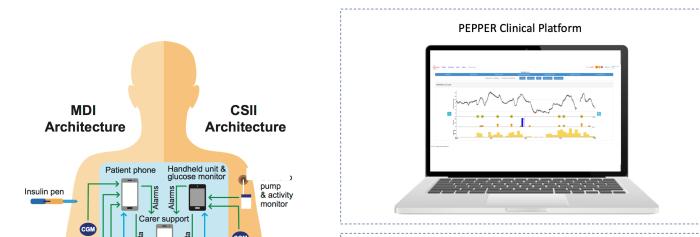


The PEPPER System Application Program Interface

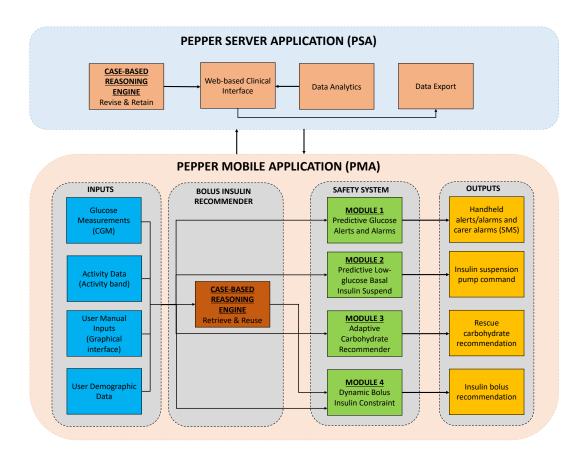
Pau Herrero¹, Joaquim Massana², Yenny Leal³, Lucian Nita⁴, Parizad Avari⁵, David Duce⁶, Arantza Aldea⁶, Pantelis Georgiou¹, José Manuel Fernández-Real³, Mercedes Fernández-Balsells³, Nick Oliver³, Beatriz Lòpez², Clare Martin⁶

¹Department of Electrical and Electronic Engineering, Imperial College London, London UK

²Enginyeria Elèctrica, Electrònica i Automática, Universitat de Girona, Spain


³Institut d'Investigació Biomèdica de Girona Dr Josep Trueta, Spain

⁴ Department of Research & Development, Romsoft SRL, Romania


⁵Division of Diabetes, Endocrinology and Metabolism, Faculty of Medicine, Imperial College London, UK ⁶Department of Computing and Communication Technologies, Oxford Brookes University, Oxford, UK

Background and Aims

- PEPPER (Patient Empowerment through Predictive PERsonalised decision support) is an EU-funded H2020 project that provides a personalized decision support system for type 1 diabetes selfmanagement [1]. (<u>http://www.pepper.eu.com/</u>)
- The PEPPER system includes an Al-powered insulin dose recommender [2] and a safety system comprised of different modules (predictive glucose alerts, predictive low-glucose suspend, carbohydrate recommender, dynamic insulin constraint) [3].
- PEPPER offers a dual architecture to cater for both insulin injections and insulin pump treatments.
- Users wear a real-time continuous glucose monitoring and an activity monitor that communicates to the handheld device.
- The handheld unit communicates to a secure web server that enables remote clinical supervision.

- All APIs are developed in JAVA but the web interface API which is developed in C#.
- All APIs use a JSON messaging system for communication between handset and server.

Block diagram of the PEPPER system modular architecture

Results

Left) PEPPER system MDI and CSII architectures and Right) PEPPER system components

- PEPPER complies with all medical software standards (IEC62304, IEC62366, SnomedCT, and HL7) and has been evaluated through a randomised cross-over clinical study.
- Although PEPPER was designed to be used as a whole, it is also possible to use its multiple individual components in an independent way.
- This work describes the application program interface (API) developed for this purpose.

Methods

- The PEPPER API comprises four individual APIs and a system architecture defining their interoperability:
 - 1. insulin dose recommender
 - 2. safety system
 - 3. handset graphical user interface
 - 4. web interface (backend and frontend)

.....

• The PEPPER API is currently available under different licensing agreements and its documentation can be freely accessed online.

www.pepper.eu.com/API

Conclusion

- The PEPPER API provides a convenient way to integrate a variety of software modules into an insulin decision support system or artificial pancreas.
- The algorithms have been shown to work together, without conflict, in the PEPPER system, which has been clinically evaluated.

Acknowledgements

• This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement 689810.

References

- Herrero, P., López, B., & Martin, C. (2016). Pepper: Patient empowerment through predictive personalised decision support. In ECAI Workshop on Artificial Intelligence for Diabetes (pp. 8-9).
- 2. Torrent-Fontbona, F., & López, B. (2018). Personalized adaptive CBR bolus recommender system for type 1 diabetes. *IEEE journal of biomedical and health informatics*, 23(1), 387-394.
- Liu, C., Avari, P., Leal, Y., Wos, M., Sivasithamparam, K., Georgiou, P., ... & Oliver, N. (2019). A Modular Safety System for an Insulin Dose Recommender: A Feasibility Study. Journal of diabetes science and technology