Gràfiques de resistència a compressió de la sèrie PF50950_:

Gràfica 149. Gràfiques resistència a compressió PF50950_

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

0,6

Gràfiques de resistència a compressió de la sèrie PIERA_:

140

Gràfica 150. Gràfiques resistència a compressió PIERA_

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

11.5. Assaigs mitjançant el mètode de la caixa calenta calibrada

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PA30850_:

Gràfica 151. Gràfiques mètode de la caixa calenta calibrada PA30850_ (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PA30850_:

Gràfica 152. Gràfiques mètode de la caixa calenta calibrada PA30850_ (2)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PA30900_:

Gràfica 153. Gràfiques mètode de la caixa calenta calibrada PA30900_ (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PA30900_:

Gràfica 154. Gràfiques mètode de la caixa calenta calibrada PA30900_ (2)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PA30950_:

Gràfica 155. Gràfiques mètode de la caixa calenta calibrada PA30950_ (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PA30950_:

Gràfica 156. Gràfiques mètode de la caixa calenta calibrada PA30950_ (2)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PA40850_:

Gràfica 157. Gràfiques mètode de la caixa calenta calibrada PA40850_ (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PA40850_:

Gràfica 158. Gràfiques mètode de la caixa calenta calibrada PA40850_ (2)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PA40900_:

Gràfica 159. Gràfiques mètode de la caixa calenta calibrada PA40900_ (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PA40900_:

Gràfica 160. Gràfiques mètode de la caixa calenta calibrada PA40900_ (2)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PA40950_:

Gràfica 161. Gràfiques mètode de la caixa calenta calibrada PA40950_ (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PA40950_:

Gràfica 162. Gràfiques mètode de la caixa calenta calibrada PA40950_ (2)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PA50850_:

Gràfica 163. Gràfiques mètode de la caixa calenta calibrada PA50850_ (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PA50850_:

Gràfica 164. Gràfiques mètode de la caixa calenta calibrada PA50850_ (2)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PA50900_:

Gràfica 165. Gràfiques mètode de la caixa calenta calibrada PA50900_ (1)

Cara calenta

Temps (s) ita 5:30 5:45 5:00 5:00

Cara freda

\$15

bra freda

592

0600

00:0

0:15 0:30 0:45 Cambra calenta

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PA50900_:

Gràfica 166. Gràfiques mètode de la caixa calenta calibrada PA50900_ (2)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PA50950_:

Gràfica 167. Gràfiques mètode de la caixa calenta calibrada PA50950_ (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PA50950_:

Gràfica 168. Gràfiques mètode de la caixa calenta calibrada PA50950_ (2)

Cara freda

bra freda

Cara calenta

Cambra calenta

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PF30850_:

Gràfica 169. Gràfiques mètode de la caixa calenta calibrada PF30850_ (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PF30850_:

Gràfica 170. Gràfiques mètode de la caixa calenta calibrada PF30850_ (2)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PF30900_:

Gràfica 171. Gràfiques mètode de la caixa calenta calibrada PF30900_ (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PF30900_:

Gràfica 172. Gràfiques mètode de la caixa calenta calibrada PF30900_ (2)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PF30950_:

Gràfica 173. Gràfiques mètode de la caixa calenta calibrada PF30950_ (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PF30950_:

Gràfica 174. Gràfiques mètode de la caixa calenta calibrada PF30950_ (2)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PF40850_:

Gràfica 175. Gràfiques mètode de la caixa calenta calibrada PF40850_ (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PF40850_:

Gràfica 176. Gràfiques mètode de la caixa calenta calibrada PF40850_ (2)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PF40900_:

Gràfica 177. Gràfiques mètode de la caixa calenta calibrada PF40900_ (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PF40900_:

Gràfica 178. Gràfiques mètode de la caixa calenta calibrada PF40900_ (2)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PF40950_:

Gràfica 179. Gràfiques mètode de la caixa calenta calibrada PF40950_ (1)
Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PF40950_:

Gràfica 180. Gràfiques mètode de la caixa calenta calibrada PF40950_ (2)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PF50850_:

Gràfica 181. Gràfiques mètode de la caixa calenta calibrada PF50850_ (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PF50850_:

Gràfica 182. Gràfiques mètode de la caixa calenta calibrada PF50850_ (2)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PF50900_:

Gràfica 183. Gràfiques mètode de la caixa calenta calibrada PF50900_ (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PF50900_:

Gràfica 184. Gràfiques mètode de la caixa calenta calibrada PF50900_ (2)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PF50950_:

Gràfica 185. Gràfiques mètode de la caixa calenta calibrada PF50950_ (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PF50950_:

Gràfica 186. Gràfiques mètode de la caixa calenta calibrada PF50950_ (2)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PIERA_:

Gràfica 187. Gràfiques mètode de la caixa calenta calibrada PIERA_ (1)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Assaigs mitjançant el mètode de la caixa calenta calibrada de la sèrie PIERA_:

Gràfica 188. Gràfiques mètode de la caixa calenta calibrada PIERA_ (2)

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

11.6. Imatges SEM-MER

Imatges BSE a 200 augments de la sèrie PA30850:

PA30850 superior BSE 1

PA30850 centre BSE 1

PA30850 inferior BSE 1

PA30850 superior BSE 2

PA30850 centre BSE 2

PA30850 inferior BSE 2

PA30850 superior BSE 3

PA30850 centre BSE 3

PA30850 inferior BSE 3

Figura 187. Imatges BSE a 200 augments PA30850

Font. D. Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Imatges SE a 200 augments (SE1) i 50 augments (SE4), de la sèrie PA30850:

PA30850 superior SE 1

PA30850 centre SE 1

PA30850 inferior SE 1

PA30850 centre SE 4

PA30850 inferior SE 4

Figura 188. Imatges SE a 200 i 50 augments PA30850

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Imatges BSE a 200 augments de la sèrie PA30900:

PA30900 superior BSE 1

PA30900 centre BSE 1

PA30900 inferior BSE 1

PA30900 superior BSE 2

PA30900 centre BSE 2

PA30900 inferior BSE 2

PA30900 superior BSE 3

PA30900 centre BSE 3

PA30900 inferior BSE 3

Figura 189. Imatges BSE a 200 augments PA30900

Font. D. Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Imatges SE a 200 augments (SE1) i 50 augments (SE4), de la sèrie PA30900:

PA30900 centre SE 1

PA30900 inferior SE 1

PA30900 centre SE 4

PA30900 inferior SE 4

Figura 190. Imatges SE a 200 i 50 augments PA30900

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Imatges BSE a 200 augments de la sèrie PA30950:

PA30950 superior BSE 1

PA30950 centre BSE 1

PA30950 inferior BSE 1

PA30950 superior BSE 2

PA30950 centre BSE 2

PA30950 inferior BSE 2

PA30950 superior BSE 3

PA30950 centre BSE 3

PA30950 inferior BSE 3

Figura 191. Imatges BSE a 200 augments PA30950

Font. D. Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Imatges SE a 200 augments (SE1) i 50 augments (SE4), de la sèrie PA30950:

PA30950 centre SE 1

PA30950 inferior SE 1

PA30950 centre SE 4

PA30950 inferior SE 4

Figura 192. Imatges SE a 200 i 50 augments PA30950

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Imatges BSE a 200 augments de la sèrie PA40850:

PA40850 superior BSE 1

PA40850 centre BSE 1

PA40850 inferior BSE 1

PA40850 centre BSE 2

PA40850 inferior BSE 2

PA40850 centre BSE 3

PA40850 inferior BSE 3

Figura 193. Imatges BSE a 200 augments PA40850

Font. D. Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Imatges SE a 200 augments (SE1) i 50 augments (SE4), de la sèrie PA40850:

PA40850 superior SE 1

PA40850 centre SE 1

PA40850 inferior SE 1

PA40850 centre SE 4

PA40850 inferior SE 4

Figura 194. Imatges SE a 200 i 50 augments PA40850

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Imatges BSE a 200 augments de la sèrie PA40900:

PA40900 superior BSE 1

PA40900 centre BSE 1

PA40900 inferior BSE 1

PA40900 superior BSE 2

PA40900 centre BSE 2

PA40900 inferior BSE 2

PA40900 superior BSE 3

PA40900 centre BSE 3

PA40900 inferior BSE 3

Figura 195. Imatges BSE a 200 augments PA40900

Font. D. Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Imatges SE a 200 augments (SE1) i 50 augments (SE4), de la sèrie PA40900:

PA40900 centre SE 1

PA40900 inferior SE 1

PA40900 centre SE 4

PA40900 inferior SE 4

Figura 196. Imatges SE a 200 i 50 augments PA40900

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Imatges BSE a 200 augments de la sèrie PA40950:

PA40950 superior BSE 1

PA40950 centre BSE 1

PA40950 inferior BSE 1

PA40950 superior BSE 2

PA40950 centre BSE 2

PA40950 inferior BSE 2

PA40950 superior BSE 3

PA40950 centre BSE 3

PA40950 inferior BSE 3

Figura 197. Imatges BSE a 200 augments PA40950

Font. D. Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

PA40950 superior SE 1 PA40950 superior SE 4

Imatges SE a 200 augments (SE1) i 50 augments (SE4), de la sèrie PA40950:

PA40950 inferior SE 4

Figura 198. Imatges SE a 200 i 50 augments PA40950

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Imatges BSE a 200 augments de la sèrie PA50850:

PA50850 superior BSE 1

PA50850 centre BSE 1

PA50850 inferior BSE 1

PA50850 centre BSE 2

PA50850 inferior BSE 2

PA50850 superior BSE 3

PA50850 centre BSE 3

PA50850 inferior BSE 3

Figura 199. Imatges BSE a 200 augments PA50850

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Imatges SE a 200 augments (SE1) i 50 augments (SE4), de la sèrie PA50850:

PA50850 superior SE 1

PA50850 centre SE 1

PA50850 inferior SE 1

PA50850 centre SE 4

PA50850 inferior SE 4

Figura 200. Imatges SE a 200 i 50 augments PA50850

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Imatges BSE a 200 augments de la sèrie PA50900:

PA50900 superior BSE 1

PA50900 centre BSE 1

PA50900 inferior BSE 1

PA50900 centre BSE 2

PA50900 inferior BSE 2

PA50900 superior BSE 3

PA50900 centre BSE 3

PA50900 inferior BSE 3

Figura 201. Imatges BSE a 200 augments PA50900

Font. D. Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Imatges SE a 200 augments (SE1) i 50 augments (SE4), de la sèrie PA50900:

PA50900 superior SE 1

PA50900 centre SE 1

PA50900 inferior SE 1

PA50900 centre SE 4

PA50900 inferior SE 4

Figura 202. Imatges SE a 200 i 50 augments PA50900

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Imatges BSE a 200 augments de la sèrie PA50950:

PA50950 superior BSE 1

PA50950 centre BSE 1

PA50950 inferior BSE 1

PA50950 centre BSE 2

PA50950 inferior BSE 2

PA50950 superior BSE 3

PA50950 centre BSE 3

PA50950 inferior BSE 3

Figura 203. Imatges BSE a 200 augments PA50950

Font. D. Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Imatges SE a 200 augments (SE1) i 50 augments (SE4), de la sèrie PA50950:

PA50950 superior SE 1

PA50950 centre SE 1

PA50950 inferior SE 1

PA50950 centre SE 4

PA50950 inferior SE 4

Figura 204. Imatges SE a 200 i 50 augments PA50950

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Imatges BSE a 200 augments de la sèrie PF30850:

PF30850 superior BSE 1

PF30850 centre BSE 1

PF30850 inferior BSE 1

PF30850 superior BSE 2

PF30850 centre BSE 2

PF30850 inferior BSE 2

PF30850 superior BSE 3

PF30850 centre BSE 3

PF30850 inferior BSE 3

Figura 205. Imatges BSE a 200 augments PF30850

Font. D. Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Imatges SE a 200 augments (SE1) i 50 augments (SE4), de la sèrie PF30850:

PF30850 inferior SE 1

PF30850 centre SE 4

PF30850 inferior SE 4

Figura 206. Imatges SE a 200 i 50 augments PF30850

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Imatges BSE a 200 augments de la sèrie PF30900:

PF30900 centre BSE 1

PF30900 inferior BSE 1

PF30900 superior BSE 2

PF30900 centre BSE 2

PF30900 inferior BSE 2

PF30900 superior BSE 3

PF30900 centre BSE 3

PF30900 inferior BSE 3

Figura 207. Imatges BSE a 200 augments PF30900

Font. D. Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

PF30900 superior SE 4

PF30900 centre SE 1 PF30900 centre SE 4 PF30900 inferior SE 4 PF30900 inferior SE 1 Figura 208. Imatges SE a 200 i 50 augments PF30900 Font. D. Morillas

Imatges SE a 200 augments (SE1) i 50 augments (SE4), de la sèrie PF30900:

PF30900 superior SE 1

355

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Imatges BSE a 200 augments de la sèrie PF30950:

Figura 209. Imatges BSE a 200 augments PF30950

Font. D. Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Imatges SE a 200 augments (SE1) i 50 augments (SE4), de la sèrie PF30950:

PF30950 centre SE 1

PF30950 inferior SE 1

PF30950 centre SE 4

PF30950 inferior SE 4

Figura 210. Imatges SE a 200 i 50 augments PF30950

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Imatges BSE a 200 augments de la sèrie PF40850:

PF40850 superior BSE 1

PF40850 centre BSE 1

PF40850 inferior BSE 1

PF40850 superior BSE 2

PF40850 centre BSE 2

PF40850 inferior BSE 2

PF40850 superior BSE 3

PF40850 centre BSE 3

PF40850 inferior BSE 3

Figura 211. Imatges BSE a 200 augments PF40850

Font. D. Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Imatges SE a 200 augments (SE1) i 50 augments (SE4), de la sèrie PF40850:

PF40850 centre SE 1

PF40850 inferior SE 1

PF40850 centre SE 4

PF40850 inferior SE 4

Figura 212. Imatges SE a 200 i 50 augments PF40850

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Imatges BSE a 200 augments de la sèrie PF40900:

PF40900 superior BSE 1

PF40900 centre BSE 1

PF40900 inferior BSE 1

PF40900 superior BSE 2

FASEIGAUPAKASISE 24 19

PF40900 centre BSE 2

PF40900 inferior BSE 2

PF40900 superior BSE 3

PF40900 centre BSE 3

PF40900 inferior BSE 3

Figura 213. Imatges BSE a 200 augments PF40900

Font. D. Morillas
Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Imatges SE a 200 augments (SE1) i 50 augments (SE4), de la sèrie PF40900:

PF40900 centre SE 1

PF40900 inferior SE 1

PF40900 centre SE 4

PF40900 inferior SE 4

Figura 214. Imatges SE a 200 i 50 augments PF40900

Font. D. Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Imatges BSE a 200 augments de la sèrie PF40950:

PF40950 superior BSE 1

PF40950 centre BSE 1

PF40950 inferior BSE 1

PF40950 superior BSE 2

PF40950 centre BSE 2

PF40950 inferior BSE 2

PF40950 superior BSE 3

PF40950 centre BSE 3

PF40950 inferior BSE 3

Figura 215. Imatges BSE a 200 augments PF40950

Font. D. Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Imatges SE a 200 augments (SE1) i 50 augments (SE4), de la sèrie PF40950:

PF40950 superior SE 1

PF40950 centre SE 1

PF40950 inferior SE 1

PF40950 centre SE 4

PF40950 inferior SE 4

Figura 216. Imatges SE a 200 i 50 augments PF40950

Font. D. Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Imatges BSE a 200 augments de la sèrie PF50850:

PF50850 superior BSE 1

PF50850 centre BSE 1

PF50850 inferior BSE 1

PF50850 superior BSE 2

PF50850 centre BSE 2

PF50850 inferior BSE 2

PF50850 superior BSE 3

PF50850 centre BSE 3

PF50850 inferior BSE 3

Figura 217. Imatges BSE a 200 augments PF50850

Font. D. Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

PF50850 centre SE 1 PF50850 inferior SE 1

Imatges SE a 200 augments (SE1) i 50 augments (SE4), de la sèrie PF50850:

PF50850 superior SE 1

Font. D. Morillas

PF50850 superior SE 4

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Imatges BSE a 200 augments de la sèrie PF50900:

PF50900 superior BSE 1

PF50900 centre BSE 1

PF50900 inferior BSE 1

PF50900 superior BSE 2

PF50900 centre BSE 2

PF50900 inferior BSE 2

PF50900 superior BSE 3

PF50900 centre BSE 3

PF50900 inferior BSE 3

Figura 219. Imatges BSE a 200 augments PF50900

Font. D. Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Imatges SE a 200 augments (SE1) i 50 augments (SE4), de la sèrie PF50900:

PF50900 superior SE 1

PF50900 centre SE 1

PF50900 inferior SE 1

PF50900 centre SE 4

PF50900 inferior SE 4

Figura 220. Imatges SE a 200 i 50 augments PF50900

Font. D. Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Imatges BSE a 200 augments de la sèrie PF50950:

PF50950 superior BSE 1

PF50950 centre BSE 1

PF50950 inferior BSE 1

PF50950 superior BSE 2

PF50950 centre BSE 2

PF50950 inferior BSE 2

PF50950 superior BSE 3

PF50950 centre BSE 3

PF50950 inferior BSE 3

Figura 221. Imatges BSE a 200 augments PF50950

Font. D. Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Imatges SE a 200 augments (SE1) i 50 augments (SE4), de la sèrie PF50950:

PF50950 centre SE 1

PF50950 inferior SE 1

PF50950 centre SE 4

PF50950 inferior SE 4

Figura 222. Imatges SE a 200 i 50 augments PF50950

Font. D. Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Imatges BSE a 200 augments de la sèrie PIERA:

PIERA superior BSE 1

PIERA centre BSE 1

PIERA inferior BSE 1

PIERA superior BSE 2

PIERA centre BSE 2

PIERA inferior BSE 2

PIERA superior BSE 3

PIERA centre BSE 3

PIERA inferior BSE 3

Figura 223. Imatges BSE a 200 augments PIERA

Font. D. Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Imatges SE a 200 augments (SE1) i 50 augments (SE4), de la sèrie PIERA:

PIERA centre SE 1

PIERA inferior SE 1

PIERA centre SE 4

PIERA inferior SE 4

Figura 224. Imatges SE a 200 i 50 augments PIERA

Font. D. Morillas

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Spectrum: PA30850 1

11.7. Composició elemental

Composició elemental de la sèrie PA30850:

Element	Series	unn. C [wt.%]	norm. C [wt.%]	Atom. C [at.%]
Carbon Oxygen Fluorine Sodium Magnesium Aluminium Silicon Chlorine Potassium Calcium Titanium Iron	K-series K-series K-series K-series K-series K-series K-series K-series K-series K-series K-series	28.97 42.33 0.57 0.52 0.53 5.47 16.69 0.00 1.66 1.94 0.25 2.81	28.47 41.61 0.56 0.51 0.53 5.38 16.41 0.00 1.63 1.91 0.24 2.76	39.70 43.55 0.49 0.37 0.36 3.34 9.78 0.00 0.00 0.70 0.80 0.08 0.08 0.83
	Total:	101.73	100.00	100.00

Element	Series	unn. C	norm. C	Atom. C
		[wt.%]	[wt.%]	[at.%]
Carbon	K-series	29.99	30.54	42.17
Oxygen	K-series	39.87	40.60	42.09
Sodium	K-series	0.36	0.37	0.27
Magnesium	K-series	0.52	0.53	0.36
Aluminium	K-series	5.28	5.38	3.31
Silicon	K-series	15.54	15.83	9.35
Potassium	K-series	1.59	1.62	0.69
Calcium	K-series	2.00	2.03	0.84
Titanium	K-series	0.21	0.22	0.07
Iron	K-series	2.83	2.88	0.86

Total: 98.19 100.00 100.00

Spectrum: PA30850 inferior 1

Spectrum: PA30850 centre 1

Element	Series	unn. C	norm. C	Atom. C
		[wt.%]	[wt.%]	[at.%]
Carbon	K-series	32.46	30.09	41.59
Oxygen	K-series	44.26	41.03	42.57
Sodium	K-series	0.42	0.39	0.28
Magnesium	K-series	0.66	0.61	0.42
Aluminium	K-series	4.88	4.52	2.78
Silicon	K-series	18.30	16.96	10.02
Potassium	K-series	1.39	1.29	0.55
Calcium	K-series	2.44	2.26	0.94
Titanium	K-series	0.21	0.20	0.07
Iron	K-series	2.86	2.65	0.79
	Total:	107.87	100.00	100.00

Gràfica-taula 10. Microanàlisis EDX PA30850

372

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Composició elemental de la sèrie PA30900:

Gràfica-taula 11. Microanàlisis EDX PA30900

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Composició elemental de la sèrie PA30950:

Gràfica-taula 12. Microanàlisis EDX PA30950

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Composició elemental de la sèrie PA40850:

Gràfica-taula 13. Microanàlisis EDX PA40850

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Composició elemental de la sèrie PA40900:

Gràfica-taula 14. Microanàlisis EDX PA40900

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Composició elemental de la sèrie PA40950:

Gràfica-taula 15. Microanàlisis EDX PA40950

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

. _ _ _ _ _ _ _

26.42

42.67

0.37

0.45

5.14

0.00

1.58

1.65

0.24

2.80

26.29

0.21

42.30

0.37

0.43

4.93

19.65

1.51

1.43

0.23

2.64

30.08

40.22

0.35

0.47

5.74

16.32

1.65

1.83

0.30

3.04

18.68

37.33

45.25

0.27

0.31

3.23

0.00

0.69

0.70

0.08

0.85

37.16

0.26

44.88

0.28

0.30

3.10

0.66

0.60

0.08

0.80

41.77

41.93

0.25

0.32

3.55

9.69

0.70

0.76

0.10

0.91

11.88

11.29

Composició elemental de la sèrie PA50850:

Spectrum: PA50850 superior 1

Total: 101.32 100.00 100.00

K-series

3.08

Gràfica-taula 16. Microanàlisis EDX PA50850

Iron

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Composició elemental de la sèrie PA50900:

Gràfica-taula 17. Microanàlisis EDX PA50900

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Composició elemental de la sèrie PA50950:

Gràfica-taula 18. Microanàlisis EDX PA50950

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Composició elemental de la sèrie PF30850:

Gràfica-taula 19. Microanàlisis EDX PF30850

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Composició elemental de la sèrie PF30900:

Gràfica-taula 20. Microanàlisis EDX PF30900

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Composició elemental de la sèrie PF30950:

Gràfica-taula 21. Microanàlisis EDX PF30950

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Composició elemental de la sèrie PF40850:

Total: 105.67 100.00 100.00

Gràfica-taula 22. Microanàlisis EDX PF40850

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Composició elemental de la sèrie PF40900:

Gràfica-taula 23. Microanàlisis EDX PF40900

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Composició elemental de la sèrie PF40950:

Gràfica-taula 24. Microanàlisis EDX PF40950

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Composició elemental de la sèrie PF50850:

Spectrum: PF50850 superior 1

Element	Series	unn. C [wt.%]	norm. C [wt.%]	Atom. C [at.%]
Carbon	K-series	35.35	31.86	43.60
Oxygen	K-series	44.37	39.98	41.08
Sodium	K-series	0.60	0.54	0.39
Magnesium	K-series	0.61	0.55	0.37
Aluminium	K-series	6.10	5.50	3.35
Silicon	K-series	16.99	15.31	8.96
Chlorine	K-series	0.00	0.00	0.00
Potassium	K-series	1.82	1.64	0.69
Calcium	K-series	1.75	1.57	0.65
Titanium	K-series	0.28	0.25	0.09
Iron	K-series	3.10	2.80	0.82
	Total:	110.97	100.00	100.00

Spectrum: PF50850 centre 1

Element	Series	unn. C [wt.%]	norm. C [wt.%]	Atom. C [at.%]
Carbon	K-series	32.43	30.75	42.42
Oxygen	K-series	42.49	40.29	41.73
Sodium	K-series	0.55	0.52	0.38
Magnesium	K-series	0.58	0.55	0.37
Aluminium	K-series	6.01	5.70	3.50
Silicon	K-series	16.49	15.63	9.22
Sulfur	K-series	0.00	0.00	0.00
Chlorine	K-series	0.00	0.00	0.00
Potassium	K-series	1.79	1.70	0.72
Calcium	K-series	1.79	1.70	0.70
Titanium	K-series	0.27	0.25	0.09
Iron	K-series	3.08	2.92	0.87

Total: 105.48 100.00 100.00

Spectrum: PF50850 inferior 1

Element	Series	unn. C [wt.%]	norm. C [wt.%]	Atom. C [at.%]
Carbon	K-series	32.37	28.66	39.79
Oxygen	K-series	47.60	42.14	43.93
Sodium	K-series	0.56	0.50	0.36
Magnesium	K-series	0.56	0.50	0.34
Aluminium	K-series	5.55	4.91	3.04
Silicon	K-series	19.93	17.64	10.48
Chlorine	K-series	0.00	0.00	0.00
Potassium	K-series	1.68	1.49	0.63
Calcium	K-series	1.62	1.44	0.60
Titanium	K-series	0.29	0.25	0.09
Iron	K-series	2.80	2.48	0.74
	Total:	112.96	100.00	100.00

Gràfica-taula 25. Microanàlisis EDX PF50850

Universitat de Girona Escola Politècnica Superior $\overline{}$

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Composició elemental de la sèrie PF50900:

Spectrum: PF50900 superior 1

Element	Series	unn. C [wt.%]	norm. C [wt.%]	Atom. C [at.%]
Carbon Oxygen Sodium Magnesium Aluminium Silicon Chlorine Potassium Calcium Titanium Iron	K-series K-series K-series K-series K-series K-series K-series K-series K-series K-series	33.04 45.84 0.58 5.40 17.83 0.00 1.55 1.60 0.23 2.63	30.24 41.95 0.53 0.53 4.94 16.31 0.00 1.41 1.47 0.21 2.41	41.48 43.20 0.38 0.36 3.02 9.57 0.00 0.60 0.60 0.60 0.07 0.71

Element	Series	unn. C [wt.%]	norm. C [wt.%]	Atom. C [at.%]
Carbon Oxygen Sodium Magnesium Aluminium Silicon Chlorine Potassium Calcium Titanium	K-series K-series K-series K-series K-series K-series K-series K-series	32.91 47.63 0.60 0.61 5.74 18.65 0.00 1.66 1.81 0.26	29.22 42.30 0.54 0.55 5.10 16.56 0.00 1.48 1.60 0.23	40.37 43.86 0.39 0.37 3.14 9.78 0.00 0.63 0.66 0.08
1ron	K-series Total:	2.72 112.60	2.42 100.00	100.00

Spectrum: PF50900 inferior 1

Element	Series	unn. C [wt.%]	norm. C [wt.%]	Atom. C [at.%]
Carbon Oxygen Sodium Magnesium Aluminium Silicon Chlorine Potassium Calcium Titanium Iron	K-series K-series K-series K-series K-series K-series K-series K-series K-series K-series	33.16 47.67 0.69 0.67 6.54 17.33 0.00 1.95 1.88 0.32 3.00	29.29 42.11 0.61 0.60 5.77 15.31 0.00 1.72 1.66 0.28 2.65	40.51 43.72 0.44 0.41 3.56 9.06 0.00 0.73 0.69 0.10 0.79

Total: 113.20 100.00 100.00

Gràfica-taula 26. Microanàlisis EDX PF50900

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Composició elemental de la sèrie PF50950:

Gràfica-taula 27. Microanàlisis EDX PF50950

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Composició elemental de la sèrie PIERA:

Gràfica-taula 28. Microanàlisis EDX PIERA

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

11.8. Difractogrames

Difractograma de la sèrie PA30850:

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Difractograma de la sèrie PA30900:

 M2PA30900 - Hie: PA309007aw - Type: 21n/1n locked - start: 5.00 - end 50.00 - end

 Operations: Import

 #46-1045 (*) - Quartz, syn - SiO2 - Hexagonal - P3221 (154)

 #66-0439 (C) - Orthoclase - K(AIS308) - Monoclinic - C2/m (12)

 #76-0898 (C) - Albite - Na(AIS308) - Monoclinic - C1 (0)

 #02-0037 (D) - Montmonilonite - AIS206(OH)2 - Monoclinic

 #82-0576 (C) - Muscovite 2 ITM RG1 - KAI2(AIS3010)(OH)2 - Monoclinic - C2/c (15)

Gràfica 190. Difractograma PA30900

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Difractograma de la sèrie PA30950:

Gràfica 191. Difractograma PA30950

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Difractograma de la sèrie PA40850:

Gràfica 192. Difractograma PA40850

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Difractograma de la sèrie PA40900:

 M2PA40900 - Hie: PA40900raw - Type: 21n/1n Tocked - Statt. 5.000 - End. 50.00 - Statt. 5

Gràfica 193. Difractograma PA40900

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Difractograma de la sèrie PA40950:

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Difractograma de la sèrie PA50850:

 M2PAS0890 - Hie: PAS048007aw - Type: 211/111100X80a - Statt: 5.000 - End: 50.000 - Statt: 50.0000 - Statt: 50.000 - Statt: 50.000 - Statt: 50.000 - Sta

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Difractograma de la sèrie PA50900:

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Difractograma de la sèrie PA50950:

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Difractograma de la sèrie PF30850:

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Difractograma de la sèrie PF30900:

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Difractograma de la sèrie PF30950:

Gràfica 200. Difractograma PF30950

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Difractograma de la sèrie PF40850:

Gràfica 201. Difractograma PF40850

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Difractograma de la sèrie PF40900:

Gràfica 202. Difractograma PF40900

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Difractograma de la sèrie PF40950:

 M2PF-40950 - Hie: PF40950.raw - 1ype: 21h/Th locked - Start: 5.00

 Operations: Import

 ●46-1045 (*) - Quartz, syn - SiO2 - Hexagonal - P3221 (154)

 ●86-0439 (C) - Orthoclase - K(AISi3O8) - Monoclinic - C2/m (12)

 ●76-0898 (C) - Albite - Na(AISi3O8) - Triclinic - C-1 (0)

Gràfica 203. Difractograma PF40950

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Difractograma de la sèrie PF50850:

Gràfica 204. Difractograma PF50850

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Difractograma de la sèrie PF50900:

Gràfica 205. Difractograma PF50900

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Difractograma de la sèrie PF50950:

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

Difractograma de la sèrie PIERA:

Gràfica 207. Difractograma PIERA

Influència de la pressió del premsat i temperatura de cocció sobre la resistència a compressió i conductivitat tèrmica del maó massís ceràmic elaborat amb fangs sobrants procedents de centrals d'àrids

11.9. Fitxa tècnica del maó de Piera

Figura 225. Fitxa tècnica del maó de Piera