

Treball final de màster

Estudi: Màster en Enginyeria Informàtica

Títol:
Simulador i visualitzador de robustesa de xarxes
(Network robustness simulator and visualizer)

Document:
Treball

Alumne:
Sergio Gómez Cosgaya

Tutor: Jose Luís Marzo Lázaro
Departament: Arquitectura i tecnologia de computadors
Àrea: Arquitectura i tecnologia de computadors

Convocatòria (mes/any)
Setembre 2017

i

Contents

1 Introduction 1
1.1 Introduction, motivations and aims of the project 1

1.1.1 Motivations . 1
1.1.2 Objectives . 1

2 Viability study 3
2.1 Development cost . 3
2.2 Production cost . 4

3 Methodology 5

4 Planning 7

5 Previous concepts 9
5.1 Basic network concepts . 9

5.1.1 Graph theory . 9
5.2 Robustness and metrics . 10

5.2.1 General metrics classification . 11
5.3 Failures and attacks . 12

6 Robustness process 15
6.1 Input variables . 15
6.2 Process steps . 16

6.2.1 Importing the network . 16
6.2.2 Initial metrics computation . 16
6.2.3 Attacks generation . 16
6.2.4 Metrics computation . 16
6.2.5 Principal component analysis . 17
6.2.6 Robustness value and surface . 17
6.2.7 Results generation . 18

7 System requirements 19
7.1 Functional requirements . 19
7.2 Non-functional requirements . 20

8 Studies and decisions 21
8.1 Launching an experiment . 21
8.2 Viewing experiments logs . 22
8.3 Recomputing experiments . 23
8.4 Getting results . 23
8.5 Viewing networks and animated results 24
8.6 Implementation decisions . 26

ii

9 Analysis and design 27
9.1 Previous simulation R process analysis 27
9.2 Web application analysis . 28

9.2.1 Use cases . 30
Compute new set of simulations 31
Compute a simulation again . 32
Visualize attack over a network 33
Enable user . 34

9.2.2 Data model . 34
9.3 Application functionalities . 37

9.3.1 User functionalities . 38
Simulator user functionalities . 38
Visualizer user functionalities . 38
Generator user functionalities . 39

9.3.2 Administrator functionalities . 39
9.3.3 Functionalities workflow . 40

Compute new set of simulations workflow 40
Download simulation result XML file 43
View generated attack in simulation with visualizer 44

10 Implementation 46
10.1 Server structure . 46

10.1.1 Production and testing servers interaction 46
10.1.2 Client-side implementation . 47
10.1.3 Server-side implementation . 49

10.2 Performance improvement . 50
10.2.1 Paralleling metrics calculation 50

10.3 Collaborators code implementation . 52
10.3.1 Epidemic attacks . 52
10.3.2 Throughput and link-usage metrics 53

11 Results 54
11.1 Developed application . 54
11.2 Collaborations . 59

11.2.1 Technical University of Munich (TUM) collaboration 60
Optimization algorithm . 60
Throughput . 61
Link usage . 61

11.2.2 Kansas State University (KSU) collaboration 61
11.2.3 Institut Català de Recerca de l’Aigua (ICRA) collaboration . . . 62

11.3 The 3rd Delft-Girona Workshop of robustness of complex networks . . 63

12 Conclusions 64

13 Future work 65

iii

List of Figures

3.1 Methodology workflow diagram . 6

4.1 Project planning . 7

5.1 Adjacency matrix . 10
5.2 Laplacian matrix . 10
5.3 Node failure . 13
5.4 Attack spread . 13
5.5 Random attack . 13
5.6 Targeted attack . 14
5.7 Epidemic attack . 14

6.1 Metrics 3D Matrix . 17
6.2 Robustness surface . 18

8.1 Resulting simulation robustness surface 24
8.2 R plot functionality example . 25
8.3 Attacks comparison visualization . 26

9.1 R process design scheme . 28
9.2 Web application modules . 29
9.3 Application use cases . 30
9.4 Data model . 35
9.5 Logical server-side and client-side structure 40
9.6 Compute new set workflow . 41
9.7 Check launched simulations status . 42
9.8 Generated simulations computing process 43
9.9 Download resulting XML file . 44
9.10 Preview generated attack in visualizer 45

10.1 Git interaction between servers . 47
10.2 Client-side web tools implementation 48
10.3 Server-side implementation structure 49
10.4 Metrics calculation paralleled process 51
10.5 Simulator and KSU code interaction . 52
10.6 Simulator and TUM code interaction . 53

11.1 Application login page screenshot . 54
11.2 Computing a new experiment screenshot 55
11.3 Experiment results screenshot . 56
11.4 Attack result visualization screenshot 57
11.5 Visualization over a map screenshot . 58
11.6 Generator tool screenshot . 59
11.7 Epidemic attack spread . 61

iv

11.8 Girona’s sewerage system network . 62
11.9 Girona’s sewerage network clustering 63
11.10Delft-Girona workshop programme . 63

13.1 Interdependent networks mode . 65

v

List of Tables

2.1 Initial costs . 3
2.2 Extra costs . 4
2.3 Developers costs . 4
2.4 Server specifications . 4

9.1 Compute a new set of simulations: use case table 31
9.2 Compute a simulation again: use case table 32
9.3 Visualize a generated attack over a network: use case table 33
9.4 Visualize a generated attack over a network: use case table 34

1

Chapter 1

Introduction

1.1 Introduction, motivations and aims of the project

In a full communicated world where people around the world communicates each
other through big networks it is essential to take care of these networks and make
them available at much as possible. As a network must deal against attacks and fail-
ures, an analysis of them is mandatory, starting from checking its characteristics to
executing failure simulations.

Related to network analysis, the research group BCDS1 of University of Girona
has been working for a while, so when I joined BCDS I started working on this area.

1.1.1 Motivations

In the research group, there was significant work done about network robustness
analysis, that is analysing how a network is affected against several attacks. To anal-
yse robustness, different experiments had to be executed with different kind of at-
tacks and attack combinations which produced several experiments to execute.

This project is related to this previous work done and the main goal was to make
these experiments easier. Previously, all executions had to be done manually and
individually from a command line. Moreover, executions could not be executed in
background, that means that who executed the experiments had to wait until execu-
tions finish and it was impossible to analyse results in a graphical way because they
only had a static network visualizer which with a high number of nodes make the
visual analysis impossible to achieve.

The main motivation was to start working in this topic and help the research
group making an automatic tool or (from now referred as simulator) which could
help them to execute their experiments easily. Also, another important motivation
was to start working in a research group, learning how research world is.

1.1.2 Objectives

The main objective is to develop the automatic simulator which will be able to exe-
cute several experiments. The main functionalities it must have are:

• Simulator must be available worldwide through web access.

• Execute multiple experiments automatically from a single call.

1Broadband Network Control and Management. Official website: http://bcds.udg.edu

http://bcds.udg.edu

Chapter 1. Introduction 2

• Execute experiments in background, allowing the user to quit the simulator
and executions do not stop.

• Full data results download availability.

• Nice results and networks visualizations.

• Simulator must have different workspaces to not merge different type execu-
tions and have users management.

Also, the simulator is going to have many more functionalities, but they are ex-
plained with detail in a further section.

3

Chapter 2

Viability study

In this chapter a brief viability study is detailed. First we need to explain some con-
siderations to understand the taken decisions. This project is done in a university
research group background, that means that the viability study probably should dif-
fer if being in a business background. This project has been developed practically
entirely by myself (i.e. only one developer) but in this viability analysis it is sup-
posed that different kind of roles can be hired (e.g. a developer, a designer, etc.).

2.1 Development cost

In order to calculate the development cost, this formula is used:

dev cost = initial cost + extra cost + developers cost

Necessary tools to develop the application are (at minimum):

• One computer for developer with medium specifications requirements.

• One computer for designer with high specifications requirements.

• Development IDE for developer (e.g. Atom).

• Development IDE for designer (e.g. Atom plus Adobe suite).

• Testing server with medium specifications requirements.

Initial cost is calculated by necessary devices cost:

DEVICES PRICE (euro)
Computer with medium resources 750
Computer with high resources 1200
Testing server with medium resources 1500

TABLE 2.1: Initial costs

Assuming all tools have to be bought, calculated initial cost is:

initial cost = 750 + 1200 + 1500 = 3450 euro

Chapter 2. Viability study 4

Extra cost are all costs related to development IDEs and their licenses:

TOOLS PRICE (euro)
Development IDE - Atom Free
Designing IDE - Adobe suite 60 / month

TABLE 2.2: Extra costs

As Adobe suite has a price of 60 euro each month we assume buy a 1 year license.
With that in mind calculated extra cost is:

extra cost = 0 + 60x12 = 720 euro

As said before, this study is done assuming the existence of one developer and
one designer. The first one is assumed to have a full-time schedule and the second
one a half-time schedule. The estimated developing time is around 4 months (ap-
proximately 17 weeks) so developers costs are based on:

EMPLOYEE HOURS PRICE (euro)
Web developer 40 / week 15 / hour
Designer 20 / week 110 / hour

TABLE 2.3: Developers costs

Calculated developer cost is:

developers cost = (17 x 40 x 15) + (17 x 20 x 20) = 17000 euro

Finally, development cost is:

dev cost = 3450 + 720 + 17000 = 21170 euro

2.2 Production cost

For production there are two options. First one is to buy a Virtual Private Server
(VPS) in any cloud provider which will have a monthly cost and second one is to
buy a physical server which only has a bigger unique cost. In our case we decided
to buy a physical server in order to not have our data in the cloud. Physical server
bought is:

SERVER SPECIFICATIONS HOURS
Server name HPE ProLiant ML350e
CPU Intel R© Xeon R© E5-2400 v2
RAM 64GB DDR3 RDIMM
HDD 2TB SATA
Price 1750 euro

TABLE 2.4: Server specifications

Production cost is:

production cost = 1750 euro

5

Chapter 3

Methodology

The methodology used during the project has been similar to the agile methodology.
Agile methodologies are focused on improving quality and the efficiency of the cor-
responding project development. Therefore, the whole process is planned in short
iterations in order to be able to deal with unpredictable changes and readjust the
development orientation. All phases in process seen in figure 3.1 can be described
as:

Previous study and decisions – A depth study of bibliography and existing stud-
ies done have to be done to see what is yet done and what can be set as starting point.
A study and a well thought decision about how to achieve our objective is very im-
portant for not reinventing the wheel.

Specify application requirements – Before implementing nothing, it is impor-
tant to define which requirements and functionalities our application is going to
have. This can take some time, because is better to lose some time here than having
to stop the developing process afterwards due a bad requirements specification.

Iteration planning – Here a iterative process is started. All requirements have to
be planned in tasks or iterations which are going to be implemented following some
order (e.g. first server-side tasks).

Tasks developing – For each task planned a iterative process must be followed.
Before implementing a previous application status analysis should be done to under-
stand how application is in that moment, then developing can be started finishing
the process with an elaborated testing. If testing was successful you can continue
with another task, otherwise process will come back to previous status analysis.

Update production version – The last step of the process when a task or func-
tionality has been successfully tested is to send it to production servers. There is no
need to update each task immediately when a task has been ended, some tasks can
be updated at once.

Chapter 3. Methodology 6

Select project

Previous study and decision)

Iteration planning

Select task

Analyse application status

Task development

Task testing

Is test
successful?

Update to production

NO YES

YES

FIGURE 3.1: Methodology workflow diagram.

Obviously, sometimes you have to break this methodology when a new require-
ment needs to be added to application and as working in a research group, some-
times we need some functionality which we didn’t realise about it.

To control all tasks we use a web-based project management application named
as Trello1. It lets us organizing all tasks in different groups (i.e. notes, to do, doing
and done) and assigning every task to a member.

1Trello offical website: https://trello.com/

https://trello.com/

7

Chapter 4

Planning

I started working in this project in September 2016, so all planing starts from this
moment. All phases in planning can be seen in figure 4.1 and are detailed below. Is
important to say that I have not been working on this project in full time because I
had to combine it with working on other topics the research group is working on.

FIGURE 4.1: Project planned phases.

Different phases are:
Previous study – Before developing, it is necessary to study all theoretical concepts
about networks and search any others studies done in bibliography. This phase was
divided in three sub-phases, first I had to understand what previous work done in
research group does and how, then I took some time studying all network theoretical
concepts.

Simulator development – This phase represents all time spent developing the
main tool which allows us executing all simulations and experiments easily from a
web application. Sub-phases were divided in defining requirements, developing the
basic user interface from where to start developing everything else, developing all
users and workspaces control and adding the ability of executing single simulations
or a set of them. Then some time is spent improving the execution performance
where basically code was parallelized in threads and computer clusters reducing
executing time. Finally a testing phase was done, executing some experiments we

Chapter 4. Planning 8

needed. Last sub-phase is related to a stay I did in TUM1 during first two weeks of
April, so I had to have developed all previous phases before April.

Visualizer development – This phase is similar than previous one but in this
case the tool developed helps us to visualize all networks and all experiment results
in a nice visualizer. Sub-phases are divided in different visualizer features.

1Technical University of Munich. Stay is detailed in following section.

9

Chapter 5

Previous concepts

In this section, the necessary previous concepts to understand what the tool devel-
oped in this project can do are detailed and explained. First some basic networks
theoretical concepts are exposed, followed by all metrics used to analyse these net-
works and finished with an explanation of the whole process to obtain the robust-
ness value of a network against attacks.

5.1 Basic network concepts

The aim of this section is to introduce basic network concepts. These concepts will
be used along this document.

Formally, a network is defined as a set of interconnected elements with a given
purpose. There are a lot of examples that satisfy this definition: water distribution
networks, the power grids, social networks, subways networks, etc. Mathematically,
a network is defined as a graph which can be defined as a structure used to represent
relations between elements. A graph (G) can be represented as an union of a nodes
set (V) and an edges set (E):

G = (V,E)

Graphs can be differentiated by the type of edges, unidirectional (directed graphs)
or bidirectional (undirected graphs). Graphs elements1 have labels to identify them
and can have meta-data (or attributes). If edges meta-data represents the importance
of each edge inside the network, then the graph can be described as a weighted
graph.

5.1.1 Graph theory

Graphs can represent either real networks or abstract networks, e.g. a graph can
represent the relationship between football players and theirs clubs. Graphs can be
created synthetically for research purposes. Graph theory includes wide and diverse
topics, therefore in this section only basic graph theory concepts are explained, all of
them related to robustness.

Adjacency matrix, A(G) – It is a matrix (see figure 5.1) that represents which
nodes are connected to each other. A 0 value means no adjacency between nodes

1Graph elements is equal to the union of graph nodes and edges, that is talking about elements is
the same than talking about nodes and edges.

Chapter 5. Previous concepts 10

and a 1 value means both nodes are connected. For weighted graphs, the value
represents edge weight.

FIGURE 5.1: Graph adjacency matrix example.

Laplacian matrix, L(G) – The matrix representation of a graph is know as Lapla-
cian matrix (see figure 5.2). It is denoted by L(G) = D(G) − A(G), where D(G) is
the degree matrix of the graph which has node degrees on its diagonal and zeroes
elsewhere.

FIGURE 5.2: Graph Laplacian matrix example.

5.2 Robustness and metrics

Studying the solidness of a network against attacks (nodes and/or edges failures)
is the main purpose of the work done in the research group. For us, robustness is
defined as how a network behaves against attacks or failures and our way to eval-
uate its value is to calculate different metrics on the network with which we are able
to quantify a numeric robustness value. We work with robustness values between
0 and 1 where 0 (or less) means network is totally affected and inoperative and 1
means networks has not been affected for failures and it is working as normally.

As stated above, metrics are used to get a quantitative value for each network or
element characteristic. Metrics give a way to compare graphs properties detailing
different features of the network or graph. A metric can be from as simple a basic
concept in graph theory (e.g. graph diameter or nodes average degree) to a complex
process (e.g. calculate throughput in a network when removing elements).

Chapter 5. Previous concepts 11

5.2.1 General metrics classification

The metrics used in this project are organized in different groups, depending on
what they can tell us regarding the robustness:

Structural – Structural metrics measure the classical parameters of a graph. Some
of them measure the density (such as nodal degree) and others the size, such as the
diameter. All structural metrics used are:

• Average nodal degree

• Heterogeneity

• Average shortest path length

• Diameter

• Efficiency

• Effective resistance

• Number of spanning trees

• Clustering coefficient

• Assortativity

• Symmetry radio

• Largest eigenvalue

Fragmentation – Fragmentation metrics address the number of components of
a network. It should be taken into account that they are useless for connected net-
works (i.e. they do not measure anything until the network is unconnected). Avail-
able fragmentation metrics are:

• Largest connected component

• Fractional size largest component

• Average two terminal reliability

• Degree of fragmentation

Connectivity – Connectivity metrics measure how difficult is to break the net-
work when removing elements. In contrast to fragmentation metrics, they can not
be used when the network is fragmented. All available connectivity metrics are:

• Edge connectivity

• Vertex connectivity

• Algebraic connectivity

• Natural connectivity

Chapter 5. Previous concepts 12

Centrality – Centrality metrics can measure how important are the elements in
the graph, i.e. if they are at the middle of most of the paths. All available centrality
metrics are:

• Degree centrality

• Node betweenness centrality

• Edge betweenness centrality

• Closeness centrality

• Eigenvector centrality

Functional – Functional metrics represent those metrics that evaluate functional
behaviours of network. The easiest example is to calculate throughput through the
graph. Functional available metrics are:

• Throughput (TUM)2

• Link usage (TUM)

Due to the high number of available metrics, most of them have special relation-
ships between them when expressing the same graph feature. When two metrics
express the same feature, they can have different kind of relationship:

• One metric has a lower computation cost.

• One metric is harder to compute but it gives more information.

• One metric represents the inverse than the other.

This can become an issue when computing more than one metric than measure
the same, so only one metric should be calculated for reducing execution cost.

5.3 Failures and attacks

As said before in this document, BCDS research group studies how networks are af-
fected against attacks or failures over the network. A failure on a network is defined
as the physical loss of an element (node or edge). In a graph, failures are modeled
removing that failed elements from its structure. When talking about attacks in this
document, we are referencing to several failures generated by one single attack. Ac-
cording to different characteristics, attacks can be classified in:

Node failure or edge failure – Both elements can fail but failing a node also affect
to its connected edges as seen in figure 5.3.

2TUM metrics were developed using their routing algorithms.

Chapter 5. Previous concepts 13

FIGURE 5.3: Node failure also affects its edges.

Static or dynamic attacks – A static attack is like a snapshot of the attack on
the network and every attack is independent of each other. Dynamic attacks have
continuity in time and grow over the network (see figure 5.4). Epidemic attacks (e.g.
a virus spreading over a computers network) are an example of dynamic attacks.

FIGURE 5.4: Attack spread process over a network.

Strategical behaviour – When stressing a network is important to study how to
attack it, trying to damage it as much as possible. Different strategies can be used to
attack networks in many ways. In this section we explain which strategies we use in
our project:

• Random attacks:
In random attacks, attacked elements are selected randomly, even if elements
attacked are nodes or edges. Theoretically, this method is the less effective
one, cause randomizing doesn’t look for a way to make more damage to the
network.

FIGURE 5.5: Random attack to nodes example. Each node is selected
randomly

Chapter 5. Previous concepts 14

• Targeted attacks:
Unlike randomizing, targeting attacks look for the most important elements in
network and select them to be removed. For example, the node with a larger
node’s betweenness centrality is selected when attacking nodes and the edge
with a larger edge’s betweenness centrality should be selected in case of at-
tacking edges. Obviously, the parameter used to select the desired elements
can be changed.

In the targeted method there are two options. On one hand, there are targeted
simultaneous attacks where all attacked elements are selected in one step (e.g.
the 10 nodes with more node’s betweenness centrality), on the other hand,
targeted sequential attacks where attacked elements are selected step by step
sequentially looking for the most important element of the network every time
after attacking some other before (e.g. look for the node with more node’s
betweenness centrality after removing previously other elements).

FIGURE 5.6: Targeted attack to nodes example. Each node is selected
by its importance inside the network. Note that although it can looks

like random it selects the central nodes.

• Epidemic attacks:
When using the epidemic method, the attack simulates an epidemic spread
over the network, that is selecting randomly the first infected node and then
sequentially select nodes that are connected to an infected node following a
probabilistic function. This method only works with node attacks because it
has no sense to have infected edges.

FIGURE 5.7: Epidemic attack to nodes example. Next selected node
has to be connected to an infected node.

15

Chapter 6

Robustness process

The main goal of this project is to develop an application to make experiments exe-
cution easier to execute. To understand what application should achieve and how it
should work it is mandatory to explain how whole experiment process works. The
purpose of this chapter is to explain that process in a base background.

6.1 Input variables

First, ab experiment should be set up, that is defining all experiment input variables
that define itself:

Network – Obviously a network has to be selected in order to generate attacks on
it. We use networks coded in GraphML1 format which is one of the most accepted
format for representing graphs.

Attack strategy – We need an attack strategy to generate the list of elements
failed. Valid strategies are random, targeted simultaneous, targeted sequential, epi-
demic and electrical cascade2.

Element – Experiments can be over nodes or edges but not over both at same
time, so it is needed to select whether to attack nodes or edges. Remember that re-
moving nodes implies also removing its edges, so removing nodes is always more
effective than removing edges.

Quantity of failed elements – One input variable tells how many elements are
attacked. It can be defined as a discrete value (e.g. attack up to 20 nodes) or percent-
age (e.g. attack 10% of nodes, where in a 100 nodes network 10 nodes should fail).

Number of combinations – In a single experiment several different attack com-
binations are made on the network, so we need an input variable to tell how many
combinations execute. In next section it is explained why making many combina-
tions is needed.

Seed – When using randomizing options a seed value has to be passed as pa-
rameter. We use a seed to be capable of executing again exactly same experiments
(using the same seed we get same results). If no seed is passed a default one is used.

1GraphML is a comprehensive and easy-to-use file format to represent graphs. It is based on XML.
Website: http://graphml.graphdrawing.org/

2Electrical cascade attack strategy has been added recently and it has not been explained in previous
concepts chapter.

http://graphml.graphdrawing.org/

Chapter 6. Robustness process 16

Metrics – Finally, we need to select which metrics are going to be used in order
to find the robustness of the experiment. They are represented as a list of metrics,
with no maximum number of metrics. It is important to remind that many of the
metrics available express the same feature as explained in chapter 5.

6.2 Process steps

When all input variables are set, then a process starts. All steps in this process are im-
porting the network, calculating initial metrics, generating all combinations attacks,
calculating all metrics for each combination, performing a PCA (Principal Compo-
nent Analysis), calculating robustness value and generating results.

6.2.1 Importing the network

This is the first step but obviously it is mandatory. The network is read using the R
package named igraph3 from a GraphML format file.

6.2.2 Initial metrics computation

Once network is imported to a graph next step is to compute all desired metrics
on the network by default, that is without any failure. This metrics are know as
initial metrics (t0). As each metric robustness value range is from 0 to 1, t0 values
represents the maximum robustness value of each metric (i.e. 1). For example, if a t0
value of a metric is 20, if later we calculate again this metric with failures in network
getting a result of 15, then robustness value at that point will be 0.75 (15/20). From
here, we have a t0 metrics list that is will be used later on this process.

6.2.3 Attacks generation

As said in input variables section, there is an input variable which tells how many
attacks combinations are going to be generated, from now this number of combi-
nations is defined as M . This is done because we need to execute enough different
attacks to have sense results because, for example, if attack is random it can happen
that it selects the most important nodes which will look like as random is the more
damaging strategy, and it is not the case.

When using random attacks there is no problem generating several combinations
because it should select different elements in each generation. In targeted attacks,
but, if you always select the most important element all combinations will have same
elements selected. To avoid this, a probabilistic function is used to select an element
from a list of the most important elements (e.g. a probabilistic function than select a
node from 20 nodes with higher degree). Finally, in epidemic attacks only first failed
element is selected randomly in each combination, then epidemic algorithm follows
selecting other elements using an epidemic model.

6.2.4 Metrics computation

After attacks generation has finished we have a M list of attacks combinations. As
explained in input variables section, there is a parameter that tells the quantity of

3Website: http://igraph.org/

http://igraph.org/

Chapter 6. Robustness process 17

elements attacked in each attack. From now this quantity of elements attacked is
defined as P . In this step all metrics are computed, but also they are computed step
by step from first element failed to P elements failed.

FIGURE 6.1: Robustness metrics 3D matrix representation.

For example, if P is set as 20 elements to fail, all metrics will be computed with
1 element removed, with 2 elements removes, with 3 elements removes and so on
until with 20 elements removed. From here we should have a 3D matrix representing
all PxMxN metrics results where N is the length of metrics to compute (see figure
6.1).

6.2.5 Principal component analysis

Once all metrics have been calculated, it is important to know which metrics give us
more information. To achieve this, a PCA (Principal Component Analysis) is done
to all metrics results. Doing this PCA will result to a list of N elements with the
weight (or importance) of each metric and a PCA relevance value (from 0% to 100%)
that tell us if selected metrics are good enough for the experiment. Also the PCA
give us all correlations between each metric, which can tell us some metrics express
the same. Further detailed information could be found in bibliography referenced.

6.2.6 Robustness value and surface

Robustness value can be expressed as the sum of all metrics information. This value
gives us a robustness numeric value for each PxM combination, that is how robust
is the network at that. As for each PxM combination we have N metrics results, we
need to join them into a unique robustness value (from now defined as R∗). As R∗

values range is from 0 to 1, the easiest way to join these metrics results should be a
simple average but as we did the PCA before, we can use the metrics weight list to
generate that R∗ final value.

Chapter 6. Robustness process 18

Then R∗ is denoted by:

R∗ =

N∑
i=1

tiwi

where ti is the metric value and wi is the weight obtained from PCA.

At this point, we have a matrix with PxM robustness values. Also we calculate a
unique R∗ value that represents all experiment robustness value, that is the robust-
ness value of a network against a desired attack strategy. We use all matrix average
to calculate this unique R∗ value.

With this unique R∗ value we can now compare different experiments, but it’s
only comparable by an unique number which many times it doesn’t say anything
interesting. In order to get a more interesting way to compare experiments and also
to have a visual way of compare them we generate a robustness surface. The ro-
bustness surface is simply a coloured table representing all PxM robustness values,
starting from red when R∗ = 0 to green when R∗ = 1. Obviously, when more green
the robustness surface is, most robust the network is. We can see an example in
figure 6.2.

FIGURE 6.2: Omega robustness surface.

It has to be explained that robustness surface seen in figure 6.2 has been previ-
ously ordered by rows. That is done because ordering rows makes the robustness
surface nicer and more understandable. This ordered robustness surface is named
as omega robustness surface.

6.2.7 Results generation

Finally, the last step is to generate a final results file. This file will be a Excel format
file which will include all generated attacks combinations, all PxMxN computed
metrics and all R∗ values. Also it includes both unordered robustness surface and
omega robustness surface as a table.

19

Chapter 7

System requirements

In this section all system requirements that application must accomplish are de-
tailed. Both functional and non-functional requirements have to be defined before
any implementation. We differ about simulator and visualizer requirements.

7.1 Functional requirements

Functional requirements are those that represents every functionality the system has
to be able to perform. They are based on an user input and expect an output or a
result.

Simulator functional requirements are:

Register and login – Be able to register and log in using different social networks
(using a no-password user system).

Administrator managing – An administrator must be able to manage all users,
simulations and networks in the system.

Different workspaces – Have your own private workspace to work in his your
experiments.

Shared workspaces – Be able to have shared workspaces with other users.
Compute simulations – Compute simulations over a network using some pa-

rameters and metrics.
Compute set of simulations – Compute a set of simulations at once without

executing each of them individually.
Computing again – Compute a simulation or a set of them instantly from another

simulation or set previously computed.
See computed simulations – Be able to see all simulations and sets previously

executed. Simulations from a workspace can not be seen from another workspace or
user.

Download results – Download simulations results in a file (off-line availability).
Preview results – Preview results dynamically on application (on-line availabil-

ity).
Remove simulations – Remove a simulation or a set of them from the system.
Import networks from public repository – Be able to use public networks by

importing them from a public repository available in the system. Public networks
are available for any user.

Upload new networks – Be able to upload custom or personal networks to the
system. These networks have to be only available for user who uploaded it.

Generate networks – Be able to generate several kind of networks and to import
them to system. These generated networks have to be only available for user who

Chapter 7. System requirements 20

generated it.

Visualizer functional requirements are:

View networks synthetically – Be able to preview any network formatted in
GraphML file in a synthetic way, i.e. the network shape is defined dynamically
using forces between nodes and edges.

View networks on a map – Be able to preview any network formatted in GraphML
file on a map. Network nodes must have geographical attributes (e.g. coordinates).

Focus on mouse-over – Focus elements when pointing them with cursror, i.e.
reducing other elements visibility or increasing pointed elements visibility.

Analyse attributes – Be able to see network, nodes and edges attributes. Also be
able to colourise elements depending on their attributes values.

Filter elements – Show only desired elements hiding elements that not satisfy
our needs (e.g. show only edges with bandwidth higher than 10Gbps).

Search elements – Find any elements matching with a keyword inside whole
network.

Visual settings – Be able to modify all visual settings (e.g. change nodes color
and size, nodes positioning, etc.).

Dynamic computing – Be able to execute dynamically different analysis over the
network visualized at the moment (e.g. calculating the diameter in whole network
).

7.2 Non-functional requirements

Non-functional requirements are those that system are supposed to do but are not
directly a functionality of the system.

Simulator non-functional requirements are:

Stability – Application have to be stable, even when conditions are not optimal.
System should not turn off for no reason.

Worldwide availability – System have to be accessible anywhere.
Execution performance – Execution performance has to be better as possible.

That is adding availability to execute more than one simulation at the same time
and to efficiently use all hardware resources (e.g. panellizing executions over all
available threads).

User permissions – User can only see his experiments and networks or those
ones shared with other users.

User enabling – User can not use his account just after registering because ad-
ministrator has to enable the user before. That helps no one without permissions can
have access to application.

Execution time-out – System can detect when an execution is no longer working
(e.g. it has entered into a loop) and stop it from executing.

Unmerged code – Simulator code have not to be merged with execution code.
When changing execution code should not have to affect to simulator.

Friendly interface – Simulator must have an easy and understandable interface
that make user interaction and learning faster.

21

Chapter 8

Studies and decisions

All decisions about how to implement the simulator and the visualizer are based on
how the group had to execute experiments and what they need. In this section it
is analysed how the execution had to be done, how it should has to be and how we
decided to solve all issues and disadvantages in each step of the experiment process.

8.1 Launching an experiment

In fact, first step is to think about what experiment to execute but this step is purely
a think step and has no relationship with the system itself. Then, since experiment
is defined theoretically, next step is to launch or execute the experiment:

How it worked? – As said before in this document, execution code is made in R,
so it could be executed locally in a personal computer or in a server. If executing in
a server, the first step is to connect to that server using SSH what is not familiar for
someone with no high computer knowledge. Then, there were two option to execute
an unique experiment or simulation. On one hand it could be executed an command
prompt application that ask the user all experiment parameters (i.e. executing man-
ually step by step the simulation) and on the other hand there were the possibility
of executing the experiment automatically passing all parameters through a unique
string text with each parameter separated by a comma. The definition of this string
text is:

id, element, attack_type, attack_parameter, "metric1, metric2,...", P, M, seed

where id is the experiment identifier (it can be whatever), element is which el-
ement is attacked (nodes or links), attack_type tells what attack type is used (ran-
dom, sequential, etc...), attack_parameter gives extra parameters to desired attack,
"metric1, metric2, ..." define all used metrics, P is the maximum number of attacked
elements, M is the number of different attacks combinations and seed is the seed for
random generations. All these parameters are better explained above in this docu-
ment. An example could be for example:

exp1, node, targeted, sequential, "01-AND,02-HET,03-ASPL", 30, 20, 123456

Obviously, this methodology had the big disadvantage that it was very slow to
execute a bunch of experiments and also you have to be very careful while editing
the string text because a simple mistake could make execution fail. Also the user
had to keep the computer turned on while waiting execution to finish what it added
another disadvantage.

Chapter 8. Studies and decisions 22

How should it work? – There is not a unique way of do it, but the basic require-
ments in this step is to have a tool able to automatically execute a set of experiments
from a bunch of parameters performing all possible combinations (e.g. selecting
many attack types as random and epidemic which it will execute a simulation with
random attack and another simulation using epidemic attacks). The tool must have
the ability of select all parameters and options in a easy way and without typing
anywhere to avoid typing errors.

What was decided? – To solve it we decided to develope an easy web application
with a computing page that can help all research group members executing many
experiments at once. We decided that page to have several steps to set all experiment
parameters:

1. Select workspace to use.

2. Select network to execute experiment on. Only 1 network can be selected.

3. Select experiment parameters as attack type, elements to attack, number of
elements attacked, etc. In this step many options can be selected (e.g. user
can select random and epidemic attacks plus attacking both nodes and edges).
Then each combination will be executed.

4. Select metrics to use. From 1 to N metrics can be selected.

5. Start computation. System will start computing each combination as a unique
simulation. User will be able to see the process output of each simulation.

Using this methodology a bunch of experiments is easily executable without hav-
ing typing errors and as executions are done in server background user can turn off
computer while all executions will not stop.

8.2 Viewing experiments logs

After computing experiments it has to be a way to check which previous experi-
ments have been done and all their parameters.

How it worked? – That really didn’t work. There were not a way to check pre-
viously launched experiments. The only previous experiments data saved is the
results XML file inside a folder with the simulation ID. Inside that XML file all pa-
rameters were saved but it was a mess to opening every XML file to check what each
simulation was about.

How should it work? – New tool should have a record or log page where all pre-
vious launched experiments should appear listed with all parameters used to define
them.

What was decided? – As we did a computing page to compute new simulations,
we decided to develope a log page where all simulations sets appear listed with the
option of seeing its parameters clicking on each set. Then, a button to see listed all
simulations inside a set was added too in the same way as sets are shown.

Chapter 8. Studies and decisions 23

8.3 Recomputing experiments

Another important functionality is to have the ability of recompute a set of exper-
iments easily. It is useful when changing the computation code (i.e. changing the
robustness analysis code) to get new results with updated code.

How it worked? – Using the string texts mentioned above could be "simplier"
than executing one by one manually entering all parameters, but you had to save all
string texts somewhere and also there were the typing error issue. Another problem
was that you had to execute one by one each combination and that you had to wait
until execution finishes.

How should it work? – New tool should have the ability to read previous set of
simulations parameters which what the simulations set was defined and use them to
execute automatically another set of simulations identical to previous set. It should
be fine to have the possibility of modifying the parameters before the new execution
(e.g. removing epidemic attacks if you are no longer interested in them).

What was decided? – As we had a whole log of simulations sets launched pre-
viously with their parameters in logs page, we added an option to clone a single
simulation or a set of simulations to the computation page. Then all parameters
than user could select manually step by step in computation page are automatically
filled and the application offers to user the options of execute again all simulations
or to change any parameters before executing.

8.4 Getting results

Finally, the last step of the process is to get the simulations results. Not only numeric
results are important but also the robustness surface.

How it worked? – There was only one output, the generated XML file with all
results data. It includes all parameters, metrics calculation results, PCA relevance
values, robustness values and generated attacks. You can’t see the robustness sur-
face if not having Microsoft Excel installed. Also there was the problem that to get
the results file you should access the server through FTP (or go to directory if ex-
ecuted locally). Finally, another issue was not having the possibility of saving the
execution output after the execution finished.

How should it work? – Desired tool should have the ability of downloading that
XML file from each simulation directly from application. The tool should be able to
show the robustness surface as an image and each simulation output directly in ap-
plication.

What was decided? – We decided to add desired functionalities in logs page.
When selecting a unique simulation inside a simulation set a bunch of options ap-
pear. Each button performs one of desired functionally, i.e. one button shows sim-
ulation output, another one downloads the XML file, another shows the robustness
surface, etc... The process it is not easier than:

1. Select workspace to use.

Chapter 8. Studies and decisions 24

2. Go to logs page. All sets should be listed.

3. Click on desired simulations set. All simulations from set should be listed.

4. Clink on a button to perform desired functionality. Another sub-view should
appear when showing output or robustness surface of selected simulation.

An example of resulting robustness surface of an experiment viewed on the ap-
plication tool can be seen in figure 8.1

FIGURE 8.1: Resulting simulation robustness surface viewing in the
application.

8.5 Viewing networks and animated results

Another but not less important requirement application must offer is to visualize
networks in a visualization tool where the user can look around all network aspects
even though the network has a lot of elements on it. It should offer the option to
zoom into the network, see relations between nodes, etc. Also, for understanding
the results obtained with simulations execution it is important to see how attacks
spread over the network, with the ability of seeing each attacks animated through
the network.

How it worked? – R igraph package has the option to plot a network in a static
image as seen in figure 8.2.

Chapter 8. Studies and decisions 25

FIGURE 8.2: Sample tree network R plotting example.

The biggest issue of this representation is the amount of elements in the network
because with a high number of nodes or a very dense network nodes can not be dif-
ferentiated when they become overlapped. That plot option does not allow zooming
or editing network shape and does not have any option to see attacks spreading over
networks. Other issue is related to the need of executing the R igraph package to get
any visualization, that means log into the server, and execute some code manually,
what is not easy for none experimented users.

How should it work? – The tool should offer an easy accessible way to preview
networks in their default state, that is without any modification on it (or without at-
tacking it). Also when placing mouse cursor over a node or an edge, the tool should
show all data about that element and focus related elements, that is showing all con-
nected elements and hiding others). It should have the capability of zooming into
the network which would help the user see better dense network zones. As said
before, an important requirement is to see attacked networks and dynamically go
through attack steps with an animated visualization and the tool should have a way
to compare two attack instances over the same network.

What was decided? – We decided to add to our application a page to visualize
networks with the ability to print generated attacks over it. It has been done as a
separated application (not in the same page as simulator) because user can want to
visualize networks without executing a simulation. Also the visualization tool have

Chapter 8. Studies and decisions 26

a mini version that can be used to compare two attacks in a simulation from the logs
page as seen in figure 8.3

FIGURE 8.3: Different attacks compared using the visualization tool.
Attacked elements are marked as red and alive ones are painted with

black.

Our visualization tool must be accessible from any computer connected to inter-
net and user can upload their own networks to visualize them using the tool. User
is able to zoom and move around network with simple mouse gestures and can see
elements attributes when situating cursor over them.

8.6 Implementation decisions

We basically have two important requirements that our developed application must
satisfy. First one is to be available from a computer worldwide without installing
anything on it and second one is to not merge simulations execution code with ap-
plication code. First requirement is solved by developing a web application which
is available with any web browser and second requirement is achieved by adapting
application to be compatible with simulation R code and not backside, that means
application must simulate what research group members had to do manually.

Technical implementation details are explained in further chapters but here a
basic explanation is following. In client side (what user computer executes) we
have decided to use HTML5 with Javascript and JQuery as every web application
merged with new frequently used frameworks as Bootstrap and AngularJS. In vi-
sualization tool we decided to use the Javascript library D3.js that helps drawing
amazing visualizations over a canvas inside a web page.

In server side, all code is based on NodeJS with a bunch of frameworks available
for it. As simulations are supposed to be changing so frequently, we decided not to
use a SQL database and use a noSQL database, in our case MongoDB, which allows
changing database structure easily than a SQL one. The NodeJS server is going to
act as a previous research group member, that is generating the string text of each
simulation and execution the R code to launch simulations.

27

Chapter 9

Analysis and design

In this chapter, the analysis of the implemented project is presented, explaining in
detail the design of its content. First, all simulation R process design is explained
which is important to understand how then the developed web application is de-
signed to work with it. Then both client-side and server-side design is detailed in
order to see how they are structured.

9.1 Previous simulation R process analysis

This section explains only the design of the simulation process previous to web ap-
plication development, that is how it worked before this project. As said in studies
and decisions chapter, one requirement was to not change anything in this side and
make new web application be adapted to existing simulation R process design.

Functionalities are grouped into different modules and all the user interaction
is done through a general command line interface module, which has the proper
options to access to all the other modules functionalities.

Basically, the other modules are classified in:

Auxiliary modules – They basically manage the input and output data, which is
specified below.

Functional modules – They implement the main processes and calculations to
satisfy the requirements.

The involved data is organized within the project folder structure, which is basi-
cally composed by:

"resources" folder – It includes all necessary data to execute simulations that
don’t change dynamically by simulation parameters as for example graphs files in
GraphML format. For the correct functioning of the whole system, it is only required
that the user provides the topology source files and declares the desired experiments
setting parameters correctly.

"out" folder – It contains a subfolder for every experiment. Each subfolder con-
tains the saved data related to the results of the main calculation processes (PCA
process, robustness surface process, generated attacks and metrics...) in CSV format.
It also contains a Microsoft Excel spreadsheet with all these results presented in a

Chapter 9. Analysis and design 28

more human friendly way, that is why the interface module also provides the neces-
sary communication between the user, the data and Microsoft Excel itself.

"conf" folder – It contains a configuration file with the basic environmental and
path variables. In the beginning, it is necessary to set the value of some variables of
the configuration file.

FIGURE 9.1: R process design scheme.

In figure 9.1, can be seen all modules and folders structure explained above. We
can also see a user actor which developed web application will act as.

9.2 Web application analysis

In this section an analysis of whole new developed system including the web appli-
cation and the R simulation process. All logical modules can be seen in figure 9.2
and are explained below:

Chapter 9. Analysis and design 29

FIGURE 9.2: Web application modules.

Simulation tool – This module implements the functionality of executing all set
of simulations. It gives user all options to define each experiment and executes it. It
is divided in two sub-modules, on one hand there is the simulator itself which per-
forms the computation acting as the user who executes the existing previous simu-
lation R code. On the other hand, there is the logs viewer module which maintain
records about all simulations launched and it is able to get their results. Logs viewer
module also is able to get those simulation results and show to user through the vi-
sualization tool module.

Visualization tool – This module is able to make nice visualizations of networks
and let users to manage and interact with them. For representing simulations re-
sults as resulting attacks over a network it needs to ask for simulations results to
logs viewer module.

Generator tool – This module helps users to generate desired networks topolo-
gies and import them to whole system. User is able to select from a large list of
available topologies and then, before importing the generated network, is able to
visualize it using the visualization tool module.

Administrator tool – This module let the administrator manage all simulations
done by all users. Administrator is able to see all simulations executions, download
their results, remove desired simulations, stop simulations executions, etc. but it is
not able to execute new simulations and, for this reason, the administrator module
is only connected to logs viewer module.

In next chapter is explained how these logical modules are implemented because
in implementation some of these modules are implemented together.

Chapter 9. Analysis and design 30

9.2.1 Use cases

All use cases related to application functionalities can be seen in figure 9.3.

FIGURE 9.3: Application use cases diagram.

Basically it can be seen all functionalities an user is able to do and which of these
the administrator is able to do too. Administrator can also do some other function-
alities related to manage simulations, users and workspaces.

Below some of these use cases are detailed step by step using use case tables.
Only the most important use cases are detailed.

Chapter 9. Analysis and design 31

Compute new set of simulations

Computing a new set of simulations is the main functionality of this project, so here
is defined how this use case works:

COMPUTE NEW SET OF SIMULATIONS

Actor User.
Description Prepare and execute a new set of simualtions.
Precondition User is logged in and is enabled by administrator.

Principal flow

1. User selects workspace
2. User selects network
3. User selects simulation parameters as attack type, elements,
number of elements attacked, seed, etc.
4. User selects desired metrics to use.
5. User selects start computation button.
6. For every combination (from all parameters selected):

6.1 Simulation combination is executed.
6.2 While executing, user can see output.
6.3 Simulation ends.
6.4 If simulation finished successfully

6.4.1 User can download results.
6.5 End if.

7. End for.
Postcondition New simulations set is being executed and available in logs page.

TABLE 9.1: Compute a new set of simulations: use case table

Chapter 9. Analysis and design 32

Compute a simulation again

Many times it is necessary to compute again a previously launched simulation, for
example when changing something in the code. Process steps are defined in use case
table above:

COMPUTE A SIMULATION AGAIN

Actor User.
Description Select a simulation and compute it again.

Precondition
User is logged in and is enabled by administrator.
Simulation has been launched before.

Principal flow

1. User selects workspace.
2. User selects simulation set.
3. User selects compute again buttom from desired simulation.
4. Application shows the ready to compute page.
5. If simulation parameters are not as user wants:

5.1 Change attack parameters.
6. End if
7. User selects start computation button.
8. For every combination (from all parameters selected):

8.1 Simulation combination is executed.
8.2 While executing, user can see output.
8.3 Simulation ends.
8.4 If simulation finished successfully

8.4.1 User can download results.
8.5 End if.

9. End for.
Postcondition Simulation has been launched again and is available in logs page.

TABLE 9.2: Compute a simulation again: use case table

Chapter 9. Analysis and design 33

Visualize attack over a network

Once a simulation is done, a dynamic visualization of the attacks generated over
the network is very helpful to understand what happened. This use case is detailed
above:

VISUALIZE ATTACK OVER A NETWORK

Actor User.
Description Visualzie a generated attack over a network using the visualizer.

Precondition
User is logged in and is enabled by administrator.
Simulation has been launched before and has ended successfully.

Principal flow

1. User selects workspace.
2. User selects simulation set.
3. User selects desires simulation from set simulations list.
4. User selects the open visualizer button.
5. Application opens visualizer.
6. Visualizer ask for network data in JSON format to API Rest.
7. If network has not yet cached to JSON format.

7.1 API Rest convert network structure to JSON and cache it.
8. End if.
9. API Rest responses with network cached in JSON.
10. Visualizer displays network.
11. User selects attack settings option.
12. User selects attack combination to visualize.
13. Visualizer ask for attack data to API Rest.
14. API Rest responses with attack data.
15. Visualizer displays attack over the network.
16. While user wants to continue visualizing attack

16.1 User move the slider to move over the attack propagation.
16.2 Visualizer displays the desired attack moment over the network.

17. End while.
Postcondition User has seen attack propagation dynamically over the network.

TABLE 9.3: Visualize a generated attack over a network: use case
table

All functionalities available in the visualization tool have the same sequence.
Once the network is loaded, all options done over that need extra data make a re-
quest to API Rest service to get these data.

Chapter 9. Analysis and design 34

Enable user

Unlike previous explained use cases above, this one is done by the system adminis-
trator. By default users can be registered but they have no access to application until
administrator enables it, avoiding non desired people to use the application without
permission. The use case process is:

ENABLE USER

Actor Administrator.
Description Administrator enables an user.
Precondition User has been registered using a social network.

Principal flow

1. Administrator enters admin panel with admin password.
2. Admin page shows all registered users.
3. Administrator selects desired user.
4. Administrator selects the enable user.
5. Admin page ask for a user name.
6. Admin page make a request to API Rest to check user name.
7. API Rest responses the request.
8. If user name yet exists.

8.1 Return to step 5.
9. End if.
10. Admin page make a request to API Rest to enable user.
11. API Rest creates a new privat workspace to user.
12. API Rest enables user with entered user name.
13. API Rest respones the request.
14. Admin page reloads page with updated users data.

Postcondition
User has been enabled, a user name has been set to him and
a private workspace has been created.

TABLE 9.4: Visualize a generated attack over a network: use case
table

All administrator options follow the same request sequence to API Rest to man-
age all users, simulations and workspaces. API Rest has to be sure that keep all
database and file system meaningful.

9.2.2 Data model

After analysing the basic functionalities, we have to explain how the data model
is. The data model (or database) is not really big due there are not many entities to
define. Basic entities are Simulation, User and Graph but also we need other entities
as Folder, Set and Visualization. Relationships between them is shown in figure 9.4
and explanation of them is available below:

Chapter 9. Analysis and design 35

FIGURE 9.4: Database model.

User – Represents the final user that uses the web application. It has to regis-
ter using a social network and it has references to his folders (or workspaces) and
tokens. Attributes1 info are:

• login_id: Social network identifier (e.g. email used to log in to Facebook). Ex-
ample: email@gmail.com.

• user_name: User name in the system. Example: sergiogc9.

• login_token: Unique token string to identify user in selected social network
(necessary for using social network API).

• is_valid: Boolean that identifies user as enabled or not enabled. Remember that
users are not enabled until administrator enables them.

• name: Name to display in application. It is automatically filled when register-
ing from a social network. Example: Sergio Gómez.

• social_network: Identifies the social network used. Example: Facebook.

1Only non relation attributes are detailed. Also entities have always an unique identifier that is also
not detailed.

Chapter 9. Analysis and design 36

Token – It is needed to let sessions opened until a certain time. A token is valid
until expiry date and every time an user log it has to use a valid token. Attributes
are:

• token: The token itself in string format.

• expiry_date: The date since the token is not valid.

Folder – Represents a workspace2. It has references to users that have access to
it, to all sets launched in the workspace background and to all graphs available in it.
Remember that a graph is only related to a workspace. Entity attributes are:

• name: The name of the workspace that will be displayed in application. Exam-
ple: Personal Worskpace.

Set – Contains a set of simulations. It has references to all simulations inside
the set and to the folder it has been launched in. Remember that when executing a
set, the system automatically creates all simulations combinations from all selected
parameters and hence an array of related graphs are referenced too. A reference to
the user that launched the execution is saved also. Set’s attributes are:

• elements_attacked: Array with all elements to attack. Example: ["node","edge"].

• attack_types: Array with all attack types to generate. Example:
["random","targeted_sequental","epidemic"].

• use_percentages: Boolean that defines if range_min and range_max values are
expressed in discrete values or in percentages.

• range_min: Integer that defines the minimum number of elements attacked. It
can be expressed as discrete numbers or as percentages. Example: 1.

• range_max: IInteger that defines the maximum number of elements attacked.
It can be expressed as discrete numbers or as percentages. Example: 20.

• samples_p_per_m: Define the number of attacks combinations to generated in
each simulation. Example: 25.

• metrics: Array with all metrics identifiers that will be computed in each simu-
lation. Example: ["01-AND","02-HET","05-EFF","28-TRH"].

• seed: Seed to use when randomizing. If no value is entered a default one is set.
Example: 123456789.

• date: Date when set has been created.

• remarks: A sentence to describe the set. It is shown when listing all sets in
application. Example: "Epidemic attacks over real networks".

Simulation – Represents an unique simulation launched and executed. It is one
of the combination generated by system when launching an experiment. It has ref-
erences to used graph and to its set. It has several attributes explained below but
other that are common to all simulations in the same set are available through the
set and are not saved in the simulation entity:

2In server side code the concept of folders is used, but then in application we changed it to
workspaces.

Chapter 9. Analysis and design 37

• element_attacked: The element attacked. It can be nodes or edges. Example:
"nodes".

• attack_type: Attack type to generate attacks. Example: "epidemic".

• attack_parameter: Attack parameter when needed. When not needed it has a
value of "NA". Example: "sequential".

• simulation_line: The string like command line used to execute simulations in R
code previously to this project. Example:
exp1, node, targeted, sequential, "01-AND,02-HET,03-ASPL", 30, 20, 123456.

• status: The status of the simulation execution. It can be not_started, started or
finished.

• output: R execution output. It can be a large text.

• date: Date of execution start. It should be different than simulation’s set date,
because simulation execute can start after set is created.

Graph – Represents the graph or network available in application. Graphs are
related to one folder or workspace so a reference to it is needed. Entity attributes
are:

• is_removed: Boolean that tells if graph is removed. Graph must be marked as
removed but not removed to let users visualize simulations launched before
its removal, that is removing a graph only implies disabling it from selecting
for new simulations.

• name: The name of the graph or network. The name is set from GraphML file
name. Example: GpENI_L2.graphml.

• normalized: The normalized name. It is needed for ordering purposes and for
saving GraphML file in server. Example: gpeni_l2.graphml.

Visualization – Handles a fixed position of a network. A graph has a unique
representation in each folder or workspace, so a reference to a graph and a folder is
needed. The unique visualization attribute is:

• json_info: A JSON format string with all graph nodes positioning using width
and height percentages. Example: "{"node1":{x:0.4,y:0.3}, "node2":{x:0.9,y:0.7}}".

9.3 Application functionalities

This section lists all web application functionalities. First, application users func-
tionalities are listed followed by administrator ones. Then a most important func-
tionalities behaviour depth explanation is detailed to give some background about
how whole system works and see interaction between client-side and server-side.

Chapter 9. Analysis and design 38

9.3.1 User functionalities

Users have access to simulator, visualizer and generator. Each tool features are listed
separately but some of these features are related to two tools.

Simulator user functionalities

• Register and log in using different available social networks with no need to
use a password.

• Select a workspace to work with. An user can only use workspaces adminis-
trator has given him permission to use.

• Compute a new experiment, that means launching several simulations execu-
tions grouped in a set. Includes selecting a network, experiment parameters
and metrics.

• See live execution logs when launching simulations.

• See previously launched simulations. Users first see launched sets and then
can see a unique simulation selecting it. Includes seeing both set and simula-
tions used data.

• Edit and compute again launched sets which includes automatically fill again
all set parameters in computing page. Same functionality is available with a
single simulation.

• Delete a set including deleting all simulations in it. All results files are also
deleted too.

• See launched simulations output.

• Download launched simulations XML result file.

• See robustness surface as a bitmap (as an image).

• Compare two attack combinations using visualizer selecting both in a dynamic
robustness surface. Dynamic robustness surface can be shown unordered or
ordered (omega robustness surface).

• Preview simulation results in visualizer, including viewing network in syn-
thetic mode or placing network on a map.

Visualizer user functionalities

• Upload new networks. Networks must be in GraphML format.

• Import a network from public repository to current workspace.

• Remove desired networks from workspace.

• Choose viewing networks synthetically or on a map.

• See nodes and edges data placing mouse cursor on them.

• Change nodes display positioning changing manually a node position.

• Save to server current nodes positioning.

Chapter 9. Analysis and design 39

• Load from server saved nodes positioning.

• Filter nodes and edges. Includes showing and/or hiding nodes and/or edges
and filtering depending on attributes values.

• Paint nodes and/or edges depending on attributes values.

• Search for desired elements using a text value.

• Personalize networks aspect, changing nodes and/or edges size and colours.

• Download filtered network3 in GraphML format.

• Download filtered network as displayed in SVG format.

• See nodes and/or edges attributes statistics.

• Compute network analysis (e.g. calculate degree, edge betweenness, etc.) over
filtered network and see results in visualizer dynamically.

Generator user functionalities

• Select different kind of network topologies (e.g. tree, exponential, hypercube,
dcell, etc.).

• Select parameters for each kind of topology.

• Preview generated network using visualizer.

• Add generated network to available networks list in workspace.

9.3.2 Administrator functionalities

Administrator is able to manage users, simulations and workspaces but it has some
limitations as, for example, he can not launch simulations. All administrator avail-
able features are:

• Enable and disable users.

• Delete users.

• Add and remove workspaces.

• Add and remove users in a workspace.

• See all set and simulations launched.

• Same functionalities as users when seeing launched simulations, including
downloading and previewing results.

• Remove launched sets.

• Stop current simulation execution.
3Filtered network is current displayed network in visualizer, that means whole network without

hidden elements.

Chapter 9. Analysis and design 40

9.3.3 Functionalities workflow

Before analysing functionalities workflow is important to define both client-side
and server-side concepts:

Client-side – It is all code executed in the user computer, i.e. in web navigator.
All simulator, visualizer and generator tools are web-based applications, that means
a web navigator is needed.

Server-side – Server-side code is these code executed by server. Includes both
R simulation execution code, the API Rest needed for giving the data to client-side
web application and database management.

FIGURE 9.5: Logical server-side and client-side structure.

In figure 9.5 a logical structure of server-side and client-side interconnection can
be seen. In next chapter a depth technical explanation about how it is really imple-
mented is detailed. Client-side applications make requests to a unique API Rest that
handle all these requests using different services depending on the request topic.
These services act as intermediate between API Rest and database and simulation
service is also the intermediate between whole web application system and R simu-
lation execution code.

Compute new set of simulations workflow

Compute a new set needs user entering all experiment parameters and then API
Rest has to generate all simulation combinations followed by queuing them and
start execution first of them if possible. Workflow steps are (figure 9.6):

1. User selects workspace, network, attack parameters and metrics.

2. User starts set computation.

Chapter 9. Analysis and design 41

3. Web application makes a request to API Rest.

4. API Rest check parameters and if they are correct, continues with process pass-
ing them to simulation service.

5. Simulation service generates all simulation combinations with received data.

6. Simulation service responses request with the number of simulations gener-
ated.

7. Simulation service starts the computing process and web application starts
simulations status check process, both detailed next.

FIGURE 9.6: Compute new set of simulations workflow diagram.

Simulations status check process done by simulator web application gets the
number of simulation combination generated. Its goal is to check simulation com-
putation status starting from first one until all simulations have been computed.
Workflow steps are (figure 9.7):

1. Simulator web application receives the number of generated simulations and
their ids in request response.

2. Simulator web application queues all simulations to check.

3. While there are simulations queued:

3.1. Get first queued simulation status.

3.2. If not started display as not started, if running show output and if ended
display as finished and remove simulation from queue.

4. Display all simulations have been computed message.

Chapter 9. Analysis and design 42

FIGURE 9.7: Check launched simulations computing status workflow
diagram.

Computing process done by simulation service in server-side receives all gen-
erated simulations queued and its main goal is to compute all of them one behind
other. Workflow steps are (figure 9.8):

1. Simulation service receives all generated simulations queued.

2. While queue still has a simulation to compute:

2.1. Start simulation computation setting simulation status as started.

2.2. While computing, save output into database.

2.3. When computation finishes, if result file exists set simulation status as
finished, otherwise set simulation status as failed.

2.4. Remove simulation from queue.

Chapter 9. Analysis and design 43

FIGURE 9.8: Generated simulations computing process workflow di-
agram.

Download simulation result XML file

After computing a set of simulations, next step can be downloading each simulation
results. Remember that execution generates an resulting XML file with all calcu-
lated data. User has to select desired simulation and click on download file button.
Workflow steps are (figure 9.9):

1. User selects workspace.

2. User selects simulation’s set from listed sets.

3. User selects desired simulation from listed simulations.

4. If simulation’s status is finished (i.e. status is not "not-started", "started" or
"failed").

4.1. Web application displays download results file button.

4.2. User click on download results file button.

4.3. Web application request to API Rest results file.

4.4. Simulation service checks results file availability (it is possible that even
execution was successfully finished, the results file could not be gener-
ated).

4.5. If file is available, simulation service returns the file, otherwise returns an
error and web application shows a error page.

Chapter 9. Analysis and design 44

FIGURE 9.9: Download resulting XML file workflow diagram.

View generated attack in simulation with visualizer

This functionality user more than one tool, that is using both simulator and visu-
alizer web applications in client-side and both simulation and graph services in
server-side. At high level, workflow starts with user selecting desired simulation
and clicking open visualizer button on it. Then, when visualizer has opened it has
to select which generated attack combination wants to preview and visualizer will
preview it on the network. Workflow steps are (figure 9.10):

1. User selects workspace.

2. User selects simulation’s set from listed sets.

3. User selects desired simulation from listed simulations.

Chapter 9. Analysis and design 45

4. User clicks on open simulation in visualizer button.

5. Simulator web application opens a new instance of visualizer web application
with parameters as the simulation id, the network used and others.

6. Visualizer web application gets the network from API Rest formatted in JSON
by graph service.

7. Visualizer displays network.

8. User selects attack combination number (M) and number of elements attacked
(P) to see on network.

9. Visualizer web application gets attack sequence requesting API Rest.

10. Simulation service responses request with desired attack combination sequence.

11. Visualizer receives sequence and prints it on network.

FIGURE 9.10: Preview a generated attack in a simulation using the
visualization tool. API Rest is ignored to fit others but requests are

handled by API Rest as seen in others functionalities workflows.

46

Chapter 10

Implementation

This chapter defines how logical modules defined in previous chapters are imple-
mented identifying technologies used.

10.1 Server structure

Whole system is installed in a unique Ubuntu 64 bits production server which is
hosted in a physicall server located in University of Girona, hence it is not in any
cloud service. Also for developing we have a testing server similar to production
one (with less resources).

10.1.1 Production and testing servers interaction

All development is done in testing server and after different tests changes are trans-
ferred to production server using version control system Git and service Bitbucket1.
Development steps should be similar than detailed below (figure 10.1):

1. Make changes in code.

2. Test basic functionalities related to changes done.

3. Deep testing of all functionalities related to changes done. This step can be
omitted when fixing bugs easy reproducible.

4. Commit all changes in testing environment.

5. When a stable tested version is reached, push changes to Git.

6. Pull changes in production server.

7. View and use changes in production server .

1https://bitbucket.org/

Chapter 10. Implementation 47

FIGURE 10.1: Development modifications interaction process using
Git.

10.1.2 Client-side implementation

In previous chapter available web application logical modules in client-side are de-
fined as simulator, visualizer and generator web applications. All three logical mod-
ules are implemented as single web page application, all of them available through
an Apache server2.

2https://httpd.apache.org/

Chapter 10. Implementation 48

FIGURE 10.2: Client-side web tools implementation structure.

As seen in figure 10.2, both visualizer and generator tool have been implemented
as a simple web page without any framework used and simulator tool has been im-
plemented using frameworks as AngularJS3, Bootstrap4 and others.

On the one hand, visualizer and generator have a unique index.html customized
with some css files and the core applications codes are in JavaScript files (.js). In case
of visualizer, core JavaScript code is separated in three different JavaScript files, first
related to main page functionalities as upload or import a network and two others
related to the visualizer itself5.

On the other hand, simulator uses a different structure based on AngularJS frame-
work which, basically, loads dynamically the content and the interface of the single
page. This structure has folders to maintain css files, images, all JavaScript core,
necessary dependencies or libraries and all views to include dynamically. JavaScript

3https://angularjs.org/
4http://getbootstrap.com/
5When figure 10.2 was created, the interdependent networks visualizer mentioned in future work

chapter was already started, hence it is visible in figure.

Chapter 10. Implementation 49

core is divided in main core files (app.js, env.js, etc.), controllers that control web
page workflow and services which basically act as interconnection with API Rest
and perform other useful functionalities. Extra necessaries libraries are defined in
file bower.json and installed using Bower6 in libs folder.

10.1.3 Server-side implementation

Server-side logical modules seen in figure 9.5 are API Rest, simulation service, graph
service, user service and database. When implementing web application back-end it
was decided to use a NodeJS based structure for API Rest and all three services, that
is creating a server running with this technology listening for request from web ap-
plication client-side (logical API Rest) and after processing request redirect them to
necessary service depending on request type. Then, we decided to use MongoDB7

as a NoSQL database as detailed in analysis and decisions chapter to save whole
application data thanks to middle-ware (or library) mongoose8 which joins NodeJS
server with MongoDB database.

All necessary components seen in figure 10.3 are those necessary to use the sys-
tem successfully. Aside from NodeJS server and database we need to be able to
execute R simulation process code which is done through a bash script which really
acts as a research group member executing the R code.

FIGURE 10.3: Server-side implementation components structure.

Server-side structure individual components are:

server.js – Is the NodeJS core server itself. It creates the server and starts listen-
ing requests, then load necessary packages, libraries and middle-ware as moongose
or exec_child (necessary to execute bash scripts asynchronously). As the file name
extension tells it is coded in JavaScript.

package.json – Is the file where necessary dependencies are defined. Before exe-
cuting NodeJS server dependencies have to be installed using npm9. Npm will find

6https://bower.io/
7https://www.mongodb.com/
8http://mongoosejs.com/
9https://www.npmjs.com/

Chapter 10. Implementation 50

for dependencies in package.json file.

models folder – Contains all database entities defined as mongoose middle-ware
defines. Each entity has each own .js file defining a class of type mongoose.Schema.
With these files mongoose is able to know MongoDB database structure.

compute_simulation.sh – It is a bash script that executes the R code to compute
a unique simulation. It is launched by NodeJS server and receives as parameter the
full string line used to compute a simulation in R code.

analysis_script.sh – It is a bash script used when visualizer requests a live net-
work analysis (e.g. nodes degree, network diameter, etc.). It is called by NodeJS
server who has saved before in temporal directory the network to analyse.

tmp folder – Contains temporally files as, for example, generated networks. It is
emptied always by NodeJS when it is launched.

R folder – Contains whole R code developed before this project.

10.2 Performance improvement

An important point when executing simulations is to achieve a optimum perfor-
mance reducing the execution time so in this project a performance improvement
has been done. In other chapters it is said that one requirement of application is
not modifying existing R code but this improvement required changing this R code
because it is the core of simulations executions.

10.2.1 Paralleling metrics calculation

Existing R code was totally sequential, that means there probably were a way to im-
prove executions paralleling steps. We analysed every step in order to check if par-
alleling that step causes a remarkable performance improvement. Each step analysis
were:

Importing network – It is a unique work, so no paralleling option can be done
here.

Initials metrics computation – Computing metrics require a lot of computation
time in some metrics. For that reason paralleling this step can save execution time
but only when many metrics are selected, because for a less number of metrics it
doesn’t worth it. We decided to parallelize this step executing each metric in a dif-
ferent thread.

Attacks generation – This step can be paralleled but we decided not doing it
because generating attacks usually spends no much time.

Metrics computation – As said in initial metrics computation step, this step is par-
alleled too, calculating each metrics in a thread. As seen in figure 10.4 all metrics
are paralleled in every P number of elements attacked, that is calculating metrics for

Chapter 10. Implementation 51

P = 1 elements attacked is paralleled, then execution waits until all metrics execu-
tions have finished (i.e. all threads finished) and then follows with same procedure
with P = 2, P = 3, etc.

Principal component analysis – This step is executed using external libraries,
hence no paralleled improvement is done.

Robustness value and surface calculation – These steps are fast to execute so
there is no need to parallelize them.

FIGURE 10.4: Metrics calculation paralleled process. P is the maxi-
mum number of elements attacked.

Chapter 10. Implementation 52

10.3 Collaborators code implementation

During this project some collaborations with others institutions working in network
analysis have been done. Collaboration details are explained in next chapter but
here we explain how their code has been added to our system.

External code is always set as a black box that our simulator makes request to it,
that is important because that way we don’t modify that code but collaborators do,
so works is clearly separated.

10.3.1 Epidemic attacks

In collaboration with Kansas State University (KSU) we added their code to generate
epidemic attacks over a network in our simulator. As they work too with R adding
their code was not hard, we simply added in a folder their code which have a public
function with some parameters that generates and returns a list of attacked elements.
Execution and interaction process can be seen in figure 10.5.

FIGURE 10.5: Simulator and KSU code interaction process. M is the
number of combinations in experiment.

Chapter 10. Implementation 53

10.3.2 Throughput and link-usage metrics

In collaboration with Technical University of Munich (TUM) we added two metrics
(28-TRH and 29-LU) to our system which are explained in next chapter. As TUM
develop in Python a middle box written in Python had to be developed in order to
communicate both simulator and TUM Python code. This middle box is written in
Python and it aim is to receive requests from simulator (as a command python call
from system) and then execute TUM Python API. This procedure is needed because
there is no way to call directly in R a function defined in Python. Execution and
interaction process can be seen in figure 10.6.

FIGURE 10.6: Simulator and TUM code interaction process.

54

Chapter 11

Results

This chapter’s aim is to show the developed application when finished and to detail
collaborations done with other institutions in this project. As a whole project result,
the application has been developed successfully as can be seen below.

11.1 Developed application

Web application is available worldwide in research group servers1 through login
page with some social networks login options as seen in figure 11.1.

FIGURE 11.1: Application login page. User can register and login
using different social networks.

1http://infraiiia01.udg.edu

Chapter 11. Results 55

FIGURE 11.2: Last step before computing a new experiment. User
can check all selected parameters before starting computation.

Then user is able to select a workspace and select parameters to compute a new
experiment. This can be seen as an example in figure 11.2 where user is in last
step previous to start computation. It can be seen all parameters selected in order
to check them before executing the experiment. The experiment launched is done
over Abilene, Deltacom and Singapore metro networks against random, targeted
and epidemic generated attacks over both nodes and edges. Also from 1% to 20%
of elements are attacked (P) and 25 different attack combinations samples (M) are
used.

Chapter 11. Results 56

FIGURE 11.3: Experiment results page overview. All experiment pa-
rameters are shown and all individual simulation are listed.

When execution finished, we can see an experiment overview page with all sim-
ulations launched and their results as seen in figure 11.3. All previous selected pa-
rameters are shown and also a list with experiment simulations appears with ability
to click on each of them to get details.

Chapter 11. Results 57

FIGURE 11.4: Single execution attacks comparison using visualizer.

Each simulation has its own buttons to see results in different ways as down-
loading XML files, seeing them in visualizer or seeing execution output. In figure
11.4 a screenshot of a comparison between two different generated attacks can be
seen. Left side visualization shows a low damage attack (robustness remains at 0.83)
and in right side visualization a high damage attack is shown (robustness value is
less than 0), that is with same number of elements attacked (3) generated effect can
differ considerably. That happens because in left side attack elements selected are
not central but in right side one are.

Chapter 11. Results 58

FIGURE 11.5: Visualization of a network over a map. Network is
related to Singapore metro network (colourised as real metro lines

colours).

Application as detailed in this reports has other functionalities than executing
simulations. Users can visualize networks using the visualizer tool in both synthetic
mode or over a map. In figure 11.5 real Singapore metro network is displayed over
a map using Google Maps. Also users have the ability to generate networks and
import them to the simulator. In figure 11.6

Chapter 11. Results 59

FIGURE 11.6: A multiple hub network with 15 internal nodes, 150
external nodes and internal nodes degree equal to 0 generation.

11.2 Collaborations

The main goal of this project was to achieve a useful tool but also it was important to
find other research groups who want to use this tool in order to add their studies on
it as collaborators. Other groups can use the application as a tool to visualize their
complex networks or dynamical computations over them. Existing collaborations
are detailed below:

Chapter 11. Results 60

11.2.1 Technical University of Munich (TUM) collaboration

The Department of Electrical and Computer Engineering of TUM has been working
in routing algorithms using demand matrices through a network. They are able to
find optimal paths for an existing network and demand matrix in order to maximize
throughput and reduce link usage. TUM’s work is based on SNDLib2 networks and
demand data.

This algorithm has been added to our simulator tool as two new metrics (28-TRH
and 29-LU). These two metrics can be categorized as functional metrics and define
the amount of traffic lost after a failure in the network, that is removing an element
and computing again the algorithm, checking if resulting throughput value remains
equal than before (using different paths) or has a lower value (some traffic can not
be handled). Detailed algorithm explanation can be seen below:

Optimization algorithm

A network is described as a graph G = (V,E), where V denotes the nodes of the
network that can generate or switch the traffic, and E represents the communication
links. The links (i,j) have a limited bandwidth Cij . The flows in the traffic demand
are described as d = (sd, td, cd), where sd and td denote the source and destination
of the traffic demand, and cd denotes the data rate of the flow. Binary variables zij,d
indicate if the edge (i, j) carries flow d, and xd indicate if the flow d is accepted.

The objective is to maximize the throughput of the survived flows, while min-
imizing the sum of each demand’s path length. Small weight is assigned to the
number of used links, to ensure shortest possible paths ε� 1.

max
∑
d∈D

xdcd − ε
∑
ij∈E

∑
d∈D

zij,dcd

Capacity and flow conservation constraints have to hold.∑
d∈D

zij,dcd ≤ Cij ; ∀(i, j) ∈ E;

zij,d ≤ xd;∀(i, j) ∈ E; ∀d ∈ D;

∑
ij∈E;i=n

zij,d −
∑

ij∈E;j=n

zij,d = sn,dxd − tn,dxd; ∀n ∈ V ; ∀d ∈ D;

We also prevent the flow split, by allowing at most one incoming and one outgo-
ing link to be used by the same flow:∑

ij∈E;j=n

zij,d ≤ 1;∀n ∈ V ;∀d ∈ D;

∑
ij∈E;i=n

zij,d ≤ 1;∀n ∈ V ; ∀d ∈ D;

Where sd and td are helper functions defined as:

2SNDLib is a library of test instances for Survivable fixed telecommunications Network Design.
Official website: http://sndlib.zib.de/

Chapter 11. Results 61

sd =

{
1, if n is a source of flow d

0, otherwise

td =

{
1, if n is a destination of flow d

0, otherwise

Throughput

When optimization algorithm finishes, it is possible to calculate the network through-
put metric value that is defined as the sum of all accepted flows:

Throughput =
∑
d∈D

xdcd

Throughput metric represents numerically the whole quantity of data carried
through the network.

Link usage

Link usage average metric value can be calculated from optimization result. It is
defined as the sum of the throughput carried by every edge divided by the sum of
edges:

LinkUtilization =
∑
d∈D

∑
ij∈E

zij,dcd/
∑
ij∈E

Ci,j

Average link usage represents the usage percentage of edges, saying if network
near to its maximum capacity or if it is not in use.

11.2.2 Kansas State University (KSU) collaboration

Kansas State University research group has been working in epidemic models in
order to understand how an infection or failure can spread over a network. KSU has
elaborated an algorithm to generate attack sequences using these epidemics models
and thanks to our collaboration we have added their code in our simulator to let it
have the ability to generate dynamically epidemic attacks.

FIGURE 11.7: Epidemic attack spread example (from left to right).
Next selected node has to be connected to an infected node.

Chapter 11. Results 62

11.2.3 Institut Català de Recerca de l’Aigua (ICRA) collaboration

ICRA is the most important research institution related to water in Catalonia. They
work in topics about water distribution networks and sewerage system. In this case,
we have not added any code in our simulator but they use the visualizer in order to
visualize their big networks and to compute analysis over them. They shared with
us the Girona’s sewerage network and after some exhausting fixing, filtering and
conversion done by us it is now accessible through the visualizer (figure 11.8).

FIGURE 11.8: Girona’s sewerage system network visualized over a
map using the visualizer tool. Wells are painted depending on type.

Aside from visualizing network ICRA asked us for computing some analysis on
this network as for example grouping pipelines depending on some criteria. We
helped them adding this functionality to the simulator. We can see an example in
figure 11.9.

Chapter 11. Results 63

FIGURE 11.9: Girona’s sewerage system network pipelines clustering
depending on their length, pending and diameter attributes values.

11.3 The 3rd Delft-Girona Workshop of robustness of com-
plex networks

In the background of the 3rd Delft-Girona Workshop3 related to complex networks
robustness that took place in Delft University of Technology (The Netherlands) on
11th July, 2017 a depth demonstration of the whole application with a great accep-
tance from present public in workshop. A whole session was needed to explain all
simulator functionalities (theoretical and practical demonstration) as can be seen in
workshop programme (figure 11.10).

FIGURE 11.10: Delft-Girona workshop programme showing Univer-
sitat de Girona’s dedicated session to simulator.

3More info at: https://www.nas.ewi.tudelft.nl/rocn/index.html

64

Chapter 12

Conclusions

Having in mind the objectives of this project, these are the general conclusions:

• It has been successfully developed the simulator in a web application includ-
ing its three tools as simulator, visualizer and generator. The application is able
to compute experiments in a user friendly way and it is accessible worldwide.

• The previous existing R code has been changed to new web based system with
many functionalities added that make the whole system more powerful. All
functionalities are now accessible easily through a navigator which is helpful
to researchers with no computing knowledge.

• Other institutions and/or collaborators are interested in using this applica-
tion in order to use it for their experiments. They see the application as a very
helpful one thanks to many features available on it that they don’t have in their
systems.

• Aside from using synthetic networks, during the project textbfsome real net-
works has been used in order to analyse them using the application, which
indicates the application can be used in many kind of real networks.

Personally, I believe this project has resulted in a very useful application which
help BCDS research group members and others to execute and understand their
experiments easily. The most important personal conclusions are:

• This project was the start on introducing myself in research topics. I started
this project with the aim to learn how research is and to improve on it. I am
really satisfied in this point, being examples the collaboration with Technical
University of Munich with a two weeks stay in it or the assistance as speaker in
the 3rd Delft-Girona Workshop of robustness of complex networks. This gave
me much experience in order to improve with my personal trajectory.

• An important aspect in a final project is to use whatever you learned during
the master. In this project I have used a lot of knowledge learned during the
master. It is important to understand that this project is a join of two differ-
ent topics in computer engineering which are web developing and research
investigation.

Finally, I am proud of making most of the whole application with no external
help than my previous knowledge in web developing and forums available in in-
ternet. This includes setting up the server, developing the application and testing
it.

65

Chapter 13

Future work

As the resulting application is powerful, possible future work can be defined as any
functionality available in a network analysis tool can be added to application. That
means once a network is imported to the system, any analysis can be done on it and
see its results interactively. If desired functionality is not yet available, it can be
added with no much time cost.

Our next steps scheduled to improve the system are:

• New user interface: As some collaborators gave us their feedback, we decided
to implement a easier to use user interface. It includes a depth redesigning
of the interface making it resizeable to display in mobile devices and adding
tips to let collaborators understand better how application works without our
help.

• Interdependent networks: BCDS research group is also working in interde-
pendent networks (i.e. two networks interconnected in some way). Next step
is to let the application compute their experiments and visualize results on it
as in single network mode. It is still in development, we can see a beta version
capture in figure 13.1.

FIGURE 13.1: Interdependent networks mode beta version capture.
Capture has been taken while development phase.

• New collaborations: We are working on achieving new collaborators to add
more metrics and algorithms to our system. With more collaborations we have,
more powerful the application is.

66

Bibliography

[AJB00] Réka Albert, Hawoong Jeong, and Albert-László Barabási. Error
and attack tolerance of complex networks. nature, 406(6794):378–
382, 2000.

[Cas11] Marc Manzano Castro. Metrics to evaluate network robustness in
telecommunication networks. PhD thesis, Universitat de Girona, 2011.

[CLMR03] Paolo Crucitti, Vito Latora, Massimo Marchiori, and Andrea Rapis-
arda. Efficiency of scale-free networks: error and attack tolerance.
Physica A: Statistical Mechanics and its Applications, 320:622–642, 2003.

[DC04] Anthony H Dekker and Bernard D Colbert. Network robustness
and graph topology. In Proceedings of the 27th Australasian conference
on Computer science-Volume 26, pages 359–368. Australian Computer
Society, Inc., 2004.

[ESVM+11] W Ellens, FM Spieksma, P Van Mieghem, A Jamakovic, and
RE Kooij. Effective graph resistance. Linear algebra and its applica-
tions, 435(10):2491–2506, 2011.

[MCSS+14] Marc Manzano Castro, Faryad Sahneh, Caterina Scoglio, Eusebi
Calle Ortega, and Josep Lluís Marzo i Lázaro. Robustness surfaces
of complex networks. Scientific Reports, 2014, núm. 4, P. 6133, 2014.

[MCTP+13] M. Manzano, E. Calle, V. Torres-Padrosa, J. Segovia, and D. Harle.
Endurance: A new robustness measure for complex networks under
multiple failure scenarios. Computer Networks, 57(17):3641 – 3653,
2013.

[MKF+06] Priya Mahadevan, Dmitri Krioukov, Marina Fomenkov, Xenofontas
Dimitropoulos, Amin Vahdat, et al. The internet as-level topology:
three data sources and one definitive metric. ACM SIGCOMM Com-
puter Communication Review, 36(1):17–26, 2006.

[SHe+10] James P.G. Sterbenz, David Hutchison, Egemen K. etinkaya, Abdul
Jabbar, Justin P. Rohrer, Marcus Scher, and Paul Smith. Resilience
and survivability in communication networks: Strategies, princi-
ples, and survey of disciplines. Computer Networks, 54(8):1245 –
1265, 2010. Resilient and Survivable networks.

[SSYS10] Ali Sydney, Caterina Scoglio, Mina Youssef, and Phillip Schumm.
Characterising the robustness of complex networks. International
Journal of Internet Technology and Secured Transactions, 2(3-4):291–320,
2010.

[TMHWVM13] Stojan Trajanovski, Javier Martín-Hernández, Wynand Winterbach,
and Piet Van Mieghem. Robustness envelopes of networks. Journal
of Complex Networks, 1(1):44–62, 2013.

BIBLIOGRAPHY 67

[WBTD09] Jun Wu, Mauricio Barahona, Yuejin Tan, and Hongzhong Deng. Ro-
bustness of regular graphs based on natural connectivity. arXiv
preprint arXiv:0912.2144, 2009.

