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ABSTRACT

Tissue Engineering plays a vital role in tissue construct to repair, maintain or replace
tissues. Those tissues can be cultivated in vivo or in vitro using devices such as
bioreactors. There are several approaches to create the necessary tissues, but one of the
most popular and successful is by using scaffold constructs to provide the required
stability and support. After the cells being implanted on the scaffolds, they are then

inserted in the bioreactors.

Those bioreactors seek to mimic the conditions provided to cells by the human body. This
issue by itself presents several challenges where it is required, to bioreactors, besides the
optimum environment in terms of temperature, nutrients, the creation of the necessary

stimulus to cells to differentiate and proliferate.

In this work, is presented a novel concept of bioreactor for Tissue Engineering that can
provide multiples stimulus when cultivating the tissue. To achieve an optimised design
was performed several numerical simulations to access the best design parameters. For
this, it was taken into account several variables such as fluid velocity, the proximity of
the inlet/outlet to the scaffold, directions of the fluid and the impact of the liquid on the
scaffold and subsequently the cells by analysing the wall shear stress provoked by the
fluid flow.

Keywords: Scaffold, Tissue Engineering, Bioreactors, Numerical Simulation, Cell

Culture, Mechanical Stimulation, Perfusion Stimulation.
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RESUM

L’enginyeria de teixits té un paper fonamental en la construccio de teixits per reparar,
mantenir o substituir teixits. Aquests teixits es poden cultivar in vivo o in vitro mitjangant
dispositius biomédics com ara bioreactors. Hi ha diversos enfocaments per crear els
teixits necessaris, pero un dels més populars i amb éxit, és utilitzar construccions
d’estructures semblants a les bastides, anomenats scaffolds, per proporcionar I'estabilitat
i el suport necessaris a les cel-lules. Després de la implantacié de les cél-lules a les

bastides, es col-loquen a I’interior dels bioreactors.

Aquests bioreactors pretenen imitar les condicions que proporciona el cos huma a les
ceél-lules. Aquesta questid per si mateixa presenta diversos reptes en que es requereix, als
bioreactors, a més de I’ambient Optim en termes de temperatura i nutrients, la creacié de

I’estimul necessari perqué les cél-lules es diferenciin i proliferin.

En aquest treball, es presenta un concepte nou de bioreactor per a I’enginyeria de teixits
que pot proporcionar estimuls multiples al cultiu del teixit. Per aconseguir un disseny
optimitzat s’han realitzat diverses simulacions numeériques per accedir als millors
parametres de disseny. Per a aix0, es va tenir en compte diverses variables com la velocitat
del fluid, la proximitat de I’entrada / sortida a la scaffold, les direccions del fluid i
I’impacte del fluid sobre la scaffold i, posteriorment, sobre les cel-lules mitjancant

I’analisi de la tensi6 de cisalla provocada pel flux de fluids.

Paraules clau: Scaffold, Enginyeria de teixits, Bioreactors, Simulacié numerica, Cultiu

cel-lular, Estimulacié mecanica, Estimulacié de perfusio.
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RESUMEN

La ingenieria de tejidos juega un papel vital en la construccion de tejidos para reparar,
mantener o reemplazar tejidos. Los tejidos pueden cultivarse in vivo o in vitro utilizando
dispositivos biomédicos tales como biorreactores. Existen varios enfoques para crear los
tejidos, pero uno de los mas populares y exitosos es el uso de construcciones de
estructuras como andamios, que reciben el nombre de scaffolds, para proporcionar la
estabilidad y el soporte necesarios a las células. Después de que las células se implantan

en los scaffolds, se insertan en los biorreactores.

Los biorreactores buscan imitar las condiciones proporcionadas a las células por el cuerpo
humano. Este problema por si mismo presenta varios desafios donde se requiere, para los
biorreactores, ademas del ambiente 6ptimo en términos de temperatura y nutrientes, la

creacion del estimulo necesario para que las células se diferencien y proliferen.

En este trabajo, se presenta un concepto novedoso de biorreactor para ingenieria de tejidos
que puede proporcionar estimulos multiples al cultivar el tejido. Para lograr un disefio
optimizado se realizaron varias simulaciones numéricas para acceder a los mejores
parametros de disefio. Para esto, se tuvieron en cuenta varias variables, como la velocidad
del fluido, la proximidad de la entrada / salida al scaffold, las direcciones del fluido y el
impacto del fluido sobre el scaffold y, posteriormente, sobre las células mediante el

analisis de la tension de corte provocada por el flujo del fluido.

Palabras clave: Scaffold, ingenieria de tejidos, biorreactores, simulacion numérica,

cultivo celular, estimulacion mecanica, estimulacion por perfusion.
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RESUMO

A engenharia de tecidos desempenha um papel vital na construgéo de tecidos para reparar,
manter ou substituir tecidos. Esses tecidos podem ser cultivados in vivo ou in vitro
utilizando dispositivos como os bioreactores. Existem varias abordagens para criar 0s
tecidos necessarios, mas um dos mais populares e bem-sucedidos é usando scaffolds que
fornecem a estabilidade e o suporte necessarios as células. Apos as células serem

implantadas nos scaffolds, este conjunto é ent&o inserido num bioreactor.

Os bioreactores permitem simular, aproximadamente, as mesmas condic¢Ges fornecidas
pelo corpo humano as células. Esta questdo por si s6 apresenta varios desafios onde é
necessario, além do 6ptimo ambiente em termos de temperatura e nutrientes, a criacdo do

estimulo necessério para as células se diferenciarem e proliferarem.

Neste trabalho, € apresentado um novo conceito de bioreactor para Engenharia de Tecidos
que pode fornecer multiplos estimulos simultaneamente ao cultivar o tecido. Por forma a
obter um design optimizado, foram realizadas varias simula¢6es numeéricas para definir
os melhores pardmetros. Para isso, foram levadas em consideracdo diversas varidveis
como velocidade do fluido, proximidade da entrada/saida do scaffold, direcéo do fluido e
impacto do fluido no scaffold e consequentemente das células através da analise das

tensdes de corte da parede pelo fluxo de fluido.

Palavras-chave: Scaffold, Engenharia de Tecidos, Bioreactores, Simulacdo Numeérica,

Cultura Celular, Estimulagdo Mecénica, Perfuséo.
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Chapter 1

1 INTRODUCTION

This chapter will give a general overview of Tissue Engineering, presenting the current
trends and difficulties of this field. Of the two main areas of tissue engineering, the
discussion will focus more on the in vitro techniques. More specifically tissue engineering
using Bioreactors. A brief explanation of this type of equipment will be given. This work
goal will be described at the end of this chapter, along with the published research papers.

1.1 Tissue Engineering

Tissue Engineering (TE) is an emerging field that complies different areas of science
focusing primarily on the use of cells, biomaterials, computational methods and
fabrication processes (Figure 1.1), merging principles of different areas such as biology,
engineering and medicine in order to create biological tissues to replace natural
functionally damaged tissues (Bartolo et al., 2009a, 2009b, 2008; Eshraghi and Das,
2010; Gibson, 2005; Pati et al., 2016; Risbud, 2001; Shafiee and Atala, 2016; Tan et al.,
2005; Vozzi et al., 2003). Skalak and Fox (1988), defined TE as the “application of the
principles and methods of engineering and life sciences toward the fundamental
understanding of structure-function relationships in normal and pathological mammalian
tissues and the development of biological substitutes to restore, maintain, or improve
tissue and organ functions” (Bartolo et al., 2008). Figure 1.2 represents key milestones in
the field of TE.
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Figure 1.1 Multidisciplinary nature of tissue engineering.
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Figure 1.2 Organ transplantations and tissue and organ engineering (Hunter, 2014).
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TE emerged to address the organ shortage problem and comprises organ substitution,
tissue regeneration and gene therapy (Table 1.1). It also intends to develop cost-efficient,
fast recover and personalised therapeutics targeting the main problems of the Health
Services. Its relevance is notably higher in countries facing age-related issues such as new
diseases (e.g. Parkinson and Alzheimer). Successful examples of tissue engineering
include bone, skin, muscle, cartilage, craniofacial and cardiac regeneration (Fung and
Skalak, 2009; Garcia Cruz et al., 2012; Gaspar et al., 2012; Ladd et al., 2009; Nakamura
et al., 2013; Niklason et al., 1999; Paez-Mayorga et al., 2018; Radisic et al., 2008;
Visscher et al., 2016; Zhang et al., 2017).

According to Lysaght et al., 2008, 50 companies were working in the field of TE,
employing 3,000 equivalent full-time positions. This number significantly increased to
391 in 2010 (Lewis, 2013). The global bone graft market, for example, was valued at $3
billion in 2010 and $4 billion in 2017. In the United States, the demand for orthopaedic
biomaterials represented around $3.5 billion in 2012 (iData Research, 2013), while in
Europe the market for spinal fusion constructs represented $177 million in 2010 and $461
million in 2016. In another area, skin burns and chronic wounds represent one of the most
debilitating, painful, and costly health conditions. Typically, these wounds require
extensive hospitalisation, labour intensive clinical procedures and expensive wound care
products, representing a significant burden over total world healthcare expenditure. It is
estimated that the cost of chronic wound care represents about 2% of the total EU
financial resources. A total of 120 companies are operating in the field of skin treatment,
including major corporations such as Advanced Dermatology Corporation, Bayer and
Beiersdorf. TE is an area with significant growth in Portugal and Spain. Several spin-off
companies emerged from Universities and Research Institutes and are now operating at a
global level. Examples include REGEMAT3D (Granada, Spain) a company developing
a wide range of relatively low-cost 3D bioprinting systems, actively competing with
established companies like Envisiontec (Germany) and RegenHU (Switzerland). Another
example is CERAMED (Lisbon, Portugal) developing synthetic ceramic grafts for dental

and bone regeneration applications.
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Table 1.1 Core areas within Tissue Engineering, adapted from Jeong et al., 2007; Kuppan et al.,
2012; Tabata, 2001.

Purpose Techniques/Methodology
In vitro production of tissue Cell scaffolding, bioreactor,
constructs microgravity
Tissue Cell scaffolding, controlled release
Regeneration In vivo natural healing process phys%:al barrier ’
Ischemia therapy Angiogenesis
Immunoisolation Biological Barrier
Organ Nutrition and oxygen supply Angiogenesis
Substitution T = r
emporary ?Sfllfti%rrllce ororgan Extracorporeal system
S : e Intracellular transfer of nucleic
Inhibiting induction of a specific ;
Gene therapy  gene, or by editing undesirable acid drugs to modulate cellular

functions and responses by

genomic mutations expressing exogenous proteins

Clinical approaches to repair and restore the function of damaged tissues usually require
the use of allografts, autografts and xenografts. Autografts, defined as tissue that is
transplanted from one part of the body to another part in the same individual, is the “gold
standard”. as it does not induce rejection and the best clinical results can be obtained.
They are osteoconductive, osteoinductive, promote osteogenesis, and do not present risk
of immune system rejection or disease transmission. Main complications are related to
pain and morbidity in the donor site, limited quantity and availability, prolonged
hospitalisation time, the need for general sedation or anaesthesia and risk of deep
infection and haematoma. Allografts are harvested from one individual and implanted
into another individual of the same species. They can be obtained from cadavers or living
donors. Significant limitations are associated with the risk of rejection, transmission of
diseases and infections from donor to recipient, limited supply, loss of biological and
mechanical properties due to its processing and cost. Xenografts are harvested from one
individual and transplanted into another individual of a different species. They are low
cost and highly available grafts. Major limitations are related to the risk of transmission
of infections and diseases and poor clinical outcome. Ethical concerns have also arisen
from the use of animals (Abousleiman and Sikavitsas, 2007; Ariadna et al., 2016; Bartolo
et al., 2008; Fuchs et al., 2001; Grayson et al., 2008; Kuppan et al., 2012; Matsumoto
and Mooney, 2006; Mistry and Mikos, 2005; Rabionet et al., 2018).

All of these biological grafts present significant limitations. TE addressed these issues
through three different approaches (Figure 1.3). The first approach corresponds to the use
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of cell therapies. Cells are harvested usually from the patient and are cultured and
expanded in vitro and then injected into the damaged site. This is a straightforward
approach, but it is challenging to keep cells in the desired position during clinical relevant
times. The second approach uses advanced fabrication techniques (e.g. additive
manufacturing) to produced optimised designed scaffolds, which can be directly
implanted into the damaged site or seeded with cells, pre-cultured in a bioreactor before
their in vivo implantation. The third approach is based on the use of specific bioinks
(hydrogels containing cells and growth factors) for the fabrication of cell-laden
constructs, which can be directly implanted or pre-cultured in a bioreactor before
implantation. Among all these strategies the scaffold-based ones are the most commonly
used (Bértolo et al., 2008; Bhumiratana and VVunjak-Novakovic, 2012; Fuchs et al., 2001;
Langer, 1997; Langer and Vacanti, 1993; Matsumoto and Mooney, 2006; Mistry and
Mikos, 2005; Norotte et al., 2009; Pereira and Bartolo, 2015).

(a) 'Q‘ K,Qx
N — . i &1
dj? | B — % — &= == — 40

o N T W

il & !

.f_}'l.i A e

2D in vitro cell

Healthy donor Harvested cells Cell isolation culture isclation

Cell injection in vifro

(b) Additive biofabrication techniques
for 3D scaffold fabrication
Slrategy 2

. .
‘ — T o
I@ *. + Strategy 3 |';5 |1||
- Ajl
i
ﬁ é Porous 3D scafiold Cell seeding In vifro culture in bioreactor

e
—

Strategy 1

(e) o - Biomaterial 1
Bioprinting processes for the fabrication of cell-laden constructs Cell type A

- NN
t-‘l;l I J
-3 —T — L
Cell-laden
Inkjet Laser Bioprinting Extrusion 3D construct
Bmmatenal 2
Celltype B

Figure 1.3 Main therapies for tissue engineering. (a) Cell-based therapy; (b) scaffold-based
therapy; (c) therapy based on the implantation of cell-laden 3D constructs. In scaffold-based
therapy, scaffolds can be implanted without cells (Strategy 1), after cell seeding (Strategy 2), or
upon in vitro culture (Strategy 3) (Pereira and Bartolo, 2015).
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Scaffold-based approaches require the use of biocompatible and biodegradable materials,
growth-factors, cells, advanced fabrication techniques and bioreactors. A wide range of
biomaterial have been explored including natural polymers (e.g. gelatine, collagen,
dextrane, pectine, alginate and chitosan), synthetic polymers (e.g. poly(a-hydroxy acids),
poly(urethane), poly(anhydride) and poly(orthoester)), inorganic materials (e.g. calcium
phosphates, bioglasses, carbon nanotubes and graphene) and composites Table 1.2.
(Bedian et al., 2017; Chen and Rosi, 2010; Fu et al., 2018, 2013; Hao et al., 2017; Huang
et al., 2018; Janouskova, 2018; Kang et al., 2017; Place et al., 2009; Rijal et al., 2017;
Terzaki et al., 2013; Thanaphat and Thunyakitpisal, 2008).

Table 1.2 Biomaterials used in the production of scaffolds used for TE (Bedian etal., 2017; Chen
and Rosi, 2010; Fu et al., 2018, 2013; Hao et al., 2017; Huang et al., 2018; Janouskova, 2018;
Kang et al., 2017; Place et al., 2009; Rijal et al., 2017; Terzaki et al., 2013; Thanaphat and
Thunyakitpisal, 2008).

Manufacturing

Material Potential Limitations

Benefits

High water content/growth media
inclusion allows for cell encapsulation
and growth

Mechanical properties limit use in load-
bearing constructs

Optimising printing conditions for

Mechanical properties can be modified

individual hydrogels can be time-

Hydrogels through crosslinking consuming
Controlled drug/growth factor release Physical manipulation of constructs can
possible be difficult
Ease of patterning via 3D printing to Loading evenly with cells can be
mimic tissue microarchitectures challenging
Natural polymers can be derived from  Natural and synthetic polymers generally
the extracellular matrix, ensuring high lack mechanical properties for load-
biocompatibility and low toxicity bearing
Biodegradable Pathological impurities such as endotoxin
Polymers may be present in natural polymers
Often contain biofunctional molecules .
on their surface Synthetic polymers are usually
. ) hydrophobic and lack cell recognition
Synthetic polymers offer improved sites
control over physical properties
Osteoconductive and osteoinductive
properties allow strong integration Hard and brittle when used alone
with host tissue
Ceramics A similar composition to host bone May display inappropriate
mineral content degradation/resorption rates, with a
) decline in mechanical properties as a
Can be delivered as granules, paste or result
in an injectable format
Osteoconductive, osteoinductive Inherent brittleness
properties . )
Difficult to tune resorption rate
Inorganic Manipulation of constructs into 3D shapes
Adapted into clinical prosthesis to treat specific defects challenging
already
Potential for release of toxic metal ions
6 Dino Freitas - September 2019
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Depending on the applications, scaffolds should incorporate different growth-factors, as
shown in Table 1.3. Growth factors are proteins that are produced by cells functioning as
signalling molecules. With these proteins, it is possible to promote cell adhesion,
proliferation, migration and differentiation of the cultured cells (Boontheekul and
Mooney, 2003; Rose and Oreffo, 2002; Tessmar and Gopferich, 2007). Cells include
specific differentiated cell lines (e.g. osteoblasts, chondrocytes, fibroblasts,
keratinocytes) or mesenchymal stem cells mainly derived from bone marrow, adipose

tissue and umbilical cord.

Table 1.3 Most relevant growth factors for tissue engineering applications (Boontheekul and
Mooney, 2003; Rose and Oreffo, 2002; Tessmar and Gopferich, 2007).

Bone Regeneration

Growth factor Relevant activities
Transforming growth factor-f3 (TGF-f3) Proliferation and differentiation of bone
Bone morphogenetic protein (BMP) Differentiation of bone-forming cells

Stimulates proliferation of osteoblasts

Insulin-like growth factor (IGF) and the synthesis of bone matrix

Fibroblast growth factor (FGF) Proliferation of osteoblasts
Platelet-derived growth factor (PDGF) Proliferation of osteoblasts
Wound Healing
Growth factor Relevant activities
Platelet-derived growth factor (PDGF) Active in all stages of the healing process
Epidermal growth factor (EGF) Mitogenic for keratinocytes

Promotes keratinocyte migration, ECM
Transforming growth factor-f3 (TGF-f) synthesis and remodelling, and
differentiation of epithelial cells

Fibroblast growth factor (FGF) General stimulant for wound healing

Scaffolds are 3D biocompatible and biodegradable structures that provide a substrate for
the implanted cells to attach, proliferate and grow, producing their Extra-Cellular Matrix
(ECM) and stimulate new tissue formation (Bartolo et al., 2012). Besides providing the
initial biochemical and biophysical substrate to improve the cell growth, scaffolds also
serve as a temporary template to accommodate and aid in the definition, formation and
orientation of the new tissue throughout the 3D space (Bartolo et al., 2012). Scaffolds

must be designed to deliver and retain cells and growth factors and to enable the diffusion
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of cell nutrients and oxygen. They must provide an adequate temporary mechanical and
biological environment enabling tissue regeneration in an organized way (Bértolo and
Bidanda, 2008; Bartolo et al., 2009a, 2009b; Billiet et al., 2012; Gomes and Reis, 2004;
Gross and Rodriguez-Lorenzo, 2004; Guillotin and Guillemot, 2011; Hutmacher, 2001;
Kim and Mooney, 1998; Kreke et al., 2005; Langer and Vacanti, 1993; Leong et al., 2008;
Liu and Czernuszka, 2007; Tan et al., 2005; Tan and Teoh, 2007; Truscello et al., 2012).
In order to accomplish all of these goals, scaffolds must fulfil several biological and
physical requirements (Figure 1.4 and Table 1.4) that will affect cell survival, signalling,
growth, propagation and reorganization and also cell shape modelling and gene
expression (Bartolo et al., 2012; Bartolo and Bidanda, 2008; Bartolo et al., 2009b, 2009g;
Billiet et al., 2012; Chen et al., 1997; Leong et al., 2008; Mooney et al., 1991; Reverchon
and Cardea, 2012; Sanz-Herrera et al., 2009; Shafiee and Atala, 2016; Vasanthan et al.,
2012). The ability of additive manufacturing to pattern various materials, cell types and
biomolecules provides a unique tool to create tissue constructs closely resembling the
composition, architecture and function of biological tissues. Advances in printable
biomaterials and 3D printing strategies allow the fabrication of vascularised tissue
constructs composed of multiple cells embedded within suitable extracellular matrix
components and supplied by functional vasculature (Huang et al., 2018; Vyas et al.,
2017). Thick and perfusable vascular tissue constructs can now be designed, printed and
in vitro cultured for relevant periods, offering a promising alternative to traditional

vascularisation strategies (Figure 1.5) (Huang et al., 2018; Vyas et al., 2017).
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« Tissue growth/adaptation
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Figure 1.4 Tissue engineering process involving the cell seeding on scaffolds, in vitro culturing
and patient implantation (Bartolo et al., 2012; Liu and Czernuszka, 2007).
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Table 1.4 Relationship between scaffold characteristics and the corresponding biological effect
(Mahajan, 2005).

Scaffold Characteristics Biological Effects
Biocompatibility Cell viability and tissue response
Biodegradability Aids tissue remodelling

Cell migration inside the scaffold -

Porosity Vascularisation

Aids in cell attachment and signalling in the cell
Chemical properties of the material environment.
Allows release of bioactive substances

Mechanical properties Affects cell growth and proliferation response

1.2 Cell Culture and Bioreactors

In Tissue Engineering, cell culture plays a crucial role in the construction of tissue
replacement. Therefore, bioreactors are vital elements in a tissue engineering approach.
A tissue engineering bioreactor can be defined as a “device that uses mechanical means
to influence biological processes” (Plunkett and O’Brien, 2010). Bioreactors (Figure 1.6)
can be used to assist the in vitro development of new tissue by offering physical and
biochemical regulatory signals to cells, stimulating and encouraging them to differentiate
and/or to produce ECM prior to in vivo implantation (Portner et al., 2005). They are
devices where biochemical or biological processes develop under a tightly controlled and
closely monitored environment. The primary roles of a tissue engineering bioreactor are
to guarantee (Wang et al., 2005; Wendt et al., 2008; Xie and Lu, 2016):

e A favourable environment for cell proliferation and differentiation;
e Homogeneous distribution of cells in the scaffold;

e Constant nutrient concentration supply;

e Efficient mass transfer;

e Physical stimuli.

Dino Freitas - September 2019 11



A Mechano-Perfusion Bioreactor For Tissue Engineering

Systems for routine cultivation | Cell culture systems adapted for tissue engineering

OOOS‘ Spinner Shake flask o Mnc.mpnmuﬁ ’
2-well |(OOO0 | BEEHEE (‘\,\..é carrier or scaffold
lat Q000 . TR ¥
e B899 Hla A v

D \
Petri dish | ) B 0,94

N

T-flask ~ Hollow fiber system N Flat mcmbrané system
S pomeaple | Flidizd  Fived
/| i -~ T
Adherent cells  edium - R i bed bed
& Hollow fiber C:O 0 O Q membrane
& L A
Roller botde ) @="—

membrane

Y 7
Culture  Hollow fiber membrane
Cartrige chamber  for substrate supply

Culture systems designed for tissue engineering

Rotating wall vessel Flow chamber with special inserts Flow chamber for cylindrical

Figure 1.6 Static and dynamic cell culture systems used in TE (Pértner et al., 2005).

Due to the specificity of each type of cell and the tissue that will be created, there was a
need to develop various kinds of bioreactors with more focus on their operational aspects
and ability to apply stimulus. These bioreactors are divided into two major groups: static
culture bioreactors and dynamic culture bioreactors (Figure 1.7). Static culture systems
are the simplest to operate only required to control the environmental conditions (e.g.
petri dish, t-flask, culture bag) while dynamic systems apply stronger stimulus to the cells,
either directly or indirectly. Dynamic cultures comprise agitation systems like spinner
flask, Wavywalled Bioreactor (WWB), stirred vessel bioreactors and the rotational
bioreactors (Bernhard Rieder, 2018; Gelinsky et al., 2015; Obregon et al., 2017; Rauh et
al., 2011).
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Figure 1.7 Bioreactors classification.

The operation of a bioreactor requires an optimal control on the oxygen concentration,

temperature, pH, shear stresses, mechanical forces and aseptic conditions. These

parameters are strongly dependent on the scaffold topology, scaffold material and cells,

are pre-defined based on the user experience or empirical models. For example, if the

shear stresses on the scaffolds are excessive, they can induce cell death (Table 1.5).

Moreover, depending on the shear stresses, cell permeability can raise the liberation of

extracellular proteins. However, despite the complexity in defining optimal processing

conditions, and eventually the need for real-time modification of operating parameters

(e.g. to accommodate scaffold degradation) wasn’t found computational tools available

to support the definition of optimised parameters.
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Table 1.5 Example of limit and optimal stresses of several types of cells.

Cell Type Shear Stress Reference
Osteogenesis
5x10-5 Pa (optimal stress) Cartmell et al., 2003
Osteoblasts
5,7x10-2 Pa (cell death) Porter et al, 2005
Osteocytes 0,5 to 1,5 Pa (optimal stress) Godara etal., 2008
Chondrogenesis
Chondrocytes 0,1 Pa (normal stress) Schinagi et al, 1999
Myogenesis
Smooth Muscle Cells 0,5 to 2,5 (optimal stress) Martin and Vermette, 2005
Cardiomyocytes 0,24 Pa (cell death) Radisic et al., 2008
Others

0,033 Pa (optimal stress)
Hepatocytes Parketal, 2008
0,5 Pa (critical stress)

Heart Valves Cells 2,2 Pa (optimal stress) Martin and Vermette, 2005

1.3 Research aims

Designing a new perfusion bioreactor for TE applications is the main topic of this
research. Problems in this type of culture arise mainly because of the enhanced mass
transfer within the bioreactor due to convection and diffusion of the fluid, increasing this
way the shear stress levels on the scaffold surface. These critical tensions will damage
the cells. So, it is imperative the optimisation and prediction of the fluid behaviour around
and within the scaffold, allowing further improvements of scaffolds design to maintain

excellent mechanical properties during the culturing stage.

Taking into account the different problems that are inherent to cell culturing in TE, this

research work must consider the following main objectives:

e The design optimisation of a perfusion bioreactor;

e The evaluation of a new inlet fluid flow concept within the chamber;

e Analysis of the critical tensions that are admissible in cell culturing and in the
scaffold;

e The heterogeneity of tissue culture by means of different stimulus applied on the

scaffold surface.
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1.4 Publications

The following publications were the direct results of the research performed for this PhD.
These publications can also be consulted in the appendices.

Almeida SR, Freitas D, Almeida HA, Bartolo PJ. Structural and vascular performance of
biodegrading scaffolds within bioreactors. In: Natal Jorge R, Mascarenhas T,
Duarte JA, Ramos I, Costa ME, Figueiral MH, et al., editors. Biomedwomen, vol.
2, London: CRC Press; 2016, p. 165-71. DOI:10.1201/9781315644622.

Freitas D, Almeida H, Bartolo PJ. Perfusion Bioreactor Fluid Flow Optimization.
Procedia Technology 2014a; 16:1238-47. DOI: 10.1016/j.protcy.2014.10.139.

Freitas D, Almeida H, Bartolo PJ. Optimisation of a perfusion bioreactor for tissue
engineering. In: Jorge R, Campos J, Vaz M, Santos S, Tavares J, editors. Biodental
Engineering 111, London: CRC Press; 2014b, p. 6. DOI:10.1201/b17071.

Freitas D, Almeida HA, Bartolo PJ. Permeability Evaluation of Flow Behaviors Within
Perfusion Bioreactors. Mechanisms and Machine Science, vol. 24, 2015a, p. 761—
8. DOI:10.1007/978-3-319-09411-3_80.

Freitas D, Ciurana J, Almeida HA, Bartolo PJ. Computational analysis of a perfusion
bioreactor for Tissue Engineering. The Second CIRP Conference on

Biomanufacturing, vol. 00, Elsevier; 2015b, p. 1-7.

Freitas DM, Tojeira AP, Pereira RF, Bartolo PJ, Alves NM, Mendes AL, et al. Bioreactor
Multifuncional para a Engenharia de Tecidos. Patente de Invencdo Nacional No.
105176, 2013.

Pereira RF, Freitas D, Tojeira A, Almeida HA, Alves N, Bartolo PJ. Computer modelling
and simulation of a bioreactor for tissue engineering. International Journal of
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2 BIOREACTORS FOR TISSUE
ENGINEERING

A more in-depth analysis of the state-of-the-art of the several types of bioreactors will be
presented in this chapter, as also the environmental and operational conditions in which

the cell culture occurs.

2.1 Bioreactors, concepts and definitions

Bioreactors have been used for several years in applications such as water treatment and
purification, manufacture of pharmaceuticals, fermentation, food production and also in
the production of recombinant proteins (e.g. growth factors, antibiotics and vaccines)
(Korossis et al., 2005; Martin and VVermette, 2005; Portner et al., 2005; Rauh et al., 2011).
Using the same principles, they were adapted to TE (Figure 2.1). Generally, they serve as
locations, i.e. incubators, in which occurs the development of biological, biochemical and
biophysical processes in controlled and monitored environmental conditions (e.g. pH,
temperature, pressure and concentration of nutrients). The reproducibility, control and
automation of the process are one of the critical aspects when culturing new tissues
(Lyons and Pandit, 2005; Martin et al., 2004; Rauh et al., 2011) and for that reasons the
design of a bioreactor should reflect the application-specific prerequisites (Korossis et al.,
2005; Rauh et al., 2011; Zhao et al., 2016).
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Figure 2.1 Properties of a bioreactor to use in TE.

The use of bioreactors in TE aims to provide an environment conducive to adhesion,
proliferation and differentiation of living animal cells. Moreover, these devices provide
the necessary conditions to perform in vitro studies about the effects of mechanical and
biomechanical stimuli on cells. The most critical aspect in a bioreactor is related to the
mass transfer (nutrients, gases and waste removal) (Martin and Vermette, 2005; Portner
et al., 2005), since in vivo cells benefit from their proximity to blood capillaries of 100-

200um (Rouwkema et al., 2008), which is extremely difficult to replicate in vitro.

2.1.1 Importance of environmental and operational variables

Generically primary cells, which subsequently gives origin to a tissue, require a ribbed
nutrient medium for the correct growth and proliferation. However, in specific
environments, human cells need external control of conditions such as temperature, pH,

product concentration of cell growth, among other parameters.
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Temperature

The cell growth and development take place in vivo at a temperature of 37°C. In vitro
conditions are ensured by incubator systems. However, the increase of an incubator
throughout all the mechanical systems of the bioreactor limits the accessibility to the
culture itself. More recently, have been suggested heated atmospheres systems using
heating plates; another proposed solution is insertion of the heating units within the
culture system, which can be monitored by computer using low-voltage circuits and
circuit breakers which avoid the electric shock (Minuth et al., 2006; Portner, 2009;

Ravichandran et al., 2018; Serra et al., 2009; Zhang et al., 2010).

pH

Human primary cells are susceptible to variations of pH. Therefore, the culture medium
is controlled at this level by a buffer solution which maintains the pH between 7,0 and
7,3, these values are considered in the literature as optimum values (Pdrtner, 2009;
Ravichandran et al., 2018; Zhang et al., 2017). In several experiments, the solution of
carbon dioxide-bicarbonate at 5% has been widely used since it resembles the solution

existent in the blood, at in vivo conditions (Portner, 2009).

Under different conditions of 5% concentration of CO. the physiological pH becomes
slightly alkaline (under normal atmospheric conditions — 0,3% CO2 concentration) which
can be countered by reducing the concentration of NaHCOs3 or by adding other buffer
solutions such as sodium phosphate or HEPES, which can be monitored by the pH
indicator phenol red (Minuth et al., 2006; Nazempour and Wie, 2018; Pértner, 2009; Serra
et al., 2009).

Medium Chemical composition

The cell activity in vivo is usually associated with the activity of sodium-potassium pump,
whose function is to transport nutrients and other ions from the extracellular medium to
the intra-cellular (Hoesli et al., 2009; Minuth et al., 2006). In addition to the necessary
activity to standard cells ions are required to ensure power supply in the form of
carbohydrates, is mostly reported, the glucose concentrations of 446 mg/dl. Besides,
amino acids are also added (which are only precursors activity of protein synthesis),
vitamins, minerals and other compounds (Eaker et al., 2017; Grayson et al., 2009; Minuth
et al., 2006; Yeatts and Fisher, 2011).
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In addition to all these components, it is also generally associated with a serum
concentration ranging between 5 and 10%, and whose function is to provide specific
growth and protect cells from shear stress. An example of such serum is the fetal of calf
or horse. However, the addition of this component to the culture medium of cells entails
some disadvantages, such as (1) the composition of the solution is not well defined; (2)
the high cost of serum; (3) the difficult purification of the solution; (4) variation of loads
in the solution; (5) the risk of contamination and spread of viruses.

However, the absence of this component in the growth medium and cell differentiation
significantly delays the culture process (Butler et al., 2009; Eaker et al., 2017; Pati et al.,
2016; Portner, 2009; Ravichandran et al., 2018).

Oxygenation

To achieve the aerobic metabolic cycles of the cells is necessary to take into account the
distribution of gas in the culture medium, the transfer of nutrients and also the wastes of
cellular reactions. Transferring a sufficient amount of oxygen to cells is difficult, mainly
due to the low oxygen solubility in the culture medium (about 0,2 mmol/L). However, to
have a viable cell culture is necessary to have an equal or approximated concentration of
both Oz and Glucose (Martin and Vermette, 2005; Salehi-Nik et al., 2013). In recent
culture systems, the oxygen concentration is kept constant between 20% and 100% of air
saturation that creates a balance between oxygen needs and tolerance to the formation of
harmful free radicals that causes cytotoxic effects on cells (Cioffi et al., 2008; Patrachari
et al., 2012; Salehi-Nik et al., 2013).

Oxygenation can be performed by two methods: (1) gas sparging and (2) without oxygen
bubbles. The gas sparging process is often used since it proves to be simple to provide
the oxygen to the bioreactor. This method allows a high oxygen transfer due to a high
interfacial area per bubble. However, the bubbles can lead to failure in cell viability since
the bubbles can damage the cells. The preferable process in bioreactor systems is the
method without bubbles of the used gas that can be divided into two methods, the
superficial gas sparging and the permeable membrane (porous or diffusion) (Bliem et al.,
1991; Cioffi et al., 2008).

On the superficial gas sparging process, the culture medium is directly exposed to a
controlled atmosphere rich in Oz and 5% CO- regularly occurring diffusion of these gases
and keeping them in the culture medium.
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The permeable membranes transfer the gas to the culture medium, and they can be defined
in two different types: porous or diffusion. In the first case, the culture medium is in
continuous contact with the gas through pores arranged on the membrane (Cioffi et al.,
2008; Curcio et al., 2017; Martin and Vermette, 2005). The interface created in the pores
is controlled by pressure effects and hydrophobic forces. In the other end, the diffusion
membranes diffuse the oxygen from the initial gas phase to a soluble membrane in oxygen
and then into the culture medium. Although these two cases avoid the formation of
bubbles, they are influenced by factors such as the concentration of oxygen, the porosity
of the membrane and the surface area of the membrane. However, these processes of
oxygenation present difficulties in their implementation, namely, the complexity of the
process, control of intrinsic variables of the process, the need for high membrane area
exposed to the gas phase, difficulties in maintenance and cleaning of the membrane. In
addition, the deposition of proteins (derived from the culture medium) at the base of the
membrane, modify its hydrophobic property (Curcio et al., 2017; Martin and Vermette,
2005; Ravichandran et al., 2018; X. Zhang et al., 2009).

2.1.2 Classification and design of bioreactors

Bioreactors may be classified according to many aspects, including:

e The environment in which unfolds the tissue culture - cell culture may be

conducted in static or dynamic conditions;

e The type of stimulus involved - the bioreactor can apply several kinds of stimuli
during cell culture or act in various ways to provide the same kind of stimulus

(e.g. stirring action, infusion mechanical compression or rotation);

e The tissue in culture - each tissue requires different requirements from the

bioreactor (the stimulus involved or the level design).

A bioreactor is designed according to the desired size, complexity and functionality.

However, regardless of these considerations, a bioreactor must possess a number of

essential requirements, as described in Table 2.1.
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Table 2.1 Main requirements of a bioreactor for the use in TE (Chen and Hu, 2006; Hansmann et
al., 2013; Korossis et al., 2005; Lei and Ferdous, 2016; Lyons and Pandit, 2005; Martin et al.,
2004; Portner et al., 2005).

Bioreactor Main Requirements

Avoid flow turbulence and

Adequacy of vascularity of the Application of stimuli in order excessive pressure on the
cells/tissue providing to increase the adhesion, culture medium, which can
nutrients in the proper time proliferation and damage cells and impair the
and amount differentiation formation of new tissue
Control of environmental,
chemical and physical Ensure aseptic and sterilised  Ensure the biocompatibility of
conditions of culture conditions the building materials

Monitoring of cell growth and  Allow removal of the waste
formation of new tissue generated by cells Easily place the scaffold inside

Be simple and easy to sterilise,
clean and perform the
Maintain a high degree of Allow the operation over long maintenance of the
reproducibility periods components

The general requirements listed above are determined by the needs of the mechanical,
physical, biophysical and biomechanical level of the tissue in culture. For example, the
use of pulsed mechanical/perfusion instead of continuous stimulation on tubular scaffolds
with Smooth Muscle Cells (SMC) increases the structural organisation of blood vessels
and their mechanical properties. While applying dynamic stresses to chondrocytes in an
appropriate environment stimulates the synthesis of Glycosaminoglycans (GAG) and
increases the mechanical properties of the formed cartilage (Chen and Hu, 2006;
Mahajan, 2005; Wang et al., 2014). Studies on cell proliferation in vitro have shown that
mechanical stimuli have a positive impact regarding the formation of new tissue,
improving the acceleration of the processes of cell differentiation and proliferation (Chen
and Hu, 2006; Mahajan, 2005; Martin et al., 2004; Obregon et al., 2017; Portner et al.,
2005; Wang et al., 2014). This effect is particularly evident in the formation of cartilage,
bone and cardiovascular tissue (Obregon et al., 2017; Pértner and Giese, 2007). The most
essential stimulus on cellular differentiation and proliferation are the shear forces
resulting from the fluid passage from the surfaces and pores of the scaffold enabling
signal transmission/stimulation of the cells (Chen and Hu, 2006; Cook et al., 2016; Freitas
et al., 2014a; Obregon et al., 2017).

As a result of the specific needs of each type of cell in the culture process, various types
of bioreactors were studied in particular on the level of operation and ability to apply

stimuli.
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a. Systems of static culture

The static culture systems are the simplest ones and include systems like T-flasks, Well
Plates and Petri dishes (Figure 2.2), which are designed to culture cells in static conditions
(Correia et al., 2012; Kumar et al., 2004; Mekala et al., 2011). The main characteristics
of these devices include ease of use, low cost and the possibility of sterilisation. In return,
these systems have several limitations such as (1) the weak agitation of the medium which
translates into low nutrient concentrations in certain places; (2) poor reproducibility; (3)
difficulty of changing the culture medium, and (4) low amount of cell numbers.
Furthermore, the application of stimuli and the monitoring and control of environmental
conditions, such as pH, moisture and COx is practically impossible (Correia et al., 2012;
Kumar et al., 2004; Lei and Ferdous, 2016; Mekala et al., 2011; Portner et al., 2005;
Portner and Giese, 2007; Yeatts and Fisher, 2011).

These devices are widely used in cell culture for shorter periods of time being used mainly
to increase the number of cells (Cabrita et al., 2003; Correia et al., 2012; Lei and Ferdous,
2016; Portner et al., 2005). After this period the cells are transferred to bioreactors in
which will occur the development of the new tissue (Correia et al., 2012; Eaker et al.,
2017; Kumar et al., 2004; Lyons and Pandit, 2005).

i

1
/1]

a) b) <)

Figure 2.2 Example of static culture systems a) T-flasks, b) Well plates and c) Petri dishes.

Static culture in 3D scaffolds generally produces tissues with a small thickness and
located at the periphery of the structure. The created tissue is characterised by its
heterogeneity, a result of inadequate mass transfer (Cabrita et al., 2003; Correia et al.,
2012; Eaker et al., 2017; Lei and Ferdous, 2016; Portner et al., 2005). In order to solve
the mass transfer limitations of these simple culture systems other bioreactor systems
were developed such as, spinner flasks, Rotating-Wall Vessel (RWV), perfusion
bioreactors, mechanical compression bioreactors, among others (Bueno et al., 2004;
Takebe et al., 2012; X. Zhang et al., 2009; Zhang et al., 2010).
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b. Agitation Systems

The agitation bioreactors provide a homogeneous environment, presenting results that are
superior to the static culture. The main purpose of these systems (e.g. Spinner flask, wavy-
walled bioreactor (WWB) and Stirred vessel bioreactor), is the increase in mass transfer
(Bilgen et al., 2006; Delafosse et al., 2014; Kumar et al., 2004; X. Zhang et al., 2009).

Spinner Flask

Spinner flask is the simplest type of bioreactor (Figure 2.3), in which the porous matrices
containing the fixed cells are suspended on needles in the cap. Stirring of the medium is
performed by using a magnetic bar, depending on its rotation, helps to induce the mixing
of oxygen and nutrients to increase the homogeneity of the medium and consequently
tissue growth (Chen and Hu, 2006; Yeatts and Fisher, 2011; Zhao et al., 2016). These
devices can allow monitoring of variables such as pH and CO, (Kumar et al., 2004; Yeatts
and Fisher, 2011; Zhao et al., 2016), the rotation speed of the medium between 50 and 80
rpm. The culture medium is renewed periodically (usually in periods of 2-3 days) to
maintain or increase the concentration of nutrients. In this system, the bottle allows
aeration of the culture medium and the resulting gas exchange. The nutrient delivery and
waste removal occur by convection and by the fluid passage on the surface of the porous
matrix. Their disadvantages are related to the agitation of the medium, which can generate
high shear stress values and turbulent regimes harmful to the cell culture (Chen and Hu,
2006; Korossis et al., 2005; Lyons and Pandit, 2005; Martin et al., 2004; Seymour and
M. Ecker, 2017; X. Zhang et al., 2009; Zhao et al., 2016).

Figure 2.3 Patent schematic of a Spinner Flask from (Oldenburg et al., 2014) and a Spinner flask
from Chemglass® (right).
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Wavy-walled bioreactor

In order to overcome the limitations of the turbulence and shear stresses observed in
Spinner flask systems, was developed a new bioreactor, the Wavy-Walled Bioreactor
(WWB) (Figure 2.4). This machine has ribbed walls which allow reducing turbulence
levels of the medium and its shear stresses (Bilgen et al., 2006; Bueno et al., 2004;
Obreg6n et al., 2017). Studies conducted allowed to verify that this new system has an
increase in cell proliferation and deposition/formation of extracellular matrix in
polymeric scaffolds containing chondrocytes (Bilgen et al., 2006; Bueno et al., 2004;
Chen and Hu, 2006; Obregon et al., 2017).

Bilgen et al., (2006) studied the hydrodynamic parameters involved in the bioreactor
WWAB, comparatively to the Spinner flask and its influence on the cartilage tissue
engineering. This study concluded that the fluid flow is significantly different between
them and it was also found that the position of the scaffold inside the bioreactor it is an
important parameter because it alters the hydrodynamic behaviour of the fluid and the
uniformity tensions on the scaffold.

Seeded : A Culture
Scaffold "—‘;': Media
s o
Spacer ef——-=~ D
\ | Stir bar |

Figure 2.4 Wavy-walled bioreactor (Chen and Hu, 2006)

Stirred vessels bioreactors

This type of bioreactor (Figure 2.5) it’s characterised by obtaining a homogeneous
hydrodynamic environment and also because it is easy to operate. Generally, it comprises
a container (where the cell culture takes place) pipes, sensors, valves, pumps and motor.
This system is in motion, usually at a rotation speed of 50-80 rpm (Chen and Hu, 2006;
Collins et al., 1998; Martin and Vermette, 2005; Obregén et al., 2017), while the sensors
provide continuous monitoring of parameters such as temperature, pH, glucose, among
others (Kumar et al., 2004; Nettleship, 2014; Obregoén et al., 2017; Wang et al., 2005).
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This system is similar to spinner flask glass however allows the control over a large
number of variables, therefore presenting higher reproducibility. These bioreactors have
been used in the culture and differentiation of various cells types of stem cells from human
to rats (Cabrita et al., 2003; Nettleship, 2014; Obregon et al., 2017; Serra et al., 2009). It
is important to refer that the agitation of the medium can originate high shear stresses
harmful to the cells which are a disadvantage of this type of equipment. One possible
solution involves changing the shape and/or the diameter of the rotor blade (Garcia Cruz
et al., 2012; Martin and Vermette, 2005; Wang et al., 2005).

? &
{
N J
Motor ’ iFeed v
g R
Cooling jacket
I o N
Fd
Baffle
i & — S—_
//Agltator | — u 2
d(' ﬁ
Mixed product = 2

Figure 2.5 Schematic of a stirred vessel (left) (Redondo, 2014) and a stirred bioreactor from
Merckmillipore® (right).

Serra et al., (2009) used this bioreactor successfully to culture pancreatic stem cells from
rats utilising a process of controlled expansion of the pancreatic stem cells to apply in the
development of new cell therapies. In another study Martin and Vermette (2005b)
mention the success of culturing cartilage with a thickness of 0.3-0.5 mm using this

bioreactor, a value still far from clinical implant thickness (2-5 mm).

¢. Rotation Systems

The rotation bioreactors base their operation on the application of rotation about one or
more axes. This movement helps to increase the agitation of the culture medium and thus
increase the mass transfer. Some bioreactor examples include Rotating-wall vessel

bioreactor (RWYV), Rotating Shaft bioreactor and biaxial rotating bioreactor.
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Rotating-wall vessel

Despite the importance of shear forces in modelling the mechanical properties of new
tissue, high shear stresses can lead to cell death (Chen and Hu, 2006; Hammond et al.,
2016; Salehi-Nik et al., 2013; Yeatts and Fisher, 2011). Because of this, it was developed

bioreactors that during its operation, can apply low shear stress values.

The RWV bioreactor (Figure 2.6) developed by the National Aeronautics and Space
Administration (NASA) operates in a microgravity environment. This equipment was the
first to combine the dynamic culture environment with low shear stress allowing a high
mass transfer (Chen and Hu, 2006; Lyons and Pandit, 2005; Martin and Vermette, 2005;
Portner et al., 2005; Takebe et al., 2012). In this bioreactor, the scaffold containing the
cells is found floating in constant motion by the action of the forces involved (gravity,
centrifugal and tangential force). The RWYV bioreactor is presented as an alternative to
overcome mass transfer limitations, typical of the bioreactors with low agitation (Martin
et al., 2004). This equipment has been further modified to allow the fluid inlet at one end
and its output through a filter located in the centre of the cylinder, originating the Rotating
Wall Perfusion Vessel bioreactor (RWPV). The RWPV is used for cartilage engineering
in a gravitic environment and was shown that the proliferation of cartilage tissue and heart
tissue was superior at a structural and functional point of view to static culture and spinner
flask (Chen and Hu, 2006; Hammond et al., 2016).

Figure 2.6 Rotating wall vessel (RWV) bioreactor from Synthecon®

Klement et al., (2004) used the bioreactor RWYV to determine its influence on the number
of processes involved in the formation of bone tissue. To do this, bone tissues have used
embryonic rat at four different stages of differentiation. In the study carried out, it was
found that tissues in the three advanced stages of differentiation, when placed in the

bioreactor showed substantial growth, differentiation and mineralisation.
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Other examples include crop rotation, the Slow Turning Lateral Vessel (STLV) and High
Aspect Ratio Vessel (HARV). The STLV is a horizontal rotating bioreactor (Figure 2.7)
consists of two concentric cylinders. The inner cylinder is stationary and consists of a
silicone membrane that permits the exchange of gases, while the outer cylinder is of the
rotary type and comprises a waterproof material. The rotation speed is variable and
adjustable (between 15-40 rpm) allowing the scaffold remains suspended in the bioreactor
stationary point due to the dynamic equilibrium of forces, avoiding and/or minimizing
the shear stress from differential rotation (Chen and Hu, 2006; Hammond et al., 2016;
Lyons and Pandit, 2005; Martin and Vermette, 2005; Salehi-Nik et al., 2013; Takebe et
al., 2012). The HARYV bioreactor is very similar to STLV and comprises two concentric
cylinders, which have a membrane for gas exchange at the base. This equipment is
characterised by having a large diameter, a small length and have low rotation velocities,
about 12-15 rpm (Martin and Vermette, 2005; Mekala et al., 2011; Visscher et al., 2016).
In this system the cylinders are connected to two independent motors allowing different
rotation speeds and thus different levels of stress and turbulence (Lyons and Pandit, 2005;
Visscher et al., 2016). The operation is carried out to a horizontal working volume of 100-
110 ml, typically (Chen and Hu, 2006).

N O ,N
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Slow Turning High-Aspect Rotating Wall
Lateral Vessel Ratio Vessel Perfused Vessel
(STLV) (HARYV) (RWPV)

Figure 2.7 lllustration of a STLV, a HARV and a RWPV rotating bioreactor (Hammond et al.,
2016).

The limitations associated with the above bioreactors include the possibility of a
heterogeneous cell proliferation occur due to the low voltages involved and even possible
damage due to collisions with the wall of the bioreactor (Chen and Hu, 2006; Hammond
et al., 2016; Kang et al., 2015; X. Zhang et al., 2009). These bioreactors have also some
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limitations in culturing tissues with high mass (Martin and Vermette, 2005; Ravichandran
et al., 2018; Salehi-Nik et al., 2013).

Rotating Shaft Bioreactor

To solve problems related to non-uniformity of the growth of tissues, Chen et al. (2004),
developed a Rotating Shaft Bioreactor (RSB). This equipment consists of a central
horizontal axis of stainless steel, which is coupled 22 support needles, as shown in Figure
2.8. This device has two distinct phases: a gas phase and a liquid phase (medium).
Through a rotation provided by a motor, the assembly cells/scaffold is continuously
transiting between phases at a given rotational speed, which helps to increase the
efficiency of mass transfer (Chen et al., 2004; Chen and Hu, 2006; Eaker et al., 2017;
Salehi-Nik et al., 2013; Zhao et al., 2016).
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Figure 2.8 Schematic of a Rotating Shaft Bioreactor (Chen et al., 2004)

Biaxial rotation bioreactor

Hutmacher et al., (2006) developed a biaxial rotational bioreactor which allows a
continuous movement of the culture medium and the control and monitoring in real time
of key variables for the cell growth. This system allows the rotation of the culture chamber
into two separate axes (X, z) and independent rotation speeds. Also, Ravichandran et al.
(2018) developed a biaxial bioreactor that mimics the fetal rotation in the woman’s womb
in order to create bone tissue. The idea is to mimic the effect of the mechanical stresses
and cyclic strains on cells in their early develop stage of the fetal growth (Figure 2.9).
The container and the reservoir are connected, allowing the culture medium to circulate
between them, resulting in a perfusion system. Thus, it is possible to maximise mass

transfer across the scaffold and achieve greater uniformity in the new tissue (Hutmacher
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et al., 2006; Pereira et al., 2014; Salehi-Nik et al., 2013; Singh et al., 2007; Zhang et al.,
2010).

Cyclic strain actuator
DC servomotor

Scaffolds

Z-axis Spinning

X-axis Tumbling

Figure 2.9 Biomimetic biaxial rotation bioreactor developed by Ravichandran et al., 2018.

Several studies have been conducted to evaluate the influence of the rotation on cell
proliferation. Zhang et al. (2009) investigated the ability to form a bone graft using human
mesenchymal stem cells contained in scaffolds of poly(e-caprolactone)/tricalcium
phosphate (PCL/TCP). This study compared the cell culture under static conditions and
in a biaxial rotating bioreactor, performed tests in vitro and in vivo. Subsequently, they
concluded that the static conditions are associated with lower cell proliferation and
differentiation. Furthermore, the use of the bioreactor allowed to reduce the culture time
in vitro and to obtain a better distribution of extracellular matrix and increased bone
mineralisation (Bilgen et al., 2013; Hammond et al., 2016; Salehi-Nik et al., 2013).

Triaxial rotation bioreactor

Freitas et al. (2013) designed a novel bioreactor with three axes of rotation. With two,
cylindrical or ellipsoid, chambers design, the bioreactor will maintain (or not) a steady
fluid flow as a slow perfusion bioreactor, and it can rotate fully in two axes and in the

third an oscillation movement as shown in the Figure 2.10.

With the extra axis movement, the mass transfer will increase and directly, the cell
proliferation rate also increases due to a homogenization of the stress and strain levels on
the surface of the scaffold (Freitas et al., 2013; Pereira et al., 2014; Tojeira et al., 2010)
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Figure 2.10 Cylindrical and ellipsoid culture chambers of the triaxial bioreactor developed by
Freitas et al., 2013.

d. Mechanical stimulation systems

By applying mechanical stimuli to cells it will increase and aid the proliferation,
differentiation and alignment of the cells (Altman et al., 2002; Halonen et al., 2014;
Martin and Vermette, 2005; Obregon et al., 2017), taking into account that the maximum
value of the applied stress depends on the cell type being used. For mammalian cell
suspensions Martin and Vermette, (2005) report that for most cells, shear stresses of 0,1
Pa cause cellular damage being the ideal values around 0,01 Pa and also it was reported
that stress values of 0,001 Pa are insufficient to promote the growth of tissue. Begley and
Kleis, (2000) said that in mammalian cells the levels of shear stress between 0,3 and 1 Pa
cause cellular damage and reduce viability while very low values such as 0,092 Pa,
adversely affect the proliferation, morphology and cellular function. To stimulate the
proliferation and growth of a 3D tissue shear stresses should be in the range of 0,01 Pa.
To reach this goal, a laminar flow must avoid high shear stresses generated for example

by turbulent flows.
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The bioreactors that apply a mechanical stimulus, in particular, mechanical compression
(Figure 2.11), allow the application of stress in cells with a given magnitude, frequency
and duration. Thus, the performance can be of two types: static or dynamic mechanical
compression (the first does not include the frequency). The application of the stress is
controlled by an engine, and its intensity is regulated by a load cell (Cook et al., 2016;
Martin et al., 2004; Rosser and Thomas, 2018). This type of stimulation has been applied
in the culture of bone and cartilage (Altman et al., 2002; Bilgen et al., 2013) with a
uniaxial compression considered the most crucial stimulus method that acts on cartilage
in vivo (Schulz and Bader, 2007).

Culture
Medium

System
Movement

Scaffold

Figure 2.11 Schematic of a bioreactor that applies controlled mechanical forces (Martin et al.,
2004).

Démarteau et al. (2003) developed a bioreactor and used it in the chondrocyte culture
under the action of dynamic compression stimulus. This study concluded that the
application of the stimulus for a period of time more than three days is associated with
increased formation of GAG. (Orr and Burg, 2008) also developed a bioreactor (Figure
2.12) which combines the application of hydrostatic compression stimuli (about 300 kPa
and frequency 0,5 Hz) and perfusion (shear stress of 0,07 Pa).
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The hydrostatic pressure is applied on a diaphragm which compresses a volume of fluid
contained at the culture zone. Preliminary tests showed cell viability using this type of
bioreactor (Correia et al., 2012; Rosser and Thomas, 2018).
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Figure 2.12 Schematic illustration of a bioreactor assembly that demonstrates (a) perfusion flow
and (b) hydrostatic compression (Orr and Burg, 2008).

In tendon TE, mechanical stimulation plays a vital role. Paxton et al. (2013) mechanically
constrained a collagen-based scaffold and therefore fabricated a highly aligned,
compacted collagenous construct. With these conditions and applying the proper
mechanical stimulations. Riley et al. (1994) found that fibroblasts can, using the previous
fabrication method, generate contractile forces and increase the matrix production in
collagen constructs. With the extensive research on tendon constructs, it was concluded
that, when the mechanical stimulation is mimicked, i.e., when the in vivo tendon activity
is simulated in vitro (Figure 2.13) there is a direct improvement of the microstructure and
mechanical properties of the constructed tissue (Lei and Ferdous, 2016; Youngstrom et
al., 2015; Zhang et al., 2017).

Dino Freitas - September 2019 33



A Mechano-Perfusion Bioreactor For Tissue Engineering

(A) T (B) T

Figure 2.13 Different actuating units for stretch bioreactors: (A) Motor-driven clamps (Uniaxial);
(B) Motor-driven clamps (Biaxial); (C) Moving plunger stretching a membrane; (D) Pressurized
fluid or gas stretching a tube (Lei and Ferdous, 2016)

e. Perfusion Bioreactor

Perfusion systems aim to overcome the problems with non-uniform cell proliferation
(Chen and Hu, 2006; Gelinsky et al., 2015; Nettleship, 2014; Ravichandran et al., 2018;
Yeatts and Fisher, 2011) These devices draw their operation in the existence of a flow
through the scaffold and cells while allowing simultaneously the constant renewal of the
culture medium and cell retention. The applied flux can be continuous or discontinuous
and can be applied at different frequencies and speeds. The existence of flow through the
scaffold helps to increase the transfer of nutrients into the scaffold and remove the toxic
waste produced by cellular respiration. Furthermore, cells are continuously subjected to
hydrodynamic stimuli that have the ability to induce their alignment in the direction of
the flow (Chen and Hu, 2006; Nazempour and Wie, 2018; Nettleship, 2014;
Ravichandran et al., 2018).
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The perfusion bioreactors (Figure 2.14) can operate in two distinct ways. In the first set,
scaffold/cell is fixed in a column within the culture zone, while the second set has freedom
of movement. Regardless the option made is necessary to ensure that the cells are not
entrained by the flow of the culture medium (Gelinsky et al., 2015; Nazempour and Wie,
2018; Schulz and Bader, 2007).

(a) (b)

medium outlet
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wi i '

construct reServoir
Bl

medium inlet

5% CO oxygenator

21% 0

Figure 2.14 Illustration of an (a) perfusion bioreactor and (b) an example of a perfusion bioreactor
(C.I1.T., 2014; Chen and Hu, 2006).

In perfusion bioreactors nutrient delivery is not performed only on the periphery of the
scaffold it also covers the internal zones (Chen and Hu, 2006; Gelinsky et al., 2015;
Martin et al., 2004; Yeatts and Fisher, 2011). In addition, the continuous movement of
the medium contributes to a more homogenous distribution of cells in the structure and
also for greater homogenization of concentrations of gases, nutrients, metabolites and
growth factors present in the medium (Gaspar et al., 2012; Korossis et al., 2005;
Ravichandran et al., 2018). The success of this type of bioreactors depends on the
following factors: (1) the relationship between the fluid velocity and the stage of cell
maturation; (2) balance between the supply of nutrients and removing waste from the
cells; (3) shear stresses exerted by the fluid passage and; (4) ability to retain the extra-
cellular matrix (Diban et al., 2018; Egger et al., 2017; Martin et al., 2004). One of the
limitations is the difference between stress and fluid speeds on the scaffold extremities
compared with the inner part. This phenomenon can cause non-homogeneous
distributions of cells or even cell drag if the fluid velocity is very high (X. Zhang et al.,
2009).

Several studies have demonstrated the feasibility of perfusion in the bioreactor cell culture
(Bancroft et al., 2002; Diban et al., 2018; Jaasma et al., 2008; Janssen et al., 2006; Lin et
al., 2009; Nettleship, 2014; Pazzano et al., 2000; Sikavitsas et al., 2005). In these works,
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Pazzano et al. (2000) demonstrated the improved effectiveness of chondrocyte culture in
the perfusion bioreactor comparatively to static culture. They have also observed an
increase of 184% in the concentration of GAG, 118% in DNA content and 155%
hydroxyproline.

Wendt et al. (2003) developed a bidirectional perfusion bioreactor which consists of two
glass columns connected by a U tube (Figure 2.15). The equipment is composed of a set
of sensors and actuators, and as a result of detecting a level of fluid (detected by the

sensors), vacuum is applied, pressing it in the opposite direction.

= R
= == Sensors

Glass Columns — et—

Scaffold

U-tube — Sample chamber

Figure 2.15 Bidirectional perfusion bioreactor in a U tube design (Wendt et al., 2003).

Hollow Fibre Bioreactor

These bioreactors were initially developed by Knazek et al. in 1972 (Curcio et al., 2017;
Kumar et al., 2004) and consist of a cylinder containing bundles of parallel hollow fibres
(Figure 2.16). This system includes a porous membrane that acts as a selective barrier to
the transport of particles in the medium and has the ability to retain nutrients (e.g. high
molecular weight proteins) from the cell, increasing its availability (Curcio et al., 2017;
Hoesli et al., 2009; Kang et al., 2017; Martin and Vermette, 2005; Wang et al., 2005). In
this type of bioreactor the primary method of mass transfer is the diffusion. However, the
application of a pressure variation on the membrane surface can contribute to increasing
the process, which increases the flow of nutrients in a given direction (Curcio et al., 2017,
Wang et al., 2005). The cells are embedded in a gel inside the permeable membrane, and
the perfusion occurs by pumping the culture medium from the outside of the permeable
membrane. Applications using the Hollow Fibre Bioreactor (HFB) are carried out in cell

culture with high and very sensitive metabolism, such as hepatocytes (Martin et al.,
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2004)or skin cells (Abousleiman and Sikavitsas, 2007; Curcio et al., 2017; Portner et al.,
2005).

The significant advantage of these bioreactors is the ability to promote the delivery of
nutrients to the centre of the growing tissue (Martin and Vermette, 2005). The main
disadvantage includes the heterogeneity of culture, which is due to non-uniform gradients
in the diffusion of oxygen and nutrients (Curcio et al., 2017; Martin and Vermette, 2005;
Nguyen et al., 2005). This makes their use in the culture of animal cells a little limited
(Wang et al., 2005).

EC: retains cells
and virus or
secreted protein

Cross section

IC: delivers
nutrients and
removes wastes

AN

Hollow Fibers...
« are semi-permeable, |0KDa MWCO membranes
= are encased in a clear, polycarbonate housing
« define inner (IC) and outer (EC) volumes

Figure 2.16 Basic hollow fibre bioreactor design and the HF Primer™ small-scale bioreactor
(Hirschel et al., 2011).

Nguyen et al. (2005) presented a flow-type hollow fibre bioreactor with the aim of
improving the delivery of nutrients. When studying the efficiency of the system in
cultured hepatocytes concluded that with this strategy it is possible to increase the lifetime
and the cell viability when compared to the same system without the introduction of a
pulsed flow. Also, Hoesli et al. (2009) used this bioreactor in the encapsulation of

mammalian cells in alginate process, obtaining good results.

Packed and Fluidised bed bioreactors

In this bioreactor (Figure 2.17) cells are immobilised in a column containing porous

supports which are found fixed (packed bed) or floated (fluidised bed). This column is
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under continuous perfusion which causes the cells to suffer stimuli of hydrodynamic
nature (Portner et al., 2005; Ravichandran et al., 2018; Zhang et al., 2017). When
comparing the fluidised bed bioreactor with the packed bed, it is found that the former
allows greater productivity. However, their hydrodynamic complexity level is higher
(Godia and Sola, 1995; Liu et al., 2016; Zhang et al., 2017). These bioreactors are used
in the culture of mammalian cells, production of pharmaceuticals, cartilage cell culture,
among others (Godia and Sola, 1995; Portner et al., 2005; Ravichandran et al., 2018;
Skoneczny et al., 2017).

L1

Product <—

Water
jacket

Carrier

Sieve

Medium —> == Water
< Jacket

Aeration

Figure 2.17 Schematic of the fluidised bed or packed bed bioreactor (Cabrita et al., 2003).

Pulsatile flow bioreactor

The pulsatile flow bioreactor (Figure 2.18) is used primarily in cardiovascular tissue
engineering and aims to simulate the conditions in vivo that these tissues are subjected.
In these devices, the flow is pulsed through the cells and can have different frequencies
and intensities; the fluid pressure is also similar to blood pressure in the human body. The
pulsatile flow results from periodic inflation and deflation of a highly elastic membrane
caused by an air pump (Aleksieva et al., 2012; Brown et al., 2008; Chen and Hu, 2006;
Eaker et al., 2017; Niklason et al., 1999; Ravichandran et al., 2018).
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Figure 2.18 Schematic diagram of the pulsatile flow bioreactor system (Cooper et al., 2007).

Niklason et al. (1999) carried out the culture of smooth muscle cells using a pulsatile flow
bioreactor for eight weeks. After this period, the appearance of the cultures blood vessels
was similar to the original human arteries. Also, Brown et al. (2008) developed a
perfusion bioreactor capable of applying pulsatile flows and allow the application of
significant levels of shear stress. The system allows the regulation of the flow rate of the
fluid carried by them, as well as their frequency of use. The same group of investigators
tested in bioreactor culture of cardiac tissue and concluded that the pulsatile stimulus

positively contributes to the contractile properties of the tissue originated.

The perfusion bioreactor, together with spinner flask and RWV are widely used in the
tissue engineer of cartilage tissue, demonstrating successful in vitro culture of
chondrocytes embedded in polymeric scaffolds (Aleksieva et al., 2012; Chen and Hu,
2006; Eaker et al., 2017; Ravichandran et al., 2018).

f. Mechano-Perfusion Bioreactors

In recent advances, a new type of bioreactors started gaining more interest due to their
combination of several stimuli at the same time and in the same chamber (Koch et al.,
2010; Nazempour and Wie, 2018; Pereira et al., 2014). Koch et al., (2010) using a
perfusion bioreactor concluded that, by changing the fluid flow velocity and the perfusion
cycle number, the cell-seeding efficiency was about 50%. There are several studies
(Ishikawa et al., 2011; Liu et al., 2013; Sakai et al., 2009; Valmikinathan et al., 2011)

demonstrating that tissue culture using dynamic bioreactors with improved fluid flow
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dynamics can improve cell seeding and also promote cell maturation. Also, the new
bioreactors are biomimicking the physiological environment creating similar biological,
physical, electrical or mechanical conditions in order to create new tissue (Koch et al.,
2010; Pereira et al., 2014).

Nazempour and Wie, (2018), found a deficiency in current bioreactor models to
simultaneously apply a different stimulus to cells, i.e., applying a combination of shear
stress and oscillating hydrostatic pressures. They built a new bioreactor for articular

cartilage culturing that can provide both stimuli individually or combined (Figure 2.19).
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Figure 2.19 Double-piston bioreactor design (Nazempour and Wie, 2018).

2.2 Bioreactors — a brief comparison

As referred in the last chapter, the widely used bioreactors to culture tissues are the static
and the functional tissue engineering (FTE) culture bioreactors that comprises all the
bioreactors capable of providing dynamic stimulation. We are going to compare static
culture to most used FTE bioreactors mentioned in the last chapter, i.e., mixed flasks,
rotating wall and perfusion bioreactor (Paez-Mayorga et al., 2018). These bioreactors
provide different rates of nutrient supply to the tissue surface due to their distinctive flow
conditions: static, turbulent and laminar (Malda et al., 2008; Paez-Mayorga et al., 2018;
Rosser and Thomas, 2018; Zhao et al., 2016). The following table (Table 2.2) compares
engineering parameters, advantages and limitations of these four types of bioreactors.
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Table 2.2 Bioreactors comparison (Mekala et al., 2011; Salehi-Nik et al., 2013; Zhao et al., 2016).
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Other differences are the mass transfer rate and the shear stress during the cultivation
process. Static culture presents limitations in the nutrient diffusion of large constructs
because both external and internal mass transfer occurs by diffusion (Bueno et al., 2004;
El Haj et al., 2005; Martin et al., 2004). Another significant limitation of this type of
culture bioreactor is the deposition of waste materials as also the depletion of nutrients
during the culturing process (Akter, 2016; Rolfe, 2006).

With the stirred flask the dynamic culturing of cells is possible due to the fact that the
scaffolds will be attached to needles hanging from within this bioreactor which also will
improve cell survival (Akter, 2016; Fernandes-Platzgummer et al., 2011; Khetani and
Bhatia, 2006; Malda et al., 2005; Oragui et al., 2011; Yeatts and Fisher, 2011). Due to a
convective flow created by a magnetic stirrer bar the construct is surrounded by the
medium and compared to the static culture there will be an improvement of the nutrient
diffusion and cell proliferation within the construct. The heterogeneity of the shear forces
within this bioreactor as a downside of preventing the development of homogenous tissue
(El Haj et al., 2005; Malda et al., 2008).

Rotating wall bioreactors, due to their dynamical laminar flow, promotes external mass
transfer and also, improves typically the properties of the peripheral tissue layer (Akter,
2016; Belfiore et al., 2009; Oragui et al., 2011; Ravichandran et al., 2018; Salehi-Nik et
al., 2013; X. Zhang et al., 2009). Comparing this bioreactors flow condition to the stirred
flasks is easy to observe that this last has a higher shear stress level than the rotating wall
bioreactor. With this low shear stress rate, the rotating wall bioreactor promotes the
formation of cartilaginous tissues containing collagen and uniformly distributed
glycosaminoglycans (GAG) (Hammond et al., 2016; Nesic et al., 2006; Rolfe, 2006; X.
Yan et al., 2012).

A vital feature of the perfusion bioreactor as also, of the rotating wall bioreactor, is that
the convective transfer within and around the scaffold at a proper flow rate will dissipate
gradients of nutrients and aides to maintain the tissue mass (Khetani and Bhatia, 2006;
Lin et al., 2009; Nettleship, 2014). Perfusion bioreactors are more known by forcing the
culture medium through the pores of the scaffolds increasing the transport of nutrients
and the necessary mechanical stimuli to cells (Abousleiman and Sikavitsas, 2007; Akter,
2016; Cimetta et al., 2007; Kim et al., 2007; Oragui et al., 2011; Plunkett and O’Brien,
2010; Sikavitsas et al., 2005). The nutrients and oxygenation of the culture are forced into

the chamber and interior of the construct by diffusion and convection. It is of the most
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considerable importance to adjust the flow rate of the medium with respect to the limiting
nutrient, frequently oxygen because of its low solubility (Malda et al., 2008; Martin and
Vermette, 2005; Salehi-Nik et al., 2013). With a steady flow rate and a well-defined
physicochemical culture environment the creation of homogenous tissue is possible, e.g.
cartilage, vascular grafts or a uniform distribution of chondrocytes (Begley and Kleis,
2000; Demarteau et al., 2003; Lin et al., 2009; Nesic et al., 2006; Radisic et al., 2008;
Song et al., 2012).

In short, Table 2.3 shows a comparison and the major differences of the culture conditions

that static culture and FTE bioreactors can provide.

Table 2.3 Comparison of static culture versus FTE bioreactors (Paez-Mayorga et al., 2018).

Characteristics Static Culture FTE

Seeks architectural mimicry % V

Seeks functional mimicry X V
Culture conditions Static Mainly Dynamic

2D v 4

3D 4

Biochemical stimulation v V

Mechanical and/or electrical stimulation X V

Compare results to native parameters X v

Table 2.4 shows the existing types of bioreactors developed until now, what kind of
stimulus is applied and the corresponding tissue. Also, it is possible to observe the merits

of each bioreactor study.
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Table 2.4 Existent bioreactors and their characteristics, cultivated tissues and merits.

Bioreactor . .
1st Author (year) Characteristics/Type Tissue Merits
. . . . High synth f
Lammi et al., (1994) Hydrostatic Static Cartilage lpgr o'ie}:(r)lgl;csaerf SO
Vunjak-Novakovic et al., Shear Force/Spinner . o
(1998) Flask Cartilage Enhanced kinetics
Prenosil and Kino-oka, Automatic culture Skin Automated control of the
(1999) medium exchanger culture
. . . High increase in the
Mauck et al., (2000) Compression Dynamic Cartilage equilibrium modulus
Altman et al.,, (2002) Perfusion/Strain based hBMSCs Cell density increase
. Hydrostatic . High stimulation of
Mizuno et al., (2002) Pressure/Perfusion Cartilage aggrecans
Toyoda et al., (2003) Hydrostatic Pressure Cartilage Upregulation of mRNA
Shear Force/Rotating Enhanced bone cell
Yuetal, (2004) vessel Bone phenotypic expression
Akmal et al., (2006) Shear Force/Rotating Cartilage Increase in staining
Vessel intensity
](Lér(l)%%s)a-Melvin etal, Mechanical stimulation Collagen Stiffness increase
Webb et al.,, (2006) Cyclic strain Tendon Stiffness increase
Cell density increase
Androjna et al., (2007) Mechanical stimulation Tendon ) i
Stiffness increase
, Increased proliferation,
Mygind et al., (2007) Shear F%lice/Splnner Bone differentiation and
ask N
distribution
. . . Increase in DNA and GAG
Shangkai et al., (2007) Stirred Cartilage content
Candiani et al., (2008) Cycli]g Hydrostatic Cartilage 2D to 3D guided cell
ynamic differentiation
Grayson et al.,, (2008) Perfusion Bone Cell density increase
Aligned microfibres Nerve Cellular adhesion and
Sun et al, (2008) inserted in conduits Conduit alignment
l(\IZI Br(r)lg)lanandhan etal, Mechanical stimulation Tendon Stiffness increase
; Elastic modulus increase
?Zb(;)(;lgs)lelman etal, Mechanical stimulation Tendon ] ]
Cell proliferation
Butler et al., (2009) Mechanical stimulation N.A. Stiffness increase
Ladd et al., (2009) Uniaxial expansion Skin Increase in surface
Nguyen et al,, (2009) Cyclic stretch Tendons  Improved fibre orientation
Liuetal, (2010) Shear F(})Trlgczl/(Spinner Cartilage  Increase autologous tissue
Collagen increase
Chenetal, (2010) Mechanical Stimulation Tendon
Better cell alignment
Doroski et al., (2010) Cyclic stress Human Collagen increase
marrow
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Saber et al., (2010) Cyclic strain Tendon Stiffness increase
Santoro et al., (2010) Perfusion Cartilage Homogeneously tissue
Lei et al,, (2011) Rolf/?_ting cell with Skin Multilayer epidermis
icrogravity structure
Woon etal., (2011) Cyclic axial loads Tendon Elastic modulus increase
Melchels et al., (2011) Perfusion Cartilage High cell deposition
Shahin and Doran, Perfusion Cartilage Culture of larger
(2011) 8 constructs
. High chondrogenic
Correia et al, (2012) D Hydrostatlc . Cartilage differentiation and matrix
ynamic/Pulsatile d i
eposition
Takebe et al.,, (2012) Shear F%I:Ses{e Fl{otating Cartilage High cell proliferation
Garcia Cruz et al., (2012) Shear Force/Stirred Cartilage Cell proliferation and
v & differentiation
. . Heart Improvement of
Aleksieva et al., (2012) Loop/Pulsatile flow Valves mechanical properties
Weinandy et al.,, (2012) Single loop circulation Stents Functional cell lining
High cell proliferation.
Vascular/Double Vascular
Song et al.,, (2012) Circulation Loop Tissue Large-scale vascular
vessels
Shear Force/Spinner . Large-scale chondrogenic
Yoonetal, (2012) Flask Cartilage differentiation
. Uniaxial /Biaxial Elastic modulus increase
Bilgen et al., (2013 . . Stem cells
& ( ) mechanical strain Proteoglycan deposition
An integrated bioreactor
that mimics the Vascular Simulation of circulatory
Chen et al,, (2013) physiological pulsatile Tissue hemodynamics
stimuli
Wang et al., (2013) Mechanical stimulation Tendon Cell proliferation
, , . Cellular outgrowth and
Wang et al., (2014) Compression Dynamic Cartilage maturation
Laurent et al., (2014) Tension-Torsion Strain Ligament Cell proliferation
) ) Cell proliferation
Goodhart et al., (2014) Cyclic Strain GAG
ECM production increase
Youngstrom et al,, (2015)  Cyclic mechanical stimuli Tendon Elastic modulus increase
] . ] Osteogenic differentiation
Qinetal, (2015) Mechanical Strain Tendon
Cell infiltration
Cook et al., (2016) Dynamic/uniaxial strain  Several Cell proliferation
N and electric stimulus tissues p
Cell proliferation and
Wuetal., (2017) Mechanical stimuli Tendon infiltration
Fibre alignment
Higher maturation
Ravichandran et al., Biaxial rotation/Womb Bone of cellular bone graft.

(2018)

mimic

Faster cell proliferation.
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2.3 Scaffolds and cells

As mentioned in the first chapter, scaffolds need to meet several prerequisites in order to
provide the necessary support to the cells. An adequate mechanical property is required
to withstand the biodegradation, the shear stress and deformation before the tissue is fully
grown. Also of extreme importance is adequate pore size, porosity and subsequently
permeability to allow the cells to grow and increase their proliferation within the scaffold
(Freitas et al., 2014b; Huang et al., 2018; Li and Cui, 2014; Tan et al., 2005; Truscello et
al., 2012; Vianaetal., 2013; Vyas et al., 2017). The material and the fabrication technique
is of significant importance because it will shape not only the surface as the
biocompatibility of the scaffold towards the cells (Huang et al., 2018; Porter et al., 2005;
Sanz-Herrera et al., 2009; Tan et al., 2005; Viana et al., 2013). Table 2.5 shows the
common properties of the scaffolds used in culture of several types of tissues in TE.

Table 2.5 Preferred scaffold properties for the different tissues (Zhang et al., 2018).

Tissue type Pore size (um) Porosity (%) Elastic modulus
Cancellous bone 500-1000 50-90 0.1-0.5 GPa
Cortical bone <500 3-12 3-30 GPa

Cartilage 400 80 0.7-15.3 MPa
Nerve 5-30 50-70 8-16 MPa
Subcutaneous adipose tissue 100 88-97 1.6-11.7 kPa
Skin 20-125 70-90 3-7 kPa
Liver 120-350 94 8-12 kPa
Kidney 100-300 5-10 kPa
Heart 40-160 10-15 kPa
Lung 100-300 3-6 kPa
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3 COMPUTATIONAL
SIMULATION ON
BIOREACTORS

This third chapter will introduce several research works where simulation tools were used.
Also, a brief theoretical explanation of fluids and mathematical modelling of fluids will

be presented.

3.1 Mathematical modelling in TE

Mathematical modelling can be used to justify experimental results and help to decide
future directions in TE (Chung et al., 2008, 2006; Gelinsky et al., 2015; Lewis et al.,
2005; Malda et al., 2004; Zhou et al., 2011). Concerning the culture of cell-seeded porous
structures for TE applications, there are just a few mathematical modelling studies which
have focused on this thematic (O’Dea et al., 2008; Song et al., 2015; X Yan et al., 2012).

One of the most relevant roles of the numerical simulations is the prediction of the global
dynamic responses in different areas of the bioreactor (Shi, 2008; Song et al., 2015; X
Yan et al., 2012). Also, numerical analysis anticipates local hydrodynamic changes in
tissue constructs within bioreactors (Jia et al., 2017; Shi, 2008; Song et al., 2015).
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With recent computational tools, the estimation of variables such as flow fields within a
new concept of bioreactor (Shakeel, 2011; Shakeel and Raza, 2014; Sucosky et al., 2004)
or the shear stresses and mass transfer of scaffolds inside of a bioreactor (Salehi-Nik et
al., 2013; Shakeel and Raza, 2014; Whittaker et al., 2009), the mechanics of certain
scaffold biomaterials (Sengers et al., 2008), and the sufficiency of some bioreactor
cultures (Chung et al., 2007; Coletti et al., 2006; Freitas et al., 2015b; Sucosky et al.,
2004) can be easily predicted.

Park et al. (2018) study environmental conditions on which occurs the cell culture using
Computational Fluid Dynamics (CFD) to study the behaviour of air bubbles in a
microfluidic perfusion bioreactor. Air bubbles disturb the fluid flow which will cause
instability on the cell culture conditions. Other studies also analyse both oxygen and shear
stress conditions within the bioreactor. Regulating an optimum combination between the
provided oxygen (that originate air bubbles) and the fluid flow velocity enhances cell
proliferation and promotes a more homogeneous tissue (Cioffi et al., 2008; Grayson et
al., 2011; Provin et al., 2008).

Initial studies using numerical simulation are often used to optimise bioreactors design.
Santoro et al. (2010), used CFD to create a perfusion bioreactor capable of obtaining a
uniform cell seeding distribution and create a homogeneous tissue. Figure 3.1 is possible

to see on the right image the uniformity of the flow.

. >8.8

4.4

. 0.0

mm/s

Figure 3.1 CFD analysis of two types of bioreactor. The left one is a single inlet/outlet chamber,
and the middle and right image is the same four inlets/outlets bioreactor developed by Santoro et
al, (2010).
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Melchels et al. (2011) did a correlation between the numeric simulations and the
distribution of cell densities. They analysed the influence of the fluid locally, around and
within, on the scaffold in terms of shear stresses displayed on a colour map form and a
microscopy image of the cell density after a perfusion culture process (Figure 3.2). It was
concluded that the cell density was higher in the same areas wherein the colour mapping

of the shear stress had the optimum values to enhance cell proliferation.

wall shear rate (s™)

50

Figure 3.2 Comparison between the distribution of cell densities (bottom images) and the wall
shear stress rates (top images) at the same cross-section. The left and right images differ on the
scaffold homogeneity, where the right scaffold is heterogeneous (Melchels et al., 2011).

Pereira et al. (2014) studied the effect on the fluid flow and the shear stress on the the
scaffold surface in a rotating bioreactor. Just by changing the length and diameter of the
bioreactor chamber as also using three rotations (horizontal, vertical and the combination
of both — biaxial). It was concluded that the distance of the inlet has a higher impact on
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the scaffold shear stress than the diameter and the biaxial rotation as more uniform

behaviour with regard to the fluid flow and scaffold shear stress (Figure 3.3).
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Figure 3.3 Biaxial rotation results regarding fluid velocity in the chamber and scaffold and
scaffold shear stress (Pereira et al, 2014).

Almost all the studies in numerical simulations on bioreactors for TE focus on the
optimization of the bioreactors design and mass transfer conditions as can be seen in the
following studies (Cinbiz et al., 2010; Egger et al., 2017; Freitas et al., 2014a; Hutmacher
and Singh, 2008; Jungreuthmayer et al., 2009; Kaul et al., 2016; Lappa, 2005; Liu et al.,
2016; McCoy and O’Brien, 2010; Patrachari et al., 2012; Porter et al., 2005; Shakeel and
Raza, 2014; Skoneczny et al., 2017; Spencer et al., 2013; X. Yan et al., 2012; Zhang et
al., 2018)
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3.2 Fluid Classification

The fluid is characterized by its inability to sustain deviatoric stresses when at rest and
are classified into two major groups, the Newtonian and the non-Newtonian fluids.
Essentially the difference between them depends strictly on the variation of the shear
stress and the deformation ratio which can be represented by (Nguyen and Choi, 2012;
Zienkiewicz et al., 2005):

d
T=1,+ n(ﬁ)” (3.1)

where 7 is the shear stress, 7y, n and n are constants, 7y is the yield stress and is 1 the
dynamic viscosity, du/dy is the deformation ratio. Figure 3.4 classifies the fluids
according to their rheological properties. The viscosity of a Newtonian fluid is
independent of time and shear rate and for that reason has an ideal behaviour (linear) as
shown in Figure 3.4. Fluids are mention as plastic when the shear stress reaches a
minimum value before it begins to flow. The non-Newtonian fluids are classified as
plastic, Bingham plastic, pseudo-plastic and dilatant fluids (Douglas et al., 2005). The
variation between the different classifications of non-Newtonian fluids varies with the
constant n presented in Equation 3.1. If n is equal to one, the material is a Newtonian fluid
but if the deformation rate does not reach a critical value of the shear stress the material
is denominated as a Bingham plastic. If the dynamic viscosity decreases as the shear rate
increases it is called a pseudo-plastic or shear-thinning fluid. If the opposite occurs, i.e.,
the dynamic viscosity increases as the shear rate increases it is called a dilatant or shear-
thickening fluid. In short, a dilatant fluid is represented by n > 1, a pseudo-plastic is
represented by n < 1 and a Newtonian fluid is represented by n = 1 (Nguyen and Choi,
2012).
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Yield-Pseudoplastic
(Herschel-Bulkley)

»

Bingham
plastic fluid

Newtonian
Fluid

Pseudoplastic fluid

Yy

Shear stress, T

€— Dilatant fluid

Shear rate, y

Figure 3.4 Classification of the rheological behaviour of fluids (adapted from Nguyen and Choi,
2012).

The materials can be yet characterised as thixotropic or rheopectic fluids depending on
the variation of viscosity with the applied shear stress along time. If the viscosity
decreases the fluid is called thixotropic if increases are called rheopectic (Derakhshandeh
etal., 2012).

3.3 Permeability Darcy’s Law

In order to study the permeability of porous scaffolds, a method based on Darcy's Law
seems to be an adequate approach. Darcy's law is a phenomenologically derived
constitutive equation that describes the flow of a fluid through a porous medium (Dias et
al., 2012; Rahbari et al., 2017; Viana et al., 2013; Whittaker et al., 2009).

Darcy's law is a simple proportional relationship between the instantaneous discharge rate
through a porous medium, the viscosity of the fluid and the pressure drop over a given
distance (Almeida and Bartolo, 2014; Dias et al., 2012; Rahbari et al., 2017).
_ —kA(Pp—Pq)

Q= PR (3.2)
The total discharge, Q (units of volume per time, e.g., m%/s) is equal to the product of the
permeability of the medium, k (m?), the cross-sectional area to flow, A (units of area, e.g.,
m2), and the pressure drop (Pp - Pa), all divided by the viscosity, x (Pa-s) and the length

over which the pressure drop is taking place (m). The negative sign is needed because
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fluid flows from high pressure to low pressure. If the change in pressure is negative
(where Pa > Pyp), then the flow will be in the positive 'x' direction. Dividing both sides of
the equation by the area and using more general notation leads to the following equation
(Dias et al., 2012; Viana et al., 2013; Whittaker et al., 2009):

q = _TRVP (3.3)
where q is the flux (discharge per unit area, with units of length per time, m/s) and VP is
the pressure gradient vector (Pa/m). This value of flux, often referred to as the Darcy flux,
Is not the velocity which the water travelling through the pores is experiencing. The pore
velocity (v) is related to the Darcy flux (q) by the porosity (n). The flux is divided by
porosity to account for the fact that only a fraction of the total formation volume is
available for flow. The pore velocity is the conservative velocity tracer would experience
if carried by the fluid through the formation (Dias et al., 2012; Rahbari et al., 2017,
Whittaker et al., 2009):

v="_ (3.4)

3.4 Computational Modelling

3.4.1 Navier-Stokes equation

The Navier-Stokes equations (Pozrikidis, 2009; Zienkiewicz et al., 2005) are differential
equations that describe the flow of Newtonian fluids. These equations are partial
derivatives for determining the velocity field and pressure in a flow. They were called
after Claude-Louis Navier and George Gabriel Stokes that developed a set of equations

that describe the motion of fluid substances such as liquids and gases.

The Navier-Stokes equation follows from the motion equation:

d
pd—?=V-0+pg (3.5)

by substituting the constitutive equation for the stress tensor for an incompressible

Newtonian fluid given by:

o= —pl+2uE (3.6)

Dino Freitas - September 2019 53



A Mechano-Perfusion Bioreactor For Tissue Engineering

where o is the stress, u is the offset, t the time, p is the density, g is the gravitational
acceleration, p is the pressure, u is the fluid viscosity, I is the identity matrix, and E is the

strain rate tensor.

For a fluid of uniform viscosity, the force of hydrodynamic volume is given by:

zEV-0=V-(—pI+u2E)=—Vp+,u2V-E 3.7)

In indicial notation, it is possible to observe that the default component of the second

divergence tensor index of strain rate, E, is:

anl 0 |1 aui auj azui azuj azui ad auj
2 =2 —_— = + = + 7 (38)
ax]. ax]. ax]. Oy, ax]. ax]. Oy,

ax;  ox; )| Oy,

Considering that the fluid is incompressible, the difference in velocity in the last term of

Equation 3.8 enclosed in brackets is zero. In Equation 3.8, it is also possible to considerer:

azui _ azui n azui azui
Ox,0x; © 0x2  9y?  0z2

= V2y (3.9)

Using these results in order to simplify Equation 3.7 it is possible to verify that the force

of hydrodynamic volume is given by:

Z =V.0=—Vp+uvlu (3.10)

Therefore, Equation 3.5 of movement is reduced to the Navier-Stokes equation.

du 5
P = —Vp + uvéu + pg (3.11)

that distinguishes from the Euler equation,

Du

— =V .
P D¢ p+pg (3.12)
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by the presence of the viscous force represented by the product of the viscosity and the

Laplacian of the velocity.

The Eulerian form of the Navier-Stokes equation involving the time and space derivatives

is given by:

du
p (E +u- Vu) = —Vp + uV?u + pg (3.13)

The three main scalar Cartesian components of the Equation 3.23 are given by:

ouy ou, ou, ou, op 0%u, 0%u, 0%u,
p(at + u, 2. +uy ay +u, 3

ou ou ou ou op d%u, 0%u
y y y v\ _ y y
p<at + Uy, 3. +u, 3, +u, az>— “<6x2 + dy2 + azz>+pgy (3.14)

ou, 6u2+ ou, du,\  dp 0%u, 0%u, 0%u,
P\llat "%, "™, T, )T

3.4.2 Turbulence Kinetic Energy

One of the fundamental problems of Fluid Dynamics has been, and still is, the Turbulence.
Taking that into account, there are several theoretical analysis and prediction models that
are carried out in CFD simulations (Li et al., 2013; Vickers and Thomas, 2013;
Zienkiewicz et al., 2005). The description of turbulent flow is so complex, and for that
reason, the existing formulations may go from just simple definitions of skin friction or
heat transfer coefficients, going up to a more specific energy spectra’s and turbulence

fluctuation magnitudes and scales (Celik, 1999; Liovic et al., 2012; Xie et al., 2016).

Several models can characterise fluid: there are the zero-equation models, one-equation
models, two-equation models and there are more advanced models. To carry out the study
of the turbulence within the chamber of this perfusion bioreactor, the Turbulence Kinetic
Energy (TKE) model was used, and it is a one-equation model. It is an alternative to the
algebraic model, and it predicts, by solving one additional transport equation, the
turbulent flow. Despite the fact that common turbulent scales are often used as the
variable in the transport equation, one of the most used methods is the calculation of the
characteristic turbulent velocity scale proportional to the square root of the specific

Kinetic energy of turbulent fluctuations that is usually referred as turbulence kinetic
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energy, denoted by k. The variable k can be obtained by the mean of the turbulence normal

stresses:

1 - —
k = > (W' + vV + w'w') (3.15)

where k is the turbulence kinetic energy; «’, v’ and w’ are the three fluctuating
components of velocity. The full form of the TKE equation can be observed in the

following equation:

ou _ 0k 1ou',p’ OJku, 0%k —
__ = _ v _

E-Hha_xj__p 0x; 0x; * dx}

A 3.16
—p'u;d3 (3.16)

Where ak/at is the local derivative; u;ok /ax; is the advection value; 1/0,0U'; P'/0X; is
the pressure diffusion; OKU',/0X; is the turbulent transport (T); VO’k/OX:V is the
molecular viscous transport value; u'iu'jéu_i/axj is the production (P);

vou', E)u'i/ﬁxj dX; is the dissipation (& ); and the g/p,—p'U'd;; is buoyancy flux
(Baldocchi, 2005; Li et al., 2013; Zienkiewicz et al., 2005).

3.4.3 Reynolds Number

Reynolds number was coined by Arnold Sommerfeld in 1908 after Osborne Reynolds
popularised the concept in 1883. It is dimensionless and can help predict flow patterns in
different fluid flows. Reynolds number describes the fluid mechanics at a certain velocity
in a determined interior of, e.g. pipe. The fluid flow can be characterised by laminar (a
steady still flow) or turbulent (Celik, 1999; Singh et al., 2007; Zienkiewicz et al., 2005).

Moody (1944) studied the flow in a closed pipe that, analytically, can be studied using
his chart (Figure 3.5) and determine the flow regime. The behaviour of the flow that can
be described through the friction factor depends on the Reynolds number and in the
relative roughness (Moody, 1944). The relative roughness indicates that there is a region
that behaves differently because it is too close to the boundary. In the chart, fully turbulent
flows are described in the right which will occur if Re is high and/or roughness values are
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also high. Laminar flow is linear and independent of the roughness, and it is reported on
the left of the chart. The transition regime is described in the centre of the chart and where
can be observed that the friction factor is heavily dependent on the relative roughness and
also the on the Reynolds number (Moody, 1944; Stewart, 2016)
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Figure 3.5 Moody’s diagram where it is possible to observe the transition regime of the flow
(Moody, 1944; Stewart, 2016)

The apparatus that Osbourne Reynolds developed enabled to study the transition of the
fluid flow from laminar to turbulent. At low Reynolds numbers the fluid tends to be
laminar, where viscous forces are dominant, and the fluid is smooth and constant, with
higher Reynolds number the fluid tends to be turbulent and is dominated by inertial forces,
provoking chaotic eddies, vortices and other flow variabilities (Celik, 1999; Zienkiewicz

et al., 2005).

The initial equation of Reynolds number can be obtained through the nondimensional

form of the incompressible Navier-Stokes (Equation 3.17) and can be defined as

Re=F=== (3.17)
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where, p is the density of the fluid; u is the velocity of the fluid considering the object; L
is the characteristic linear dimension; u is the dynamic viscosity of the fluid; and v is the

kinematic viscosity of the fluid.

Considering that the mechano-bioreactor presented in this study as the fluid flow passing
to a pipe the Reynolds number must be defined as

D D D
Re =~ ”M o= L QUAH (3.18)

where, Dy defines the hydraulic diameter of the pipe; Q is the volumetric flow rate; A is
the cross-section area of the pipe; p is the density of the fluid; u is the mean velocity of

the fluid; u is the dynamic viscosity; and v is the kinematic viscosity both of the fluid.

To the fluid be considered fully developed flow and be considered laminar the Reynolds
number must be Rep < 2300 and to be considered turbulent Rep > 2900 (Pok et al., 2013;
Singh et al., 2007; Williams et al., 2002; Zienkiewicz et al., 2005).

3.4.4 Mesh Requirements

Finite element method (FEM) is the main part of the numerical simulations for solving
mathematical problems computationally. FEM simplifies the interpretation of a
geometry/object by the software and able the prediction of their behaviour. By dividing a
geometry/object into several parts (mesh) this will enhance the representation of complex
geometries, will simplify the representation of the total solution and also enables the
capture of local effects (Reddy, 2006; Zienkiewicz et al., 2013).

A mesh is the discrete representation of the geometry. The mesh needs to take into
account several parameters to increase its quality. Parameters as elements, size and shape,
distribution, number of elements, among many others. Several shapes can be used to
define the elements: tetrahedral, pyramid, triangular prism, hexahedron or polyhedron.
To measure the quality of a mesh it is possible to use some indicators as the skewness and
orthogonality of the elements. Depending on the value given it is possible to know if the
mesh suits the needs of the calculation (Bakker, 2012; Reddy, 2006; Zhang et al., 2018;
Zienkiewicz et al., 2013, 2005).
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a. Skewness

Skewness is one of the primary quality indicators of mesh quality and suitability.
Skewness determines how close to the ideal a face or cell is. Higher the value worse the
quality of the mesh (Ansys, 2017; Bakker, 2012). Figure 3.6 shows the ideal shapes to

consider the optimum cell quality and skewed cells with lousy quality.

A o

Equilateral Triangle Highly Skewed Triangle

v

Equiangular Quad Highly Skewed Quad

Figure 3.6 Ideal and Skewed geometries (Ansys, 2017; Bakker, 2012)

There are two methods to calculate Skewness. The first method is based on equilateral
volume and is applied only to triangles and tetrahedrons. The second method is based on
the deviation of the normalised equilateral angle and can be applied to all cell and face
shapes like prisms or pyramids (Ansys, 2017; Bakker, 2012).

In the first method, the skewness is defined as

Optimal cell size—Cell size

Skewness = (3.19)

Optimal cell size

where, the optimal cell size is the size of an equilateral cell with the same circumradius.

The second method, based on the deviation of the angle of a normalised equiangular
shape. In this method, skewness is generally defined as the maximum ratio of angular
deviation from the ideal element. Can be calculated using the following equation
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Skewness = max [ ,
1806, 0,

(3.20)

where, 0, 1S the largest angle in the face or cell; the 8,,;, is the smallest angle in the
face or cell; the 6, it is the angle for an equiangular face or cell. If the shape is equilateral

triangle 6, = 60° and if it is a square 6, = 90°.

The first method is the most common for the calculation of the skewness. In Table 3.1, it
is possible to see the range of skewness values and the corresponding quality.

Table 3.1 Range of values of skewness (Ansys, 2017).

Value of Skewness Cell Quality

1 Degenerate
09-<1 Bad
0.75-0.9 Poor
0.5-0.75 Fair
0.25-0.5 Good

>0-0.25 Excellent
0 Equilateral

A value of 0 indicates an equilateral cell, i.e., the best quality of cell possible. If skewness
is equal or higher than 1 the cell is in the worst quality and has to be re-meshed. Generally,
cells that have a Bad (also known as Slivers) quality are characterised to have nodes that
are nearly coplanar (Ansys, 2017).

The average quality of the meshes varies depending on if it is 2D (quality of 0.1) or 3D
(quality of 0.4). For 2D, cells must have a Good or better-quality rating. Cells with Fair
or worse indicates a poor boundary node. Concerning 3D cells, most of the cells can be
Good or better, but it is admitted to have a small percentage in the Fair cell quality, and
also it is admitted to have a few with Poor quality. Normally it is considered for 3D

simulations to have a cell quality lower than 0.85 (Ansys, 2017; Bakker, 2012).

b. Orthogonality

While skewness indicates the distortion of an element shape in comparison to the
respective ideal shape, orthogonality indicates how close the angles between adjacent

element faces or edges are to some optimal angles (e.g. 90° for quadrilateral elements and
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60° for the triangular faces). Figure 3.7 shows how the measurement of the orthogonality
occurs. The angle between the vector that joins two mesh nodes — denominated by (s) in
the figure — and the normal vector for each integration point associated with the related
edge (n). Ip1 shows significant orthogonality while Ip2 reveals non-orthogonality (Ansys,
2017; Bakker, 2012; Zienkiewicz et al., 2005).

Figure 3.7 Measurement of the orthogonality (Ansys, 2017)

The acceptable range for the orthogonality angle has to be bigger than 20° (Oa>20°). This
will indicate a robust and accurate general solution, values closer to zero (0°) will not

produce reliable results because the cells do not have high quality (Ansys, 2017).

3.5 Mathematical Formulation of the Scaffold degradation

As mentioned in the previous chapter, polymeric scaffolds will be used for tissue culture
in vivo or in vitro. Regardless of the method of tissue culture, the scaffold itself will be
exposed to a diversity of biochemically and biophysically signals that will affect the

scaffold in varied ways, namely:

i. Hydrolysis or other forms of chemical separation which produce oligomers and
monomers in the polymer matrix;

ii. Mass transport within the polymer matrix and exchange of these products with the
neighbourhood,

iii. Bioabsorption of compatible biodegradable products.

In this context, experimental studies were done in order to facilitate the understanding of
the mechanisms of biodegradation in a complex process as described (Amass et al., 1998).

Conceptually, degradation is defined as a set of molecular changes due to chain split

within the polymer matrix, whereas surface erosion corresponds to structural and
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phenomenological changes due to the loss of mass of the degraded chains. Although
detailed mechanisms have not yet been fully comprehended, extensive experimental
studies have led to the exploration of degradation and erosion pathways (Chen et al.,
2011). The split of the polymer matrix chains occurs when the adjacent water molecules
attack the chemical bonds immediately after the surrounding solution begins to enter the
matrix. As a result, both the penetration rate and the hydrolytic rate can determine the
degradation pattern (Burkersroda et al., 2002; Hoque, 2017; Tamada and Langer, 1993).

If the rate of penetration of water exceeds the natural hydrolyzability of the polymer,
degradation must occur on the polymer matrix as a whole, with uniform degradation, i.e.,
degradation by mass. On the other hand, if the diffusion of the water molecules is
relatively low, the hydrolysis will most likely occur in the form of surface erosion (Chen
et al., 2011). However, these two extreme cases can co-occur for some materials with
sophisticated configurations, which can significantly affect controlled release systems
and tissue regeneration. The existence of models that correctly describe the different
phenomena associated with the degradation process is, therefore fundamental. For this
reason, the model of biodegradable mechanisms is a crucial step in controlling and

regulating the degradation process (Amass et al., 1998; Han and Pan, 2011).

In the development of scaffolds for ET and controlled release systems, only simple
degradation models are contemplated which do not contemplate, for example, aspects
related to the effect of mechanical stresses under degradation. More recently, hybrid
degradation mathematical models have been developed that combine stochastic
hydrolysis and autocatalysis diffusion to simulate internal degradation and surface
erosion (Chen et al., 2011).

Almeida et al. (2016) performed enzymatic degradation of a PCL (CAPA 6500) and
obtained the results observed in Figure 3.8. On both graphics, it is possible to see the
volume reduction of the scaffold on the left and on the right the variation of porosity both

variables over time.
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Figure 3.8 On the right the volume reduction of the scaffold and on the left the variation of
porosity, both over time (Almeida et al., 2016).

Initial considerations

Consider a biodegradable polymer with a random configuration in a regular domain. In
addition to the spatial variables, we also consider a variable x indicating two different
states of degradation: "hydrolyzable™ (x,==1) and "hydrolyzed" (x» = 0.001). For the sake
of simplicity, also consider that the size distribution of the polymer chains and the initial

density is uniform throughout the polymer matrix (Chen et al., 2011).

Stochastic model of degradation

In the hydrolytic reaction, the water molecules attack the bonds of the polymer chain,
leading to a decrease in the average molecular weight of the polymer matrix (Burkersroda
et al., 2002). According to experimental results, polymer degradation can be defined by
first-order kinetic equations (Chen et al., 2011; Hoque, 2017):

ML = MQe=% (3.21)

where M2 and M}, are the average molecular weights at the initial time (t = 0) and at the
instant of time, respectively, and A is the rate of degradation constant (Chen et al., 2011).

The molecular weight loss during degradation, M}, is given by:

t
M = 1—%: 1—e Mt (3.22)

According to the model developed by Gopferich (Gopferich, 1997), the degradation

process can be considered as a stochastic event (process or random event that is time-

Dino Freitas - September 2019 63



A Mechano-Perfusion Bioreactor For Tissue Engineering

dependent) for all hydrolyzable elements (x4 = 1). The mean molecular weight loss
(Equation 3.22) corresponds to the first-order stochastic process of Erlang, where the
density probability function, p, defines the probability of hydrolysis of a single

hydrolyzable element and can be calculated from the following equation:

p(A,t) = le M (3.23)

the stochastic hydrolysis model described by Equation 3.23 contains some mathematical
restrictions that need to be modified to describe the mechanism of degradation correctly.
Firstly, it should be noted that the degradation kinetics described by Equation 3.21 is
applicable when the initial polymer matrix has no surface irregularities. Thus, for a
polymer with an initial porosity «, the probability density function defined in Equation
3.23 is imprecise. Since the probability of hydrolysis is identical for all the hydrolyzable
elements at a specific time t, the degradation of the porous matrix can be considered from

an initial state of low porosity and degraded gradually, as shown in Figure 3.9.
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Figure 3.9 Schematic diagram to determine the hysteretic delay taqq for a polymer matrix with the
initial porosity a.

As indicated in Figure 3.9, the hysteretic delay (the tendency of a material or system to
conserve its properties in the absence of the stimulus that generated them), taq, for a

polymer matrix with initial porosity a, and considering Equation 3.2 can be calculated as:
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In(M{/MQ) In(1-a)
taga = ———5 = — (3.24)

In order to improve the computational efficiency, only the hydrolyzable elements (x4=1)
are considered in the stochastic model. In this way, it is possible to define a new density
probability function P (/, ), according to the following equation:

e —A(t+tadd) le —-At

P(,t) = V(t) ERAZ0)

(3.25)

where V (t) is the volume fraction of the polymer matrix at time t and Vo is the initial
volume fraction. Consequently, both the initial porosity and the porosity generated by the

degradation can be considered proportionally by the increase of P (4, 1).

Other studies present other degradation models that were carried out by (Han et al., 2010;
Han and Pan, 2011). Han et al. (2010) presented a computational model of polyester
biodegradation. This model comprises essential aspects such as molecular weight
distribution, random split rates and the copolymer ratio as input data, being solved by the
Monte Carlo method (MCM). In this case, the rate of the split of the nth ester-like bond
is described by:

dR; _ 0.5

d—tl = k;C; + k' C;C, (3.26)
where R; is the mole number of the total chain split of the nth ester-type bond per unit
volume, t is the time, C; is the mole concentration, C,; is the molar concentration of
oligomers and k{* represents the constants associated with the reactions of catalytic and

autocatalytic hydrolytic processes. Chain split of the nth ester-type bond occurs if:

i dR; dR; i dR;
i dRj N 9Rj i+1 4R;
=1 g < $1 X Xj=1 T S dj=1g, (3.27)

where 1 € (0,1) is a uniform random number and N is the total number of different types
of ester bonds.
Han et al. (2010) presented a model based on the acceleration of tests at high

temperatures, which has become an attractive but controversial technique, as an
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alternative to the high time (months to years) in which polymeric resorbable implants
delay degrading. This study resulted in optimised formulas, which were based on the work
of Han and Pan, (2011). Among all the optimised formulations, the following situation

stands out:
t 2
M, 1—tanh(a)
= I~ (3.28)
no 1+p tanh(a)
where
toy = —— 3.29
© 7 xtky\/Cop (3.29)
is the time characteristic for the hydrolytic reaction, and
_ Ceo (1 1)
= -— = 3.30
P Nchaino \& m ( )

in which Coq / N.4in0 1S the degree of polymerisation of the polymer. This equation was

valid for the entire biodegradation process.
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4 NOVEL MECHANO-
PERFUSION BIOREACTOR
PROPOSED

In this chapter, composed of two subchapters, it is presented the proposed design of a
novel Mechano-Perfusion bioreactor and as also the goals of this research work in the
first subchapter. The applied simulation parameters of scaffold, bioreactor and fluid are
presented in the second subchapter.

4.1 Mechano-Perfusion Bioreactor proposed

Bioreactors, as demonstrated, are being used to create several types of tissues using many
different stimuli. Analysing the state-of-the-art in bioreactors for TE it is easy to assume
that the bioreactors role is to provide not only a stable environment to cells as also the
proper stimulus to create a specific tissue (Gelinsky et al., 2015; Khetani and Bhatia,
2006; Obregon et al., 2017; Salehi-Nik et al., 2013). A frequent issue in TE is that just
one type of stimulus when performing the culture of the tissue is not enough to
differentiate the cell or the cultivated tissue. Doesn’t have the proper mechanical
resilience as the natural tissue has or even there aren’t enough living cells at the end of
the culture to provide a full tissue to implant on the patient (Gelinsky et al., 2015; Khetani
and Bhatia, 2006; Liu et al., 2013; Obregoén et al., 2017; Salehi-Nik et al., 2013).
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For these reasons, a novel bioreactor is being developed. A Mechano-Perfusion bioreactor
capable of providing the same advantages of a full perfusion bioreactor with the extra
condition of also providing a mechanical stimulus (Figure 4.1).

Figura 6

Figure 4.1 Mechano-Perfusion bioreactor design (Freitas et al., 2013)

This bioreactor is patented in Portugal with the patent number PT 105176 granted in 2013
(Freitas et al., 2013). The perfusion part of this bioreactor will offer excellent control of
mass transfer and also will try to correct one of the limitations of the normal perfusion
bioreactors, the control of the fluid flow path through the chamber. For that reason, it was
developed micro-perforated diffusion membranes (Figure 4.2) with oriented holes to try
to redirect the fluid to the necessary parts of the scaffold surface. These oriented holes
have three angle configurations, 45° 0 ° and -45° degrees. With these membranes, in
theory, there is the potential to create homogenous and heterogeneous tissues. The inlet
and outlet are to two mechanical pistons that will move towards and outwards the scaffold

providing a compressive stimulus.
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Figure 4.2 Designed micro-perforated diffusion membrane

This combination of Perfusion and Mechanical simulation will, in theory, provide a
broader scope of tissues to culture. For instance, a cartilage-like matrix will have their
chondrocyte growth, and a mineralised matrix will have the bone cells enhanced both
cases due to a direct perfusion bioreactor (Meyer et al., 2006; Salehi-Nik et al., 2013).
Using cartilage as an example once more, a mechanical bioreactor will apply a dynamic
compression loading comparable with the natural physiological load applied to real
cartilage. With this load the mechanical bioreactor will aid the in vitro cartilage to have a
higher elastic modulus and a better mass formation very similar to the native cartilage
(Elhamian et al., 2015; Hoenig et al., 2011; Mauck et al., 2000; Zhao et al., 2016).

One crucial aspect to take into account when designing a novel bioreactor is the
microenvironment of the cells. This is one of the factors responsible for the importance
of regulating the flow rate of the medium. So, to optimize a bioreactor, specially a
mechano-perfusion bioreactor, there must be some balance between the nutrient supply
rate, the transport of metabolites off and to the cells, and the proper shear stress effect of
the fluid on the cells deposited on the scaffold (Depprich et al., 2008; Lovett et al., 2010;
Salehi-Nik et al., 2013; Wendt et al., 2008).

To better understand how all of the mentioned physical factors influence the development
of the tissues, necessary studies are required to quantify their impact. In order to optimise
the physical forces experienced by cells within the bioreactor, computational analysis will
be carried on (Salehi-Nik et al., 2013; Wendt et al., 2008).

4.2 Simulation Parameters

The mechano-perfusion bioreactor was designed, taking into account all the
considerations mentioned in the state-of-the-art. The lack of combined stimulus has led
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the design of this novel bioreactor to a mechanical and perfusion combination. In order
to optimise this bioreactor, several numerical studies were carried out. The parameters of
these numerical simulations include the design of the bioreactor, the scaffold and the fluid

properties.

Due to the pertinence of this study and to better understand the fluid behaviour and the
stress suffered by the scaffold, and the cells within, it was considered the following sets

of numerical simulations:

e 1% phase: CFD simulations without and with a simple scaffold and varying the

fluid velocity;
e 2" phase: Scaffold permeability analysis;
e 3phase: CFD and Structural simulations with mimicked scaffold;

e 4" phase: Scaffold degradation CFD and structural analysis.

4.2.1 Perfusion Bioreactor Design

Using Solidworks® CAD software, the bioreactor was modelled with the dimensions
described in Figure 4.3. This novel bioreactor has two dynamic hollow pistons in which
the fluid flows from inside and is oriented by the perforated membranes and also can
promote mechanical compression to the scaffold area.
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Figure 4.3 Dimensions of the designed mechano-perfusion bioreactor.

The pistons can be used dynamically or stationary and, in the last case, the bioreactor will
act as a perfusion system only. The pistons can go closer to the scaffold surface while the

fluid is flowing from within the piston. For that reason, it was simulated four scenarios
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(Figure 4.4) for the initial approach, taking into account the extreme positions of both
pistons. The piston in the Open (O) position is when it is the most distant of the scaffold
while the Close (C) position is the opposite when it is closer to the scaffold. With the
combination of these two positions it was possible to use four configurations: 1) both
pistons in the Open position, OO (Figure 4.4a); 2) Inlet piston (left) Close and the Outlet
(right) piston in the Open position, CO (Figure 4.4b); 3) Inlet piston (left) Open and the
Outlet (right) piston in the Close position, OC (Figure 4.4c); 4) both pistons in the Close
position, CC (Figure 4.4d).
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Figure 4.4 Model of the perfusion bioreactor demonstrating the four pistons configurations, a)
Open-Open, b) Close-Open, ¢) Open-Close and d) Close-Close positions.

In general, the fluid in perfusion bioreactors flows directly to the scaffold in a linear way,
which originates in most of the cases a uniform distribution of the fluid in the surface of
the scaffold. With this flow, depending on its velocity, the impact of the fluid on the

scaffold can reach high values of shear stress resulting in cellular necrosis. This novel
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mechano-perfusion bioreactor intends to solve this issue by using the perforated
membranes enabling not only the linear flow of the fluid but also, in a controlled way,
different directions for the fluid flow originating different stresses and velocities. With
these membranes the intention is to create the optimum levels of stimulus to enhance the

proliferation of cells and therefore to create homogeneous or heterogeneous tissue.

To better understand the conditions that will be created by these membranes, numerical
simulations were carried out with the three different configurations (Figure 4.5): (1) in
the first membrane, the fluid flows parallel to the chamber walls (perpendicular to the
scaffold surface) denominated as PF (Parallel Flow) as seen in Figure 4.5a); (2) in the
second membrane configuration (Figure 4.5b), the pores of the membrane redirects the
fluid to the centre of the chamber (Inward), referred as IF (Inward Flow); (3) in the third
and last membrane (Figure 4.5c), the pores of the membrane redirects the fluid towards

the walls of the culture chamber, referred as OF (Outward Flow).
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Figure 4.5 Membrane configuration to redirect the fluid flow where a) is the Parallel Flow
configuration, b) the Inwards Flow configuration and c) the Outward Flow configuration.

4.2.2 Scaffold Design

For the bioreactor optimisation, it was modelled two scaffolds. One was used for the
initial numerical simulations, and it is a simplified model. The second one is an
approximation of a real scaffold after being constructed by additive fabrication
technologies.

In Figure 4.6 is represented the scaffold used for the initial simulations (1% phase) where
it is observed the planar surface of the filaments. It was designed in a cylinder form in
order to be fitted in the mechano-perfusion bioreactor chamber with a diameter of 36 mm
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and 5.1 mm thickness. The filament has a 0.3 mm of edge, a pore size of 0.9 mm and a
0°/90° pattern configuration with approximately 82% of porosity.

Figure 4.6 Design of the scaffold used in this work, a) detail of the filament pattern; b) lateral
view of the scaffold.

For the permeability (2" phase) study, it was used an eighth of the scaffold described
before (Figure 4.7). This was done in order to simplify the numerical calculations.

Figure 4.7 1/8" of the scaffold used for the permeability simulations.

For the numerical simulations of the enzymatic degradation (4™ phase), it was used the
cuboid shape with squared filaments to model the scaffold due to the fact that the scaffold
suffers geometric modifications along time and in order to be possible the execution of
such numerical simulations was opted for this simplification. The original conditions of
the scaffold are 10 mm of edge, a volume of 648 mm? and 16 pores in each face with 1
mm of size (Figure 4.8). Then with the degradation process the scaffold will continuously
lose its volume till it reaches a 1.2 mm? in 340th day of degradation.
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Figure 4.8 Scaffolds used in degradation numerical analysis from Day 0 (TO) until Day 340
(T340) (Almeida et al., 2016).

The scaffold designed for the last computational fluid and structural simulation (3"
phase) pretends to mimic the real produced scaffold. Due to the additive manufacturing
technique, several parameters have to be taken into account in order to model the scaffold.
The strand diameter (D) and the horizontal span (Y) two parameters that are controllable
during the scaffold production. Density is defined by (p), and the elastic stress limit will
vary according to the material, in which in this case the material used is PCL (Almeida
and Bartolo, 2014; Freitas et al., 2014a; Li et al., 2009; Sanz-Herrera et al., 2009). In
order to simplify the numerical calculations, a quarter of the scaffold was used (Figure
4.9). The filament diameter has 0.3 mm with a horizontal span of 0.7 mm, a pore size
(Hz) of 0.255 mm, a pattern configuration of 0°%/90° (6) and from the geometric model,
the porosity, which is defined as the ratio of the void volume to the total volume, is

porosity of 63.9%.
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Figure 4.9 One-fourth of the scaffold used in the fluid and structural simulations and designing
parameters taking into account.

4.2.3 Simulation Conditions and Settings

In order to perform an optimisation of this novel bioreactor, a full study of the fluid
behaviour in the bioreactor was required. Several simulations were performed, and it was

considered the conditions of the medium among other parameters described ahead.

For the 1% phase, it was considered twelve combinations of the mechano-perfusion
bioreactor (four-piston configurations and the three membranes). The number of finite
elements that constitute the mesh and their average size for each configuration can be

seen in Table 4.1.

76 Dino Freitas - September 2019



Chapter 4

Table 4.1 Mesh conditions used in the 1% phase in the CFD analysis.

Chamber Configuration Total Elements Average Elements Size [mm]

PF-00 3850276 0,825
PF-OC/PF-CO 4313385 0,826
PF-CC 4780823 0,828
IF-00 3070320 0,817
IF-OC/IF-CO 3382761 0,819
IF-CC 3688855 0,820
OF-00 3088909 0,818
OF-0C/0F-CO 3416962 0,819
OF-CC 3718000 0,820
Average 3701143 0,821

In terms of properties of the fluid, it was defined three fluid velocities and the fluid
considered has the same properties as the study carried out by Hutmacher and Singh
(2008). All the parameters can be seen in Table 4.2 were beside the fluid properties is

also displayed the inlet and outlet diameter of the bioreactor.

Table 4.2 Fluid characteristics and chamber properties used in the CFD analysis.

Parameter Value
Density 1030 Kg/m3
Dynamic Viscosity 0,0025 Pa/s
Flow velocity 0.1/0.2/0.3 m/s
Pressure 1 atm
Flow regime Subsonic
Turbulence model Laminar
Bioreactor in/outlet diameter 8 mm
Bioreactor chamber diameter 50 mm
Bioreactor volume (maximum) 785.71 mL

In order to better understand the behaviour of the fluid within the bioreactor chamber, this
1% phase was separated into two studies, with and without the scaffold. This means that
it was carried out twelve simulations for each velocity without scaffold inside the culture

chamber. The absence of a scaffold in the simulations is of significant importance to better
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understand the fluid behaviour along its entire course since the inlet up to the outlet
without any constraints in the middle allowing to study the influence of each membrane
configuration and each piston position identifying the turbulent effects caused by each of

them.

In the 2" phase, numerical simulations were done using the two extreme configurations
of the position of the pistons, the Open-Open (OO) and the Close-Close (CC) (Figure
4.4). With the same fluid properties displayed in Table 4.2 and it was defined the fluid

velocity of 0.2 m/s.

After performing the numerical simulations in the 1% phase, velocity plots on the
scaffold’s surface were obtained, and they were used as the fluid’s velocity in these
simulations to determine the scaffold’s permeability. It was used the previous piston

configurations (OO and CC) with the three membrane configurations.

The meshed model was composed of 38866 tetrahedron elements with an average element
size of 0.632 mm. The outlet was defined with zero pressure while three different regions
of velocity where defined according to the previous results from the velocity plots (Figure
4.10).

INLETS OUTLETS

Figure 4.10 Inlets and outlets of the 1/8'" of the scaffold used in this phase.

On this phase of simulations (3 phase) the parameters used to define the boundary
conditions, the models of the mechano-bioreactor and scaffold, and the fluid was similar
to real conditions. The fluid used for the simulations has the properties of the Human
Plasma supplied by Sigma Aldrich (Table 4.3) and its used in many of the TE applications
for culturing bone, muscle, skin and vascular tissues (Kakavand et al., 2017; Kwak et al.,
2017; Paul et al., 2015; Sadeghi-Ataabadi et al., 2017; Yoo et al., 2009).

78 Dino Freitas - September 2019



Chapter 4

Table 4.3 Human plasma properties and CFD definitions.

Parameter Value
Density 1020.05 Kg/m3
Dynamic Viscosity 1.3175 Pa/s
Molar Mass 220 Kg/mol

Specific Heat Capacity

3930 J/(Kg-K)

Thermal Conductivity

0.582 W/(mK)

Flow velocity 0.5m/s
Pressure 1 atm
Flow regime Subsonic
Turbulence model Laminar
Wall property No Slip Wall
Bioreactor in/outlet diameter 8 mm
Bioreactor chamber diameter 50 mm
Bioreactor volume (maximum) 785.71 mL

Using the Reynolds equation to calculate the turbulence of the fluid within the bioreactor
chamber it is possible to observe that the fluid will have a laminar characteristic in both
pipes (pistons) of inlet and outlet and also in the chamber. Also, the fluid is considered

an uncompressible flow of a Newtonian fluid.

This phase is divided into two parts: (1) fluid analysis and (2) structural analysis. The first
part was used to determine the fluid velocity and shear stresses in the scaffold, for that, it
was just considered the inlet piston in its extreme positions (Open and Close) and the
outlet piston was fixed in the Open position without a membrane. It was created six (6)
combinations with the two-piston configurations, OO and CO (Figure 4.11), and the three
membranes, Parallel (PF), Inwards (IF) and Outwards (OF). For the second part of the 3"
phase it was used the pressure exerted by the fluid on the scaffold to calculate the

deformation and the Equivalent (von-Mises) stress on the scaffold.
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Inlet » Outlet

a) 00

Figure 4.11 The two-piston configurations used in this phase. Only the inlet piston moves and
the outlet piston remains in the Open position.

The scaffold was constrained by its rounded facet that is in contact with the interior wall
of the bioreactor chamber and the pressure imported from the CFD analysis was applied

in all elements.

Taking advantage of the symmetry of the chamber and scaffold, it was possible to
simplify the fluid model into 1/4™ (Figure 4.12) and this way reducing the computational

time.

Inlet » Outlet Front View

Figure 4.12 Views of the 1/4" of the mechano-perfusion bioreactor chamber used in this phase.

The bioreactor chamber and the scaffold for, CFD and Structural analysis, respectively,
were meshed using ANSYS mesh tool, from ANSYS Inc (Figure 4.13). The mesh
properties of fluid geometry can be seen in Table 4.4 and Table 4.5. The mesh of the
scaffold was created with 7504219 tetrahedrons and with 3.55x1072 of average size of the

elements, a skewness of 0.50 and orthogonality of 0.49.
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000 2000 40,00(mm)
i

10,00 30,00

Figure 4.13 Example of a mesh used in the 3" phase. Mesh from the IF-OO combination with a
detail zoom of the membrane and scaffold.

Table 4.4 Mesh properties of the fluid numerical simulations used in the 3 phase. The average
number of elements and size.

Chamber Total Elements Average Elements Size [mm]
PF-00 43500925 4.14x102
PF-CC 42546097 4.08x10-2
IF-00 43563083 4.13x10-2
IF-CC 42638968 4.09x102
OF-00 44032592 4.10x102
IF-00 42884939 4.13x102
Average 43194434 4.11x102
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Table 4.5 Mesh properties of the geometries used in the 3" phase in CFD simulations. Focus for
Orthogonality, Skewness and Reynolds Number.

Chamber Orthogonality Skewness Reynolds Number

PF-00 24.7 0.230 9.4525

PF-CC 22.7 0.228 8.1611

IF-00 25.7 0.231 9.4488

IF-CC 239 0.233 8.1552

OF-00 25.4 0.232 9.4499

IF-00 23.2 0.229 8.1573
Average 24.3 0.231 8.8041

Numerical simulations in the 4" phase were carried out in order to fully understand the
mechanical sustainability of the PCL scaffolds degradation over time. The fluid properties
were the same as used in the 1% and 2" phase just fluctuating the fluid velocity between
0.1 m/sto 1 m/s in increments of 0.1 m/s. The final mesh has 237632 tetrahedron elements

with an average element size of 0.612 mm.

The bioreactor chamber used was a simplified perfusion bioreactor due to the fact,
mentioned above in the 4.2.2 subsection, of the geometric scaffold variation along time.
The perfusion bioreactor as a volume of 250 ml, and 68 mm of diameter and length, with
10 mm of inlet and outlet (Figure 4.14). For purposes of simplifying the simulation, the
scaffold was positioned in the centre of the chamber (Figure 4.14), and it was considered
a homogenous degradation of the scaffold (Figure 4.8). The scaffold was printed in PCL
(PCL CAPA 6500 supplied by Perstorp Holding AB) and the material properties can be
observed in Table 4.6. In this phase it was also performed a computational fluid analysis

from which resulted the wall shear stresses that were applied in the structural analysis.
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Figure 4.14 Inlet and outlet of the perfusion chamber and the position of the scaffold.

Table 4.6 PCL CAPA 6500 properties.

Parameter Value
Young’s Modulus 4.3x108Pa
Poisson’s Ration 0.33

Bulk Modulus 4.22x 1013 Pa
Shear Modulus 1.62 x 1014 Pa
Density 1.15x 106 kg
Tensile Yield Strength 1.72x 107 Pa
Molar Mass 1.14 x 102 kg/mol
Reference Specific Enthalpy 1.35x105]/kg
Reference Temperature 6.00 x 10t °C
Thermal Conductivity 0.25 W/(m-K)
Behaviour Isotropic
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5 OPTIMISATION RESULTS OF
THE MECHANO-PERFUSION
BIOREACTOR

The results obtained during this research work will be presented in this chapter, as well
as a brief discussion of them. The results are divided by the phases mentioned above from

the first one until the fourth and final phase.

5.1 1% Phase: Initial CFD Analysis

In this 1% phase, it was carried out two sets of numerical simulations, varying the inlet
velocity according to Table 4.1 (0.1/0.2/0.3 m/s). The first set was to analyse the fluid
behaviour in the mechano-perfusion bioreactor chamber without the scaffold by analysing
the fluid velocity and turbulence generated by the fluid going throughout the diffusion
membrane. The second set analyses, again, the velocity and turbulence within the
chamber but with the intrusion of the scaffold inside the culture chamber. In this last set
it was also analysed the wall shear stress on the scaffold. The results shown through
colour map are being demonstrated on a plane located in the middle of the bioreactor
(Figure 5.1). The results of this section were published as a book chapter in “Biodental
Engineering III” book, and as a journal article in “Procedia Technology” (Freitas et al.,
2014b, 2014a)
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/_\ H Plane 1

= Plane 1

Figure 5.1 Section plane used to demonstrate the results.

5.1.1 Without scaffold

Velocity
In Figure 5.2, it is possible to see the fluid velocity streamlines without the scaffold. The

streamlines show the behaviour of the fluid within the scaffold where it is possible to
observe that the OO configuration of pistons creates more vortices due to low depression
areas. The diffusion membrane successfully redirects the fluid towards the wall (OF) or
to the centre (IF). The CC piston configuration due to the small culture chamber space

don’t allow the creation of vortices.
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Open-Open Configuration Close-Close Configuration
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Figure 5.2 Fluid velocity streamlines of the extreme positions for velocity 0.2 m/s.

On the graphics below (Figure 5.3) it is possible to observe that for all the input velocities,
the results are almost identical with minor differences as the input velocity increases. In
all the input velocities there was a combination with the highest value of velocity, the OF-
OC. The low average value was obtained by the IF membrane configuration, although in
the velocities 0.2 and 0.3 m/s the PF membrane had the lowest values when combined
with the CC piston configuration.

The OF and PF membrane, as the velocity of the fluid rises, tend to increase the velocity
just for the OO and OC piston configuration, decreasing abruptly in the CC configuration.

This probably occurs due to the small chamber volume in this position of the pistons.
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Figure 5.3 Velocity results for the three input velocities without scaffold where, a) is 0.1; b) 0.2;
and c¢) 0.3 m/s.

Turbulence

Analysing the results presented in Figure 5.4, it is possible to see that the IF membrane
configuration has the highest value and the PF the lowest. Although at the 0.2 m/s fluid
input velocity the combination IF-CC has a significant decrease of turbulence. This may
occur due to a small chamber volume created by the outlet piston being in the closed
position, approximating the outlet from the scaffold enabling a faster exiting of the fluid.
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Figure 5.4 Results of all the combinations for the three input velocities in terms of turbulence
within the chamber where, a) is 0.1; b) 0.2; and ¢) 0.3 m/s.

Figure 5.5 shows the comparison between the extreme positions, OO vs CC, in terms of
turbulence for the 0.2 m/s input velocity. The directional fluid membranes IF and OF
creates higher turbulence respectively in the middle of the chamber and on the wall of the

chamber, creating a more heterogeneous flow facing the scaffold.
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Figure 5.5 Colour map of the turbulence results for 0.2 m/s velocity and for the extreme positions
of all the membranes without scaffold.

5.1.2 With scaffold

Velocity
After introducing the scaffold inside the culture chamber, the PF configuration

homogenised the fluid, i.e., fluid remains in a direct way and parallel to the chamber
without creating any vortices. The OF and IF created vortices due to the fact that they
create low-pressure areas and for that reason the vortices are created. With this
heterogeneous behaviour of the fluid, different velocities will reach the surface of the
scaffold (Figure 5.6).
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Figure 5.6 Fluid velocity streamlines, for 0.2 m/s, showing the behaviour of the fluid when
introducing the scaffold

The velocity results of the simulations with scaffold have a distinct behaviour of the
simulations carried out without scaffold (Figure 5.7). For 0.1 m/s, the combination that
reaches the highest value of velocity is the OF-CC, being the lowest value the
combination PF-OO. In the 0.2 m/s input velocity, it is possible to see that the OF
configuration generally has the highest values. Also, the same value was obtained by OF-
CC and OF-CO combinations. For the 0.3 m/s input velocity, the configuration OF
presents the highest fluid velocity in all the combinations and on the other hand, the IF

configuration presents the lowest values in all the configurations.
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Figure 5.7 Velocity results for the three input velocities with scaffold inside the chamber where,
a) is 0.1; b) 0.2; and ¢) 0.3 m/s.

Turbulence

It is possible to observe the fluid turbulence behaviour within the chamber and in the
scaffold. For all the input velocities, it is possible to observe in Figure 5.8 that the IF
configuration has the highest value of all the combinations having the IF-OC and IF-CC

the highest value. The CC configuration has the smallest volume of fluid, and for that

reason the turbulence is slightly lower.
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Figure 5.8 Turbulence results for the three input velocities with scaffold inside of the chamber
where, a) is 0.1; b) 0.2; and ¢) 0.3 m/s.

This was reached in the middle of the inlet diffusion membrane exit because it redirects
the fluid inwards to the culture chamber creating higher turbulence since it is a point
where all the flows from the membrane pores converge. (Figure 5.9)
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Figure 5.9 Colour map of the turbulence results for 0.2 m/s velocity and for the extreme positions
of all the membranes with the scaffold.

Scaffold Velocity

After analysing the behaviour of the fluid flow in the bioreactor chamber, it was also
analysed the impact of that fluid in the scaffold. It was analysed the fluid velocity within

the scaffold and, as also, the wall shear stress provoked by it.

In Figure 5.10 below, it is possible to observe the effects of the velocity in the scaffold
surface and the colour map profile in each extreme position for the three membranes. It
is well noted the effect of the membrane over the fluid direction. In the PF configuration
the velocities are more homogeneous throughout almost the entire scaffold surface.
Analysing both OF and IF membrane configurations it is visible that the redirection of
the fluid created a heterogeneous profile of velocities throughout the scaffold. The IF
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configuration as the outer area of the scaffold with low velocity from the fluid while the

centre as a higher fluid velocity, is the opposite true for the OF configuration.

Open-Open Configuration Close-Close Configuration
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Figure 5.10 Results of the velocity profile for the extreme positions at the scaffold for the 0.2 m/s
fluid velocity.

The IF, as seen in Figure 5.11, has the fluid velocity profile for all the three input
velocities, where the configuration of pistons with the highest value is the CO. The lowest

fluid velocity was obtained by the combination PF-OC for all the velocity inputs.
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Figure 5.11 Results of the scaffold velocity for a) 0.1; b) 0.2; and c) 0.3 m/s.

Scaffold Wall Shear Stress

The major factor in understanding the optimum parameters of the bioreactor are given by

the calculation of the shear stress on the scaffold walls. With this it is possible to foresee

if the velocity is too high or if the piston is to close among several other parameters.

Figure 5.12 shows the obtained results for all the input velocities. Comparative to the
fluid velocity results, it is possible to deduce a correlation between the velocity of the
fluid and wall shear stress behaviour. As in the previous analysis, the IF-CO combination
has the highest wall shear stress value and, again, the PF-OC the lowest.
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Figure 5.12 Results of the wall shear stress for all the three input velocities where, a) is 0.1; b)
0.2; and ¢) 0.3 m/s.

Analysing the colour map of the wall shear stress results in Figure 5.13 it is easy to deduce
that closer the piston from the scaffold higher will the wall shear stress get for all the

combinations, despite that PF configuration just slightly increases in the closed positions.

The redirection of the fluid after passing by the diffusion membrane is seen in the shear
stress distribution on the colour map in the figure below. The IF membrane configuration
has higher values of wall shear stress in the centre of the scaffold while the OF
configuration has higher values in the peripheric region of the scaffold surface.
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Figure 5.13 Wall shear stress results for the extreme piston positions and the three membrane
configurations for 0.2 m/s input velocity.

5.2 2" Phase: Permeability Study

The numerical analysis of permeability used the velocity results of the 1% phase
simulations with the scaffold, as observed in Figure 5.10. For the permeability study it
was used only the 0.2 m/s of fluid velocity. The results of this section were published as
a book chapter in the book “New Trends in Mechanism and Machine Science” (Freitas et
al., 2015a).

The scaffold’s permeability numerical calculation allowed obtaining both the total
discharge Q (units of volume per time, e.g., m*/s) and the pressure drop (Ps-Pa). Since the
viscosity u (Pa-s) and the length over which the pressure drop is taking place (m), is
already known. Then, for the numerical calculation, Equation 3.13 was applied in order

to determine the scaffold’s permeability.
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As the diffusion of the fluid is forced by the membrane to go from the outer (OF) to the
inner (IF) direction, the scaffold’s permeability tends to decrease (Figure 5.14). As seen
in the scaffold velocity results (Figure 5.10), there are membranes that create a more
homogeneous distribution of the velocity on the scaffold, while others present a more
heterogeneous distribution. These last cases influence the scaffold’s permeability and the

stimulation of the cells in terms of proliferation and differentiation.

® Outward ™ Parallel Inward
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POSITION OF THE PERFUSION PISTON

Figure 5.14 Diffusion membrane influence regarding the fluid flow.
Figure 5.15 plots the influence of the proximity of the inlet pistons on the scaffold.
Analysing the referred figure is easy to infer that the fluid flow, in the closed positions,
is forced and more concentrated in particular sections of the scaffold, creating a more

uneven velocity distribution, decreasing the permeability of the scaffold.
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Figure 5.15 Influence of the proximity of the perfusion pistons.

5.3 3" Phase: CFD and Structural Analysis

In this section, it was performed CFD analysis, and those results were then used to
calculate the impact on the scaffold in the initial state (before the degradation process).
The scaffold used has the shape of a 3D printed one as mentioned in previous Chapter 4,
Section 4.2.2. Also the human plasma fluid properties is the same used in numerous
studies (Barckhausen et al., 2016; Chan et al., 2004; Domansky et al., 2010; Fournier,
2017; Malafaya and Reis, 2009; Sarkar et al., 2015; Stamatialis, 2017; Zhang et al., 2016).

The results of this phase were plotted, taking into account the lines in the location of the
planes illustrated in Figure 5.16.
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E Plane 3
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/ Line 3 7 Line 2

Figure 5.16 The results of this section, 3" Phase, were plotted in the Lines 1 to 4 and the colour
maps were plotted in the Planes 1 to 4.

5.3.1 CFD Analysis

The CFD analysis focused on the velocity and pressure suffered by the scaffold. After
calculating the fluid behaviour in the 1% phase, the fluid within the chamber was already
analysed therefore it is necessary to see the impact of the optimisation of the mechano-

bioreactor on the scaffold and, afterwards, on the cells.

Scaffold Velocity

In terms of velocity within the scaffold, the behaviour for all the bioreactor
piston/membrane combinations was more or less the same. Except for the Line 4 was the
fluid have a heterogeneous behaviour within the scaffold pores in Z direction. On Line 1
and 3 the behaviour can be described as similar to all the combinations although there is
a different behaviour between the Close and Open configuration on Line 1 where the inlet
piston after the 14mm, for the Open positions, the velocity goes higher than for the Close

position ones (Figure 5.17).
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Figure 5.17 Results of the fluid velocity plotted within the scaffold on the lines 1 to 4.

The velocity is higher inside of the scaffold (Planes 2 and 3) than in the Plane 1, and this
can be observed by the results obtained in Line 4 and in Figure 5.18 where we can observe
a colour plot of the velocity for different combinations. In this figure is also possible to
infer that the close positions have more impact in the heterogeneous fluid velocity

distribution.
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Figure 5.18 Plotted colour results of fluid velocity for Plane 1 and 3 for all the combinations.
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Scaffold Pressure

Figure 5.19 shows the pressure results within the scaffold and, as seen, the pressure in the

X direction usually is constant opposition to the pressure in Z direction (from inlet to

outlet direction) where the pressure rises towards the outlet. In Line 2 there is a small

depression in the pressure value due to the low depression caused in that region.
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Figure 5.19 Pressure results for all the calculated Lines.

In Figure 5.20 is possible to observe the pressure exerted on Planes 1 and 3 regions. As
observed in the previous Figure, the combination with the highest pressure in the X
direction is the Outwards-Open (OO), and that can be observed in the colour map. Also,
it is possible to see the pressure “ring” created by the diffusion membranes, especially on

Plane 3 that is in the centre of the scaffold.
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Figure 5.20 Colour plot results of the pressure in Plane 1 and 3 for all the piston and membrane
combinations.
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Scaffold Wall Shear Stress
The wall shear stress is of most use because it is possible to predict the shear stress values

that will occur within the scaffold and therefore if the cells can withstand such stress.
Figure 5.21 is plotted the results for each combination. The OO combination has higher
shear stress values, while DC has the lowest. The fact that the diffusion membrane is
redirecting the fluid to the culture chamber wall creates low depressions regions within

the chamber increasing the velocity of the fluid and rising the shear stress.
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Figure 5.21 Scaffold wall shear stress for each piston/membrane combinations.
In Figure 5.22, it is possible to observe the colour plot on the scaffold surface. It is
possible to observe a slightly yellow ring in the Close positions. The values range from
1.569x10° Pa from the OO piston/membrane position to 1.479x10% from the DC
combination. The Open positions have all higher shear stress values than the Close

positions.
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Figure 5.22 Colour plots of the wall shear stress for each combination.

5.3.2 Structural Analysis

By importing the results of the CFD pressure plots to the structural numerical simulation,
it was possible to analyse the mechanical performance of the scaffold made of PCL,

specifically the deformation and the von Mises stress.

Scaffold Total Deformation

The fluid flow exerts pressure on the scaffold surface that can damage and deform it. The
results of the total deformation suffered by the scaffold can be seen in Figure 5.23 where
it is visible that the high deformation ratio belongs to the combinations with the pistons

in the Open position.
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Scaffold Total Deformation
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Figure 5.23 Total deformation suffered by the scaffold due to the fluid flow pressure.

The highest value of deformation was reached by the combination OO with 0.026982 mm
while the lowest was the IC combination with 0.011881 mm. In fact, the range between
the Open configurations is just 0.0001 mm so the results can be said that are very similar,
the same happens for the Close position configurations of the piston with an even lower
range of deformation of 0.00001 mm. Looking at Figure 5.24, it is possible to observe
that because the scaffold is constrained in the perimeter because it is attached to the
culture chamber all the deformation is mostly suffered in the centre of the scaffold.
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Inwards Flow Configuration
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Figure 5.24 Colour plot of the total deformation on the scaffold.
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Scaffold von Mises Stress
Analysing the von Mises stress, by observing Figure 5.25, all the calculated values for all
the combinations are far from the stress limit of PCL properties. The combinations that

hold the higher values of stress were the Open piston configurations with more than the

double of the Close configurations stress value.

Scaffold von Mises Stress

0,8 |

0,6

Stress [Mpa]

04

0,2 1

0.0 Ll T T L) Ll T
DC DO IC 10 oC 00

Bioreactor Combination

Figure 5.25 Results of the scaffold von Mises stress.

In Figure 5.26, it is possible to observe that the higher stress value is mainly in the
constrained area of the scaffold and in the centre of the scaffold. The highest stress value
was reached by the OO combination with 1.1201 Mpa, and the lowest was the IC
combination with 0.49973 Mpa. The difference in the same piston configurations is little.
The Open configuration the difference between the highest and the lowest value is 0.0025
Mpa, the same logic applied to the Close piston configurations, the range is 0.00281 Mpa.
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Figure 5.26 Colour map of the von Mises stress on the scaffold.

5.4 4" Phase: Degradation Study

One of the main variables analysed in this research was the wall shear stress in scaffolds.
As seen in Chapter 3, Section 3.5 it is possible, through computational simulation, to
predict the variation of the wall shear stress in scaffolds during its degradation process
and thus to know the effect of the culture conditions on the cells. The results of this section
were published as a book chapter in the book “BioMedWomen - Clinical and
BioEngineering for Women’s Health” (Almeida et al., 2016).

Figure 5.27 shows the variation of the surface tension along the degradation time for all

speed values studied (0.1 m/s to 1.0 m/s). It is possible to infer that between the initial
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time and 20 days of degradation (between TO and T20) the wall shear stress decreased
from 1.712 Pato 1.527 Pa. In T40, the wall shear stress rises to 1.686 Pa to decrease again
in T60, reaching 1.596 Pa. From this moment, a considerable increase of the wall shear

stress until the moment T340, with a maximum value of 2.369 Pa begins.

The lowest wall shear stress always occurs at times of degradation T20 or T60 while the
highest tensions occur at T220 or T340. However, the oscillations observed at the initial
stages of degradation tends to decrease with the decreasing of the velocity by verifying
that similarly, the amplitude of the maximum values of wall shear stresses decreases with
the velocity passing from 0.069 Pa to 9.545 Pa when increasing the velocity of 0.1 m/s to
1.0 m/s.
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Figure 5.27 Variation of the wall shear stress on the scaffold over degradation time.

Figure 5.28 shows the variation of the wall shear stress in the scaffold along the
degradation time, considering an input velocity of 0.5 m /s. It is important to note that,
being the forces exerted on the scaffold constant, and decreasing the contact area, the
tensions should naturally increase. However, the volume reduction characterising the
degradation process translates into an increase in porosity creating less resistance to flow.

This effect may be the cause of some observed irregularity in the initial instants.

Dino Freitas - September 2019 109



A Mechano-Perfusion Bioreactor For Tissue Engineering

Y -y

:
€&
lb ~

".

 id lowdl wd ;;'

Y 2 Y
0 a00s 008 (m) ,,J\ ¥ [ 00045 0009 (m) D,L‘ x

Figure 5.28 Wall shear stress results for the fluid velocity of 0.5 m/s overtime of the scaffold
degradation.
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In Figure 5.29, we can verify the evolution of the wall shear stress in the scaffold as a
function of the flow velocity for all the degradation times. As noted previously, the
surface tension increases with speed. For the minimum speed value, the maximum surface

tension of 0.054 Pa increases to 5.781 Pa when the speed is maximum.
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Figure 5.29 Wall shear stress as a function of fluid velocity and degradation time.

Also, structural analysis of the scaffold was performed. Using the results obtained from
the CFD analysis, it was then exported the pressure profile to the structural analysis

module, and it was calculated the deformation and von Mises stress.

The inlet velocity of 1.0 m/s presented the highest-pressure profiles during the scaffold
degradation. Thus, only this input velocity was considered in the structural simulations
for each degradation time step. Despite only being considered the velocity of 1.0 m/s, the
structural simulations presented low deformation values and von Mises stresses. Figure
5.30 and Figure 5.31 illustrate the variation of the deformation and von Mises
respectively, as a function of degradation. It is possible to observe that both the
deformation and the von Mises stress tend to have a very slight increase in value until a
degradation period of approximately 220 days, after which both increase significantly. In
this particular scenario, degradation periods below 220 days has minimal impact on the
scaffold’s structural performance, after which is highly influenced by the scaffold’s

degradation.
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6 SUMMARY, CONCLUSIONS
AND FUTURE WORKS

In this final chapter will be presented the conclusions of this research work presenting the
pros and cons of all the work carried out and in the last subchapter, it is also presented
the future works in order to continue improving the field of tissue culture in bioreactors.

6.1 Summary and Conclusions

Tissue culture requires a series of conditions to create an environment suitable for cell
culture. For this reason, designing and optimising a Bioreactor for TE is very complex.
There are many parameters to be taken into account in order to design the proper culture

chamber and create the optimum environment to successful cell culture.

One of the essential characteristics in terms of cell culture is cell stimulation. The
proposed mechano-perfusion bioreactor intends to solve the lack of multiple stimulations
occurring at the same time during cell cultivation. By means of applying mechanical
stimulus with the inlet/outlet pistons or using the fluid flow by redirecting it with diffusion

membranes and therefore creating a perfusion stimulation.

This study focused on analysing the fluid thoroughly within the culture chamber and on
the scaffold. By doing this, the proposed bioreactor was analysed and optimised according
to the study of the fluid behaviour in terms of velocity, turbulence, pressure in the culture
chamber and, also, by analysing the wall shear stress, deformation and stress limit of the

scaffold.

It was concluded that the piston positions and the fluid velocity have a high impact on the
wall shear stress while the perforated diffusion membranes have an essential role in the

distribution of the shear stress on the scaffold surface.

It was possible to conclude that by using the perfusion membrane, the shear stress
distribution is more heterogeneous and therefore the culture of heterogeneous tissues.
Also, as the inlet piston is closer to the scaffold (Close position) the velocity tends to be

more homogeneous.
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The combination that has higher wall shear stress impact on the scaffold is the Outward
Flow configuration when both pistons are in the Open position. Using a fluid velocity of
0.5 m/s on the numerical simulations the wall shear stress ranges between 1.479X10° Pa
to 1.755X10° Pa that in theory makes possible the cell culture of tissues such as

Osteocytes (bone tissue) and Muscles (Figure 6.1).

............ Y . 7 SO
] I |
0,5 m/s Input Velocity
0,1Pa
5 ’
E(;xio bF;a \ Chondrocytes 2,2Pa
steoblas (Normal Stress) Heart Valves
(Optimal Stress) (Optimal Stress)
v

0,033 Pa 0,24 Pa 0,5-1,5Pa 0,5-2,5 Pa
Hepatocytes Cardiomyocytes Osteocytes Smooth Muscle
(Optimal Stress) (Cell Death) (Optimal Stress) (Optimal Stress)

Figure 6.1 Optimum shear stress of common cells and the calculated shear stress of the proposed
bioreactor for an input velocity of 0.5 m/s.

Regarding the scaffold degradation and permeability, it is possible to conclude that as the
scaffold degrades the wall shear stress reaches critical values that may not help in the cell
adhesion during the proliferation and differentiation process. In structural terms, the
scaffold after the 220 days of degradation has little impact on the structural performance.
In comparison the scaffold is more susceptible to be influenced by the fluid flow
stimulations than the structural simulations. The direction of the fluid flow strongly
influences the permeability. As the inlet piston gets closer to the scaffold the permeability
tends to be higher.

The presented study has as main goal the optimisation of the bioreactor design taking into
consideration the fluid behaviour and the applied stimulation on the scaffold. In terms of
results it is possible to conclude that this main goal was achieved due to results obtained.
The only major reflexion and work that has to be carried on is the construction of this

bioreactor to verify these results experimentally.
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6.2 Future Works

The future works can be divided into two, experimental work on laboratory and numerical

simulations.

Concerning the experimental work;
e Micro-CT images of the degraded scaffolds in order to obtain accurate 3D models;
e Conduct cell tissue culture and compare the results with numerical;

e Construction of the bioreactor and comparison of the simulated data with real

data;
Concerning numerical simulation:
e Models of cellular proliferation within this bioreactor;

e Conduct different numerical simulations by varying the angle, diameter and shape

of the perfusion membrane holes.

During the time that this work was being carried out, several questions have been

answered. Also, new doubts and new research directions have risen.
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EQUIFAMENTO QUE SE DESTIMNA A CULTURA DE CELULA"‘ PARA A CDNCEP@AO DE IMPLANTES. O
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SUPORTE BIDIMENSIOMAIS (20) EfOU TRIDIMENSIONAIS (30). A VARIEDADE DE ESTIMULOS F’ASSI'-.-’EIS DE
SEREM APLICADOS, EM SIMULTANED, PERMITE MODELAR A FRDLIFERA’Cﬁ.O E DIFERENCIA';ACI DE VARIOS
TIPOS DE CELULAS. O EQUIPAMENTO E CON"‘TI’I’UIDD FPOR DIVERSOS SISTEMAS DE CULTURA CELULAR,
MOMEADAMENTE, ESTIMULOS DE, ROTM;AU OSCILM;AO PERFUSAD, ASSIM COMO, COMF’RESSAO E
EXTENSAO MECANICA. AS VARIAVEIS AFECTAS AO PROCESSO DE CULTURA DE CELULAS SAO
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ERESTMO

Bioreactor Multi-funcional para a4 Engenharia de Tecidos

2 bioreactor multi-funcional para a Engenharia de Tecidos
refere-se a um eguipamento gue =& destina & cultura de
células para a concepgic de implantes.

0 biorsactor baseia-se na aplicagfo de wvariocs estimulos a
células contidas em matrizes de suporte bidimensiconais (2D)
efou tridimensicnais (3D). L vwariedade de estimulos
passiveis de serem aplicados, em simultéaneo, permite modelar
a proliferacgio e diferenciacio de varios tipos de células.

0 eguipamento € constituido por diversos sistemas de cultura
celular, nomeadamsnte, estimules de rotagdo, oscilacgio,
perfusdo, assim como, Ccompressdc e extensdo mecanica.

Lz wariaveis afectas ac processo de cultura de células sao
monitorizadas e controladas =m tempo real atravées de uma
placa de desenvolvimento conectada a um LCD TouchScreen e,
cambém & distédncia, através de dispositivos mdéveis  (ex.
Telemoveis, Tablets).

Ls caracteristicas inovadoras do eguipamento incluem a
aplicacdo de uma variedade de estimulos para a cultura
celular, a aplicagio de estimulos de perfusdo, compressio
mecédnica = sxtensdo mecénica, ATraves de Eémbolos
microperfurados, e a monitorizagdo e controlo remoto das

variaveis do processo de cultura celular.
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DESCEI

Bioreactor Multi-funcional para a Engenharia de Tecidos

Dominic técnice da invengdo

L presente inwvencic encontra-se relacionada com a cultura de
c&lulas em matrizes de suportes bidimensionais e/fon
tridimensionais para aplicacdes em engenharia de tecidos num
bioreactor multi-funciconal. © biorsactor foi desenvolwvido
para permitir modelar a proliferacido e diferenciacdc de
varios tipos de tecidos, nomeadamente, tecido faseo,
cartilagem ou pele, com o objectivo de permitir a sua
aplicacdo clinica e conseguente implantacdoc em organismos

biologicos.

Antecedentes da Invencgio

Actualmente, a cultura celular em matrizes de suporte
bidimensionais e/ou tridimensionais € ainda considerada uma
tarefa complexa, devido & necessidade de controlo de
diversos parametros d= origem lbioldgica 2 mecénica
envolvidos na formagdo de tecidos in vitro. Considerando os
varios tipos de células, varios modelos de bioreactores para
engenharia de tecidos tém sido propostos ao longo do tempo.

0 método mais simples de efectuar a cultura celular & a
cultura e=stédtica, na gual se dsstacam o3 Frascos T, Placas
de 12 pogos e as caixas de Petri [1], dQue representam oS
sistemas de cultura com maiocr facilidade de wutilizacéo,
baixo custo e facilidade de esterilizacédo. Contudo, a sua
utilizagio apresenta algumas limitacdes, nomeadamente, o
curto periocdo de tempo de cultura celular, as Jquantidades

celulares limitadas, a baixa reprodutibilidade, a nao
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biodegrading scaffolds within bioreactors
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ABSTRACT: The organization of tissue engineered cultored cells can be guided
by growing them on a 3D substrate known as a scaffold. The cell-seeded scaffold
may then be placed m a biorcactor enhancing the cell prohferation and
differentiation before implantation. During this process, scaffolds tend to degrade
due 10 enzyvmatic andfor hvdrolytic phenomenon’s while the tissue regeneration
occurs. Another critical issue during the degradation process is the variation of
the scaffold’s mechanical propertics. With the aid of combined numerncal
simulations, computational luid  dynamics and  struciural  simulations,  this
rescarch intends to predict the scaffold’s mechamical performance while
evaluating its vascular performance in order o optimise the working parameters
of biorcactors  of  biodegrading  polymer scaffolds for tissue enginecring
applications. These parameters are evaluated according to the pressures induced
on the scalfolds and their influence on the shear stress cansed on the cells whick

may be stimulated or destroyed on the scalfolds surface,

1 INTRODUCTION
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APPENDIX 3 — PERFUSION BIOREACTOR FLUID FLOW
OPTIMIZATION
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Abstract

Tissue engineerng amms to repawr and regenerate damaged tissues by developing iclogical substitutes mumucking the natural
extrzcellular matnx. It 15 evident that scaffolds, being a m-dmmensional matnx, are of extreme mmportance providing the
necessary support for the new tissuwe. This new tissue is cultivated in vive or in vioro in a bioreactor m which is placed the seaffold
with cells. In order to control the cell culture process inside of 2 bioreactor 1t is essentizl to know the flud Sow inside and around
the scaffold in order to know witch parameters mmst be controlled m order to obtain optimmm conditions to cell culture. The wall
shear stress mmst be adequate to the tissue to be cultivated. 1.6 bone, muscle, carilage and it 15 known that a proper stimubus 15
necessary to improve the cell proliferation mside the scaffold

This study considers a novel multfunctonal lioreactor with a parfusion system module and it 15 infended to ophmmze the flud
flow within the chamber and the scaffold by assessing the turbulence kinetic energy and the velocity.

© 2014 The Authors. Published by Elsevier Lid. This is an open access article under the CC BY-NC-NI license
(httpzfereativecommens.org/lice nses/by-ne-nd/3.04).
Peer-review under responsibility of the Organizing Committee of CENTERIS 2014,

Egywords: Perfusion Bicreactor; Velocity; Turbulence Finetic Energy; Computational Fioid Dhyvnamics; Tissue Engineering.

* Comesponding suthor. Tal : 44 (00 161 306 4227, fax: +44 (0) 161 200 3723
E-muil address: paulojorge dasitvabartolod@manchester ac uk
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Optimization of a perfusion bioreactor for tissue engineering

D. Freitas & 1A Almeida
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ABSTRACT  Tissie engincering aims 10 produce artificial tissee in order 10 create or fepair the
damage tissue 1t is evident that scaflfokds are of extreme importancs, bocause they will be the support of
the new tssue. This new tissue is culuvated v vatre in 3 Moreactor in which is placed the seaffold, In onder
to control the cell culture process inede of a biorcactor it 1 essential to know the fMuid Now inside and
around the seaflold and the respective wall shear stress. These wall shear stress must be adequite 1o the
tssue 10 be cultivaied, 1, bone, muscle, cartilage and it 1s Kpown that & proper shimulus 15 necessiry (o
unprove the sel! proliferation mede the scallold.

Thisstudy conssder a novel mulbfunctional rorcactor with a perfusion systemn module and it inteaded

to optimize the fuid fHow within the scafold and the respective will shear stress on the scaffold

1 INTRODUCTION

Theemergng held of tssue erpnecning represents
the combiaation of concepts and ideas from sev-
cral desciplinary ureas such as biology swicnces,
enginecring, material science and the chnical pre-
cedueres (Vacany & Langer, 1999). Dulferent 2pph-
cations are boimg developed and sested in climcal
trials, all of them aiming 10 restore, maintaip or
create new lissucs bo inplant on paticnis sulfering

HI. Finally, ussue cogincenng relics on appropri-
wre cell and tssue cultivation methods as Tes-
sue can be praduced in vive or i vitro, where
the ast method refics on techpiques and eguip-
ment’s Bhe o bioreactor (Bartolo e ol 2012)

A biowactor is the general term applied 10 a
closed culture environment that enables control of
une or more enviropmental or operating virlables
tkat affect biological processes i thes <ise lissue
culture 115g. 1),

of ussue loss or damage (Liv ef al. 2013), Three
mtatn key lactors mvolves the enginvering o new
tissues, regarding if it (s bone, carmlnge, blood ves-
sels or liver (EMs, M. ee af, 200351

I Fist important factor is the cell source
Although there has heen much interest i the
use of sutolegouns oells w0 1L Rew bissi,
there wirs a recently iaterest in the use of stem
cells due 1o the undiffcrentiated state of these
kind of cella

1 Second factor is the design of appropreate
scaffolds te momie the bebaviaur of the extra-
cellular matnn. In order 1o support cell cale-
nization the swallold must bo hiodegrmdahle
ard blocompatible, possess good mechani-
cal properties and a suitable surfuce for cell
attachment, and must be highly porous to
enhance cell profiferavon as well allow the  Figure 1 Iafluence of the mubiple factons on fus.
transport of nuirients aad metabolic waste. thonal tissue culture,
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Permeability evaluation of flow behaviors
within perfusion bioreactors
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Abstract. Tissue engineering aims Lo produce artificial tsswe in order to create or repair damaged fis-
sue, [t is evident that scaffolds are of extreme importance, because they will be the support structure of
the new tissue, This new tissue is cultivated in vitro in & bioreactor in which is placed the scaffold. In
order 1o control the cell culture process inside of a bioreactor, it is essential (o know the fluid Dow in-
side the scaffold for an adequate exchange of nutrients and metabolic waste. A novel multifunctional
bioreactor with a perfusion system module comprised of three different inlet and outlet membranes is
being developed. This research work will evaluate the permeability of the scaffold under the three dif-

ferent inlet and outlet diffusion membranes of the culture chamber.

Key words: Bioreactor Design; Flow Behavior; Permeability; ScafTold: Numerical simulation.

1 Introduction

Scaffold-based strategies represent the most promising approach of Tissue Engi-
neering. Scaffold is the initial tridimensional biomechanical support for cell colo-
nization, migration, growth and differentiation [1]. Tridimensional scaffolds used
in conjunction with living cells and biologically active molecules demonstrated
promising results for tissue/organ repair and/or regeneration [2-4].

An ideal scaffold must satisfy some requirements, it should be biocompatible
and biodegradable at a proper degradation rate matching the regeneration rate of
the host tissue. It also should enable the diffusion of cell nutrients and oxygen and
the establishment of a suitable mechanical and biological environment for the cells
to secrete their own extracellular matrices in an organized way. Architecturally,
the porosity, pore size and shape and pore interconnectivity are very important,
playing an important role in prometing cellular migration, cellular bridging, vas-
cularisation and new tissue ingrowth. Depending on the application, the optimal
porosity and pore size diverge. Scaffolds must provide sufficient mechanical

I
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APPENDIX 6 — COMPUTATIONAL ANALYSIS OF A PERFUSION
BIOREACTOR FOR TISSUE ENGINEERING
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Abstract

In order to repair and regenerate tissuc, a new medical field that comprises several areas of engineering and expertise s emerged. This new
field, namely tissue engincening, aims 10 repair and regencrate damaged tissues by developing biological substitutes mimicking the natural
extracellular matrix. A tri-dimensional scaffold plays a major key-role in providing the necessary support for the new tissues, This new tissue is
cultivated ither Jm viveo or in vitro within a bioecactor after the scaffold being seeded with cells.

To control the cell culture process within a bioreactor, it is essential to know the fluid flow inside and around the scaffold in order to know which
parameters must be controlled in order to obtain optimum conditions to promote cell culture. The wall shear stress must be adequate o the tissue
being cultivated, i.e, bone, musclhe, cartilage and it is known that & proper stimulus is necessary to allow cell proliferation. In order 1o understand
the ideal conditions and working paramesers of the bioreactor upon the cells on the scaffold, a compatational study to optimize a new perfusion
bioreactor was performed.
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1. Introduction

In spite of the continuous advance of modern medicine there
1s & huge necessity for the regeneration of damaged tissues [1].
Tissue engineering is the combination of biclogical sciences
and engineening in order 1o fill that necessity to restore, improve
or mamtain the tissue function [2,3]

In Tissue Engineening (TE), cell culture plays a major role
n the construction of tissue replacement (4], Normally cells are
harvested from embryonic tissue being these type of cells used
n primary cultures because they have an enormous potential to
differentiate and grow into different types of tissues [5,6]. In
TE there are three major biological key factors to consider in
order to create new tissues (Fig. 1) [7),

o First factor relates do designing an appropriate scaffold
mimicking the behaviour of the extracellular matrix and
holding the cells together. This structure most possess an
adequate porosity enhancing cell proliferation, provide the
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transport of nutnents and metabolic waste, have optimum
mechanical  properties  and  be  biodegradable  and
biocompatible [8].

Second factor concems the cell source, While the use of
autologous cells was of great use to create new tissue,
recently, there was an increasing interest in the use of stem
cells due to their un-differentiation state,

Third factor depend on the proper signals to perform tissue
cultivation, i.e. mechanical and chemical signals that direct
the cells to prompt the wanted tissue [9),
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APPENDIX 7 — COMPUTER MODELLING AND SIMULATION OF

A Mechano-Perfusion Bioreactor For Tissue Engineering

A BIOREACTOR FOR TISSUE ENGINEERING
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Computer modelling and simulation of a bioreactor for tissue engineering
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A conventional approsch to tissue engineening involves the implantation of porous, bodegradable and biocompatible
seaffolds seeded with czlls indo the defiect site. In some strategics. tissee engineering requires the i wivo culture of tssue-
engineering constructs for implantation later, In this case, hiorescions are used fo grow 300 tissues under controlled and
mamitored corditions, However, the quality of the resalting 310 tissue is highly dependent on ihe design and dimensions of
the: binreactar, as well on the opernting conditions. In this work, & computntional fluid dymamic software package was used
toinvestigate the influence of cylindrical bioreactor dimensions (length and diameter) on the fluid flow and scaffold shear
stress, Computer simmlations were performed using three different rodntional movements (horizontal, vertical and binxial
rotation} ard appropriate boundary conditions, Resulis show that the effect of the hioreacior length on the scaffold shear
stress s muwe impartant than the diameter, while high length is associabed o low scaffold shear siress, O the ather hand,
thee flusid Apws within the hioreactor and seaffold shear stresses are dependent on the rotational movement, being more
unifoom in the biaxial retation due g the combination of roational movements,

Keywards: tissue engimeering; hioreacior; scaffoll; computational fluid dynamics

1. Introduction

Despite recent advances in medicine and  biology, the
development of cost-cffective approaches for the regen-
eration of damaged tisswes remaing a huge challenge.
Currently. the most common  treatments  include  the
implantation of prosthesis. surgical reconstructions by
transferring a healthy tissue to the damaged site in the
same  patient or organ  transplantation  from a  donor
(Bariolo et al. 2002; Bartolo, Dominges, Gloria et al.
2011). However, several drawbacks of these clinical treat-
ments {e.g, shortage of donors, chronke rejection or trans-
mission of disepses) motivated the development of novel
approaches.

Tissue engineering s an mterdserplinary feld nval-
ving the use of biologwal sciences and  engineering
towards the development of biological substitutes tha
restore, maintain or improve tssee umetion (Bartole,
Domingos, Patricie et al. 2001), In tissue engineering,
the biological substitutes can be engineered using two
main strategies, namely the bottom-up appeoach and the
top-doown approach (Barolo, Domingos, Patdcio et al.
20115 Nichol and Khademhosseini 2009,

The bottom-ug or acaffold less approach is based on
the principle of fusion and self-ability of cells 1o synthe-
sige their own extracellular manix (ECM), representing an
emerging methed for the creation of complex 30 biomi-
metic tissues (Melchels et al. 2002; Bérolo, Domingos,
Patricio et al. 2001). This approach employs technigues
such as self-assembled aggregation, microfabrication of

cell-laden hydrogels or direct printing to produce modular
tissues that can be assembled indo larger fissues [Michol
and Khademhbosseini 20090, The top-down or scaffold-
based approach, the most commonly  wsed. involves the
use of porous, biccompatible and biodegradable scaffolds
made of natural and'or synthetic materials that act a5 a
termporary  support for the seeded cells (autologous or
allogeneic) to proliferate, differentiate and  synthesise
their own ECM (Melchels et ol 20012; Almeidn and
Bartolo 2000; Bartolo et al. 200%; Bartolo, Domingos,
Patricio et al, 2001; Chen and Hu 2006). The success of
this approach 15 strongly dependent on bomaterinls, cells,
sigmalling melecules and manufacturing processes. Some
strategies involve the culture of constructs outside the
body towards the creation of functional tssee-engineering
comstructs for implantation later, The fn vitre culiure can
be performed under either static or dynamic conditions,
The static culiure of 3T cellular scaffolds s performed
in T-flasks, well plates or petn dishes, withowt the mixing
or circulatson of the cultwre medium | Gaspar, Gomide, and
Monteino 2002, Porter et al. 2005} This method limits the
supply of oxygen and nuirients 1o the scaffold surface,
which genesally leads 1o cell death at the centre of the
construct (Gaspar, Gomide, and Monteire 2002; Yeatts
and Fisher 2001; Porter et al. 2005; Martin, Wendt, and
Heberer 2004; Cabrita et al. 2003). The major problems of
static culture of 30 cellular scaffiolds can be cansed by the
limited dimensions of the scaffolds, insufficient mass
transfier, non-homogeneous  cell  distibution  and  the
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