
This is a peer-reviewed manuscript version of the article:

Ruiz, M., Julià, A. & Boada, I. Starviewer and its comparison with other
open-source DICOM viewers using a novel hierarchical evaluation
framework. International Journal of Medical Informatics, vol. 137 (May
2020), art. 104098. DOI https://doi.org/10.1016/j.ijmedinf.2020.104098

The Published Journal Article is available at:

https://doi.org/10.1016/j.ijmedinf.2020.104098

© 2020. This manuscript version is made available under the CC-BY-
NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-
nd/4.0/

https://doi.org/10.1016/j.ijmedinf.2020.104098
https://doi.org/10.1016/j.ijmedinf.2020.104098
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Starviewer and its comparison with other open-source
DICOM viewers using a novel hierarchical evaluation

framework

Marc Ruiza, Adrià Juliàa, Imma Boadaa

aGraphics and Imaging Laboratory (GILAB)
Universitat de Girona, Edifici P-IV

17001 Girona, Catalonia

Abstract

Methods: The aim of the paper is twofold. First, we present Starviewer, a DICOM

viewer developed in C++ with a core component built on top of open-source libraries.

The viewer supports extensions that implement functionalities and front-ends for spe-

cific use cases. Second, we propose an adaptable evaluation framework based on a set

of criteria weighted according to user needs. The framework can consider different

user profiles and allow criteria to be decomposed in subcriteria and grouped in more

general categories making a multi-level hierarchical structure that can be analysed at

different levels of detail to make scores interpretation more comprehensible.

Results: Different examples to illustrate Starviewer functionalities and its exten-

sions are presented. In addition, the proposed evaluation framework is used to com-

pare Starviewer with four open-source viewers regarding their functionalities for daily

clinical practice. In a range from 0 to 10, the final scores are: Horos (7.7), Starviewer

(6.2), Weasis (6.0), Ginkgo CADx (4.1), and medInria (3.8).

Conclusions: Starviewer provides basic and advanced features for daily image di-

agnosis needs as well as a modular design that enables the development of custom

extensions. The evaluation framework is useful to understand and prioritize new de-

velopment goals, and can be easily adapted to express different needs by altering the

?Contacting author
Email addresses: marc.ruiz@udg.edu (Marc Ruiz), adria.julia@udg.edu (Adrià Julià),

imma.boada@udg.edu (Imma Boada?)

Preprint submitted to International Journal of Medical Informatics December 18, 2019

weights. Moreover, it can be used as a complement to maturity models and quality

evaluation frameworks.

Keywords: DICOM viewer, open-source, software comparison, medical imaging

1. Introduction

DICOM, that stands for Digital Imaging and Communications in Medicine, is the

leading standard for image data management in medical applications and is used to

capture, exchange, and archive image data in Picture Archiving and Communication

Systems (PACS) [1]. PACS can be seen as a centralized repository of all medical5

images. To diagnose, physicians require a DICOM viewer with features to connect

with the PACS in order to retrieve and store images and with other functionalities to

visualize, explore and analyse the information represented in these images [2].

There is a wide variety of privative and open-source DICOM viewers. Focusing

on the latter, their functionalities range from simple 2D or 3D visualizations to more10

advanced techniques and image processing tools to measure the volume of lesions or

combine information from different image modalities, among others. Recently, Valeri

et al. [3] evaluated the most representative viewers for GNU/Linux, Windows, and ma-

cOS; beeing the best viewers 3D Slicer [4, 5], medInria [6], MITK Workbench (MITK

3M3 before 2009) [7, 8], VolView (currently deprecated) [9], VR Render (currently15

deprecated) [10], and OsiriX [11, 12]. More recently, Haak et al. [13] did an evalua-

tion centering not only on viewing functionalities, but also on platforms and interfaces.

MIPAV [14, 15] and Weasis [16] were identified as superior open-source tools. In the

macOS community, the most popular open-source viewer was OsiriX [11] which is

currently a proprietary solution. However, the last open-source version of OsiriX was20

forked into several projects by the community, being Horos [17] the most popular one.

The offer of open-source software is continuously growing in all the areas of re-

search and practice and also in the medical one. Selecting the product that better fits

the health environment and more specifically user needs becomes a complex task. In

this context, under the premise that the quality of a software system is largely deter-25

mined by the quality of the software process used to build it, capability/maturity models

2

have been proposed. These can be represented in a two-dimensional space where a first

dimension represents what is done and a second one of how well it is done, i.e. the ca-

pability/maturity dimension. These models have a set of levels ranging from the lowest,

where no conception of maturity is defined, to the highest, representing total capability30

maturity. To determine the level of a software quality, attributes such as functionality,

reliability, usability, efficiency, maintainability, and portability are considered. In the

healthcare domain, several maturity models have been proposed but they are still at an

early stage of development [18, 19, 20]. For a review on this topic see [21] and for a

comparison of maturity models on open-source software see [22]. Unfortunately, no35

consensus on the aspects or the models that have to be considered for an evaluation in

a specific area exists. This leads, in some cases, the selection of a DICOM viewer to a

process based on recommendation and past experiences [23, 24].

A key point of maturity models relies on the selection of the parameters to be

evaluated and the grading system used to evaluate them. In the case of open-source40

DICOM viewers, different parameters and grading systems have been proposed to

compare them. On the one hand, there are authors that consider the most important

features to be installation facilities, support, and documentation [25], while others con-

sider the provided working functionalities more important [26, 3, 13]. On the other

hand, grading approaches range from the simplest, where yes/no classification are con-45

sidered [13, 3] to the most elaborated grading scales [26]. With the aim of satisfying

as many audiences as possible, we propose a fully customizable evaluation framework

with no limits on evaluated criteria and with the possibility to modify the grading strat-

egy. The framework uses a hierarchical structure to maintain information grouped in

audiences, groups, criteria, and subcriteria. Weights are assigned for each node and are50

distributed across the sibling nodes for each level in the hierarchy. Scores range from 0

to 1 and are computed as a weighted sum which is propagated to the upper nodes pro-

viding intermediate weighted scores for each level in the hierarchy. For more details

about the calculation refer to Fig. 2, the actual supporting material spreadsheet, and the

Appendix B. In this way, a rapid evaluation of the software can be obtained with more55

or less detail depending on the user interests. The proposed framework cannot be a

substitute of a maturity model but a complement to determine the values of parameters

3

required by the models.

Although our framework mainly focuses on technological aspects, the overall eval-

uation of free/open-source projects requires the consideration of other aspects such as60

production, distribution and support. Different models to evaluate these factors have

been proposed. Kamseu and Habra [27] presented a three dimensional model where the

development process, the community, and the project are evaluated. The Qualification

and Selection of Open Source Software (QSoS) applies four independent and iterative

steps aimed at defining, evaluating, qualifying, and selecting open-source solutions65

based on software support and technology [28]. The Quality Platform for Open Source

Software (QualiPSo), includes an evaluation framework regarding the trustworthiness

of open-source projects [29, 30]. Sung et al. adapted the ISO/IEC 9126 standard to

free/open-source projects focusing on the quality of the products [31]. The Evaluation

Framework for Free/Open source projects (EFFORT), is a framework that, once cus-70

tomized for a specific context, supports the evaluation of product quality, attractiveness,

and community trustworthiness [32, 33]. For more details on these methods see [33].

Note that unlike described methods our approach focuses on functionalities, audiences

and technological aspects of medical imaging software but not on production, distribu-

tion and support. Therefore, we consider it as a suitable complement to the described75

methods and not a substitute.

Besides this introduction, the paper has been structured as follows. In Section 2,

the architecture of Starviewer DICOM viewer is presented, as well as the proposed

evaluation framework and the evaluation procedure that has been applied to compare

different open-source radiological viewers with the proposed one. In Section 3, the80

main functionalities of Starviewer platform are illustrated and also the results obtained

from the comparison of selected open-source radiological viewers. The obtained results

are discussed in Section 4.

2. Materials and methods

2.1. Starviewer architecture85

4

Starviewer was conceived as an integrable open-source solution for DICOM-based

diagnosis. To design it we considered fundamental to support basic and advanced

functionalities and also the possibility to extend the viewer in order to assist specific

workflows required by experts. We designed the three-level architecture illustrated in90

Fig. 1 and described below.

Figure 1: Starviewer architecture block diagram.

2.1.1. External libraries

The first level of the Starviewer architecture contains the open-source libraries used

by the platform. In particular, Qt [34] is used as the development framework, and

VTK [35] and ITK [36] for image representation, processing, visualization, interac-95

tion, and rendering. DCMTK [37] is used to communicate with the PACS and as the

primary choice when reading DICOM files. GDCM [38] is used by the anonymization

feature and as a surrogate when reading unsupported DCMTK image codecs such as

JPEG2000 (which is not included in the free version of DCMTK). ThreadWeaver [39],

which simplifies the implementation of multi-threaded asynchronous algorithms using100

5

a thread pool, is used for image loading, PACS queries, downloads, and uploads. Fi-

nally, Breakpad [40] is a library used to create crash reports with memory dumps that

are stored locally and then sent to our servers for further analysis.

2.1.2. Core

The second level of the Starviewer architecture has two main components, the core105

and the core user interface. The Starviewer core is made of algorithms, common user

interfaces, and general purpose modules that conform the structure which can later be

leveraged by the extensions. It has four main parts.

First, input/output modules and user interfaces consisting of: (i) the local database,

(ii) the PACS connection module, and (iii) the image loading module.110

Second, the extensions engine, that provides some classes and specifies a struc-

tured methodology to extend the program functionalities in order to satisfy new user

requirements.

Third, widgets that can be divided in: (i) 2D widget, focused on visualizing plain

images, slices from volumes, and fusions between series; (ii) 3D widget, targeting115

the visualization and rendering of volumetric datasets; (iii) layouts, whose task is to

arrange a set of viewer widgets; and (iv) hanging protocols, which are a set of user-

definable templates aware of the study context that have rules to decide when a hanging

protocol is applicable, define a layout with custom-sized viewers, and have sets of rules

to determine which contents shall be placed in each viewer.120

Fourth, tools, a wide collection of components that can be associated with the basic

2D and 3D viewer widgets to add interaction and extend their functionality. They are

used to implement or reuse extension-specific features and are divided in six categories:

(i) navigation tools, (ii) transfer function tools, (iii) thick slab tool, (iv) localization

tools, (v) drawing tools, and (vi) synchronization tools.125

2.1.3. Core user interface

Besides core, in the second level of the architecture there is also the core user

interface. This exposes common features that are not implemented by extensions but

are required by them. Its main elements are: (i) the main window, (ii) the configuration

6

window, and and (iii) the study management window.130

2.1.4. Extensions

In the last level of the architecture, there are the extensions. These make use of the

underlying tools, widgets, and the Starviewer platform in general to develop specialized

tools for specific use cases with custom user interfaces. An extension is implemented

when a user requires a set of functionalities to deal with a determined protocol or situa-135

tion. Although the functionalities of extensions are different, for the sake of simplicity

for the user, they usually follow a standard layout pattern with two distinct regions: a

toolbar, with shortcuts to main functionalities, camera options, and tools; and a views

area containing a layout of viewers, which can be 2D or 3D, or other specialized wid-

gets to display information. A detailed description of how to create an extension is140

given in Appendix A.

2.2. The evaluation framework

Usually, software feature comparisons consist in gathering user needs, representing

them as a set of criteria, and grading them following a basic methodology [3, 13] or

a more complex one which varies the requirements, adapts the weights, and uses fine-145

grained criteria [41, 42]. Our evaluation framework expands on some of these ideas

using a very fine-grained tree of hierarchically organized criteria where related features

are grouped and scored. Every node of the tree is assigned a weight according to its

relative importance in its context (sibling nodes); weights are automatically normalized

at each context (sibling nodes) to sum 1. Then, each leaf node is evaluated and given150

an score in the range [0,1] being the parent node score the weighted sum of them.

The proposed framework is presented in Fig. 2 where its main blocks have been

highlighted. By default the evaluator has a template where the four first columns (see

block (a)) represent the levels of the tree structure, where from left to right, each col-

umn represents: (i) audiences; (ii) groups, a high-level grouping of criteria not meant155

to be directly evaluated; (iii) criteria, specific items to evaluate; and (iv) subcriteria,

present when a criterion is finely evaluated. The evaluator may alter the tree by adding,

removing, or rearranging criteria, and adapting the weights of the rows to express his

7

or her needs. Weights are presented in block (b). The user enters the weights in the last

column and they are automatically normalized and shown both numerically and graph-160

ically in the first and second columns. In addition, there is a column to enter a textual

description of the criteria (see block (c)). Finally, in block (d), the software products (in

our case DICOM viewers) to be compared are placed. The evaluator enters the score in

the “evaluation” column for each leaf node (criterion or subcriterion), and the relative

score and graph bar are automatically computed. If a new software solution has to be165

evaluated, a new group of columns must be appended at the end.

Tree Weights Tree data Viewer 1 Viewer 2

Audience Group Criterion

Le
ve

l

W
ei

gh
t

Description

Re
la

tiv
e

sc
or

e

Ev
al

ua
ti

on

Comments

Re
la

tiv
e

sc
or

e

Ev
al

ua
ti

on

Comments

0.00 0.00 Do not modify the first row 0.00 Do not modify the 0.00 Do not modify the first row

-1 1.00 1.00 0.77 0.54
Physician 0 0.50 0.50 0.78 0.51

Physician Features 1 0.26 0.50 General program features 0.92 0.17

Physician Features CE-Certified 2 0.67 8.00 Is considered a medical device? 1.00 ⊤ 0.00 ⊥

Physician Features OS 2 0.33 4.00 Supported platforms 0.75 0.50

Physician Features OS Windows 3 0.50 2.00 1.00 ⊤ 1.00 ⊤

Physician Features OS macOS 3 0.25 1.00 0.00 ⊥ 0.00 ⊥

Physician Features OS GNU/Linux 3 0.25 1.00 1.00 ⊤ 0.00 ⊥

Physician Visualization 1 0.47 0.90 0.70 0.77

Physician Visualization 3D 2 0.33 0.50 How fully-featured is the 3D visualization. 0.90 (.90) 0.70 (.70) CPU-Based rendering.

Physician Visualization 2D 2 0.67 1.00 How fully-featured is the 2D visualization. 0.60 (.60) 0.80 (.80)

Physician Easy to use 1 0.26 0.50 Usable and user-friendly interface. 0.80 (.80) Good, and quick to use. 0.40 (.40)

Expert 0 0.50 0.50 0.75 0.56
Expert Features 1 0.21 0.50 General program features 0.75 0.50

Expert Features CE-Certified 2 0.00 0.00 Is considered a medical device? 0.00 ⊤ 0.00 ⊥

Expert Features OS 2 1.00 4.00 Supported platforms 0.75 0.50

Expert Features OS Windows 3 0.50 2.00 1.00 ⊤ 1.00 ⊤

Expert Features OS macOS 3 0.25 1.00 0.00 ⊥ 0.00 ⊥

Expert Features OS GNU/Linux 3 0.25 1.00 1.00 ⊤ 0.00 ⊥

Expert Visualization 1 0.38 0.90 0.70 0.77

Expert Visualization 3D 2 0.33 0.50 How fully-featured is the 3D visualization. 0.90 (.90) 0.70 (.70) CPU-Based rendering.

Expert Visualization 2D 2 0.67 1.00 How fully-featured is the 2D visualization. 0.60 (.60) 0.80 (.80)

Expert Easy to use 1 0.42 1.00 Usable and user-friendly interface. 0.80 (.80) Good, and quick to use. 0.40 (.40)

0.00 0.00 Do not modify the last row 0.00 Do not modify the 0.00 Do not modify the last row

Subcriteri
on

Re
la

tiv
e

no
rm

. w
.

Re
la

tiv
e

no
rm

al
iz

ed

w
ei

gh
t

(V
ie

w
er

 1
)

Re
l.

Sc
or

e

(V
ie

w
er

 2
)

Re
l.

Sc
or

e

This is the root node, the final evaluation is
placed here.
Important features weighted according to a
physician's point of view.

Very good qualityt viewer
with 3D rendering.
Lacks some important
features like MPR.

Many features including
MPR.
No keyboard shortcuts. Bad
usability

Important features weighted according to a
healthcare expert.

Very good qualityt viewer
with 3D rendering.
Lacks some important
features like MPR among
others.

Many features including
MPR.
No keyboard shortcuts. Bad
usability

 ⊤ = 1.00

 ⊥ = 0.00

(b) (d)(a) (c)

Figure 2: The main blocks of the proposed evaluation framework where several auxiliary columns are hidden

for the sake of readability. (a) Audiences, groups, criteria, and subcriteria are organized hierarchically; the

tree structure is drawn automatically from the entered data. (b) The user enters weights in the bold column for

each row in the tree; relative normalized weights and graph bars are automatically computed. (c) Description

for each node of the tree. (d) Viewer scores: for each viewer a set of columns is added; the user enters

the score in the “evaluation” column for each leaf node; relative scores and graph bars are automatically

computed.

8

2.3. The evaluation procedure

2.3.1. Evaluation framework definition

To fill the framework with criteria and weights specific to DICOM viewers, we re-

stricted our study to functional requirements which where compiled from: (i) clinical170

experts feedback; (ii) our knowledge with the development of Starviewer; (iii) existing

literature [3, 13, 26]; and (iv) a collection of the analysed viewers features. Although

they are equally important, non-functional requirements such as security, privacy, avail-

ability, platform usability, or efficiency were not evaluated. However, they can be easily

integrated in the framework. To select functional requirements we evaluated state of175

the art DICOM viewers (see Section 2.3.2) and we elaborated a list with their func-

tionalities. We grouped these functionalities in seven groups: (i) technical features,

(ii) archive, (iii) workflow, (iv) visualization and interaction with a volume or set of

images, (v) tools, (vi) other modalities, and (vii) processing features. Then, we col-

lected this information in a survey and asked radiologists to grade them according to180

importance in a range from 0 to 10. The survey includes a question asking the number

of years each respondent has been diagnosing from medical images and their area of

diagnosis. The survey was sent to 25 radiologists of different centers of Catalan Hos-

pitals. From their answers, we created a first list of criteria and weights which were

obtained from the mean grades. List items were transformed to the evaluation frame-185

work criteria. In addition, from the collected information we decided to consider three

broad types of audiences: (i) general, which reflects the common needs of a physi-

cian, not exclusively focused on 2D or 3D; (ii) 2D-based audience, that works with

plain images like ultrasound, mammography, and X-ray; and (iii) 3D-based audience

whose datasets are mainly volumetric images from computed tomography (CT) and190

magnetic resonance (MRI) as well as more specific nuclear medicine modalities like

positron emission tomography (PET) or single-photon emission computed tomogra-

phy (SPECT). In the evaluation, these three audiences have the same criteria and eval-

uations, but their weights have been tuned to more accurately reflect their particular

audience needs.195

The filled framework was supervised by a group of experienced radiologists via per-

9

sonal interviews. They were asked to pinpoint missing criteria and check and fine-tune

the weights. From this process we obtain the filled evaluation framework presented in

Section 3.2.

2.3.2. Selection of viewers to compare200

To select the open-source software candidates, a search focused on viewers for daily

clinical practice was carried out. The search was conducted using: general purpose

search engines like DuckDuckGo and Google; Debian, Fedora, and Ubuntu package

archives; specialized websites like IDoImaging.com [43] and AlternativeTo.net [44];

and popular code forges like GitHub [45], Bitbucket [46], GitLab [47], and Source-205

Forge [48].

A list of 54 candidates was produced from which viewers being unmaintained or

not achieving the minimum requirements for daily clinical practice were discarded.

This reduces the list to eleven pieces of software (Aliza [49], Amide [50], Ginkgo

CADx [51], Horos [17], InVesalius [52], medInria [6], MIPAV [15], MITK [8], Slicer [5],210

Starviewer, and Weasis [16]) that were installed in a multi-platform testing environment

with a PACS server for further analysis. After a first screening, six of them (Aliza,

Amide, InVesalius, MIPAV, MITK, and Slicer), all excellent tools, were discarded be-

cause they were more research and processing focused. This leads to the final list with

Ginkgo CADx, Horos, medInria, Starviewer, and Weasis.215

Once the viewers to compare were selected and the evaluation framework was filled

with criteria and weights, a group of three experts with experience on radiological

viewers but not involved in the development of Starviewer carried out the comparison.

The evaluation was performed taking in consideration the description of each item

combined with the need to provide an individual justification for the more qualitative220

items. Each expert carried the evaluation individually; many items could be evaluated

in a boolean fashion, however when this could not be done a grading between 0 and 1

was used instead. In a second stage the grades were shared in order to discuss a final

consensus.

10

(a) (b)

(c) (d)

Figure 3: Screenshots showing several features of Starviewer. (a) 2D viewer with the magnifying glass tool.

(b) 2D viewer visualizing a PET-CT with axial, coronal and sagittal reconstructions in the rows combined

with the CT, PET-CT fusion and PET modalities in the columns. (c) 2D viewer showing the reference lines

tool with thick slab enabled; the green lines in the coronal and sagittal viewers show the location of the

axial view and its thickness. (d) 3D viewer with clipping planes enabled and a sidebar to modify the current

transfer function and illumination parameters.

3. Results225

3.1. Starviewer as a platform

Starviewer is developed in C++11 with support from several open-source libraries:

Qt, DCMTK, ITK, VTK, GDCM, ThreadWeaver, and Breakpad. It is supported in

Windows, macOS, and GNU/Linux operating systems. The source code is available at

http://www.starviewer.org and https://github.com/starviewer-medical/230

starviewer licensed under GPLv3+ terms.

Starviewer core is extended with five stable extensions: 2D viewer (with support

for fusion), 3D viewer, MPR (multi-planar reconstruction), DICOM Print, and PDF.

To illustrate their functionalities, some screenshots are shown in Fig. 3.

11

http://www.starviewer.org
https://github.com/starviewer-medical/starviewer
https://github.com/starviewer-medical/starviewer
https://github.com/starviewer-medical/starviewer

Apart from the stable extensions, there are some experimental ones that are exam-235

ples of research focused extensions: (i) diffusion perfusion segmentation; (ii) edema

segmentation, which calculates the volume of automatically detected lesions in the

brain (edemas and hematomas); and (iii) rectum segmentation. These extensions are

not included in regular compiled binaries, but are available in the source code.

3.2. Evaluation240

The results have to be interpreted as the capability of a viewer to address specific

audience needs. A weighted and fine grained bottom-up evaluation of the features is

performed in order to reduce the bias. Depending on the audience some needs may be

more important than others. In the presented evaluation we expressed three broad types

of audience that try to mimic the daily clinical practice needs.245

The proposed evaluation framework has been implemented in a macro-free Libre-

Office spreadsheet that automatically draws the tree, displays warnings, and has built-

in help, among other advanced features. It is available as supporting material, and in

https://github.com/starviewer-medical/dicom-viewers-comparison.

In Fig. 4 the results of the comparison of Starviewer with Ginkgo CADx, Horos,250

medInria, and Weasis using the proposed evaluation framework is presented. For a bet-

ter comprehension, these results are shown only up to group level where each value is

obtained from a weighted sum of the scores present at lower levels. The full evaluation

can be seen in the spreadsheet in the supporting material, as illustrated in Fig. 5, where

the “tools” group and the “annotations” criterion have been expanded.255

From Fig. 4 we can observe that for a general audience the best score is obtained

by Horos with 0.78, while Weasis and Starviewer have a similar score, 0.62 and 0.61,

respectively. The worst positions are for Gingko CADx, and medInria, with 0.43 and

0.38, respectively. Focusing on 2D users, Ginkgo CADx (0.52) and Weasis (0.68) sig-

nificantly increase their scores relative to the general audience. The other viewers show260

a slight increase, relegating Starviewer (0.63) to the third position. Finally, focusing

on 3D users, rankings stay the same as in the general audience, but more 2D oriented

viewers, Ginkgo CADx (0.37) and Weasis (0.56), decrease their scores significantly.

In addition, Fig. 6 shows the summarized results for the general audience in a

12

https://github.com/starviewer-medical/dicom-viewers-comparison

Tree Weights Starviewer Horos Medinria Weasis Ginkgo CADx

Audience Group Criterion Subcriterion

Re
la

tiv
e

sc
or

e

Re
la

tiv
e

sc
or

e

Re
la

tiv
e

sc
or

e

Re
la

tiv
e

sc
or

e

Re
la

tiv
e

sc
or

e

1.00 0.61 0.78 0.38 0.62 0.43
General 0.33 0.62 0.77 0.38 0.60 0.41

General Technical 0.07 0.63 0.34 0.58 0.57 0.48

General Archive 0.14 0.72 0.97 0.39 0.58 0.80

General Workflow 0.21 0.71 0.79 0.45 0.53 0.31

General Visualization 0.21 0.76 0.89 0.47 0.50 0.29

General Tools 0.21 0.63 0.89 0.15 0.86 0.48

General Other modalities 0.07 0.25 0.34 0.00 0.82 0.45

General Processing 0.07 0.02 0.46 0.74 0.22 0.00

2D Based 0.33 0.63 0.79 0.38 0.68 0.52

2D Based Technical 0.07 0.63 0.34 0.58 0.57 0.48

2D Based Archive 0.15 0.72 0.97 0.39 0.58 0.80

2D Based Workflow 0.22 0.71 0.78 0.45 0.53 0.30

2D Based Visualization 0.22 0.78 0.88 0.46 0.81 0.58

2D Based Tools 0.22 0.56 0.92 0.20 0.83 0.63

2D Based Other modalities 0.07 0.25 0.34 0.00 0.82 0.45

2D Based Processing 0.04 0.03 0.61 0.80 0.30 0.00

3D Based 0.33 0.60 0.77 0.39 0.56 0.37
3D Based Technical 0.07 0.63 0.34 0.58 0.57 0.48

3D Based Archive 0.14 0.72 0.97 0.39 0.58 0.80

3D Based Workflow 0.21 0.73 0.80 0.45 0.53 0.30

3D Based Visualization 0.21 0.76 0.92 0.49 0.39 0.21

3D Based Tools 0.21 0.65 0.89 0.14 0.87 0.46

3D Based Other modalities 0.07 0.20 0.35 0.00 0.76 0.36

3D Based Processing 0.10 0.02 0.46 0.74 0.22 0.00

Re
la

tiv
e

no
rm

. w
.

Re
la

tiv
e

no
rm

al
iz

ed

w
ei

gh
t

(S
ta

rv
ie

w
er

)
Re

l.
Sc

or
e

(H
or

os
) R

el
.

Sc
or

e

(M
ed

in
ri

a)

Re
l.

Sc
or

e

(W
ea

si
s)

 R
el

.
Sc

or
e

(G
in

kg
o

CA
D

x)

Re
l.

Sc
or

e

Figure 4: Summarized results of the comparison of Starviewer with Horos, medInria, Weasis, and Ginkgo

CADx considering three different audiences (general, 2D-based, and 3D-based), and criteria grouped in

seven categories. Criteria and subcriteria are hidden for comprehensibility. The final scores for the general

audience (highlighted in red), are the ones we consider more relevant as they are in the most transversally

weighted audience.

13

Tree Weights Starviewer Horos Medinria Weasis Ginkgo CADx

Audience Group Criterion Subcriterion

Re
la

tiv
e

sc
or

e

Ev
al

ua
ti

on

Re
la

tiv
e

sc
or

e

Ev
al

ua
ti

on

Re
la

tiv
e

sc
or

e

Ev
al

ua
ti

on

Re
la

tiv
e

sc
or

e

Ev
al

ua
ti

on

Re
la

tiv
e

sc
or

e

Ev
al

ua
ti

on

1.00 0.61 0.78 0.38 0.62 0.43
General 0.33 0.62 0.77 0.38 0.60 0.41
General Technical 0.07 0.63 0.34 0.58 0.57 0.48

General Archive 0.14 0.72 0.97 0.39 0.58 0.80

General Workflow 0.21 0.71 0.79 0.45 0.53 0.31

General Visualization 0.21 0.76 0.89 0.47 0.50 0.29

General Tools 0.21 0.63 0.89 0.15 0.86 0.48

General Tools Usability 0.09 0.80 (.80) 1.00 ⊤ 1.00 ⊤ 1.00 ⊤ 1.00 ⊤

General Tools Editable 0.09 0.00 ⊥ 1.00 ⊤ 0.00 ⊥ 1.00 ⊤ 0.90 (.90)

General Tools Transversality 0.07 0.67 (.67) 1.00 ⊤ 0.00 ⊥ 1.00 ⊤ 0.00 ⊥

General Tools Undo 0.05 0.00 ⊥ 1.00 ⊤ 0.00 ⊥ 0.00 ⊥ 0.00 ⊥

General Tools 3D cursor 0.07 1.00 ⊤ 0.67 (.67) 0.00 ⊥ 1.00 ⊤ 0.00 ⊥

General Tools Reference lines 0.07 0.90 (.90) 1.00 ⊤ 0.00 ⊥ 1.00 ⊤ 0.00 ⊥

General Tools Save status 0.05 0.20 0.60 0.20 1.00 0.20

General Tools Measure 0.09 1.00 1.00 0.23 1.00 0.85

General Tools Annotations 0.05 0.38 1.00 0.00 0.95 0.95

General Tools Annotations Basic shapes 0.25 0.80 (.80) 1.00 ⊤ 0.00 ⊥ 1.00 ⊤ 0.90 (.90)

General Tools Annotations Polygons 0.25 0.70 (.70) 1.00 ⊤ 0.00 ⊥ 0.80 (.80) 0.90 (.90)

General Tools Annotations Arrow or marker 0.25 0.00 ⊥ 1.00 ⊤ 0.00 ⊥ 1.00 ⊤ 1.00 ⊤

General Tools Annotations Textual 0.25 0.00 ⊥ 1.00 ⊤ 0.00 ⊥ 1.00 ⊤ 1.00 ⊤

General Tools Unit awareness 0.05 1.00 ⊤ 0.50 (.50) 0.50 (.50) 0.80 (.80) 0.70 (.70)

General Tools Statistics 0.07 1.00 ⊤ 1.00 ⊤ 0.00 ⊥ 1.00 ⊤ 1.00 ⊤

General Tools SUV 0.07 1.00 ⊤ 0.80 (.80) 0.00 ⊥ 0.90 (.90) 0.00 ⊥

General Tools Histogram 0.03 0.00 ⊥ 1.00 ⊤ 0.00 ⊥ 0.00 ⊥ 0.00 ⊥

General Tools ROI 0.09 0.67 (.67) 1.00 ⊤ 0.00 ⊥ 0.67 (.67) 0.67 (.67)

General Tools Key image notes (K 0.05 0.00 ⊥ 0.33 (.33) 0.00 ⊥ 0.80 (.80) 0.00 ⊥

General Other modalities 0.07 0.25 0.34 0.00 0.82 0.45

General Processing 0.07 0.02 0.46 0.74 0.22 0.00

Re
la

tiv
e

no
rm

. w
.

Re
la

tiv
e

no
rm

al
iz

ed

w
ei

gh
t

(S
ta

rv
ie

w
er

)
Re

l.
Sc

or
e

(H
or

os
) R

el
.

Sc
or

e

(M
ed

in
ri

a)

Re
l.

Sc
or

e

(W
ea

si
s)

 R
el

.
Sc

or
e

(G
in

kg
o

CA
D

x)

Re
l.

Sc
or

e

Figure 5: Expanded evaluation results for the “tools” group and the “annotations” criterion. The user can

interact to determine the information to be presented.

graphical form. The right “weights” bar shows the maximum possible score for each265

category, thus helping to see where each viewer is good or has room for improvement.

4. Discussion

In recent years, open-source software has emerged as a potential solution to com-

pete with privative products in medical applications. These products have many sim-

ilarities in their approach but also present great differences in provided features and270

functionalities. For this reason, despite the interest from the research and medical com-

munity on open-source products, the lack of clear information about the advantages and

disadvantages of one product over the others, makes their use in real scenarios quite

complex. Aware of this situation, the aim of this paper has been two-fold. Firstly, we

have presented Starviewer, a new open-source multi-platform DICOM viewer which275

despite its ability to satisfy and adapt to daily clinical needs has room for some feature

improvements as described below. Secondly, we have introduced an evaluation frame-

work that reduces the complexity of selecting a viewer that can: (i) be user-configured

14

Starviewer Horos medInria Weasis Ginkgo CADx Weights
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Processing

Other modalities

Tools

Visualization

Workflow

Archive

Technical

S
co

re

Figure 6: Graph showing the summarized results of the comparison of Starviewer with the other viewers for

the general audience. The right “weights” bar shows the maximum possible score for each category.

and adapted to any user specific scenario, and (ii) be used as a complement to maturity

models or quality evaluation frameworks [33] in order to perform a feature analysis.280

In our case the evaluation carried out presents two main limitations. Firstly, a

reduced set of viewers has been evaluated because the evaluation of each viewer in

such level of detail takes a considerable effort. However, with the proposed framework

it is easy to add new viewers to the comparison. Secondly, it is difficult to attain a

fully objective analysis, but the hierarchical evaluation methodology and the different285

audiences approach forces the evaluator to perform a bottom-up analysis that helps

to limit the subjectivity when setting scores, weights, and criteria. Scores were set

according to the descriptions, but in some cases the assessment requires analysing and

justifying the pros and cons of each candidate to set a fair final score, which may

introduce some bias. Regarding weights, they were set following expert radiologists290

advice, but in a future work, we will consider making a survey in order to get better

measurable knowledge and contemplate more specific audiences. Fortunately, all these

limitations can be overcome thanks to the adaptability of this evaluation framework by

the end user.

The proposed viewer has been compared using the presented evaluation framework295

with state of the art open-source viewers such as Ginkgo CADx, Horos, medInria, and

15

Weasis. Criteria have been grouped in seven categories and weighted according to user

perspective. Focusing on the general audience, which takes into account all possible

features, the obtained results are discussed below.

In the technical group, where aspects such as platform support, multi-language,300

and documentation are considered, Starviewer has the top score mainly due to the

completeness of its documentation. Starviewer provides an extensive user and admin-

istrator documentation where all features and shortcuts are described while many of

the analysed viewers do not provide it.

Regarding the archive category, where network protocols, local storage, and sup-305

ported formats are considered, the maximum score is achieved by Horos, which sup-

ports almost all the features. The main limitations of Starviewer in this group are the

lack of WADO support and its inability to convert from DICOM to non-DICOM for-

mats and vice versa; for these reasons it is ranked in third position after Ginkgo CADx.

In the workflow group, where we consider features that improve user experience310

such as program customization, hanging protocols support, and synchronization, Horos

is again the top-rated viewer mailny because it is fully customizable. Starviewer fol-

lows close in second position, being the best in synchronization and study comparison

support; however it lacks a graphical hanging protocol editor.

Visualization is the group where all the 2D and 3D visualization and interaction315

features, and DICOM conformity are considered. Horos is first with great support for

most of the criteria. Starviewer obtains a good score and is placed second, being its

main drawbacks the lack of non-Latin characters support and the absence of full-screen

visualization and true scaling (display of objects on screen in real size).

In the tools category is where we look for functionalities to measure, annotate,320

and comprehend datasets. Horos and Weasis obtain a very good score, with Horos

slightly better due to its ability to undo actions. Starviewer is ranked third, with its

main weaknesses being non-editable tools, non-savable annotations, and the lack of

key image notes support.

In the other modalities group, where support for non-image modalities like struc-325

tured reports and encapsulated documents is evaluated, the best score is achieved by

Weasis thanks to its support for all special modalities. Starviewer is fourth because it

16

only supports encapsulated documents.

Finally, in the processing group, which evaluates features that perform a complex

analysis and usually generate new series, the top position is for medInria thanks to its330

extensive support for almost all the considered criteria. Starviewer obtains a bad score

in this category with only some points in the segmentation criterion through the “magic

ROI” tool, putting it in fourth position.

Focusing in the 2D-based audience, Weasis greatly increases its score ascending to

the second position after Horos, which remains first. The main reason are the changes335

of the weights in the visualization group, where criteria that do not make sense in 2D,

such as thick slab, MPR, fusion, and 3D, have their weights set to zero, thus increasing

the relative weights of the other criteria.

Similarly, for the 3D-based audience, the weights of visualization criteria have been

adjusted by increasing the ones that are more important for 3D datasets exploration. In340

addition the weight of the processing group has been slightly increased. In this case

the positions stay the same as for the general audience but Weasis and Gingko CADx

have significantly lower scores due to their lack of 3D support.

In our evaluation medInria has the lowest score. This is due to the fact that although

it is an excellent processing tool it is not suitable for the daily clinical practice. From345

this evaluation we have seen that Horos is the best viewer overall, however it is only

available for the macOS platform. In second position comes Starviewer, which despite

having less features than Horos, is still a good viewer for daily clinical needs and

has the advantage of being multi-platform. In addition, Starviewer is modular and

extensible, thus new extensions and functionalities can be quickly developed according350

to user demands. This is a technically relevant characteristic to be taken into account,

although it has not been considered in the evaluation because it is not as relevant from

the end user perspective. Other viewers that have not been evaluated, like MITK [7]

or 3D Slicer [4], provide specific APIs to manipulate and extend functionalities. In

contrast, Starviewer extensions operate directly using VTK, reducing the degree of355

abstraction and enhancing VTK-based code portability.

From the aforementioned analysis, one can conclude that Starviewer main advan-

tages are technical documentation, productive workflow, and extensibility. Main dis-

17

advantages are lack of WADO support, DICOM conversions, lack of hanging proto-

col editor, Unicode character support, non-editable tools, key image notes and lack of360

special modalities like EKG. All those shortcomings will be addressed in our future

developments.

We are conscious that medical imaging software paradigm is changing to software-

as-a-service where solutions run in the cloud. However there are still certain tech-

nological issues that need further development to provide the advantages of desktop365

applications [53]. On the one hand, implementing certain features such as interactive

oblique reconstructions and 3D volume rendering on the client side require that all the

images are available in the client memory and that requires powerful enough hardware

to perform such operations, thus negating the advantage of requiring only cheap thin

clients. On the other hand, if these and other features are implemented on the server370

side, the viewer is highly dependent on and limited by the network bandwidth, latency

and stability. In addition, a high client concurrency can lead to peformance degradation

in the server [54]. For these reasons, we consider that Starviewer can be of interest to

the health community.

Summary points375

What was already known on the topic:

• DICOM viewers are essential in many clinical processes, either to diagnose, plan

operations, or follow up the evolution of pathologies.

• The interest in open-source DICOM viewers has increased considerably.

• Selecting the DICOM viewer that better fits user needs can be a complex task.380

What this study added to our knowledge:

• A new open-source multi-platform DICOM viewer that supports main needs of

image diagnosis experts and the creation of custom extensions for specific work-

flows.

18

• An adaptable evaluation framework that considers different audiences and crite-385

ria weighted according to user needs and that can be used as a complement to

maturity models and quality evaluation frameworks.

• An application example where Starviewer and state-of-the art open-source DI-

COM viewers are compared.

Informed consent390

All anonymous subjects depicted in this paper signed an informed consent form

allowing the use of the images for research purposes.

Authors’ contributions

All authors have contributed equally.

Acknowledgements395

We want to thank all developers who contributed to Starviewer as well as others

which have contributed to the project in some manner. We also want to thank Institut

de Diagnòstic per la Imatge (IDI), our partner since 2004. This work has been funded

in part by grants from the Spanish Government (Nr. TIN2016-75866-C3-3-R) and from

the Catalan Government (Nr. 2017-SGR-1101).400

Declarations of interest

Declarations of interest: none.

References

[1] National Electrical Manufacturers Association (NEMA), Digital Imaging and

Communications in Medicine (DICOM), [Internet] (2018) [cited 08/01/2018].405

URL https://www.dicomstandard.org/current/

19

https://www.dicomstandard.org/current/
https://www.dicomstandard.org/current/
https://www.dicomstandard.org/current/
https://www.dicomstandard.org/current/

[2] D. H. K. Huang, PACS and Imaging Informatics: Basic Principles and Applica-

tions, 2nd Edition, Wiley-Blackwell.

[3] G. Valeri, F. A. Mazza, S. Maggi, D. Aramini, L. La Riccia, G. Mazzoni, A. Gio-

vagnoni, Open source software in a practical approach for post processing of410

radiologic images, La radiologia medica 120 (3) (2015) 309–323 (Mar 2015).

doi:10.1007/s11547-014-0437-5.

[4] A. Fedorov, R. Beichel, J. Kalpathy-Cramer, J. Finet, J.-C. Fillion-Robin, S. Pu-

jol, C. Bauer, D. Jennings, F. Fennessy, M. Sonka, J. Buatti, S. Aylward, J. V.

Miller, S. Pieper, R. Kikinis, 3D Slicer as an image computing platform for415

the Quantitative Imaging Network, Magnetic Resonance Imaging 30 (9) (2012)

1323–1341 (2012). doi:10.1016/j.mri.2012.05.001.

[5] 3D Slicer community, 3DSlicer, [Internet] (2018) [cited 18/01/2018].

URL https://www.slicer.org

[6] Inria, medInria, [Internet] (2018) [cited 16/01/2018].420

URL http://med.inria.fr

[7] I. Wolf, M. Vetter, I. Wegner, T. Böttger, M. Nolden, M. Schöbinger, M. Hasten-

teufel, T. Kunert, H.-P. Meinzer, The Medical Imaging Interaction Toolkit, Med-

ical Image Analysis 9 (6) (2005) 594–604 (2005). doi:10.1016/j.media.

2005.04.005.425

[8] German Cancer Research Center, Division of Medical Image Computing,

The Medical Imaging Interaction Toolkit (MITK), [Internet] (2018) [cited

18/01/2018].

URL http://mitk.org/wiki/MITK

[9] Kitware Inc., VolView, [Internet] (2018) [cited 16/01/2018].430

URL https://www.kitware.com/volview/

[10] IRCAD, VR-Render, [Internet] (2014) [cited 22/08/2014 (archived)].

URL https://web.archive.org/web/20140822230414/http://

www.ircad.fr:80/recherche/rd/rd.php

20

https://doi.org/10.1007/s11547-014-0437-5
https://doi.org/10.1016/j.mri.2012.05.001
https://www.slicer.org
https://www.slicer.org
http://med.inria.fr
http://med.inria.fr
https://doi.org/10.1016/j.media.2005.04.005
https://doi.org/10.1016/j.media.2005.04.005
https://doi.org/10.1016/j.media.2005.04.005
http://mitk.org/wiki/MITK
http://mitk.org/wiki/MITK
https://www.kitware.com/volview/
https://www.kitware.com/volview/
https://web.archive.org/web/20140822230414/http://www.ircad.fr:80/recherche/rd/rd.php
https://web.archive.org/web/20140822230414/http://www.ircad.fr:80/recherche/rd/rd.php
https://web.archive.org/web/20140822230414/http://www.ircad.fr:80/recherche/rd/rd.php
https://web.archive.org/web/20140822230414/http://www.ircad.fr:80/recherche/rd/rd.php

[11] O. Ratib, A. Rosset, Open-source software in medical imaging: development of435

OsiriX, International Journal of Computer Assisted Radiology and Surgery 1 (4)

(2006) 187–196 (Dec 2006). doi:10.1007/s11548-006-0056-2.

[12] Pixmeo SARL, OsiriX, [Internet] (2018) [cited 18/01/2018].

URL https://www.osirix-viewer.com/osirix/overview

[13] D. Haak, C.-E. Page, T. M. Deserno, A Survey of DICOM Viewer Software to In-440

tegrate Clinical Research and Medical Imaging, Journal of Digital Imaging 29 (2)

(2016) 206–215 (Apr 2016). doi:10.1007/s10278-015-9833-1.

[14] M. Mcauliffe, F. Lalonde, D. McGarry, W. Gandler, K. Csaky, B. Trus, Medical

Image Processing, Analysis & Visualization in Clinical Research, in: Proceed-

ings of the 14th IEEE Symposium on Computer-Based Medical Systems, Vol. 14,445

2001, pp. 381–386 (02 2001).

[15] National Institutes of Health, MIPAV (Medical Image Processing, Analysis, and

Visualization), [Internet] (2018) [cited 08/01/2018].

URL https://mipav.cit.nih.gov/

[16] dcm4che, Weasis, [Internet] (2018) [cited 08/01/2018].450

URL https://nroduit.github.io/en/basics/architecture/

[17] The Horos Project, Horos, [Internet] (2018) [cited 26/07/2018].

URL https://horosproject.org/

[18] T. Mettler, P. Rohner, Situational maturity models as instrumental artifacts for

organizational design, http://www.alexandria.unisg.ch/Publikationen/67758 (01455

2009). doi:10.1145/1555619.1555649.

[19] A. Rocha, Evolution of information systems and technologies maturity in health-

care, International journal of healthcare information systems and informatics 6

(2011) 28–36 (04 2011). doi:10.4018/jhisi.2011040103.

[20] R. van de Wetering, R. Batenburg, A pacs maturity model: A systematic meta-460

analytic review on maturation and evolvability of pacs in the hospital enterprise,

21

https://doi.org/10.1007/s11548-006-0056-2
https://www.osirix-viewer.com/osirix/overview
https://www.osirix-viewer.com/osirix/overview
https://doi.org/10.1007/s10278-015-9833-1
https://mipav.cit.nih.gov/
https://mipav.cit.nih.gov/
https://mipav.cit.nih.gov/
https://mipav.cit.nih.gov/
https://nroduit.github.io/en/basics/architecture/
https://nroduit.github.io/en/basics/architecture/
https://horosproject.org/
https://horosproject.org/
https://doi.org/10.1145/1555619.1555649
https://doi.org/10.4018/jhisi.2011040103

International journal of medical informatics 78 (2008) 127–40 (09 2008). doi:

10.1016/j.ijmedinf.2008.06.010.

[21] J. Carvalho, A. Rocha, A. Abreu, Maturity models of healthcare information sys-

tems and technologies: a literature review, Journal of Medical Systems 40 (2016)465

10 (04 2016). doi:10.1007/s10916-016-0486-5.

[22] U. e Laila, A. Zahoor, K. Mehboob, S. Natha, Comparison of open source

maturity models, Procedia Computer Science 111 (2017) 348–354, the 8th

International Conference on Advances in Information Technology (2017).

doi:10.1016/j.procs.2017.06.033.470

URL http://www.sciencedirect.com/science/article/pii/

S1877050917312061

[23] M. A. Babar, L. Zhu, R. Jeffery, A Framework for Classifying and Comparing

Software Architecture Evaluation, in: In: Proceedings Australian Software Engi-

neering Conference (ASWEC). (2004, 2004, pp. 309–318 (2004).475

[24] M.-P. Gagnon, M. Desmartis, M. Labrecque, J. Car, C. Pagliari, P. Pluye, P. Fre-

mont, J. Gagnon, N. Tremblay, F. Légaré, Systematic review of factors influ-

encing the adoption of information and communication technologies by health-

care professionals, Journal of medical systems 36 (2012) 241–77 (02 2012).

doi:10.1007/s10916-010-9473-4.480

[25] P. Nagy, Open Source in Imaging Informatics, Journal of Digital Imaging 20 (1)

(2007) 1–10 (Nov 2007). doi:10.1007/s10278-007-9056-1.

URL https://doi.org/10.1007/s10278-007-9056-1

[26] G. L. Presti, M. Carbone, D. Ciriaci, D. Aramini, M. Ferrari, V. Ferrari, As-

sessment of DICOM Viewers Capable of Loading Patient-specific 3D Models485

Obtained by Different Segmentation Platforms in the Operating Room, Jour-

nal of Digital Imaging 28 (5) (2015) 518–527 (Oct 2015). doi:10.1007/

s10278-015-9786-4.

URL https://doi.org/10.1007/s10278-015-9786-4

22

https://doi.org/10.1016/j.ijmedinf.2008.06.010
https://doi.org/10.1016/j.ijmedinf.2008.06.010
https://doi.org/10.1016/j.ijmedinf.2008.06.010
https://doi.org/10.1007/s10916-016-0486-5
http://www.sciencedirect.com/science/article/pii/S1877050917312061
http://www.sciencedirect.com/science/article/pii/S1877050917312061
http://www.sciencedirect.com/science/article/pii/S1877050917312061
https://doi.org/10.1016/j.procs.2017.06.033
http://www.sciencedirect.com/science/article/pii/S1877050917312061
http://www.sciencedirect.com/science/article/pii/S1877050917312061
http://www.sciencedirect.com/science/article/pii/S1877050917312061
https://doi.org/10.1007/s10916-010-9473-4
https://doi.org/10.1007/s10278-007-9056-1
https://doi.org/10.1007/s10278-007-9056-1
https://doi.org/10.1007/s10278-007-9056-1
https://doi.org/10.1007/s10278-015-9786-4
https://doi.org/10.1007/s10278-015-9786-4
https://doi.org/10.1007/s10278-015-9786-4
https://doi.org/10.1007/s10278-015-9786-4
https://doi.org/10.1007/s10278-015-9786-4
https://doi.org/10.1007/s10278-015-9786-4
https://doi.org/10.1007/s10278-015-9786-4
https://doi.org/10.1007/s10278-015-9786-4
https://doi.org/10.1007/s10278-015-9786-4

[27] F. Kamseu, N. Habra, Adoption of open source software: Is it the matter of qual-490

ity? (01 2004).

[28] Raphaël Semeteys, Qualification and Selection of Opensource Software, [Inter-

net] (2018) [cited 18/12/2019].

URL https://www.qsos.org/

[29] V. del Bianco, L. Lavazza, S. Morasca, D. Taibi, D. Tosi, The qualispo approach495

to oss product quality evaluation, 2010 (05 2010). doi:10.1145/1833272.

1833277.

[30] Qualipso, Qualification and Selection of Opensource Software, [Internet] (2013)

[cited 13/16/2013].

URL https://web.archive.org/web/20130613043131/http://500

www.qualipso.eu/

[31] W. J. Sung, J. H. Kim, S. Y. Rhew, A quality model for open source software

selection, in: Sixth International Conference on Advanced Language Processing

and Web Information Technology (ALPIT 2007), 2007, pp. 515–519 (Aug 2007).

doi:10.1109/ALPIT.2007.81.505

[32] L. Aversano, M. Tortorella, Evaluating the quality of free/open source sys-

tems: A case study, Vol. 73, 2010, pp. 119–134 (06 2010). doi:10.1007/

978-3-642-19802-1_9.

[33] L. Aversano, M. Tortorella, Quality evaluation of floss projects: Application to

erp systems, Information and Software Technology 55 (2013) 1260–1276 (07510

2013). doi:10.1016/j.infsof.2013.01.007.

[34] The Qt Company, Qt project, [Internet] (2017) [cited 19/11/2017].

URL https://www.qt.io/

[35] Kitware Inc., The Visualization ToolKit, [Internet] (2017) [cited 19/11/2017].

URL https://www.vtk.org515

23

https://www.qsos.org/
https://www.qsos.org/
https://doi.org/10.1145/1833272.1833277
https://doi.org/10.1145/1833272.1833277
https://doi.org/10.1145/1833272.1833277
https://web.archive.org/web/20130613043131/http://www.qualipso.eu/
https://web.archive.org/web/20130613043131/http://www.qualipso.eu/
https://web.archive.org/web/20130613043131/http://www.qualipso.eu/
https://web.archive.org/web/20130613043131/http://www.qualipso.eu/
https://doi.org/10.1109/ALPIT.2007.81
https://doi.org/10.1007/978-3-642-19802-1_9
https://doi.org/10.1007/978-3-642-19802-1_9
https://doi.org/10.1007/978-3-642-19802-1_9
https://doi.org/10.1016/j.infsof.2013.01.007
https://www.qt.io/
https://www.qt.io/
https://www.vtk.org
https://www.vtk.org

[36] Kitware Inc., The Insight Segmentation and Registration ToolKit, [Internet]

(2017) [cited 19/11/2017].

URL https://www.itk.org

[37] OFFIS e.V., DCMTK ToolKit, [Internet] (2017) [cited 19/11/2017].

URL http://dcmtk.org/520

[38] M. Malaterre, Grassroots DICOM, [Internet] (2018) [cited 03/01/2018].

URL https://gdcm.sourceforge.net/

[39] KDE e.V, ThreadWeaver, [Internet] (2018) [cited 03/01/2018].

URL https://download.kde.org/Attic/frameworks/5.3.0/

threadweaver-5.3.0.tar.xz525

[40] Google, Breakpad, [Internet] (2018) [cited 03/01/2018].

URL https://chromium.googlesource.com/breakpad/

breakpad/

[41] S. Graf, B. List, An Evaluation of Open Source E-Learning Platforms Stressing

Adaptation Issues, in: Proceedings of the Fifth IEEE International Conference on530

Advanced Learning Technologies, ICALT ’05, IEEE Computer Society, Wash-

ington, DC, USA, 2005, pp. 163–165 (2005). doi:10.1109/ICALT.2005.

54.

URL https://doi.org/10.1109/ICALT.2005.54

[42] N. Cavus, The Evaluation of Learning Management Systems Using an Artificial535

Intelligence Fuzzy Logic Algorithm, Adv. Eng. Softw. 41 (2) (2010) 248–254

(Feb. 2010). doi:10.1016/j.advengsoft.2009.07.009.

URL http://dx.doi.org/10.1016/j.advengsoft.2009.07.009

[43] A. Crabb, I Do Imaging, [Internet] (2018) [cited 31/07/2018].

URL https://idoimaging.com/540

[44] AlternativeTo, AlternativeTo - Crowdsourced software recommendations, [Inter-

net] (2018) [cited 31/07/2018].

URL https://alternativeto.net/

24

https://www.itk.org
https://www.itk.org
http://dcmtk.org/
http://dcmtk.org/
https://gdcm.sourceforge.net/
https://gdcm.sourceforge.net/
https://download.kde.org/Attic/frameworks/5.3.0/threadweaver-5.3.0.tar.xz
https://download.kde.org/Attic/frameworks/5.3.0/threadweaver-5.3.0.tar.xz
https://download.kde.org/Attic/frameworks/5.3.0/threadweaver-5.3.0.tar.xz
https://download.kde.org/Attic/frameworks/5.3.0/threadweaver-5.3.0.tar.xz
https://chromium.googlesource.com/breakpad/breakpad/
https://chromium.googlesource.com/breakpad/breakpad/
https://chromium.googlesource.com/breakpad/breakpad/
https://chromium.googlesource.com/breakpad/breakpad/
https://doi.org/10.1109/ICALT.2005.54
https://doi.org/10.1109/ICALT.2005.54
https://doi.org/10.1109/ICALT.2005.54
https://doi.org/10.1109/ICALT.2005.54
https://doi.org/10.1109/ICALT.2005.54
https://doi.org/10.1109/ICALT.2005.54
https://doi.org/10.1109/ICALT.2005.54
http://dx.doi.org/10.1016/j.advengsoft.2009.07.009
http://dx.doi.org/10.1016/j.advengsoft.2009.07.009
http://dx.doi.org/10.1016/j.advengsoft.2009.07.009
https://doi.org/10.1016/j.advengsoft.2009.07.009
http://dx.doi.org/10.1016/j.advengsoft.2009.07.009
https://idoimaging.com/
https://idoimaging.com/
https://alternativeto.net/
https://alternativeto.net/

[45] GitHub, GitHub, [Internet] (2018) [cited 31/07/2018].

URL https://github.com/545

[46] Atlassian Pty Ltd, Bitbucket, [Internet] (2018) [cited 31/07/2018].

URL https://bitbucket.org/

[47] GitLab, GitLab, [Internet] (2018) [cited 31/07/2018].

URL https://gitlab.com/

[48] Slashdot Media, SourceForge - Download, Develop and Publish Free Open550

Source Software, [Internet] (2018) [cited 31/07/2018].

URL https://sourceforge.net/

[49] Aliza Medical Imaging, Aliza Medical Imaging & DICOM Viewer, [Internet]

(2018) [cited 26/07/2018].

URL http://www.aliza-dicom-viewer.com555

[50] Amide, AMIDE: Amide’s a Medical Imaging Data Examiner, [Internet] (2012)

[cited 26/07/2018].

URL http://http://amide.sourceforge.net/

[51] G. Wollny, Ginkgo CADx, [Internet] (2018) [cited 08/01/2018].

URL http://ginkgo-cadx.com/en/560

[52] Centro de Tecnologia da Informação Renato Archer, InVesalius, [Internet] (2018)

[cited 26/07/2018].

URL https://www.cti.gov.br/en/invesalius

[53] S. Min, Z. Wang, N. Liu, An evaluation of html5 and webgl for medical imag-

ing applications, Journal of Healthcare Engineering 2018 (2018) 1–11 (08 2018).565

doi:10.1155/2018/1592821.

[54] R. Yuan, M. Luo, Z. Sun, S. Shi, P. Xiao, Q. Xie, Rayplus: a web-based platform

for medical image processing, Journal of Digital Imaging 30 (11 2016). doi:

10.1007/s10278-016-9920-y.

25

https://github.com/
https://github.com/
https://bitbucket.org/
https://bitbucket.org/
https://gitlab.com/
https://gitlab.com/
https://sourceforge.net/
https://sourceforge.net/
https://sourceforge.net/
https://sourceforge.net/
http://www.aliza-dicom-viewer.com
http://www.aliza-dicom-viewer.com
http://http://amide.sourceforge.net/
http://http://amide.sourceforge.net/
http://ginkgo-cadx.com/en/
http://ginkgo-cadx.com/en/
https://www.cti.gov.br/en/invesalius
https://www.cti.gov.br/en/invesalius
https://doi.org/10.1155/2018/1592821
https://doi.org/10.1007/s10278-016-9920-y
https://doi.org/10.1007/s10278-016-9920-y
https://doi.org/10.1007/s10278-016-9920-y

Appendix A. Workflow to create a Starviewer extension570

Focusing on final users, the main advantage of Starviewer is the possibility to create

custom extensions for specific workflows. Currently, Starviewer only supports exten-

sions as static libraries, thus one needs to be able to build Starviewer from source. Once

the build environment is set up, creating an extension is very simple as illustrated in

the following example.575

Extensions must be placed under the src/extensions directory, and there are

three possible directories to choose from: (i) main, intended for official stable ex-

tensions; (ii) contrib, intended for stable third-party contributed extensions; and

(iii) playground, intended for unstable or experimental extensions. Thus, the exam-

ple extension is a nice fit for playground.580

The workflow to create an extension can be summarized in four steps: (i) create the

extension subproject; (ii) create the bare minimum classes, including the UI; (iii) gen-

erate the translation files and add them to a resource file; and (iv) implement the actual

functionality for the extension. Now we will extend on each of these steps.

Note that in this section we will include only a few code snippets which have585

been simplified for the sake of readability, omitting include guards, include direc-

tives, namespace declarations, and safety checks, and occasionally merging header

and source files. Full code listings can be found in the appendix and in the supporting

material.

A.1. Extension subproject590

The first step is creating a subproject for the extension. We have to create a direc-

tory called example under src/extensions/playground. Inside this direc-

tory we must create a qmake project file named example.pro with this content:

EXTENSION_DIR = $$PWD

include(../../basicconfextensions.pri)595

Finally, we have to add a reference to this new subproject in parent projects. Specif-

ically, we must add example to the SUBDIRS variable in src/extensions/

playground/playground.pro and the PLAYGROUND_EXTENSIONS variable

in src/extensions.pri.

26

A.2. Minimum code600

The bare minimum code required for an extension consists of the main extension

class and a special class that is used by the core to initialize the extension. All new

files from now on will be placed inside the example directory. By convention, all UI

classes start with a ‘Q’ and all the code is placed in the udg namespace.

First, we create an UI file named qexampleextensionbase.ui which, for605

now, is just a QWidget containing a QLabel with the text “Example”. We name

the main widget "QExampleExtensionBase", and may be created using the Qt

Designer graphical editor or the integrated one inside Qt Creator.

Then we create the main extension class named QExampleExtension which

inherits QWidget publicly and Ui::QExampleExtensionBase privately. The610

latter is generated by uic, the Qt UI compiler, from the previously created .ui file.

This class has just a constructor that calls setupUi(this).

Now, we need to create a special class named ExampleExtensionMediator.

It is a subclass of ExtensionMediator and must implement two methods to ini-

tialize the extension and to give it a unique ID. In the header file, we also need to create615

a static instance of InstallExtension to make the extension known to Starviewer.

This is all done in the following snippet:

class ExampleExtensionMediator : public ExtensionMediator {

Q_OBJECT620

public:

explicit ExampleExtensionMediator(QObject *parent = nullptr) {}

bool initializeExtension(QWidget *extension,

const ExtensionContext &extensionContext) override {

QExampleExtension *exampleExtension;625

if (!(exampleExtension = qobject_cast<QExampleExtension*>(extension))) {

return false;

}

return true;

}630

DisplayableID getExtensionID() const override {

return DisplayableID("ExampleExtension", tr("Example"));

}

};

static InstallExtension<QExampleExtension, ExampleExtensionMediator>635

27

(a) (b)

Figure A.1: Screenshots of the Example extension (a) containing just a label and (b) having a 2D and a 3D

viewer.

registerExampleExtension;

Finally, we add both classes and the UI file to the project file example.pro.

A.3. Translations

Translation files must be generated and added to the project, even if they are empty.

To generate these files we have to execute lupdate example.pro from the example640

directory; this will create a few .ts files. Then, we create a resource file example.

qrc that includes the compiled translations (which will be created during the build

from the .ts files, with the same names but with the .qm extension) under the pre-

fix "/extensions/ExampleExtension". The last part of the prefix must match

the ID given in the extension mediator. Finally, we add the resource file to the RESOURCES645

variable in example.pro.

After this step, we can build Starviewer and try the new extension, as illustrated at

Fig. A.1(a). It can be launched by selecting Example in the Visualization menu after

opening a study.

A.4. Adding functionality650

Having a minimal extension working, the next step is adding actual functionality

to it. In this example we will add a 2D and a 3D viewer. Viewers can be added in

the graphical editor as QWidgets and then promoted to Q2DViewerWidget and

Q3DViewer, respectively.

28

Then we add a setPatient method to QExampleExtension with the fol-655

lowing code:

void QExampleExtension::setPatient(Patient *patient) {

m_2DViewer->setInputAsynchronously(patient->getVolumesList().first());

m_3DViewer->setInput(patient->getVolumesList().first());

}660

Finally we call this method from ExampleExtensionMediator, getting the

patient from the ExtensionContext:

exampleExtension->setPatient(extensionContext.getPatient());

If we build and launch the extension in this moment, we can already see both view-

ers showing the first series of the opened study, as seen in Fig. A.1(b). Both viewers665

allow to independently change the series using the right click menu. The 2D viewer al-

lows changing slices with a slider, but the 3D viewer does not support any interactions

yet.

To add interactions to the viewers, we need to register and activate several tools in

each one. This is done with the help of a ToolManager. Since each viewer will have670

a different set of tools, we will need separated ToolManager instances for each one.

We add the new code to the extension’s constructor:

QExampleExtension::QExampleExtension(QWidget *parent) : QWidget(parent) {

setupUi(this);

675

ToolManager *toolManager2D = new ToolManager(this);

toolManager2D->registerTool("ZoomTool"); // left button

toolManager2D->registerTool("TranslateTool"); // middle button

toolManager2D->registerTool("WindowLevelTool"); // right button

toolManager2D->registerTool("SlicingKeyboardTool"); // keyboard680

toolManager2D->registerTool("SlicingWheelTool"); // wheel

toolManager2D->setupRegisteredTools(m_2DViewer->getViewer());

toolManager2D->triggerTools({"ZoomTool", "TranslateTool", "WindowLevelTool",

"SlicingKeyboardTool", "SlicingWheelTool"});

685

ToolManager *toolManager3D = new ToolManager(this);

toolManager3D->registerTool("ZoomTool"); // left button

toolManager3D->registerTool("TranslateTool"); // middle button

toolManager3D->registerTool("Rotate3DTool"); // right button

toolManager3D->setupRegisteredTools(m_3DViewer);690

toolManager3D->triggerTools({"ZoomTool", "TranslateTool", "Rotate3DTool"});

}

29

If we rebuild and launch the extension again, we can try the new features. In the

2D viewer we can zoom while holding the left button, pan while holding the middle

button, adjust the window level or VOI LUT while holding the right button, and change695

slices with the keyboard arrows and the mouse wheel. In the 3D viewer we can zoom

while holding the left button, pan while holding the middle button, and rotate the image

while holding the right button.

Appendix B. Score calculation

The motivation of this appendix is to explain with detail how the actual scores are700

calculated following the reduced but complete example of Fig. 2. Note that the actual

spreadsheet has many more (hidden) intermediate columns that propagate values up

and down in order to accomplish the tree-like structure calculations.

First of all we have to define some concepts: (i) nodes, which are rows, and must

have a weight; (ii) leaf nodes, which are rows without children nodes, are the only705

directly evaluated items for each analysed software, and their scores always correspond

with the evaluation; and (iii) container nodes, which have children nodes, are never

directly evaluated, and their score is the weighted sum of their direct children scores.

The columns in bold are the ones to be considered user editable. Almost all numeric

columns have values ranging from 0 to 1; being an exception the weights editable710

column, that may take any positive number. Then, for each sibling, all weights are

summed and normalized to a 0 to 1 range that is placed in the relative norm. w. column.

The sum of relative norm. w. across all siblings is exactly 1. The reason behind this

methodology is to make the weight setting process more easy and natural.

Container nodes scores are computed recursively, starting from leaf nodes and as-715

cending up to the root node, according to the following process: (i) each rel. score of

each analysed software is multiplied by the relative norm. w.; (ii) each rel. score of

each direct child is summed; and (iii) the result of the summation is the rel. score that

the container node takes.

30

	Introduction
	Materials and methods
	Starviewer architecture
	External libraries
	Core
	Core user interface
	Extensions

	The evaluation framework
	The evaluation procedure
	Evaluation framework definition
	Selection of viewers to compare

	Results
	Starviewer as a platform
	Evaluation

	Discussion
	Workflow to create a Starviewer extension
	Extension subproject
	Minimum code
	Translations
	Adding functionality

	Score calculation

